JP4143088B2 - Coaxial cable, manufacturing method thereof, and multicore cable using the same - Google Patents

Coaxial cable, manufacturing method thereof, and multicore cable using the same Download PDF

Info

Publication number
JP4143088B2
JP4143088B2 JP2005366568A JP2005366568A JP4143088B2 JP 4143088 B2 JP4143088 B2 JP 4143088B2 JP 2005366568 A JP2005366568 A JP 2005366568A JP 2005366568 A JP2005366568 A JP 2005366568A JP 4143088 B2 JP4143088 B2 JP 4143088B2
Authority
JP
Japan
Prior art keywords
wire
copper alloy
coaxial cable
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005366568A
Other languages
Japanese (ja)
Other versions
JP2007169687A (en
Inventor
得天 黄
量 松井
修 瀬谷
洋光 黒田
寛 沖川
竜二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005366568A priority Critical patent/JP4143088B2/en
Priority to CN2006101687702A priority patent/CN1988055B/en
Priority to US11/641,934 priority patent/US7544886B2/en
Publication of JP2007169687A publication Critical patent/JP2007169687A/en
Application granted granted Critical
Publication of JP4143088B2 publication Critical patent/JP4143088B2/en
Priority to US12/420,576 priority patent/US8143517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Description

本発明は、高強度、高導電性を有し、かつ発泡押出作業、半田付け作業等のような熱的な負荷を与える作業においても強度の低下が生じにくく、耐熱性にも優れた同軸ケーブル及びその製造方法並びにこれを用いた多芯ケーブルに関するものである。   The present invention is a coaxial cable that has high strength and high conductivity, is less likely to cause a decrease in strength even in operations that give a thermal load such as foaming extrusion work, soldering work, etc., and has excellent heat resistance And a manufacturing method thereof and a multicore cable using the same.

電子機器用の耐屈曲ケーブル(例えば、ロボットケーブル)や、医療機器用の耐屈曲ケーブル(例えば、プローブケーブル)等に用いられる導体の材料としては、高強度で高導電性の銅合金が一般的に使用されている。   High-strength and high-conductivity copper alloys are generally used as conductor materials used in bending-resistant cables for electronic devices (for example, robot cables) and bending-resistant cables for medical devices (for example, probe cables). Is used.

現在、量産レベルで製造されている銅合金線としては、連続鋳造・圧延が可能で、経済性に優れたCu−Sn合金線及びCu−Sn−In合金線が挙げられ、電子機器用、及び医療機器用耐屈曲ケーブルの導体材料として多用されている。また、その他の銅合金線も、製品コストおよび銅合金線の各種特性に応じて、様々な分野に適用されている。   Currently, copper alloy wires manufactured at a mass production level include Cu-Sn alloy wires and Cu-Sn-In alloy wires that can be continuously cast and rolled and are excellent in economic efficiency, and for electronic equipment, and It is widely used as a conductor material for flexible cables for medical equipment. Other copper alloy wires are also applied to various fields according to product costs and various characteristics of copper alloy wires.

近年の電子機器の小型化・軽量化、あるいは医療機器の小型化に伴って、これらに使用される電線の導体にも細径化が強く求められており、φ0.03mm以下の導体が要求されるようになってきている。特に、超音波内視鏡ヘッド部の高度化に伴い、超音波内視鏡用ケーブルはより多芯化(200〜260心)の方向に進む傾向がみられ、その一方で、患者の苦痛低減のためのヘッド部の細径化の要求が高まっている。細径化の要求は、血管内から所定の患部にアプローチする血管内手術を実施する際に使用されるカールケーブル等においても顕著である。
また、最近では細径化のニーズのみではなく、耐屈曲性の向上と伝送容量の増加を目的に、高強度特性と高導電特性を両立した導体材料の開発が強く求められている。
With recent downsizing and weight reduction of electronic devices and miniaturization of medical devices, the conductors of electric wires used for these devices are strongly demanded to be reduced in diameter, and conductors having a diameter of 0.03 mm or less are required. It is becoming. In particular, with the advancement of the ultrasonic endoscope head, the ultrasonic endoscope cable tends to be more multi-core (200 to 260 cores), while reducing patient pain. There is an increasing demand for reducing the diameter of the head portion. The demand for reducing the diameter is also remarkable in a curl cable or the like used when performing an intravascular operation for approaching a predetermined affected area from within a blood vessel.
In recent years, there has been a strong demand for the development of a conductor material that has both high strength characteristics and high conductivity characteristics for the purpose of improving flex resistance and increasing transmission capacity, as well as the need for smaller diameters.

前述のCu−Sn合金線やCu−Sn−In合金線は、ベース金属であるタフピッチ銅にSnを添加してなる銅合金で構成されている。しかしながら、Cu−Sn合金線は強度を増加するためにはSnの添加量を増加しなければならず、その結果、導電率は低下してしまい、強度と導電率を両立するのは困難である。   The aforementioned Cu—Sn alloy wire and Cu—Sn—In alloy wire are made of a copper alloy obtained by adding Sn to tough pitch copper as a base metal. However, in order to increase the strength of the Cu—Sn alloy wire, it is necessary to increase the amount of Sn added. As a result, the electrical conductivity decreases, and it is difficult to achieve both strength and electrical conductivity. .

一方、近年、強度と導電率を両立する銅合金として、Cu−Ag合金が注目されている。引張強度及び導電率が優れたCu−Ag合金は、例えば、銅に銀を1.0〜15重量%含有したCu−Ag合金を(1)鋳造して得たロットに減面率70%以上に冷間加工した後、(2)400〜500℃の温度で1〜30時間熱処理を行い、次いで(3)減面率95%以上の冷間加工を行うことにより製造される(特許文献1参照)。   On the other hand, in recent years, a Cu—Ag alloy has attracted attention as a copper alloy having both strength and electrical conductivity. Cu-Ag alloy with excellent tensile strength and electrical conductivity is, for example, a lot obtained by casting (1) a Cu-Ag alloy containing 1.0 to 15% by weight of silver in copper. (2) Heat treatment is performed at a temperature of 400 to 500 ° C. for 1 to 30 hours, and then (3) cold working with a reduction in area of 95% or more is performed (Patent Document 1). reference).

また、純銅に銀を0.1〜1.0重量%添加してCu−Ag合金を生成し、0.01〜0.08mm、引張強さが600MPa以上の素線にし、この素線を所定の本数だけ撚り合わせた後、この撚線に熱処理を施すことにより撚線時の歪を除去して極細銅合金撚線とすることも行われている(特許文献2参照)。
特開2001−40439号公報 特開2001−234309号公報
Moreover, 0.1 to 1.0% by weight of silver is added to pure copper to form a Cu-Ag alloy, which is made into a strand having 0.01 to 0.08 mm and a tensile strength of 600 MPa or more. After the number of wires is twisted together, the twisted wire is subjected to heat treatment to remove strain at the time of twisted wire to form an ultrafine copper alloy twisted wire (see Patent Document 2).
JP 2001-40439 A JP 2001-234309 A

低容量の同軸ケーブルにおいては、極細銅合金線の外層に融点が300℃程度の発泡絶縁体を押出被覆して使用しているが、この押出作業においては、被覆時の絶縁体の熱と押出機ヘッド部の熱(300〜380℃)によって極細銅合金線の機械的特性、特に引張り強度の低下が生じる。更に、端末加工においては、半田付け作業により、300〜350℃程度の半田コテ熱によって端末部極細銅合金線の引張り強度が著しく低下する。従って、発泡押出作業や半田付け作業後においては、電気的特性および機械的特性の両立が難しくなる場合があり、特に引張強度の低下によって、ケーブルとケーブル端末加工部の機械的信頼性が大きく損なわれることがある。   In low-capacity coaxial cables, a foamed insulator having a melting point of about 300 ° C. is used as an outer layer of an ultrafine copper alloy wire by extrusion coating. In this extrusion operation, the insulation heat and extrusion during coating are used. The mechanical properties of the ultrafine copper alloy wire, particularly the tensile strength, is lowered by the heat (300 to 380 ° C.) of the machine head. Furthermore, in the terminal processing, the tensile strength of the terminal portion ultrafine copper alloy wire is remarkably reduced by soldering iron heat of about 300 to 350 ° C. due to the soldering operation. Therefore, after foaming extrusion or soldering, it may be difficult to achieve both electrical and mechanical properties. Especially, the mechanical reliability of the cable and cable end processing part is greatly impaired due to the decrease in tensile strength. May be.

また、例えば、超音波診断装置用プローブケーブルや超音波内視鏡ケーブルの用途には、線径0.025mm以下の極細線が使用されるため、このような導体サイズに対応した電気抵抗が問題となる。具体的には、AWG(American Wire Gauge)規格に沿って、細径化と電気特性を真に両立した極細銅合金撚線が要求される。AWG規格と撚線構造(撚り本数/線径)の関係は、42AWG(7/0.025)、43AWG(7/0.023)、44AWG(7/0.020)、45AWG(7/0.018)、46AWG(7/0.016)、48AWG(7/0.013)、50AWG(7/0.010)とされる。   In addition, for example, an ultra-fine wire having a wire diameter of 0.025 mm or less is used for a probe cable for an ultrasonic diagnostic apparatus or an ultrasonic endoscope cable, so that an electric resistance corresponding to such a conductor size is a problem. It becomes. Specifically, in accordance with the AWG (American Wire Gauge) standard, an ultrafine copper alloy stranded wire that truly achieves both a reduction in diameter and electrical characteristics is required. The relationship between the AWG standard and the twisted wire structure (number of twists / wire diameter) is 42 AWG (7 / 0.025), 43 AWG (7 / 0.023), 44 AWG (7 / 0.020), 45 AWG (7/0. 018), 46 AWG (7 / 0.016), 48 AWG (7 / 0.013), and 50 AWG (7 / 0.010).

しかしながら、特許文献1記載のCu−Ag合金では、引張強さと導電率を両立させているものの、このための手法として、特定の温度で長時間(1〜30時間)の熱処理を行うため、生産効率が悪くコスト高になってしまう。また、押出作業などの熱的な負荷が加わった場合の熱履歴による強度低下について、何ら言及されておらず、対策がなされていない。更に、極細径の導体サイズに対応した電気抵抗についても何ら言及されていない。   However, although the Cu-Ag alloy described in Patent Document 1 has both tensile strength and electrical conductivity, as a technique for this purpose, heat treatment is performed at a specific temperature for a long time (1 to 30 hours). Inefficient and expensive. In addition, no mention is made of measures for reducing strength due to thermal history when a thermal load such as extrusion work is applied, and no measures are taken. Furthermore, no mention is made of electrical resistance corresponding to a very thin conductor size.

一方、特許文献2の極細銅合金撚線では、銅合金の添加元素として銀が記載されているが、添加量が0.1〜1.0重量%と少なく、引張強さの向上は望めない。また、この極細銅合金撚線では、塑性歪領域の屈曲特性を向上する目的で主に伸び特性を5%以上確保しているが、伸びを重視した特性では必然的に引張強さは低下してしまう。このため、特に線径0.025mm以下の極細線が使用される電子機器用ケーブル、あるいは医療機器用ケーブル、例えば超音波診断装置用プローブケーブルや超音波内視鏡ケーブルの用途に対しては強度不足であり、屈曲性が十分でないという問題がある。   On the other hand, in the ultrafine copper alloy stranded wire of Patent Document 2, although silver is described as an additive element of the copper alloy, the addition amount is as small as 0.1 to 1.0% by weight, and improvement in tensile strength cannot be expected. . In addition, this ultra-fine copper alloy stranded wire has an elongation characteristic of 5% or more mainly for the purpose of improving the bending characteristics in the plastic strain region, but the tensile strength is inevitably lowered in the characteristics that emphasize elongation. End up. For this reason, it is particularly strong for the use of electronic equipment cables or medical equipment cables in which extra fine wires having a wire diameter of 0.025 mm or less are used, such as probe cables for ultrasonic diagnostic equipment and ultrasonic endoscope cables. There is a problem that it is insufficient and the flexibility is not sufficient.

従って、本発明の目的は、上記課題を解決し、高強度特性と低抵抗特性(高導電性)を両立し、かつ発泡押出作業や端末部の半田付け作業などにおける熱的な負荷においても強度の低下が生じにくく、高い耐熱性をも兼ね備えた同軸ケーブル及びその製造方法並びにこれを用いた多芯ケーブルを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, to achieve both high strength characteristics and low resistance characteristics (high conductivity), and to be strong even under a thermal load during foaming extrusion work or terminal soldering work. It is an object of the present invention to provide a coaxial cable having high heat resistance, a method for manufacturing the same, and a multicore cable using the same.

上記目的を達成するため、本発明の同軸ケーブルは、銀(Ag)を1〜3重量%含有し、残部が銅(Cu)及び不可避的不純物からなる線径が0.010〜0.025mmの銅合金線を複数本撚り合わせて銅合金撚線を形成し、前記銅合金撚線の引張強さが850MPa以上、導電率が85%IACS以上であり、かつ前記銅合金撚線の外周に発泡絶縁体を被覆し、更にその外周に、複数本の導体線を前記銅合金撚線の長手方向に沿って螺旋状に巻き廻して外部導体を形成し、前記外部導体の表面にジャケット層を被覆したことを特徴とする。   In order to achieve the above object, the coaxial cable of the present invention contains 1 to 3% by weight of silver (Ag), and the balance of copper (Cu) and inevitable impurities is 0.010 to 0.025 mm. A plurality of copper alloy wires are twisted to form a copper alloy stranded wire, the copper alloy stranded wire has a tensile strength of 850 MPa or more, an electrical conductivity of 85% IACS or more, and foams on the outer periphery of the copper alloy stranded wire. An insulator is covered, and a plurality of conductor wires are spirally wound along the longitudinal direction of the copper alloy stranded wire to form an outer conductor, and a jacket layer is coated on the surface of the outer conductor. It is characterized by that.

前記銅合金撚線は、熱処理されたものであり、前記熱処理後の電気抵抗の低下率が6%以上であり、かつ前記熱処理後の引張強度の低下率が20%以下とすることが好ましい。   The copper alloy stranded wire is heat-treated, and it is preferable that the decrease rate of the electrical resistance after the heat treatment is 6% or more and the decrease rate of the tensile strength after the heat treatment is 20% or less.

前記銅合金線の表面に錫(Sn)、銀(Ag)、又はニッケル(Ni)のめっき層を形成することができる。   A plating layer of tin (Sn), silver (Ag), or nickel (Ni) can be formed on the surface of the copper alloy wire.

前記銅合金線の線径が0.021 mmを超え0.025mm以下である同軸ケーブルであって、電気抵抗が7500Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.018 mmを超え0.022mm以下である同軸ケーブルであって、電気抵抗が10000Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.016 mmを超え0.020mm以下である同軸ケーブルであって、電気抵抗が13000Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.014 mmを超え0.018mm以下である同軸ケーブルであって、電気抵抗が15500Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.013 mmを超え0.017mm以下である同軸ケーブルであって、電気抵抗が17000Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.011 mmを超え0.015mm以下である同軸ケーブルであって、電気抵抗が23500Ω/km以下、静電容量が30〜80pF/m、
前記銅合金線の線径が0.008 mmを超え0.012mm以下である同軸ケーブルであって、電気抵抗が40000Ω/km以下、静電容量が30〜80pF/m、
の同軸ケーブルとすることができる。
The copper alloy wire is a coaxial cable having a wire diameter of more than 0.021 mm and 0.025 mm or less, an electric resistance of 7500 Ω / km or less, a capacitance of 30 to 80 pF / m,
A coaxial cable having a wire diameter of more than 0.018 mm and not more than 0.022 mm, wherein the copper alloy wire has an electric resistance of 10,000 Ω / km or less, a capacitance of 30 to 80 pF / m,
The copper alloy wire is a coaxial cable having a wire diameter of more than 0.016 mm and 0.020 mm or less, an electrical resistance of 13000 Ω / km or less, a capacitance of 30 to 80 pF / m,
A coaxial cable having a wire diameter of more than 0.014 mm and not more than 0.018 mm, wherein the copper alloy wire has an electrical resistance of 15500 Ω / km or less, a capacitance of 30 to 80 pF / m,
A coaxial cable having a wire diameter of more than 0.013 mm and not more than 0.017 mm, wherein the copper alloy wire has an electric resistance of 17000 Ω / km or less, a capacitance of 30 to 80 pF / m,
A coaxial cable having a wire diameter of the copper alloy wire exceeding 0.011 mm and 0.015 mm or less, having an electric resistance of 23500 Ω / km or less, a capacitance of 30 to 80 pF / m,
A coaxial cable having a wire diameter of more than 0.008 mm and not more than 0.012 mm, wherein the copper alloy wire has an electric resistance of 40000 Ω / km or less, a capacitance of 30 to 80 pF / m,
Coaxial cable.

また、上記目的を達成するため、本発明の同軸ケーブルの製造方法は、純銅に銀を1〜3重量%添加して銅合金を生成し、伸線加工を行って線径が0.010〜0.025mmの極細銅合金線を作製後、前記極細銅合金線を複数本撚り合わせて極細銅合金撚線とし、300〜500℃の温度で0.2〜5秒の熱処理を施した後、前記銅合金撚線の外周に、厚さ0.28mm以下の発泡絶縁体を被覆後、スキン層を形成し、更にその外周に、複数本の導体線を前記銅合金撚線の長手方向に沿って螺旋状に巻き廻して外部導体を形成した後、前記外部導体の表面にジャケット層を被覆することを特徴とする。   Moreover, in order to achieve the said objective, the manufacturing method of the coaxial cable of this invention adds 1 to 3 weight% of silver to pure copper, produces | generates a copper alloy, performs wire drawing, and a wire diameter is 0.010. After producing a 0.025 mm ultrafine copper alloy wire, a plurality of the ultrafine copper alloy wires are twisted together to form an ultrafine copper alloy twisted wire, and after heat treatment at a temperature of 300 to 500 ° C. for 0.2 to 5 seconds, A skin layer is formed on the outer periphery of the copper alloy stranded wire after coating with a foam insulator having a thickness of 0.28 mm or less, and a plurality of conductor wires are further provided along the longitudinal direction of the copper alloy stranded wire on the outer periphery. After forming the outer conductor by spirally winding, a jacket layer is coated on the surface of the outer conductor.

更に、テンションメンバ又は中心介在の外周に、前記同軸ケーブルを複数本撚り合わせて多芯ケーブルとすることができる。   Furthermore, a plurality of the coaxial cables can be twisted around the tension member or the outer periphery of the center interposition to form a multicore cable.

テンションメンバ又は中心介在の外周に、前記同軸ケーブルを複数本束ねて形成した同軸ケーブルユニットを複数本撚り合わせて多芯ケーブルとすることもできる。   A plurality of coaxial cable units formed by bundling a plurality of coaxial cables on the tension member or the outer periphery of the center may be twisted to form a multicore cable.

前記同軸ケーブルを複数本一定ピッチで並列に配置して多芯ケーブルとすることもできる。   A plurality of coaxial cables may be arranged in parallel at a constant pitch to form a multicore cable.

本発明によれば、高強度特性と低抵抗特性(高導電性)を両立し、かつ発泡押出作業や端末部の半田付け作業などにおける熱的な負荷においても強度の低下が生じにくく、高い耐熱性をも兼ね備えた同軸ケーブル及び多芯ケーブルを提供することが可能となる。   According to the present invention, both high strength characteristics and low resistance characteristics (high conductivity) are compatible, and the strength is not easily lowered even under a thermal load in a foam extrusion operation or a soldering operation of a terminal portion. Thus, it is possible to provide a coaxial cable and a multi-core cable that have both characteristics.

(同軸ケーブル)
図1に、本実施形態の同軸ケーブルの断面図を示す。
この同軸ケーブル10は、銅合金線1を7本撚り合わせた銅合金撚線(内部導体)3の外周に発泡絶縁体5が被覆され、その外側に形成されたスキン層6の外周に、複数本の導体線7を銅合金撚線(内部導体)3の長手方向に沿って螺旋状に巻き廻して外部導体8とし、その表面にジャケット層9を被覆したものである。
(coaxial cable)
FIG. 1 shows a cross-sectional view of the coaxial cable of this embodiment.
The coaxial cable 10 has a foamed insulator 5 coated on the outer periphery of a copper alloy stranded wire (inner conductor) 3 in which seven copper alloy wires 1 are stranded, and a plurality of outer peripherals of a skin layer 6 formed on the outer periphery thereof. A conductor wire 7 is spirally wound along the longitudinal direction of a copper alloy stranded wire (inner conductor) 3 to form an outer conductor 8, and a jacket layer 9 is coated on the surface thereof.

(銅合金線)
この銅合金線1は、Cu−Ag合金線であって、線径が0.025〜0.010mmであり、銀を1〜3重量%、好ましくは1.5〜2.5重量%含有するものである。
銀の含有量を1〜3重量%としたのは、1重量%未満では強度の向上が望めず、3重量%を超えると強度は向上するものの導電率が低下してしまうためである。更に、銀の含有量を1.5〜2.5重量%の範囲とすることにより、強度特性と導電率特性が最も両立した性能が得られる。
(Copper alloy wire)
The copper alloy wire 1 is a Cu-Ag alloy wire having a wire diameter of 0.025 to 0.010 mm and containing 1 to 3% by weight, preferably 1.5 to 2.5% by weight of silver. Is.
The reason why the silver content is set to 1 to 3% by weight is that an improvement in strength cannot be expected if it is less than 1% by weight, and if it exceeds 3% by weight, the conductivity is lowered although the strength is improved. Furthermore, by setting the silver content in the range of 1.5 to 2.5% by weight, the performance having the most compatible strength characteristics and conductivity characteristics can be obtained.

なお、銅合金線1の表面に、錫(Sn)、銀(Ag)、又はニッケル(Ni)のめっき層を形成することもできる。   Note that a tin (Sn), silver (Ag), or nickel (Ni) plating layer may be formed on the surface of the copper alloy wire 1.

(内部導体)
内部導体は、上記の銅合金線1を7本撚り合わせた銅合金撚線3で構成され、引張強さが850MPa以上、導電率が85%IACS以上とするものである。引張強さ850MPa以上、導電率85%IACS以上としたのは、医療機器用ケーブルへの使用を考慮した場合、上記範囲では屈曲性、電気抵抗、可撓性などの諸特性が満足されるが、上記範囲外では、これらの諸特性を満足させることができなくなるためである。
また、この銅合金撚線3は、熱処理されたものであり、熱処理後の電気抵抗の低下率が6%以上であり、かつ前記熱処理後の引張強度の低下率が20%以内とされている。熱処理後の電気抵抗の低下率が6%未満であり、前記熱処理後の引張強度の低下率が20%を超えると、発泡押出製造作業や端末部の半田付け作業において断線が生じ易くなり、高強度特性と低抵抗特性(高導電性)を両立することが困難となる。
(Inner conductor)
The internal conductor is composed of a copper alloy twisted wire 3 in which seven copper alloy wires 1 are twisted together, and has a tensile strength of 850 MPa or more and a conductivity of 85% IACS or more. The tensile strength of 850 MPa or more and the electrical conductivity of 85% IACS or more are considered to satisfy various characteristics such as flexibility, electrical resistance, and flexibility in the above range when considering use for a cable for medical equipment. This is because these characteristics cannot be satisfied outside the above range.
Moreover, this copper alloy twisted wire 3 is heat-treated, the reduction rate of the electrical resistance after the heat treatment is 6% or more, and the reduction rate of the tensile strength after the heat treatment is within 20%. . When the rate of decrease in electrical resistance after heat treatment is less than 6% and the rate of decrease in tensile strength after heat treatment exceeds 20%, disconnection is likely to occur in foam extrusion manufacturing operations and terminal portion soldering operations, and high It becomes difficult to achieve both strength characteristics and low resistance characteristics (high conductivity).

更に、この銅合金撚線3の電気抵抗は、銅合金線1の線径と以下の関係を有するものである。
(1)銅合金線1の線径が0.021 mmを超え0.025mm以下の場合、電気抵抗が7500Ω/km以下。
(2)銅合金線1の線径が0.018 mmを超え0.022mm以下の場合、電気抵抗が10000Ω/km以下。
(3)銅合金線1の線径が0.016 mmを超え0.020mm以下の場合、電気抵抗が13000Ω/km以下。
(4)銅合金線1の線径が0.014 mmを超え0.018mm以下の場合、電気抵抗が15500Ω/km以下。
(5)銅合金線1の線径が0.013 mmを超え0.017mm以下の場合、電気抵抗が17000Ω/km以下。
(6)銅合金線1の線径が0.011 mmを超え0.015mm以下の場合、電気抵抗が23500Ω/km以下。
(7)銅合金線1の線径が0.008 mmを超え0.012mm以下の場合、電気抵抗が40000Ω/km以下。
各サイズ毎に電気抵抗を限定したのは、AWG(American Wire Gauge)規格に沿って、細径化と電気特性を真に両立させるためである。
Furthermore, the electrical resistance of the copper alloy twisted wire 3 has the following relationship with the wire diameter of the copper alloy wire 1.
(1) When the wire diameter of the copper alloy wire 1 exceeds 0.021 mm and is 0.025 mm or less, the electric resistance is 7500 Ω / km or less.
(2) When the wire diameter of the copper alloy wire 1 exceeds 0.018 mm and is 0.022 mm or less, the electric resistance is 10,000 Ω / km or less.
(3) When the wire diameter of the copper alloy wire 1 exceeds 0.016 mm and is 0.020 mm or less, the electric resistance is 13000 Ω / km or less.
(4) When the wire diameter of the copper alloy wire 1 exceeds 0.014 mm and is 0.018 mm or less, the electric resistance is 15500 Ω / km or less.
(5) When the wire diameter of the copper alloy wire 1 exceeds 0.013 mm and is 0.017 mm or less, the electric resistance is 17000 Ω / km or less.
(6) When the wire diameter of the copper alloy wire 1 exceeds 0.011 mm and is 0.015 mm or less, the electric resistance is 23500 Ω / km or less.
(7) When the wire diameter of the copper alloy wire 1 exceeds 0.008 mm and is 0.012 mm or less, the electric resistance is 40000 Ω / km or less.
The reason why the electric resistance is limited for each size is to make the diameter reduction and the electric characteristics truly compatible in accordance with the AWG (American Wire Gauge) standard.

(発泡絶縁体)
発泡絶縁体5としては、例えば、発泡押出用四フッ化エチレン・パーフロロプロビルビニルエーテル共重合体(PFA)を用いることができる。発泡絶縁体5は、銅合金撚線3の外周に、0.28mm以下の厚さで形成される。0.28mm以下の厚さとしたのは、43AWG〜50AWGの同軸ケーブルにおいて、静電容量を30pF/m以上とするためである。
(Foam insulation)
As the foam insulator 5, for example, tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (PFA) for foam extrusion can be used. The foamed insulator 5 is formed on the outer periphery of the copper alloy stranded wire 3 with a thickness of 0.28 mm or less. The reason why the thickness is 0.28 mm or less is to make the capacitance 30 pF / m or more in a coaxial cable of 43 AWG to 50 AWG.

(スキン層)
スキン層6は、PETテープを巻回したり、或いは四フッ化エチレン・パーフロロプロビルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)を押出し被覆することなどによって設けることができる。
(Skin layer)
The skin layer 6 is formed by winding a PET tape, or a tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (PFA), a tetrafluoroethylene / hexafluoropropylene copolymer (FEP), or ethylene / tetrafluoride. An ethylene copolymer (ETFE) can be provided by extrusion coating or the like.

(外部導体)
外部導体8(損巻きシールド)は、Snめっき銅線、Snめっき銅合金線、銀めっき銅線、銀めっき銅合金線などの導体線7を、多数本(例えば、30本〜60本)所定ピッチでらせん状に横巻して形成される。
(Outer conductor)
The external conductor 8 (loss winding shield) has a large number (for example, 30 to 60) of conductor wires 7 such as Sn-plated copper wire, Sn-plated copper alloy wire, silver-plated copper wire, and silver-plated copper alloy wire. It is formed by spiral winding at a pitch.

(ジャケット層)
ジャケット層9は、PETテープを巻回したり、或いは四フッ化エチレン・パーフロロプロビルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)などを押出し被覆することによって設けることができる。
(Jacket layer)
The jacket layer 9 is formed by winding a PET tape, or a tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (PFA), a tetrafluoroethylene / hexafluoropropylene copolymer (FEP), or ethylene / tetrafluoride. An ethylene copolymer (ETFE) or the like can be provided by extrusion coating.

(同軸ケーブルの静電容量)
上記同軸ケーブル10の静電容量は、銅合金線1の線径が0.021 mmを超え0.025mm以下の場合、0.018 mmを超え0.022mm以下の場合、0.016 mmを超え0.020mm以下の場合、0.014 mmを超え0.018mm以下の場合、0.013 mmを超え0.017mm以下の場合、0.011 mmを超え0.015mm以下の場合、0.008 mmを超え0.012mm以下の場合のいずれも、30〜80pF/mであり、低容量なものとなる。
(Capacitance of coaxial cable)
The capacitance of the coaxial cable 10 exceeds 0.016 mm when the wire diameter of the copper alloy wire 1 exceeds 0.021 mm and is 0.025 mm or less, and exceeds 0.018 mm and 0.022 mm or less. In the case of 0.020 mm or less, in the case of over 0.014 mm and 0.018 mm or less, in the case of over 0.013 mm and 0.017 mm or less, in the case of over 0.011 mm and 0.015 mm or less, 0.008 mm In the case of exceeding 0.012 mm and exceeding 30 to 80 pF / m, the capacity is low.

(多芯ケーブル:4本の同軸ケーブルを用いたもの)
図2に、本実施形態の多芯ケーブルの断面図を示す。
この多芯ケーブル20は、テンションメンバ21(若しくは中心介在)の外周に、図1に示す同軸ケーブル10を4本同心円上に配置して撚り合わせてバインドテープ23を巻き付け、更に、その外側にシールド25及びシース27を設けたものである。
バインドテープ23の巻厚は、例えば0.05mmとしている。また、シールド25としては、例えば、厚さ0.05mmのSnめっき軟銅線編組を施したものを用いる。シールド25は、他に横巻きシールドであっても良い。シース27は、PETテープを巻回したり、あるいは、例えば、四フッ化エチレン・パーフロロプロビルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)を押出し被覆することなどによって設けることができる。
なお、図2では、同軸ケーブル10を同心円上に1層配置し撚り合わせた構造を示したが、同軸ケーブル10を更に複数本用いて2層以上配置して撚り合わせても良い。
(Multi-core cable: using four coaxial cables)
In FIG. 2, sectional drawing of the multi-core cable of this embodiment is shown.
This multi-core cable 20 has four coaxial cables 10 shown in FIG. 1 arranged concentrically on the outer periphery of a tension member 21 (or centrally interposed), twisted together and wound with a bind tape 23, and further shielded on the outside. 25 and a sheath 27 are provided.
The winding thickness of the bind tape 23 is 0.05 mm, for example. Further, as the shield 25, for example, a shield with an Sn-plated annealed copper wire braid having a thickness of 0.05 mm is used. The shield 25 may be a horizontal winding shield. The sheath 27 is formed by winding a PET tape or, for example, tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / tetra It can be provided by extrusion coating with a fluorinated ethylene copolymer (ETFE).
Although FIG. 2 shows a structure in which the coaxial cable 10 is arranged in one layer on the concentric circle and twisted, two or more layers of the coaxial cable 10 may be arranged and twisted.

(多芯ケーブル:4本の同軸ケーブルユニットを用いたもの)
図3に、他の実施形態の多芯ケーブルの断面図を示す。
この多芯ケーブル30は、図1に示す同軸ケーブル10を複数本束ねて同軸ケーブルユニット31を形成し、この同軸ケーブルユニット31をテンションメンバ21(若しくは中心介在)の外周に複数本集合撚りしてバインドテープ23を巻き付け、更に、その外側にシールド25及びシース27を設けたものである。
(Multi-core cable: using four coaxial cable units)
In FIG. 3, sectional drawing of the multi-core cable of other embodiment is shown.
In this multi-core cable 30, a plurality of coaxial cables 10 shown in FIG. 1 are bundled to form a coaxial cable unit 31, and a plurality of coaxial cable units 31 are gathered and twisted around the outer periphery of a tension member 21 (or centrally interposed). A bind tape 23 is wound, and a shield 25 and a sheath 27 are provided outside the bind tape 23.

(多芯ケーブル:多芯リボンケーブル)
図4に、他の実施形態の多芯ケーブルの断面図を示す。
この多芯ケーブル40は、図1に示す同軸ケーブル10を複数本一定のピッチで並列に配置し、更にその並列体の両面に粘着テープ41を貼り、多芯リボンケーブルとしたものである。
(Multi-core cable: Multi-core ribbon cable)
FIG. 4 shows a cross-sectional view of a multicore cable according to another embodiment.
This multi-core cable 40 is a multi-core ribbon cable in which a plurality of coaxial cables 10 shown in FIG. 1 are arranged in parallel at a constant pitch, and adhesive tape 41 is attached to both sides of the parallel body.

(製造方法)
次に、本実施形態で使用した銅合金線、銅合金撚線の製造方法について説明する。
まず、純銅に銀を1〜3重量%、好ましくは1.5〜2.5重量%添加し、銅合金を生成する。その後、伸線加工し、あるいは中間に熱処理を施して線径が0.025〜0.010mmの極細線を作製する。この場合、途中の線径において錫(Sn)、銀(Ag)、又はニッケル(Ni)めっきを施して、最終的に線径が0.025〜0.010mmの極細線となるように作製してもよい。
(Production method)
Next, the manufacturing method of the copper alloy wire used in this embodiment and a copper alloy twisted wire is demonstrated.
First, 1 to 3% by weight, preferably 1.5 to 2.5% by weight of silver is added to pure copper to produce a copper alloy. Thereafter, wire drawing is performed, or heat treatment is performed in the middle to produce an ultrafine wire having a wire diameter of 0.025 to 0.010 mm. In this case, tin (Sn), silver (Ag), or nickel (Ni) plating is applied to the intermediate wire diameter so that the wire diameter is finally 0.025 to 0.010 mm. May be.

次に、得られた極細銅合金線単線、あるいは所定の本数、例えば7本撚り合わせて極細銅合金撚線としたものについて、特定条件での熱処理を施す。熱処理は、300〜500℃に加熱された加熱炉中を0.2〜5秒、好ましくは0.5〜1.5秒走行させることにより行う。
熱処理条件として、300〜500℃で0.2〜5秒としたのは、熱処理温度が300℃未満、熱処理時間が0.2秒未満とすると、引張強さの低下は小さいものの、導電率の増加が少なく所望の特性が得られないためである。また、熱処理温度が500℃を超え、熱処理時間が5秒を超えると導電率は大きく増加するものの、引張強さが著しく低下してしまい、所望の特性が得られないためである。さらに、好ましくは0.5〜1.5秒の範囲で熱処理を行うことで、引張強さと導電率が最も両立した性能を得ることができる。
Next, a heat treatment under specific conditions is performed on the obtained ultrafine copper alloy wire single wire or a predetermined number, for example, 7 twisted wires to obtain an ultrafine copper alloy twisted wire. The heat treatment is performed by running in a heating furnace heated to 300 to 500 ° C. for 0.2 to 5 seconds, preferably 0.5 to 1.5 seconds.
The heat treatment conditions were 300 to 500 ° C. and 0.2 to 5 seconds. The heat treatment temperature was less than 300 ° C. and the heat treatment time was less than 0.2 seconds. This is because the desired characteristic cannot be obtained with a small increase. Further, when the heat treatment temperature exceeds 500 ° C. and the heat treatment time exceeds 5 seconds, the electrical conductivity is greatly increased, but the tensile strength is remarkably lowered, and desired characteristics cannot be obtained. Further, by performing the heat treatment preferably in the range of 0.5 to 1.5 seconds, it is possible to obtain performance with the most compatible tensile strength and electrical conductivity.

以上の処理を行うことにより得られた銅合金線、銅合金撚線は、線径が0.025〜0.010mmであり、銀を1〜3重量%、好ましくは1.5〜2.5重量%含有し、引張強さ850MPa以上、導電率85%IACS以上とすることができる。   The copper alloy wire and the copper alloy twisted wire obtained by performing the above treatment have a wire diameter of 0.025 to 0.010 mm and 1 to 3% by weight of silver, preferably 1.5 to 2.5. It can be contained by weight%, the tensile strength can be 850 MPa or more, and the conductivity can be 85% IACS or more.

(本実施形態の効果)
本実施形態によれば、最終線径0.025mm以下の極細線で、高強度特性と低抵抗特性(高導電性)を両立し、かつ発泡押出作業や端末部の半田付け作業などにおける熱的な負荷においても強度の低下が生じにくく、高い耐熱性をも兼ね備えた極細銅合金線及び極細銅合金撚線とすることができる。
よって、これらの極細銅合金線、極細銅合金撚線を使用して同軸ケーブルなどを製造すれば、小型化、細径化、軽量化、高耐屈曲性、高伝送化の性能が要求される電子機器用及び医療機器用ケーブルに好適に用いることができる。
(Effect of this embodiment)
According to the present embodiment, the ultra-thin wire having a final wire diameter of 0.025 mm or less is compatible with both high strength characteristics and low resistance characteristics (high conductivity), and thermal in foaming extrusion work or terminal soldering work. Even under a heavy load, the strength is hardly lowered, and an ultrafine copper alloy wire and an ultrafine copper alloy twisted wire having high heat resistance can be obtained.
Therefore, if these ultrafine copper alloy wires and ultrafine copper alloy stranded wires are used to manufacture coaxial cables, etc., performances of miniaturization, diameter reduction, weight reduction, high bending resistance, and high transmission are required. It can be suitably used for cables for electronic devices and medical devices.

(43AWGの同軸ケーブルの作製) (Production of 43AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが1μmとなるようにAgめっきを行い、線径0.023mmまで伸線加工を行い、極細銅合金線を得た。この0.023mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ1.1mmで撚り合せを行い、その外径が0.069mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. Then, after wire drawing, intermediate annealing and wire drawing, Ag plating is performed so that the final element wire thickness is 1 μm, wire drawing is performed to a wire diameter of 0.023 mm, and an ultrafine copper alloy wire is formed. Obtained. Seven of these 0.023 mm Ag-plated copper alloy wires (Cu-2% Ag) were prepared and twisted at a pitch of 1.1 mm to produce a stranded wire having an outer diameter of 0.069 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。なお、変化率は、[(熱処理前の値−熱処理後の値)/熱処理前の値]×100%として計算した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured, and the change rate of the tensile strength and the electrical resistance was calculated. The rate of change was calculated as [(value before heat treatment−value after heat treatment) / value before heat treatment] × 100%. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.07mmの発泡PFA樹脂を押出被覆して外径0.210mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.025mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.310mmの同軸ケーブルを得た。   Furthermore, the outer periphery of this stranded wire was extrusion-coated with a foamed PFA resin having a thickness of 0.07 mm to form an internal insulator having bubbles with an outer diameter of 0.210 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the internal insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.025 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is wound horizontally to form an outer conductor, a jacket made of 0.015 mm thick PET tape is formed on the outer periphery of the outer conductor, and a coaxial cable having an outer diameter of 0.310 mm Got.

(43AWGの同軸ケーブルの作製) (Production of 43AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 1 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(43AWGの同軸ケーブルの作製) (Production of 43AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 1 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(44AWGの同軸ケーブルの作製) (Production of 44AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.9μmとなるようにAgめっきを行い、線径0.020mmまで伸線加工を行い、極細銅合金線を得た。この0.020mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ1.0mmで撚り合せを行い、その外径が0.06mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. After that, after wire drawing, intermediate annealing, wire drawing, Ag plating is performed so that the final wire thickness is 0.9 μm, wire drawing is performed to a wire diameter of 0.020 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.020 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 1.0 mm to produce a stranded wire having an outer diameter of 0.06 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.06mmの発泡PFA樹脂を押出被覆して外径0.180mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.025mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.280mmの同軸ケーブルを得た。   Further, a 0.06 mm thick foamed PFA resin was extrusion coated on the outer periphery of the stranded wire to form an internal insulator having bubbles with an outer diameter of 0.180 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the internal insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.025 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is wound horizontally to form an outer conductor, a jacket made of PET tape having a thickness of 0.015 mm is formed on the outer periphery of the outer conductor, and a coaxial cable having an outer diameter of 0.280 mm Got.

(44AWGの同軸ケーブルの作製) (Production of 44AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例4の製造方法と同様の処理を行った。   The same treatment as in the production method of Example 4 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(44AWGの同軸ケーブルの作製) (Production of 44AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例4の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 4 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(45AWGの同軸ケーブルの作製) (Production of 45AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.8μmとなるようにAgめっきを行い、線径0.018mmまで伸線加工を行い、極細銅合金線を得た。この0.018mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ0.8mmで撚り合せを行い、その外径が0.054mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. After that, after wire drawing, intermediate annealing, wire drawing, Ag plating is performed so that the final wire thickness is 0.8 μm, wire drawing is performed to a wire diameter of 0.018 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.018 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 0.8 mm to produce a stranded wire having an outer diameter of 0.054 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.05mmの発泡PFA樹脂を押出被覆して外径0.154mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.020mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.244mmの同軸ケーブルを得た。   Further, a PFA resin having a thickness of 0.05 mm was extrusion coated on the outer periphery of the stranded wire to form an internal insulator having bubbles having an outer diameter of 0.154 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the inner insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.020 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is formed into a lateral conductor to form an outer conductor, a jacket made of 0.015 mm thick PET tape is formed on the outer circumference of the outer conductor, and a coaxial cable having an outer diameter of 0.244 mm. Got.

(45AWGの同軸ケーブルの作製) (Production of 45AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例7の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 7 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(45AWGの同軸ケーブルの作製) (Production of 45AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例7の製造方法と同様の処理を行った。   The same treatment as in the manufacturing method of Example 7 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(46AWGの同軸ケーブルの作製) (Production of 46AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.7μmとなるようにAgめっきを行い、線径0.016mmまで伸線加工を行い、極細銅合金線を得た。この0.016mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ0.8mmで撚り合せを行い、その外径が0.048mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. After that, after wire drawing, intermediate annealing, wire drawing, Ag plating is performed so that the final wire thickness is 0.7 μm, wire drawing is performed to a wire diameter of 0.016 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.016 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 0.8 mm to produce a stranded wire having an outer diameter of 0.048 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.04mmの発泡PFA樹脂を押出被覆して外径0.128mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.020mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.218mmの同軸ケーブルを得た。   Furthermore, the outer periphery of this stranded wire was extrusion-coated with a foamed PFA resin having a thickness of 0.04 mm to form an internal insulator having bubbles with an outer diameter of 0.128 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the inner insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.020 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is wound horizontally to form an outer conductor, a jacket made of 0.015 mm thick PET tape is formed on the outer circumference of the outer conductor, and a coaxial cable having an outer diameter of 0.218 mm Got.

(46AWGの同軸ケーブルの作製) (Production of 46AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例10の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 10 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(46AWGの同軸ケーブルの作製) (Production of 46AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例10の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 10 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(47AWGの同軸ケーブルの作製) (Production of 47AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.6μmとなるようにAgめっきを行い、線径0.015mmまで伸線加工を行い、極細銅合金線を得た。この0.015mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ0.8mmで撚り合せを行い、その外径が0.045mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. Then, after wire drawing, intermediate annealing and wire drawing, Ag plating is performed so that the final element wire thickness is 0.6 μm, wire drawing is performed to a wire diameter of 0.015 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.015 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 0.8 mm to produce a stranded wire having an outer diameter of 0.045 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.035mmの発泡PFA樹脂を押出被覆して外径0.115mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.020mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.205mmの同軸ケーブルを得た。   Furthermore, the outer periphery of this stranded wire was extrusion-coated with a foamed PFA resin having a thickness of 0.035 mm to form an internal insulator having bubbles with an outer diameter of 0.115 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the inner insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.020 mm is formed on the outer periphery of the skin layer. % Sn, 0.20% by weight In) is formed on the outer conductor to form an outer conductor, a jacket made of PET tape having a thickness of 0.015 mm is formed on the outer periphery of the outer conductor, and a coaxial cable having an outer diameter of 0.205 mm. Got.

(47AWGの同軸ケーブルの作製) (Production of 47AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例13の製造方法と同様の処理を行った。   The same treatment as in the manufacturing method of Example 13 was performed, except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(47AWGの同軸ケーブルの作製) (Production of 47AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例13の製造方法と同様の処理を行った。   The same treatment as in the manufacturing method of Example 13 was performed, except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(48AWGの同軸ケーブルの作製) (Preparation of 48AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.5μmとなるようにAgめっきを行い、線径0.013mmまで伸線加工を行い、極細銅合金線を得た。この0.013mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ0.7mmで撚り合せを行い、その外径が0.039mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. After that, after wire drawing, intermediate annealing, wire drawing, Ag plating is performed so that the final wire thickness is 0.5 μm, wire drawing is performed to a wire diameter of 0.013 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.013 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 0.7 mm to produce a stranded wire having an outer diameter of 0.039 mm. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.03mmの発泡PFA樹脂を押出被覆して外径0.099mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.016mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.181mmの同軸ケーブルを得た。   Further, an 0.03 mm thick foamed PFA resin was extrusion coated on the outer periphery of the stranded wire to form an internal insulator having bubbles with an outer diameter of 0.099 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the internal insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.016 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is wound horizontally to form an outer conductor, a jacket made of 0.015 mm thick PET tape is formed around the outer conductor, and a coaxial cable having an outer diameter of 0.181 mm Got.

(48AWGの同軸ケーブルの作製) (Preparation of 48AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例16の製造方法と同様の処理を行った。   The same treatment as in the production method of Example 16 was performed, except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(48AWGの同軸ケーブルの作製) (Preparation of 48AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例16の製造方法と同様の処理を行った。   The same process as in the manufacturing method of Example 16 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.

(50AWGの同軸ケーブルの作製) (Preparation of 50AWG coaxial cable)

無酸素銅に、2.0重量%の銀を添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめっき厚さが0.4μmとなるようにAgめっきを行い、線径0.010mmまで伸線加工を行い、極細銅合金線を得た。この0.010mmのAgめっき銅合金線(Cu−2%Ag)を7本用意し、これをピッチ0.5mmで撚り合せを行い、その外径が0.030mmの撚線を作製した。その後、得られた極細銅合金撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   2.0% by weight of silver was added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold to produce a drawn wire with a diameter of 8 mm. Then, after wire drawing, intermediate annealing, wire drawing, Ag plating is performed so that the final wire thickness is 0.4 μm, wire drawing is performed to a wire diameter of 0.010 mm, and ultrafine copper alloy Got a line. Seven pieces of this 0.010 mm Ag-plated copper alloy wire (Cu-2% Ag) were prepared and twisted at a pitch of 0.5 mm to produce a stranded wire having an outer diameter of 0.030 mm. Thereafter, the obtained ultrafine copper alloy stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.025mmの発泡PFA樹脂を押出被覆して外径0.08mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.016mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.162mmの同軸ケーブルを得た。   Further, a 0.025 mm thick foamed PFA resin was extrusion coated on the outer periphery of the stranded wire to form an internal insulator having bubbles with an outer diameter of 0.08 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the internal insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.016 mm is formed on the outer periphery of the skin layer. % Sn, 0.20% by weight In) is formed on the outer conductor to form an outer conductor, a jacket made of PET tape having a thickness of 0.015 mm is formed on the outer periphery of the outer conductor, and a coaxial cable having an outer diameter of 0.162 mm. Got.

(50AWGの同軸ケーブルの作製) (Preparation of 50AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、実施例19の製造方法と同様の処理を行った。   The same treatment as in the manufacturing method of Example 19 was performed, except that a heat treatment was performed at 450 ° C. for 1.5 seconds.

(50AWGの同軸ケーブルの作製) (Preparation of 50AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、実施例19の製造方法と同様の処理を行った。
[比較例1]
(43AWGの同軸ケーブルの作製)
The same treatment as in the manufacturing method of Example 19 was performed, except that a heat treatment was performed at 500 ° C. for 0.4 seconds.
[Comparative Example 1]
(Production of 43AWG coaxial cable)

熱処理を施さない点を除いて、実施例1の製造方法と同様の処理を行った。
[比較例2]
(43AWGの同軸ケーブルの作製)
The same treatment as in the manufacturing method of Example 1 was performed except that the heat treatment was not performed.
[Comparative Example 2]
(Production of 43AWG coaxial cable)

Ag添加濃度を0.5重量%とした点を除いて、実施例2の製造方法と同様の処理を行った。
[比較例3]
(43AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 2 was performed except that the Ag addition concentration was 0.5% by weight.
[Comparative Example 3]
(Production of 43AWG coaxial cable)

Ag添加濃度を3.5重量%とした点を除いて、実施例2の製造方法と同様の処理を行った。
[比較例4]
(43AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 2 was performed except that the Ag addition concentration was 3.5% by weight.
[Comparative Example 4]
(Production of 43AWG coaxial cable)

250℃で5.0秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。
[比較例5]
(43AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 1 was performed except that a heat treatment was performed at 250 ° C. for 5.0 seconds.
[Comparative Example 5]
(Production of 43AWG coaxial cable)

600℃で0.2秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。
[比較例6]
(43AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Example 1 was performed except that a heat treatment was performed at 600 ° C. for 0.2 seconds.
[Comparative Example 6]
(Production of 43AWG coaxial cable)

450℃で0.1秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。
[比較例7]
(43AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Example 1 was performed except that a heat treatment was performed at 450 ° C. for 0.1 second.
[Comparative Example 7]
(Production of 43AWG coaxial cable)

450℃で6.0秒の熱処理を施す点を除いて、実施例1の製造方法と同様の処理を行った。
[従来例1]
(43AWGの同軸ケーブルの作製)
The same processing as in the manufacturing method of Example 1 was performed, except that a heat treatment was performed at 450 ° C. for 6.0 seconds.
[Conventional example 1]
(Production of 43AWG coaxial cable)

添加金属をAgに替えてSnを0.3重量%とし熱処理を施さない点を除いて、実施例1の製造方法と同様の処理を行った。
[従来例2]
(43AWGの同軸ケーブルの作製)
The same treatment as in the manufacturing method of Example 1 was performed, except that the additive metal was changed to Ag, Sn was 0.3% by weight, and heat treatment was not performed.
[Conventional example 2]
(Production of 43AWG coaxial cable)

添加金属をAgに替えてSnを0.3重量%とした点を除いて、実施例1の製造方法と同様の処理を行った。
[従来例3]
(43AWGの同軸ケーブルの作製)
The same treatment as in the manufacturing method of Example 1 was performed except that the additive metal was changed to Ag and Sn was 0.3 wt%.
[Conventional Example 3]
(Production of 43AWG coaxial cable)

添加金属をAgに替えてSnを0.3重量%とした点を除いて、実施例2の製造方法と同様の処理を行った。
[従来例4]
(43AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 2 was performed except that the additive metal was changed to Ag and Sn was 0.3 wt%.
[Conventional example 4]
(Production of 43AWG coaxial cable)

添加金属をAgに替えてSnを0.3重量%とした点を除いて、実施例3の製造方法と同様の処理を行った。
[比較例8]
(42AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 3 was performed except that the additive metal was changed to Ag and Sn was 0.3 wt%.
[Comparative Example 8]
(Preparation of 42AWG coaxial cable)

無酸素銅に、0.19重量%のSnと、0.20重量%のInを添加し、真空チャンバ内に固定してある黒鉛坩堝において加熱溶解した後、黒鉛鋳型を用いて連続鋳造してφ8mmの荒引線を作製した。その後、伸線加工、中間焼鈍、伸線加工を経て、最終素線のめつき厚さが1.1μmとなるようにAgめっきを行い、線径0.025mmまで伸線加工を行い、極細銅合金線を得た。この0.025mmのAgめっきCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を7本用意し、これをピッチ1.3mmで撚り合せを行い、その外径が0.075mmの撚線を作製した。その後、得られた撚線を350℃に加熱された熱処理炉で5.0秒走行熱処理し、極細銅合金撚線を得た。   0.19 wt% Sn and 0.20 wt% In are added to oxygen-free copper, heated and dissolved in a graphite crucible fixed in a vacuum chamber, and then continuously cast using a graphite mold. A rough drawn wire of φ8 mm was prepared. Then, after wire drawing, intermediate annealing and wire drawing, Ag plating is performed so that the final wire has a thickness of 1.1 μm, wire drawing is performed to a wire diameter of 0.025 mm, and ultrafine copper An alloy wire was obtained. Seven pieces of this 0.025 mm Ag-plated Cu—In—Sn alloy wire (0.19 wt% Sn, 0.20 wt% In) were prepared, twisted at a pitch of 1.3 mm, and the outer diameter Produced a 0.075 mm stranded wire. Then, the obtained stranded wire was heat-treated for 5.0 seconds in a heat treatment furnace heated to 350 ° C. to obtain an ultrafine copper alloy stranded wire.

この極細銅合金撚線について、実施例1と同様にして、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率を測定し、引張強さ及び電気抵抗の変化率を算出した。その結果を表1に示す。   With respect to this ultrafine copper alloy stranded wire, the tensile strength and electrical resistance before and after the heat treatment and the electrical conductivity after the heat treatment were measured in the same manner as in Example 1, and the change rate of the tensile strength and electrical resistance was calculated. The results are shown in Table 1.

更に、この撚線の外周に厚さ0.08mmの発泡PFA樹脂を押出被覆して外径0.235mmの気泡を持つ内部絶縁体を形成した。この内部絶縁体の外周に、0.01mm厚のPETテープからなるスキン層を形成し、このスキン層の外周に、素線径が0.025mmのCu−In−Sn合金線(0.19重量%Sn、0.20重量%In)を横巻きして外部導体を形成し、その外部導体の外周に厚さ0.015mmのPETテープからなるジャケットを形成し、外径0.335mmの同軸ケーブルを得た。
[比較例9]
(42AWGの同軸ケーブルの作製)
In addition, a 0.08 mm thick foamed PFA resin was extrusion coated on the outer periphery of the stranded wire to form an internal insulator having bubbles with an outer diameter of 0.235 mm. A skin layer made of a PET tape having a thickness of 0.01 mm is formed on the outer periphery of the internal insulator, and a Cu—In—Sn alloy wire (0.19 weight) having a strand diameter of 0.025 mm is formed on the outer periphery of the skin layer. % Sn, 0.20 wt% In) is wound horizontally to form an outer conductor, a jacket made of 0.015 mm thick PET tape is formed around the outer conductor, and a coaxial cable having an outer diameter of 0.335 mm Got.
[Comparative Example 9]
(Preparation of 42AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、比較例8の製造方法と同様の処理を行った。
[比較例10]
(42AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 8 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.
[Comparative Example 10]
(Preparation of 42AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、比較例8の製造方法と同様の処理を行った。
[比較例11]
(44AWGの同軸ケーブルの作製)
The same treatment as that of the manufacturing method of Comparative Example 8 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.
[Comparative Example 11]
(Production of 44AWG coaxial cable)

銀の代わりに0.19重量%の錫と0.19重量%のインジウムを添加した点を除いて、実施例4の製造方法と同様の処理を行った。
[比較例12]
(44AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 4 was performed, except that 0.19 wt% tin and 0.19 wt% indium were added instead of silver.
[Comparative Example 12]
(Production of 44AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、比較例11の製造方法と同様の処理を行った。
[比較例13]
(44AWGの同軸ケーブルの作製)
The same treatment as that of the manufacturing method of Comparative Example 11 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.
[Comparative Example 13]
(Production of 44AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、比較例11の製造方法と同様の処理を行った。
[比較例14]
(46AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 11 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.
[Comparative Example 14]
(Production of 46AWG coaxial cable)

銀の代わりに0.19重量%の錫と0.19重量%のインジウムを添加した点を除いて、実施例10の製造方法と同様の処理を行った。
[比較例15]
(46AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 10 was performed, except that 0.19 wt% tin and 0.19 wt% indium were added instead of silver.
[Comparative Example 15]
(Production of 46AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、比較例14の製造方法と同様の処理を行った。
[比較例16]
(46AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 14 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.
[Comparative Example 16]
(Production of 46AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、比較例14の製造方法と同様の処理を行った。
[比較例17]
(48AWGの同軸ケーブルの作製)
The same treatment as that of the manufacturing method of Comparative Example 14 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.
[Comparative Example 17]
(Preparation of 48AWG coaxial cable)

銀の代わりに0.19重量%の錫と0.19重量%のインジウムを添加した点を除いて、実施例16の製造方法と同様の処理を行った。
[比較例18]
(48AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 16 was performed, except that 0.19 wt% tin and 0.19 wt% indium were added instead of silver.
[Comparative Example 18]
(Preparation of 48AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、比較例17の製造方法と同様の処理を行った。
[比較例19]
(48AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 17 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.
[Comparative Example 19]
(Preparation of 48AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、比較例17の製造方法と同様の処理を行った。
[比較例20]
(50AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 17 was performed except that a heat treatment was performed at 500 ° C. for 0.4 seconds.
[Comparative Example 20]
(Preparation of 50AWG coaxial cable)

銀の代わりに0.19重量%の錫と0.19重量%のインジウムを添加した点を除いて、実施例19の製造方法と同様の処理を行った。
[比較例21]
(50AWGの同軸ケーブルの作製)
The same treatment as in the production method of Example 19 was performed, except that 0.19 wt% tin and 0.19 wt% indium were added instead of silver.
[Comparative Example 21]
(Preparation of 50AWG coaxial cable)

450℃で1.5秒の熱処理を施す点を除いて、比較例20の製造方法と同様の処理を行った。
[比較例22]
(50AWGの同軸ケーブルの作製)
The same process as in the manufacturing method of Comparative Example 20 was performed except that a heat treatment was performed at 450 ° C. for 1.5 seconds.
[Comparative Example 22]
(Preparation of 50AWG coaxial cable)

500℃で0.4秒の熱処理を施す点を除いて、比較例20の製造方法と同様の処理を行った。   The same process as the manufacturing method of the comparative example 20 was performed except the point which heat-processes at 500 degreeC for 0.4 second.

(実施例1〜21、比較例1〜22、従来例1〜4の極細銅合金撚線の評価結果)
表1に、実施例1〜21、比較例1〜22、従来例1〜4の極細銅合金撚線について、熱処理前後の引張強さ及び電気抵抗、熱処理後の導電率、引張強さ及び電気抵抗の変化率の結果を示す。
(Evaluation results of ultrafine copper alloy stranded wires of Examples 1 to 21, Comparative Examples 1 to 22, and Conventional Examples 1 to 4)
Table 1 shows the tensile strength and electrical resistance before and after the heat treatment, the electrical conductivity after the heat treatment, the tensile strength and the electricity for the ultrafine copper alloy stranded wires of Examples 1-21, Comparative Examples 1-22, and Conventional Examples 1-4. The result of resistance change rate is shown.

Figure 0004143088
Figure 0004143088

表1に示すように、実施例1〜3(43AWG)の7本撚線においては、添加金属濃度および熱処理条件が適切であったため、引張強さの低下率が6.9〜10.8%に止まり、加熱後の引張強さが910MPaであり、目標値である引張強さ850MPa以上をクリアできた。また、電気抵抗の低下率も6.1〜7.3%(電気抵抗変化率6%以上)と顕著で、加熱後の電気抵抗が6,450Ω/kmであり、導電率85%以上の高導電性の線材を得ることができた。   As shown in Table 1, in the seven stranded wires of Examples 1 to 3 (43AWG), since the additive metal concentration and the heat treatment conditions were appropriate, the rate of decrease in tensile strength was 6.9 to 10.8%. The tensile strength after heating was 910 MPa, and the target tensile strength of 850 MPa or more could be cleared. In addition, the rate of decrease in electrical resistance is remarkable at 6.1 to 7.3% (electrical resistance change rate of 6% or more), the electrical resistance after heating is 6,450 Ω / km, and the electrical conductivity is as high as 85% or more. A conductive wire could be obtained.

これに対し、銅錫合金線の従来例1〜4(43AWG)の7本撚線は、その引張強さが850MPaを下回っており、さらに、従来の銅錫合金線に本発明の熱処理を同様に行っても(従来例2〜4)、引張強さ710〜730MPaと大きく低下してしまい、電気抵抗の低下率も0.9%以下に止まり、引張強度と導電率両方の特性を両立することは困難であった。   In contrast, the seven twisted wires of Conventional Examples 1 to 4 (43 AWG) of copper tin alloy wires have a tensile strength of less than 850 MPa, and the heat treatment of the present invention is similarly applied to conventional copper tin alloy wires. (Conventional Examples 2 to 4), the tensile strength is greatly reduced to 710 to 730 MPa, the decrease rate of the electric resistance is also 0.9% or less, and both the properties of the tensile strength and the conductivity are compatible. It was difficult.

従来のCu−Sn−In合金線(比較例8〜22参照)の7本撚線は、その引張強さが加熱後850MPaを下回っており、高強度の材料を得ることができなかった。   The conventional twisted strands of Cu—Sn—In alloy wires (see Comparative Examples 8 to 22) had a tensile strength of less than 850 MPa after heating, and a high-strength material could not be obtained.

また、比較例1は熱処理を実施していないため、引張強さは高いものの、電気抵抗は6,870Ω/kmと高く、導電率85%以上の高導電性の線材を得ることができなかった。
比較例2は、銀の添加濃度が0.5重量%と少なすぎるため、引張強さが目標値の850MPaを下回ってしまい、また、電気抵抗の低下率が2%に止まり、引張強度と電気抵抗の両立は困難であることが分かった。
比較例3は、銀の添加濃度が3.5重量%と多すぎるため、電気抵抗の低下率が1%に止まり、引張強度と電気抵抗の両立は困難であることが分かった。
比較例4は、熱処理温度が250℃と低温であったため、電気抵抗の低下率が0.5%に止まり、引張強度と電気抵抗の両立は困難であることが分かった。
比較例5は、熱処理温度が600℃と高温であったため、引張強さの低下率が27.3%と著しく、引張強度と電気抵抗の両立は困難であることが分かった。
比較例6は、熱処理時間が0.1秒と短時間であったため、電気抵抗の低下率が1%に止まり、引張強度と電気抵抗の両立は困難であることが分かった。
比較例7は、熱処理時間が6.0秒と長時間であったため、引張強さの低下率が22.1%であり、810MPaと低く、引張強度と電気抵抗の両立は困難であることが分かった。
In addition, since Comparative Example 1 was not heat-treated, although the tensile strength was high, the electrical resistance was as high as 6,870 Ω / km, and a highly conductive wire having a conductivity of 85% or more could not be obtained. .
In Comparative Example 2, since the addition concentration of silver is too low at 0.5% by weight, the tensile strength falls below the target value of 850 MPa, and the rate of decrease in electrical resistance is only 2%, and the tensile strength and It turns out that it is difficult to achieve both resistances.
In Comparative Example 3, since the additive concentration of silver was too large at 3.5% by weight, the reduction rate of the electrical resistance was only 1%, and it was found that it was difficult to achieve both tensile strength and electrical resistance.
In Comparative Example 4, since the heat treatment temperature was as low as 250 ° C., the rate of decrease in electrical resistance was only 0.5%, and it was found that it was difficult to achieve both tensile strength and electrical resistance.
In Comparative Example 5, since the heat treatment temperature was as high as 600 ° C., the rate of decrease in tensile strength was remarkably 27.3%, indicating that it was difficult to achieve both tensile strength and electrical resistance.
In Comparative Example 6, since the heat treatment time was as short as 0.1 seconds, the rate of decrease in electrical resistance was only 1%, and it was found that it was difficult to achieve both tensile strength and electrical resistance.
In Comparative Example 7, since the heat treatment time was as long as 6.0 seconds, the rate of decrease in tensile strength was 22.1%, which was as low as 810 MPa, and it was difficult to achieve both tensile strength and electrical resistance. I understood.

実施例1〜実施例21と比較例8〜22とを比較すると、比較例8〜22の撚線は、電気抵抗の低下率が0.8〜3.2%程度に止まったため、いずれも電気抵抗の値が高い線材となってしまった。また、比較例8〜比較例22に至っては、引張強さの目標値である850MPaを下回ってしまった。
つまり、表1から、比較例8〜22のようなCu−0.19%Sn−0.19%In合金を使用した場合には、加熱処理の有無に関わらず、引張強さが実施例1〜21に比して下回っており、また、電気抵抗も実施例1〜21に比して高いことがわかる。
When Examples 1 to 21 and Comparative Examples 8 to 22 are compared, the stranded wires of Comparative Examples 8 to 22 have an electrical resistance decrease rate of about 0.8 to 3.2%, and thus all of them are electric. The wire has a high resistance value. In Comparative Examples 8 to 22, the target value of tensile strength was less than 850 MPa.
That is, from Table 1, when Cu-0.19% Sn-0.19% In alloy as in Comparative Examples 8 to 22 was used, the tensile strength was found in Example 1 regardless of the presence or absence of heat treatment. It is found that the electric resistance is lower than that of Examples 21 to 21 and higher than that of Examples 1 to 21.

また、従来技術において説明した通り、従来品は特に加熱処理を施さないCu−0.19%Sn−0.19%In合金撚線を使用しており、別途熱処理を実施していない。従って、たとえ裸の7本撚線の段階で、高導電性および高強度の特性を有するものであったとしても、押出し作業時に生じる加熱(例えば、400〜300℃、1秒〜5秒)よって、比較例8〜22の合金撚線に示すように、電気抵抗の低下率も少なく、加熱前よりも引張強さが低下してしまうことがわかる。
これに対して、実施例の撚線は、撚線加工後にあらかじめ熱処理を実施しているため、押出し加工時に生じる加熱による熱履歴が生じることがなく、押出し加工時の前後において引張強度および電気抵抗の点に変動がない同軸ケーブルを提供できる。
Further, as described in the prior art, the conventional product uses a Cu-0.19% Sn-0.19% In alloy twisted wire that is not particularly heat-treated, and is not subjected to a separate heat treatment. Therefore, even if it has high electrical conductivity and high strength characteristics even at the stage of bare seven stranded wires, it is caused by heating (for example, 400 to 300 ° C., 1 second to 5 seconds) generated during the extrusion operation. As shown in the alloy twisted wires of Comparative Examples 8 to 22, it can be seen that the rate of decrease in electrical resistance is small and the tensile strength is lower than before heating.
On the other hand, the stranded wire of the example is preheated after the stranded wire processing, so there is no heat history due to heating that occurs during the extrusion processing, and the tensile strength and electrical resistance before and after the extrusion processing. It is possible to provide a coaxial cable in which there is no fluctuation in

表1の結果より、実施例の同軸ケーブルの電気特性は、ワンサイズ太い従来の同軸ケー―ブルと同等である(例えば、実施例の43AWG、45AWG、47AWGの同軸ケーブルの電気特性および機械的特性は、従来の42AWG、44AWG、46AWGの同軸ケーブルの電気特性および機械的特性と同等レベルである)。従って、43AWG、45AWG、47AWGのように奇数サイズの同軸線を用いることで同軸ケーブルを細径化しながら、同軸線の急激な電気特性の劣化を防止することが可能になる。   From the results of Table 1, the electrical characteristics of the coaxial cable of the example are equivalent to those of a conventional one-size thick coaxial cable (for example, the electrical characteristics and mechanical characteristics of the coaxial cables of the 43AWG, 45AWG, and 47AWG of the example) Is equivalent to the electrical and mechanical properties of conventional 42 AWG, 44 AWG, and 46 AWG coaxial cables). Therefore, by using an odd-sized coaxial line such as 43 AWG, 45 AWG, and 47 AWG, it is possible to prevent a sudden deterioration in electrical characteristics of the coaxial line while reducing the diameter of the coaxial cable.

(実施例1〜21、比較例1〜22、従来例1〜4の同軸ケーブルの評価結果)
まず、実施例1〜21、比較例1〜22、従来例1〜4の各同軸ケーブルについて屈曲試験を行い、屈曲寿命を評価した。屈曲試験は、曲げ半径2mmの治具に試料ケーブル(同軸ケーブル)の一端部を固定し、試料ケーブルのサイズによって他端部に50gf或いは20gfの重りを吊り下げた状態から、サンプルを同軸ケーブルの長手方向に試験速度30回/1分の条件で左右90゜繰り返し屈曲させ、試料ケーブルの内部導体が破断するまでの回数(寿命)を測定する試験であり、試料に常時数Vの電圧を加え、電流値が試験開始時に比べて20%低下した時点で寿命とした。次表中の数値は、寿命に至るまでの屈曲回数を表している。
(Evaluation results of coaxial cables of Examples 1 to 21, Comparative Examples 1 to 22, and Conventional Examples 1 to 4)
First, bending tests were performed on the coaxial cables of Examples 1 to 21, Comparative Examples 1 to 22, and Conventional Examples 1 to 4, and the bending life was evaluated. In the bending test, one end of a sample cable (coaxial cable) is fixed to a jig having a bending radius of 2 mm, and a sample is removed from the coaxial cable after a 50 gf or 20 gf weight is suspended from the other end depending on the size of the sample cable. This is a test to measure the number of times (life) until the inner conductor of the sample cable breaks by repeatedly bending it 90 ° left and right at a test speed of 30 times / minute in the longitudinal direction. A voltage of several volts is constantly applied to the sample. The lifetime was determined when the current value decreased by 20% compared to the start of the test. The numerical values in the following table represent the number of bendings until the end of the service life.

また、実施例1〜21、比較例1〜22、従来例1〜4の各同軸ケーブルについて、静電容量、減衰量、特性インピーダンスを評価した。
静電容量の測定は1mの試料ケーブル(同軸ケーブル)の内部導体と外部導体間をLCRメーターと接続し、1kHzでの静電容量を測定した。また、1mの試料ケーブル両端の内部導体と外部導体間を測定用同軸ケーブル(リード線)でネットワークアナライザの送信側と受信側とに接続し、10MHzでの減衰量を測定した。なお、試料の減衰量を測定する前に、校正を行い、測定用同軸ケーブル(リード線)の影響を除いた。また、特性インピーダンスは、ネットワークアナライザを用いて10MHzでの数値を測定した。
表2にこれらの電気特性および機械特性の評価結果を示す。
Moreover, about each coaxial cable of Examples 1-21, Comparative Examples 1-22, and Conventional Examples 1-4, an electrostatic capacitance, attenuation amount, and characteristic impedance were evaluated.
The capacitance was measured by connecting an LCR meter between the inner conductor and outer conductor of a 1 m sample cable (coaxial cable) and measuring the capacitance at 1 kHz. Further, between the inner conductor and the outer conductor at both ends of the 1 m sample cable, the coaxial cable for measurement (lead wire) was connected to the transmitting side and the receiving side of the network analyzer, and the attenuation at 10 MHz was measured. Before measuring the attenuation of the sample, calibration was performed to eliminate the influence of the measurement coaxial cable (lead wire). The characteristic impedance was measured at 10 MHz using a network analyzer.
Table 2 shows the evaluation results of these electrical characteristics and mechanical characteristics.

Figure 0004143088
Figure 0004143088

表2に示すように、実施例1〜3(43AWG)の同軸ケーブルの屈曲寿命は20,900回以上であるのに対し、比較例1〜7(43AWG)及び従来例1〜4(43AWG)では各々19,600回、12,300回、18,200回、20,600回、12,400回、18,800回、9,300回、16,500回、12,400回、11,900回、12,300回であり、実施例1〜実施例3の同軸ケーブルは、屈曲寿命が長くて屈曲特性に優れていることが分かる。
また、同一ワイヤサイズの実施例4〜21および比較例11〜22を比較しても、実施例の同軸ケーブルは、比較例の同軸ケーブルに対して、屈曲寿命が長くて屈曲特性に優れていることが分かる。
As shown in Table 2, the bending life of the coaxial cables of Examples 1 to 3 (43 AWG) is more than 20,900 times, whereas Comparative Examples 1 to 7 (43 AWG) and Conventional Examples 1 to 4 (43 AWG) Then, 19,600 times, 12,300 times, 18,200 times, 20,600 times, 12,400 times, 18,800 times, 9,300 times, 16,500 times, 12,400 times, 11,900 times, respectively. It is understood that the coaxial cable of Examples 1 to 3 has a long bending life and excellent bending characteristics.
Further, even when Examples 4 to 21 and Comparative Examples 11 to 22 having the same wire size are compared, the coaxial cable of the example has a longer bending life and excellent bending characteristics than the coaxial cable of the comparative example. I understand that.

また、表2の結果から、実施例1〜21の同軸ケーブルは、比較例および従来例の同軸ケーブルと比較して同等の静電容量および特性インピーダンスを維持していることが確認できた。周波数が10MHzの時の減衰量についても、実施例の同軸ケーブルは、同一ワイヤサイズの従来例および比較例の同軸ケーブルに比して、同等以上の減衰特性を維持していることが確認できた。   Moreover, from the result of Table 2, it has confirmed that the coaxial cable of Examples 1-21 was maintaining the same electrostatic capacitance and characteristic impedance compared with the coaxial cable of a comparative example and a prior art example. Regarding the attenuation when the frequency is 10 MHz, it was confirmed that the coaxial cable of the example maintained the same or better attenuation characteristics than the coaxial cable of the conventional example and the comparative example of the same wire size. .

特に、比較例8は42AWG の同軸ケーブルであるが、実施例1〜実施例3の同軸ケーブルと屈曲寿命および減衰量について比較すると、屈曲寿命は実施例1〜実施例3の方が長く、減衰量はほぼ同等であると評価できる。
また、表1を参照して、撚線状態における引張強さおよび電気抵抗を比較すると、引張強さは実施例1〜実施例3の方が勝っており、電気抵抗はほぼ同等であると評価できる。
つまり、本実施例によれば、顧客の要望等に応じて同軸ケーブルをワンサイズ細くしたとしても、電気特性(中心導体抵抗、減衰量)はワンサイズ太い比較例と同等であり、同軸線の屈曲特性(引張強度)はワンサイズ太い比較例よりも高い同軸ケーブルを提供することができる。このため、同軸ケーブルを細径化する際には、電気特性(電気抵抗、減衰量)と機械特性(屈曲寿命)の劣化を極力抑えることができる。
In particular, Comparative Example 8 is a 42 AWG coaxial cable, but when compared with the coaxial cable of Example 1 to Example 3 in terms of flex life and attenuation, the flex life is longer in Examples 1 to 3 and attenuation. It can be evaluated that the amount is almost the same.
Moreover, referring to Table 1, when comparing the tensile strength and electrical resistance in the stranded wire state, the tensile strength is superior in Examples 1 to 3, and the electrical resistance is evaluated to be substantially equivalent. it can.
In other words, according to the present embodiment, even if the coaxial cable is reduced by one size according to the customer's request, etc., the electrical characteristics (center conductor resistance, attenuation) are equivalent to those of the one size thicker comparative example. A coaxial cable having a higher bending characteristic (tensile strength) than that of a comparatively thick one size can be provided. For this reason, when reducing the diameter of the coaxial cable, it is possible to suppress deterioration of electrical characteristics (electric resistance, attenuation) and mechanical characteristics (bending life) as much as possible.

[他の実施形態]
本発明の銅合金の添加元素として銀以外に、マグネシウム(Mg)、インジウム(In)から選ばれる一種、あるいは2種の金属を合計量で0.02〜0.10重量%添加することも可能である。添加元素を増やすことはコストの増加につながるが、さらなる高強度化が期待できる。
[Other Embodiments]
In addition to silver as an additive element of the copper alloy of the present invention, it is also possible to add one or two metals selected from magnesium (Mg) and indium (In) in a total amount of 0.02 to 0.10% by weight. It is. Increasing the amount of additive elements leads to an increase in cost, but further enhancement of strength can be expected.

本発明の一実施形態の同軸ケーブルの横断面図である。It is a cross-sectional view of the coaxial cable of one embodiment of the present invention. 本発明の一実施形態の多芯ケーブルの横断面図である。It is a cross-sectional view of the multicore cable of one embodiment of the present invention. 本発明の一実施形態の多芯ケーブルの横断面図である。It is a cross-sectional view of the multicore cable of one embodiment of the present invention. 本発明の一実施形態の多芯ケーブルの横断面図である。It is a cross-sectional view of the multicore cable of one embodiment of the present invention.

符号の説明Explanation of symbols

1 銅合金線
3 銅合金撚線
(内部導体)
5 発泡絶縁体
6 スキン層
7 導体線
8 外部導体
9 ジャケット層
10 同軸ケーブル
20,30,40 多芯ケーブル
21 テンションメンバ
23 バインドテープ
25 シールド
27 シース
31 同軸ケーブルユニット
41 粘着テープ
1 Copper alloy wire 3 Copper alloy stranded wire (Internal conductor)
DESCRIPTION OF SYMBOLS 5 Foam insulator 6 Skin layer 7 Conductor wire 8 Outer conductor 9 Jacket layer 10 Coaxial cable 20, 30, 40 Multicore cable 21 Tension member 23 Binding tape 25 Shield 27 Sheath 31 Coaxial cable unit 41 Adhesive tape

Claims (14)

銀(Ag)を1〜3重量%含有し、残部が銅(Cu)及び不可避的不純物からなる線径が0.010〜0.025mmの銅合金線を複数本撚り合わせて銅合金撚線を形成し、前記銅合金撚線の引張強さが850MPa以上、導電率が85%IACS以上であり、かつ前記銅合金撚線の外周に発泡絶縁体を被覆し、更にその外周に、複数本の導体線を前記銅合金撚線の長手方向に沿って螺旋状に巻き廻して外部導体を形成し、前記外部導体の表面にジャケット層を被覆したことを特徴とする同軸ケーブル。   A plurality of copper alloy wires containing 1 to 3% by weight of silver (Ag) and the balance of copper (Cu) and inevitable impurities and having a wire diameter of 0.010 to 0.025 mm are twisted together to form a copper alloy twisted wire. The copper alloy stranded wire has a tensile strength of 850 MPa or more, an electrical conductivity of 85% IACS or more, and the outer periphery of the copper alloy stranded wire is coated with a foamed insulator, and further, a plurality of A coaxial cable, wherein a conductor wire is spirally wound along a longitudinal direction of the copper alloy stranded wire to form an outer conductor, and a jacket layer is coated on a surface of the outer conductor. 前記銅合金撚線は、熱処理されたものであり、前記熱処理後の電気抵抗の低下率が6%以上であり、かつ前記熱処理後の引張強度の低下率が20%以下であることを特徴とする請求項1記載の同軸ケーブル。   The copper alloy stranded wire is heat-treated, the reduction rate of the electrical resistance after the heat treatment is 6% or more, and the reduction rate of the tensile strength after the heat treatment is 20% or less. The coaxial cable according to claim 1. 前記銅合金線の表面に錫(Sn)、銀(Ag)、又はニッケル(Ni)のめっき層を形成したことを特徴とする請求項1記載の同軸ケーブル。   The coaxial cable according to claim 1, wherein a plating layer of tin (Sn), silver (Ag), or nickel (Ni) is formed on a surface of the copper alloy wire. 前記銅合金線の線径が0.021 mmを超え0.025mm以下である同軸ケーブルであって、電気抵抗が7500Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.021 mm and not more than 0.025 mm, wherein the copper alloy wire has an electric resistance of 7500 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.018 mmを超え0.022mm以下である同軸ケーブルであって、電気抵抗が10000Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.018 mm and not more than 0.022 mm, wherein the copper alloy wire has an electric resistance of 10,000 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.016 mmを超え0.020mm以下である同軸ケーブルであって、電気抵抗が13000Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.016 mm and not more than 0.020 mm, wherein the copper alloy wire has an electric resistance of 13000 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.014 mmを超え0.018mm以下である同軸ケーブルであって、電気抵抗が15500Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.014 mm and not more than 0.018 mm, wherein the copper alloy wire has an electric resistance of 15500 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.013 mmを超え0.017mm以下である同軸ケーブルであって、電気抵抗が17000Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.013 mm and not more than 0.017 mm, wherein the copper alloy wire has an electric resistance of 17000 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.011 mmを超え0.015mm以下である同軸ケーブルであって、電気抵抗が23500Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.011 mm and not more than 0.015 mm, wherein the copper alloy wire has an electric resistance of 23500 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 前記銅合金線の線径が0.008 mmを超え0.012mm以下である同軸ケーブルであって、電気抵抗が40000Ω/km以下、静電容量が30〜80pF/mであることを特徴とする請求項1記載の同軸ケーブル。   A coaxial cable having a wire diameter of more than 0.008 mm and not more than 0.012 mm, wherein the copper alloy wire has an electric resistance of 40000 Ω / km or less and a capacitance of 30 to 80 pF / m. The coaxial cable according to claim 1. 純銅に銀を1〜3重量%添加して銅合金を生成し、伸線加工を行って線径が0.010〜0.025mmの極細銅合金線を作製後、前記極細銅合金線を複数本撚り合わせて極細銅合金撚線とし、300〜500℃の温度で0.2〜5秒の熱処理を施した後、前記銅合金撚線の外周に、厚さ0.28mm以下の発泡絶縁体を被覆後、スキン層を形成し、更にその外周に、複数本の導体線を前記銅合金撚線の長手方向に沿って螺旋状に巻き廻して外部導体を形成した後、前記外部導体の表面にジャケット層を被覆することを特徴とする同軸ケーブルの製造方法。   A copper alloy is produced by adding 1 to 3% by weight of silver to pure copper, and after drawing to produce an ultrafine copper alloy wire having a wire diameter of 0.010 to 0.025 mm, a plurality of the ultrafine copper alloy wires are formed. This twisted wire is made into an ultrafine copper alloy stranded wire, subjected to heat treatment at a temperature of 300 to 500 ° C. for 0.2 to 5 seconds, and then the foamed insulator having a thickness of 0.28 mm or less on the outer periphery of the copper alloy stranded wire After forming a skin layer, on the outer periphery, a plurality of conductor wires are spirally wound along the longitudinal direction of the copper alloy twisted wire to form an outer conductor, and then the surface of the outer conductor is formed. A method of manufacturing a coaxial cable, characterized in that a jacket layer is covered. テンションメンバ又は中心介在の外周に、請求項1記載の同軸ケーブルを複数本撚り合わせたことを特徴とする多芯ケーブル。   A multi-core cable, wherein a plurality of the coaxial cables according to claim 1 are twisted around an outer periphery of a tension member or a central interposition. テンションメンバ又は中心介在の外周に、請求項1記載の同軸ケーブルを複数本束ねて形成した同軸ケーブルユニットを複数本撚り合わせたことを特徴とする多芯ケーブル。   A multi-core cable, wherein a plurality of coaxial cable units formed by bundling a plurality of coaxial cables according to claim 1 are twisted around an outer periphery of a tension member or a central interposition. 請求項1記載の同軸ケーブルを複数本一定ピッチで並列に配置したことを特徴とする多芯ケーブル。   A multi-core cable comprising a plurality of coaxial cables according to claim 1 arranged in parallel at a constant pitch.
JP2005366568A 2005-12-20 2005-12-20 Coaxial cable, manufacturing method thereof, and multicore cable using the same Active JP4143088B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005366568A JP4143088B2 (en) 2005-12-20 2005-12-20 Coaxial cable, manufacturing method thereof, and multicore cable using the same
CN2006101687702A CN1988055B (en) 2005-12-20 2006-12-18 Copper alloy wire, copper alloy twisted wire, coaxial cable, its manufacturing method and multi-core cable
US11/641,934 US7544886B2 (en) 2005-12-20 2006-12-19 Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
US12/420,576 US8143517B2 (en) 2005-12-20 2009-04-08 Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366568A JP4143088B2 (en) 2005-12-20 2005-12-20 Coaxial cable, manufacturing method thereof, and multicore cable using the same

Publications (2)

Publication Number Publication Date
JP2007169687A JP2007169687A (en) 2007-07-05
JP4143088B2 true JP4143088B2 (en) 2008-09-03

Family

ID=38296636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366568A Active JP4143088B2 (en) 2005-12-20 2005-12-20 Coaxial cable, manufacturing method thereof, and multicore cable using the same

Country Status (1)

Country Link
JP (1) JP4143088B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053073A (en) * 2006-08-25 2008-03-06 Fujikura Ltd Insulation-coated extra fine wire and extra fine coaxial cable
JP5062200B2 (en) 2009-02-26 2012-10-31 住友電気工業株式会社 Coaxial cable manufacturing method
JP5516499B2 (en) * 2011-05-09 2014-06-11 住友電気工業株式会社 Small diameter cable
JP5614428B2 (en) 2012-06-22 2014-10-29 住友電気工業株式会社 Multi-core cable and manufacturing method thereof
JP6155923B2 (en) * 2013-07-16 2017-07-05 住友電気工業株式会社 Method for producing copper-silver alloy wire
JP2020009629A (en) * 2018-07-09 2020-01-16 日立金属株式会社 Twisted wire conductor and cable
CN113299421B (en) * 2020-02-06 2023-10-31 株式会社博迈立铖 Copper alloy wire, plated wire, wire and cable

Also Published As

Publication number Publication date
JP2007169687A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
US7544886B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
JP3719163B2 (en) Twisted wire conductor for movable part wiring material and cable using the same
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
JP4845069B2 (en) Wire conductor for wiring, method for manufacturing wire conductor for wiring, wire for wiring and copper alloy wire
JP4456696B2 (en) Coaxial cable strands, coaxial cables, and coaxial cable bundles
KR20160070089A (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
KR20120004910A (en) Electronic wire and method of manufacturing the same
JPH0731939B2 (en) High strength, highly flexible conductor
JP6080336B2 (en) Electric wire / cable
WO2006022117A1 (en) Coaxial cable
JP4288844B2 (en) Extra fine copper alloy wire
JP4762701B2 (en) Electric wire conductor for wiring and electric wire for wiring using the same
JP7265324B2 (en) insulated wire, cable
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JP2020009629A (en) Twisted wire conductor and cable
JP4686931B2 (en) Ultra-fine coaxial cable
JP7166970B2 (en) Stranded wire for wiring harness
JP2018045855A (en) Flat cable
CN107887053B (en) Plated copper wire, plated stranded wire, insulated wire, and method for producing plated copper wire
JP5608993B2 (en) Automotive wire conductors and automotive wires
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
US20220223313A1 (en) Copper alloy wire, plated wire, electric wire and cable using these
KR20140001836A (en) Coaxial cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4143088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350