JP2001295011A - Bending resistant copper alloy wire and cable using the same - Google Patents

Bending resistant copper alloy wire and cable using the same

Info

Publication number
JP2001295011A
JP2001295011A JP2000108017A JP2000108017A JP2001295011A JP 2001295011 A JP2001295011 A JP 2001295011A JP 2000108017 A JP2000108017 A JP 2000108017A JP 2000108017 A JP2000108017 A JP 2000108017A JP 2001295011 A JP2001295011 A JP 2001295011A
Authority
JP
Japan
Prior art keywords
alloy
wire
bending
copper
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000108017A
Other languages
Japanese (ja)
Inventor
Ryo Matsui
量 松井
Takao Ichikawa
貴朗 市川
Masayoshi Aoyama
正義 青山
Osamu Seya
修 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000108017A priority Critical patent/JP2001295011A/en
Publication of JP2001295011A publication Critical patent/JP2001295011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new bending resistant copper alloy wire excellent in bending resistance and to provide a cable using the same. SOLUTION: An alloy wire rod of a Cu-Ag alloy, a Cu-Nb alloy, a Cu-Fe alloy or a Cu-Cr alloy is wire-drawn to a final wire diameter ϕof <=0.1 mm, and, after that, heat treatment is performed to control its tensile strength to >=450 MPa, elongation to >=4%, and electric conductivity to >=50% IACS. In this way, its tensile strength and elongation are made compatible in high dimensions, so that its bending resistance particularly in the high strain environment is remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Cu−Ag合金等
の銅合金線材からなる線径がφ0.1mm以下の極細耐
屈曲銅合金線及びそれを中心導体として用いた細径ケー
ブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-thin bending-resistant copper alloy wire made of a copper alloy wire such as a Cu-Ag alloy and having a diameter of 0.1 mm or less, and a small-diameter cable using the same as a central conductor. is there.

【0002】[0002]

【従来の技術】近年、電子機器,ICテスタ,医療機器
等の小型化に伴い、それらに適用されているケーブルの
細径化が進んでいる。
2. Description of the Related Art In recent years, with the miniaturization of electronic devices, IC testers, medical devices, and the like, the diameter of cables applied to them has been reduced.

【0003】また、一般に、これらの機器に用いられる
ケーブルにあっては、可撓性や耐屈曲性を得るために外
径は従来と同等で線芯数を多くしたものが求められてお
り、そのためには、その導体(素線)、特に中心導体の
細径化(φ0.1mm以下)が不可欠となっている。
In general, cables used in these devices are required to have the same outer diameter as the conventional one and a larger number of wire cores in order to obtain flexibility and bending resistance. To this end, it is essential to reduce the diameter of the conductor (element wire), particularly the center conductor (φ0.1 mm or less).

【0004】従来、このような要求を満足するケーブル
の導体としては、耐屈曲特性と導電性に優れた硬銅線、
例えば、引張強さ約800MPa,伸び1〜2%,導電
率80%IACSであるCu−0.3wt%Sn合金か
らなる硬銅線が用いられている。
Conventionally, conductors of cables satisfying such requirements include hard copper wires having excellent bending resistance and conductivity.
For example, a hard copper wire made of a Cu-0.3 wt% Sn alloy having a tensile strength of about 800 MPa, an elongation of 1 to 2%, and a conductivity of 80% IACS is used.

【0005】また、最近では、引張強さが1000MP
aを超えるCu−Nb合金,Cu−Ag合金等からな
る、いわゆる繊維強化型合金(In-situ )線が開発され
て実用化が進んでいる。
[0005] Recently, the tensile strength is 1000MP.
A so-called fiber-reinforced alloy (In-situ) wire made of a Cu-Nb alloy, a Cu-Ag alloy or the like exceeding a has been developed and put into practical use.

【0006】この繊維強化型合金線は、例えば、Cu中
にAg等を6wt%以上添加した後、連続鋳造によりα
相と共晶組織α+β相とし、熱処理を施すことによって
AgやCuを析出させた後、冷間加工によってこの析出
物を引き延ばして母材中に微細な繊維状に分布させるこ
とによって強度を大幅に向上させたものであり、純銅の
硬銅線よりも約10倍以上の屈曲寿命を発揮することが
知られている(昭和電線レビュー;Vol.48,No.2(1998)P
140 )。
[0006] This fiber-reinforced alloy wire is prepared, for example, by adding Ag or the like to Cu in an amount of 6 wt% or more and then continuously casting it.
After precipitation of Ag and Cu by heat treatment to form an α + β phase and a eutectic structure, the precipitates are stretched by cold working and distributed in the form of fine fibers in the base material to greatly increase strength. It is known that it has a flex life of about 10 times or more than that of hard copper wire of pure copper (Showa Electric Cable Review; Vol.48, No.2 (1998) P
140).

【0007】[0007]

【発明が解決しようとする課題】ところで、銅又は銅合
金からなる導体の屈曲寿命は、一般に導体に負荷される
曲げ歪の大きさに依存するといわれているが、これは曲
げ歪が比較的小さい場合(弾性歪領域内)にいえること
であり、曲げ歪が比較的大きい場合(塑性歪領域)で
は、引張強さの他に伸びにも依存してくることが知られ
ている。
It is generally said that the bending life of a conductor made of copper or a copper alloy depends on the magnitude of bending strain applied to the conductor, but this is because bending strain is relatively small. This is true in the case (within the elastic strain region), and it is known that when the bending strain is relatively large (in the plastic strain region), the bending strain depends not only on the tensile strength but also on the elongation.

【0008】そのため、曲げ歪が比較的大きい場合(塑
性歪領域)には、単に引張強さの高い硬銅線を用いるよ
りもある程度の伸びを有したものを用いるほうが屈曲寿
命が長くなり、従って、塑性歪領域で用いられる導体の
場合は、引張強さと伸びを高次元で両立させた合金線が
要求されてくる。
[0008] Therefore, when the bending strain is relatively large (plastic strain region), the bending life is longer when a wire having a certain degree of elongation is used than when using a hard copper wire having a high tensile strength. In the case of a conductor used in a plastic strain region, an alloy wire having both high tensile strength and high elongation is required.

【0009】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は、引
張強さと伸びを高次元で両立させて耐屈曲特性を大幅に
向上させた新規な耐屈曲銅合金線及びそれを用いたケー
ブルを提供するものである。
Accordingly, the present invention has been devised in order to effectively solve such a problem, and an object of the present invention is to achieve both high tensile strength and high elongation at the same time to greatly improve the bending resistance. And a novel flexible copper alloy wire and a cable using the same.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明は、請求項1に示すように、Cu−Ag合金,
Cu−Nb合金,Cu−Fe合金,Cu−Cr合金のう
ちいずれかの銅合金線材を線径φ0.1mm以下の最終
線径まで伸線した後、熱処理を施して引張強さ450M
Pa以上、伸び4%以上、導電率50%IACS以上に
した耐屈曲銅合金線である。
In order to solve the above-mentioned problems, the present invention provides a Cu-Ag alloy,
A copper alloy wire rod of any one of a Cu-Nb alloy, a Cu-Fe alloy, and a Cu-Cr alloy is drawn to a final wire diameter of 0.1 mm or less in wire diameter, and then heat-treated to have a tensile strength of 450 M
It is a flex-resistant copper alloy wire having a Pa or more, an elongation of 4% or more, and a conductivity of 50% IACS or more.

【0011】すなわち、上述したように、銅線又は銅合
金線の屈曲特性は引張強さに依存しており、引張強さが
大きいほど屈曲特性が向上するが、曲げ歪みが大きい領
域(弾性歪+塑性歪)では、引張強さが大きくても伸び
が小さいものでは軟銅線よりも屈曲特性が劣ってしま
う。例えば、図4に示すように、Cu−0.3wt%S
nの硬銅線と軟銅線の屈曲特性を比較してみると、曲げ
歪εが約3%以下の小さい領域では硬銅線の屈曲特性が
軟銅線のそれよりも優れているが、曲げ歪εが約3%を
超えると、軟銅線の屈曲特性が逆転し、硬銅線のそれよ
りも優れていることがわかる。
That is, as described above, the bending characteristics of a copper wire or a copper alloy wire depend on the tensile strength, and the higher the tensile strength, the better the bending characteristics. In the case of (+ plastic strain), even if the tensile strength is large, if the elongation is small, the bending characteristics are inferior to the soft copper wire. For example, as shown in FIG.
When the bending characteristics of the hard copper wire and the soft copper wire are compared with each other, the bending characteristics of the hard copper wire are superior to those of the soft copper wire in a small region where the bending strain ε is about 3% or less. When ε exceeds about 3%, it can be seen that the bending characteristics of the soft copper wire are reversed and are superior to those of the hard copper wire.

【0012】そこで、本発明は請求項1に示すように本
来的に高強度・高導電銅合金線(硬質材)であるCu−
Ag合金,Cu−Nb合金,Cu−Fe合金,Cu−C
r合金のうちいずれかの合金線材を線径φ0.1mm以
下の最終線径まで伸線した後、引張強さ450MPa以
上、伸び4%以上、導電率50%IACS以上になるよ
うに熱処理したものである。これによって、引張強さを
ある程度犠牲にしても伸びが回復するため、低歪領域は
勿論、比較的高い歪領域においても優れた屈曲特性(耐
屈曲性)を発揮することができる。
Accordingly, the present invention provides a Cu-wire which is inherently a high-strength and high-conductivity copper alloy wire (hard material).
Ag alloy, Cu-Nb alloy, Cu-Fe alloy, Cu-C
Any alloy wire rod of r alloy is drawn to a final wire diameter of 0.1 mm or less in diameter, and then heat-treated to have a tensile strength of 450 MPa or more, an elongation of 4% or more, and a conductivity of 50% IACS or more. It is. As a result, since the elongation recovers even if the tensile strength is sacrificed to some extent, excellent bending characteristics (bending resistance) can be exhibited not only in a low strain region but also in a relatively high strain region.

【0013】そして、具体的には、請求項2〜5に示す
ように、Cu−( 1〜15wt%)Ag,Cu−( 5〜
20wt%) Nb合金,Cu−( 5〜20wt%) Fe
合金,Cu−( 5〜20wt%) Cr合金を用い、これ
らを伸線後、請求項6に示すように、500℃以上に加
熱された管状炉内を走行させながら熱処理を行うことで
目的とする耐屈曲銅合金線を容易に得ることができる。
[0013] More specifically, Cu- (1 to 15 wt%) Ag, Cu- (5 to
20 wt%) Nb alloy, Cu- (5-20 wt%) Fe
An alloy and a Cu- (5 to 20 wt%) Cr alloy are used, and after drawing these, as described in claim 6, heat treatment is performed while running in a tubular furnace heated to 500 ° C. or more. A flexible copper alloy wire can be easily obtained.

【0014】また、請求項7に示すように、この耐屈曲
銅合金線の表面に錫めっき、銀めっき,ニッケルめっ
き,Sn−Pbはんだめっき,鉛フリーはんだめっきの
うちいずれかのめっきをさらに施しても良い。
Further, as set forth in claim 7, the surface of the flexible copper alloy wire is further plated with any one of tin plating, silver plating, nickel plating, Sn-Pb solder plating, and lead-free solder plating. May be.

【0015】そして、請求項8,9に示すように、これ
らの耐屈曲銅合金線の単線や撚線をを中心導体として用
いることで、低歪領域から高歪領域に亘って優れた耐屈
曲特性を有する細径のケーブルを容易に得ることができ
る。
By using a single wire or a stranded wire of these bending-resistant copper alloy wires as the center conductor, excellent bending resistance can be obtained from a low strain region to a high strain region. A small-diameter cable having characteristics can be easily obtained.

【0016】[0016]

【発明の実施の形態】次に、本発明を実施する好適一形
態を添付図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

【0017】図1は、本発明に係るケーブル1の実施の
一形態を示したものである。
FIG. 1 shows an embodiment of a cable 1 according to the present invention.

【0018】図示するように、このケーブル1は、中心
導体2の周囲に外皮となる絶縁体3を被覆すると共に、
その絶縁体3の周囲にノイズを除去するためのシールド
線(外部導体)4を被覆し、さらにそのシールド線4の
周囲に外皮となるジャケット5を被覆形成した同軸ケー
ブルであり、かつその外径が例えば0.274mmの細
径ケーブルとなっている。
As shown in the figure, the cable 1 has a center conductor 2 covered with an insulator 3 serving as an outer sheath.
A coaxial cable in which a shield wire (outer conductor) 4 for removing noise is coated around the insulator 3 and a jacket 5 serving as an outer coat is further formed around the shield wire 4 and has an outer diameter. Is a small diameter cable of, for example, 0.274 mm.

【0019】また、この中心導体2は、極細(例えばφ
0.0254mm)の素線6を7本撚り合わせた撚り線
構造(42AWG)となっており、その外径は約0.1
84mmとなっている。
The center conductor 2 is extremely fine (for example, φ
(0.0254 mm), and has a stranded wire structure (42 AWG) in which seven strands 6 are twisted together.
84 mm.

【0020】また、絶縁体3には充実フッ素樹脂が使用
され、その肉厚は例えば0.06mmである。また、シ
ールド線4は線径が約φ0.0254mmであり、絶縁
体3の周囲に24本横巻きされている。その材質はCu
−0.3wt%Sn合金線で引張強さは800MPa,
伸び2%,導電率は80%IACSとなっている。さら
にジャケット5の材質はPETであり、その肉厚は例え
ば0.02mmとなっている。
Further, a solid fluororesin is used for the insulator 3 and its thickness is, for example, 0.06 mm. Further, the shield wire 4 has a wire diameter of about φ0.0254 mm, and is wound 24 times around the insulator 3. The material is Cu
-0.3wt% Sn alloy wire with tensile strength of 800MPa,
The elongation is 2% and the conductivity is 80% IACS. Further, the material of the jacket 5 is PET, and its thickness is, for example, 0.02 mm.

【0021】そして、中心導体2を構成する各素線6
は、Cu−Ag合金,Cu−Nb合金,Cu−Fe合
金,Cu−Cr合金のうちいずれかの銅合金線材を線径
φ0.1mm以下の最終線径まで伸線した後、熱処理を
施して引張強さ450MPa以上、伸び4%以上、導電
率50%IACS以上の耐屈曲銅合金線から形成されて
おり、これによって、引張強さの低下を抑制しつつ伸び
が大幅に回復するため、低歪領域は勿論、比較的高い歪
領域においても優れた屈曲特性(耐屈曲性)を発揮する
ことができる。具体的には、Cu−( 1〜15wt%)
Ag,Cu−( 5〜20wt%) Nb合金,Cu−( 5
〜20wt%) Fe合金,Cu−( 5〜20wt%) C
r合金を用い、φ0.1mm以下の極細伸線後に500
℃以上に加熱された管状炉内を走行させながら熱処理を
行うことで目的とする耐屈曲銅合金線を容易に得ること
ができる。
Each of the wires 6 constituting the central conductor 2
Is to draw a copper alloy wire of any one of a Cu-Ag alloy, a Cu-Nb alloy, a Cu-Fe alloy, and a Cu-Cr alloy to a final wire diameter of 0.1 mm or less and then heat-treat it. It is made of a bending-resistant copper alloy wire having a tensile strength of 450 MPa or more, an elongation of 4% or more, and an electrical conductivity of 50% IACS or more. Excellent bending characteristics (bending resistance) can be exhibited not only in the strain region but also in a relatively high strain region. Specifically, Cu- (1 to 15 wt%)
Ag, Cu- (5-20 wt%) Nb alloy, Cu- (5
-20% by weight) Fe alloy, Cu- (5-20% by weight) C
r alloy, and after ultrafine drawing of φ0.1 mm or less, 500
By performing the heat treatment while running in a tubular furnace heated to a temperature of not less than ° C., the intended flexible copper alloy wire can be easily obtained.

【0022】ここで、銅合金線材をCu−Ag合金,C
u−Nb合金,Cu−Fe合金,Cu−Cr合金のうち
いずれかに限定しているのは、いずれも高い導電率を示
すと共にφ0.1mm以下の極細伸線を行った場合に最
終線径で引張強さ1000MPa以上が得られるため、
その後に熱処理を行っても,伸びの回復に伴う引張強さ
の低下が抑制でき、導電率及び引張強さと伸びを高次元
で両立(引張強さ450MPa以上、伸び4%以上、導
電率50%IACS以上)できるからである。
Here, the copper alloy wire is made of Cu-Ag alloy, C
The u-Nb alloy, Cu-Fe alloy, and Cu-Cr alloy are all limited to those having high electrical conductivity and having a final wire diameter of not more than 0.1 mm when ultra-fine wire drawing is performed. To obtain a tensile strength of 1000 MPa or more,
Even if heat treatment is performed thereafter, a decrease in tensile strength due to recovery of elongation can be suppressed, and electrical conductivity and tensile strength and elongation can be compatible at a high level (tensile strength of 450 MPa or more, elongation of 4% or more, conductivity of 50%). (IACS or more).

【0023】また、引張強さを450MPa以上とした
のは、それより小さいと純銅の軟銅線やCu−0.3w
t%Sn合金の軟銅線の屈曲寿命に比べ、充分な改善が
みられないからである。また、伸びを4%以上としたの
は、比較的高い歪が負荷される環境下での耐屈曲特性を
充分に満足させるためである。さらに、導電率を50%
IACS以上としたのは、それ未満では導電材料として
の電気特性が不十分だからである。
The reason why the tensile strength is set to 450 MPa or more is that if the tensile strength is smaller than that, pure copper soft copper wire or Cu-0.3w
This is because a sufficient improvement is not seen compared to the bending life of the soft copper wire of the t% Sn alloy. The reason why the elongation is set to 4% or more is to sufficiently satisfy the bending resistance under an environment where a relatively high strain is applied. In addition, the conductivity is 50%
The reason why it is set to IACS or more is that if it is less than IACS, the electrical properties as a conductive material are insufficient.

【0024】また、銅合金線材としてCu−Ag合金を
用いた場合には、Agの添加量としては上述したように
1〜20wt%の範囲が最適である。すなわち、1wt
%未満では充分な強度が得られないためであり、反対に
20wt%を超えると導電率が低下するといった不都合
を招くばかりでなく、添加元素のAg自体が高価である
ため、コスト上昇を招くからである。また、同じくCu
−Nb合金,Cu−Fe合金,Cu−Cr合金を用いた
場合におけるそれぞれの添加元素の添加量も上述したよ
うにそれぞれ5〜20wt%の範囲が最適である。すな
わち、Cu−Ag合金と同様に5wt%未満では充分な
強度が得られないためであり、反対に20wt%を超え
ると導電率が低下することに加えて、鋳造時に著しい鋳
造欠陥が生じ易くなるためである。
When a Cu-Ag alloy is used as the copper alloy wire, the optimal addition amount of Ag is in the range of 1 to 20 wt% as described above. That is, 1wt
When the content is less than 20% by weight, the strength is not sufficient. On the other hand, when the content is more than 20% by weight, the conductivity is lowered. It is. Also, Cu
As described above, the optimal amount of each additive element in the case of using a -Nb alloy, a Cu-Fe alloy, or a Cu-Cr alloy is optimally in the range of 5 to 20 wt%. That is, as in the case of the Cu-Ag alloy, if the content is less than 5 wt%, sufficient strength cannot be obtained. On the other hand, if the content exceeds 20 wt%, in addition to a decrease in conductivity, a remarkable casting defect tends to occur during casting. That's why.

【0025】一方、熱処理方法としては、上述したよう
に500℃以上に加熱された管状炉内を走行させながら
行うことが望ましい。すなわち、管状炉内を走行させて
行う方法以外の他の方法、例えばバッチ式熱処理方法で
は所望の引張強さと伸びの特性が得られ難いことに加え
て極細線になるほど線同士が粘着し、その表面品質が悪
化してしまうからである。また、熱処理温度が500℃
未満では所望の特性を得るまでに長時間を要し、量産性
が悪化してしまうからである。
On the other hand, as the heat treatment method, it is desirable to carry out the heat treatment while traveling in a tubular furnace heated to 500 ° C. or higher as described above. That is, other methods other than the method of running in a tubular furnace, for example, in a batch-type heat treatment method, in addition to the desired tensile strength and elongation characteristics are difficult to obtain, in addition to the finer the wire sticks to each other, the wire sticks, This is because the surface quality deteriorates. The heat treatment temperature is 500 ° C
If it is less than this, it takes a long time to obtain desired characteristics, and mass productivity is deteriorated.

【0026】尚、このようにして得られた耐屈曲銅合金
線はそのまま中心導体2の素線6として用いることがで
きるが、さらにその表面に錫めっき、銀めっき,ニッケ
ルめっき,Sn−Pbはんだめっき,鉛フリーはんだめ
っきのうちいずれかのめっきを施せば、素線6表面の変
色を防止できると共にケーブル端末接続の際の信頼性を
向上させることも可能となる。
The bending-resistant copper alloy wire obtained in this manner can be used as it is as the wire 6 of the center conductor 2, and the surface thereof is further plated with tin, silver, nickel or Sn-Pb solder. When any one of plating and lead-free solder plating is applied, discoloration of the surface of the wire 6 can be prevented, and the reliability at the time of connecting the cable terminal can be improved.

【0027】また、この中心導体2は、図2に示すよう
に、外径の比較的大きい(φ0.064mm)の素線6
を単線としてそのまま用いても良い。
As shown in FIG. 2, the center conductor 2 has a wire 6 having a relatively large outer diameter (φ0.064 mm).
May be used as a single line as it is.

【0028】[0028]

【実施例】以下、本発明の具体的実施例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0029】(実施例1)先ず、高周波真空溶解炉を使
用して、無酸素銅(OFC)を溶解した後、Agをアル
ゴンガス中で添加して3種類のCu−Ag合金(Cu−
2wt% Ag,Cu−5wt% Ag,Cu−10wt% Ag)
をφ30mmのインゴットの形状で鋳造した。次に、そ
れらのインゴットについて面削加工を行い、冷間加工に
よりφ28mmからφ0.1mmまで伸線し、その後、
600℃で走行熱処理を行い、以下の表1に示すよう
に、それぞれ引張強さ450MPa以上、伸び5%以
上,導電率50%IACS以上の試料(1−1,1−
2,1−3)を得た。
(Example 1) First, oxygen-free copper (OFC) was melted using a high-frequency vacuum melting furnace, and then Ag was added in argon gas to prepare three types of Cu-Ag alloys (Cu-Ag).
2wt% Ag, Cu-5wt% Ag, Cu-10wt% Ag)
Was cast in the shape of a φ30 mm ingot. Next, these ingots are subjected to facing, cold-worked and drawn from φ28 mm to φ0.1 mm,
A running heat treatment was carried out at 600 ° C., and as shown in Table 1 below, samples (1-1,1-) having a tensile strength of 450 MPa or more, an elongation of 5% or more, and a conductivity of 50% IACS or more, respectively.
2, 1-3) was obtained.

【0030】そして、このようにして得られた各試料に
対して塑性歪が生じるような条件(曲げ歪ε=5%)で
屈曲試験を行い、その特性を評価した。具体的には、図
3に示すように、各試料1の下端に錘7を吊り下げてそ
の上方を曲げ治具8で狭持し、その上部を左右90°ず
つ繰り返し交互に曲げる方法で行い、破断した回数を基
にして屈曲寿命の評価を行った。
Each of the samples thus obtained was subjected to a bending test under conditions (bending strain ε = 5%) under which a plastic strain was generated, and its characteristics were evaluated. Specifically, as shown in FIG. 3, a weight 7 is hung at the lower end of each sample 1 and its upper part is clamped by a bending jig 8, and the upper part is repeatedly bent alternately by 90 ° left and right. The flex life was evaluated based on the number of breaks.

【0031】(実施例2)実施例1と同様な方法によっ
て2種類のCu−Nb合金(Cu−10wt% Nb,Cu
−15wt% Nb)をφ30mmのインゴットの形状で鋳
造し、これらのインゴットについて面削加工を行い、冷
間加工によりφ28mmからφ0.1mmまで伸線し、
その後、600℃で走行熱処理を行い、以下の表1に示
すように、それぞれ引張強さ450MPa以上、伸び5
%以上,導電率50%IACS以上の試料(2−1,2
−2)を得た。
EXAMPLE 2 Two kinds of Cu—Nb alloys (Cu-10 wt% Nb, Cu
-15wt% Nb) is cast in the form of φ30mm ingots, these ingots are subjected to facing, cold-worked and drawn from φ28mm to φ0.1mm,
Thereafter, a running heat treatment is performed at 600 ° C., and as shown in Table 1 below, each has a tensile strength of 450 MPa or more and an elongation of 5 MPa or more.
% And a sample having a conductivity of 50% IACS or more (2-1, 2
-2) was obtained.

【0032】そして、実施例1と同様な条件で屈曲試験
を行い、その特性を評価した。
Then, a bending test was performed under the same conditions as in Example 1 to evaluate its characteristics.

【0033】(実施例3)実施例1と同様な方法によっ
て2種類のCu−Fe合金(Cu−10wt% Fe,Cu
−15wt% Fe)をφ30mmのインゴットの形状で鋳
造し、これらのインゴットについて面削加工を行い、冷
間加工によりφ28mmからφ0.1mmまで伸線し、
その後、600℃で走行熱処理を行い、以下の表1に示
すように、それぞれ引張強さ450MPa以上、伸び5
%以上,導電率50%IACS以上の試料(3−1,3
−2)を得た。
(Embodiment 3) Two kinds of Cu-Fe alloys (Cu-10wt% Fe, Cu
-15wt% Fe) is cast in the form of φ30mm ingots, these ingots are beveled, and drawn from φ28mm to φ0.1mm by cold working.
Thereafter, a running heat treatment is performed at 600 ° C., and as shown in Table 1 below, each has a tensile strength of 450 MPa or more and an elongation of 5 MPa or more.
% And a sample having a conductivity of 50% IACS or more (3-1, 3
-2) was obtained.

【0034】そして、実施例1と同様な条件で屈曲試験
を行い、その特性を評価した。
Then, a bending test was performed under the same conditions as in Example 1, and the characteristics were evaluated.

【0035】(実施例4)実施例1と同様な方法によっ
て2種類のCu−Cr合金(Cu−10wt% Cr,Cu
−15wt% Cr)をφ30mmのインゴットの形状で鋳
造し、これらのインゴットについて面削加工を行い、冷
間加工によりφ28mmからφ0.1mmまで伸線し、
その後、600℃で走行熱処理を行い、以下の表1に示
すように、それぞれ引張強さ450MPa以上、伸び5
%以上,導電率50%IACS以上の試料(4−1,4
−2)を得た。
(Example 4) Two kinds of Cu-Cr alloys (Cu-10wt% Cr, Cu
-15wt% Cr) in the form of φ30mm ingots, face milling of these ingots, wire drawing from φ28mm to φ0.1mm by cold working,
Thereafter, a running heat treatment is performed at 600 ° C., and as shown in Table 1 below, each has a tensile strength of 450 MPa or more and an elongation of 5 MPa or more.
% Or more, and a sample having a conductivity of 50% IACS or more (4-1, 4
-2) was obtained.

【0036】そして、実施例1と同様な条件で屈曲試験
を行い、その特性を評価した。
Then, a bending test was performed under the same conditions as in Example 1, and the characteristics were evaluated.

【0037】(比較例1)実施例1と同様な方法によっ
て4種類の銅合金(Cu−10wt% Ag,Cu−15wt
% Nb,Cu−15wt% Fe,Cu−15wt% Cr)を
φ30mmのインゴットの形状で鋳造し、これらのイン
ゴットについて面削加工を行い、冷間加工によりφ28
mmからφ0.1mmまで伸線して4種類の硬銅線(1
−1,1−2,1−3,1−4)を得た後、実施例1と
同様な条件で屈曲試験を行い、その特性を評価した。
Comparative Example 1 Four kinds of copper alloys (Cu-10 wt% Ag, Cu-15 wt) were prepared in the same manner as in Example 1.
% Nb, Cu-15 wt% Fe, Cu-15 wt% Cr) are cast in the form of φ30 mm ingots, these ingots are beveled, and cold-processed to φ28.
4 mm hardened copper wire (1 mm
After obtaining -1, 1-2, 1-3 and 1-4), a bending test was performed under the same conditions as in Example 1 to evaluate the characteristics.

【0038】(比較例2)実施例1と同様な方法によっ
て2種類の銅合金(Cu−0.5wt% Ag,Cu−0.
8wt% Nb)をφ30mmのインゴットの形状で鋳造
し、これらのインゴットについて面削加工を行い、冷間
加工によりφ28mmからφ0.1mmまで伸線した
後、600℃で走行熱処理を行い、以下の表1に示すよ
うに、それぞれ引張強さ350〜400MPa、伸び5
〜10%、90%IACS以上の試料(2−1,2−
2)を得た後、実施例1と同様な条件で屈曲試験を行
い、その特性を評価した。
Comparative Example 2 Two kinds of copper alloys (Cu-0.5 wt% Ag, Cu-0.
8 wt% Nb) was cast in the form of φ30 mm ingots, these ingots were subjected to face milling, drawn from φ28 mm to φ0.1 mm by cold working, and then subjected to running heat treatment at 600 ° C. As shown in FIG. 1, the tensile strength was 350 to 400 MPa and the elongation was 5
-10%, 90% IACS or more sample (2-1,2-
After obtaining 2), a bending test was performed under the same conditions as in Example 1 to evaluate its characteristics.

【0039】(比較例3)実施例1と同様な方法によっ
て2種類の銅合金(Cu−30wt% Nb,Cu−30wt
% Cr)をφ30mmのインゴットの形状で鋳造して面
削加工を行おうとしたが、著しい鋳造欠陥がみられた。
Comparative Example 3 Two types of copper alloys (Cu-30 wt% Nb, Cu-30 wt
% Cr) was cast in the shape of an ingot of φ30 mm to perform face milling, but a remarkable casting defect was found.

【0040】(比較例4)タフピッチ鋼(TPC)、C
u−0.3wt% Sn合金の鋳造材を冷間加工によってφ
8mmからφ0.1mmに伸線して硬銅線を得ると共
に、その一部を走行焼鈍して以下の表1に示すような4
種類の軟銅線(引張強さ250〜380MPa、伸び1
0%以上)を得た後、実施例1と同様な条件で屈曲試験
を行い、その特性を評価した。
Comparative Example 4 Tough Pitch Steel (TPC), C
u-0.3wt% Sn alloy cast material is cold-worked
A hard copper wire is obtained by drawing from 8 mm to φ0.1 mm, and a part of the wire is annealed by running to obtain a copper wire as shown in Table 1 below.
Types of annealed copper wire (tensile strength 250-380MPa, elongation 1
(0% or more), a bending test was performed under the same conditions as in Example 1, and the characteristics were evaluated.

【0041】[0041]

【表1】 [Table 1]

【0042】この結果、表1に示すように、本発明に係
る実施例1〜4の試料はいずれも優れた屈曲特性を発揮
した。
As a result, as shown in Table 1, all the samples of Examples 1 to 4 according to the present invention exhibited excellent bending characteristics.

【0043】これに対し、伸線後に熱処理を施さなかっ
た比較例1の各試料にあっては、引張強さは優れた値を
示したが伸びはいずれも3%以下と低いため、屈曲特性
が著しく劣ってしまった。
On the other hand, in each of the samples of Comparative Example 1 which was not subjected to the heat treatment after the drawing, the tensile strength showed an excellent value, but the elongation was as low as 3% or less. Was significantly inferior.

【0044】また、添加元素の濃度が本実施例よりも著
しく低い比較例2の各試料にあっては、伸びは優れた値
を示したが、引張強さはいずれも400MPa以下と低
く、屈曲特性が本実施例に比較して劣ってしまった。
Further, in each of the samples of Comparative Example 2 in which the concentration of the additive element was significantly lower than that of the present example, the elongation was excellent, but the tensile strength was as low as 400 MPa or less, and the bending was low. The characteristics were inferior to those of this example.

【0045】また、添加元素の濃度が本実施例よりも高
い比較例3の各試料にあっては、上述したように著しい
鋳造欠陥がみられたため、評価を行うことはできなかっ
た。
Further, in each of the samples of Comparative Example 3 in which the concentration of the additive element was higher than that of the present example, no remarkable casting defect was observed as described above, so that evaluation could not be performed.

【0046】さらに、比較例4のうち熱処理を施さない
試料にあっては、比較例1と同様に伸びが低いため、屈
曲特性が本実施例に比べて著しく劣ってしまい、また、
熱処理を施した試料にあっては、比較例2と同様に引張
強さが劣ってしまい、いずれも屈曲特性が低かった。
Further, the sample of Comparative Example 4 which was not subjected to the heat treatment had a low elongation as in Comparative Example 1, so that the bending characteristics were significantly inferior to those of this Example.
In the heat-treated sample, the tensile strength was inferior as in Comparative Example 2, and the bending characteristics were low in all cases.

【0047】尚、表1において、伸びが3%以下の試料
をH(硬銅線)、15%以上のものをA材(軟銅線)、
4〜15%未満のものを1/2H(半硬銅線)と表記し
た。また、各試料の屈曲特性は比較例4−4の試料の屈
曲寿命を基準とし、寿命がこの試料2.0倍以上発揮し
たものを二重丸で、1.5倍以上2.0倍未満のものを
○で、1.0倍以上1.5倍未満のものを△で、1.0
倍未満のものを×でそれぞれ表記した。
In Table 1, a sample having an elongation of 3% or less is H (hard copper wire), a sample having an elongation of 15% or more is material A (soft copper wire),
Those less than 4 to 15% were described as 1 / 2H (semi-hard copper wire). The bending characteristics of each sample were based on the bending life of the sample of Comparative Example 4-4. ○: 1.0 times or more and less than 1.5 times, Δ: 1.0
Those less than twice are indicated by x.

【0048】[0048]

【発明の効果】以上要するに本発明によれば、引張強さ
の低下を極力抑えつつ伸びを回復させるようにしたこと
から、低歪領域は勿論、比較的高い歪領域においても優
れた屈曲特性(耐屈曲性)を発揮することができる。そ
して、このような耐屈曲性に優れた極細銅合金線を医療
機器等の比較的曲げ歪みが大きい機器のケーブルの導体
として用いることにより、ケーブルとしての寿命及び信
頼性が向上し、ひいてはこれが適用される電子・電気機
器の高性能・高信頼化に大いに貢献することが可能とな
る等といった優れた効果を発揮することができる。
In summary, according to the present invention, since the elongation is recovered while suppressing the decrease in the tensile strength as much as possible, the excellent bending characteristics (not only in the low strain region but also in the relatively high strain region). Flex resistance). The use of such ultra-fine copper alloy wire having excellent bending resistance as a conductor of a cable of a device having relatively large bending strain, such as a medical device, improves the life and reliability of the cable, and as a result, it is applied. It is possible to exhibit excellent effects such as greatly contributing to the high performance and high reliability of electronic and electrical equipment to be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る耐屈曲銅合金線及びそれを用いた
ケーブルの実施の一形態を示す拡大断面図である。
FIG. 1 is an enlarged sectional view showing an embodiment of a flexible copper alloy wire according to the present invention and a cable using the same.

【図2】本発明に係る耐屈曲銅合金線及びそれを用いた
ケーブルの他の実施の形態を示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing another embodiment of the flexible copper alloy wire according to the present invention and a cable using the same.

【図3】本実施例で採用した屈曲試験方法を示す説明図
である。
FIG. 3 is an explanatory view showing a bending test method employed in this example.

【図4】Cu−0.3wt%Sn合金線(φ0.08m
m)の屈曲特性を示すグラフ図である。
FIG. 4 shows a Cu-0.3 wt% Sn alloy wire (φ0.08 m
It is a graph which shows the bending characteristic of m).

【符号の説明】[Explanation of symbols]

1 ケーブル 2 中心導体 3 絶縁体 4 外部導体 5 ジャケット 6 素線(耐屈曲銅合金線) 7 錘 8 曲げ治具 DESCRIPTION OF SYMBOLS 1 Cable 2 Center conductor 3 Insulator 4 Outer conductor 5 Jacket 6 Element wire (flexible copper alloy wire) 7 Weight 8 Bending jig

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630F 630A 661 661A 682 682 685 685Z 686 686A 691 691B C25D 7/06 C25D 7/06 R H01B 1/02 H01B 1/02 A 5/02 5/02 A (72)発明者 青山 正義 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 瀬谷 修 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 4E096 EA04 EA13 EA27 HA22 KA01 4K024 AA03 AA07 AA10 AA22 AB01 BA09 BB09 BC03 EA11 GA04 5G301 AA01 AA07 AA08 AA09 AA30 AB02 AB05 AD01 AE10 5G307 BA02 BB02 BC06 BC09 BC10──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630F 630A 661 661A 682 682 685 685Z 686 686A 691 691B C25D 7/06 C25D 7 / 06 R H01B 1/02 H01B 1/02 A 5/02 5/02 A (72) Inventor Masayoshi Aoyama 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Pref. Hitachi Cable Co., Ltd. (72) Inventor Osamu Seya 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture F-term in the Hidaka Plant of Hitachi Cable, Ltd. 4E096 EA04 EA13 EA27 HA22 KA01 4K024 AA03 AA07 AA10 AA22 AB01 BA09 BB09 BC03 EA11 GA04 5G301 AA01 AA07 AA08 AA09 AA30 AB02 AB05 AD01 AE10 5G307 BA02 BB02 BC06 BC09 BC10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cu−Ag合金,Cu−Nb合金,Cu
−Fe合金,Cu−Cr合金のうちいずれかからなる銅
合金線材を線径φ0.1mm以下の最終線径まで伸線し
た後、熱処理を施して引張強さ450MPa以上、伸び
4%以上、導電率50%IACS以上にしたことを特徴
とする耐屈曲銅合金線。
1. A Cu—Ag alloy, a Cu—Nb alloy, Cu
-Fe alloy or Cu-Cr alloy, a copper alloy wire rod is drawn to a final wire diameter of φ0.1 mm or less, and then subjected to heat treatment to have a tensile strength of 450 MPa or more, an elongation of 4% or more, and conductivity. A flex-resistant copper alloy wire having a ratio of 50% IACS or more.
【請求項2】 上記Cu−Ag合金として、純度99.
9wt%以上の純銅に銀を1〜15wt%添加したCu
−( 1〜15wt%) Ag合金を用いたことを特徴とす
る請求項1に記載の耐屈曲銅合金線。
2. A Cu—Ag alloy having a purity of 99.
Cu obtained by adding 1 to 15 wt% of silver to pure copper of 9 wt% or more
2. The flex-resistant copper alloy wire according to claim 1, wherein a (-1 to 15 wt%) Ag alloy is used. 3.
【請求項3】 上記Cu−Nb合金として、純度99.
9wt%以上の純銅にニオブを5〜20wt%添加した
Cu−( 5〜20wt%) Nb合金を用いたことを特徴
とする請求項1に記載の耐屈曲銅合金線。
3. The Cu—Nb alloy has a purity of 99.
The bending-resistant copper alloy wire according to claim 1, wherein a Cu- (5 to 20% by weight) Nb alloy obtained by adding 5 to 20% by weight of niobium to 9% by weight or more of pure copper is used.
【請求項4】 上記Cu−Fe合金として、純度99.
9wt%以上の純銅に鉄を5〜20wt%添加したCu
−( 5〜20wt%) Fe合金を用いたことを特徴とす
る請求項1に記載の耐屈曲銅合金線。
4. The Cu—Fe alloy having a purity of 99.
Cu in which 5 to 20 wt% of iron is added to pure copper of 9 wt% or more
The flex-resistant copper alloy wire according to claim 1, wherein a-(5 to 20 wt%) Fe alloy is used.
【請求項5】 上記Cu−Cr合金として、純度99.
9wt%以上の純銅にクロムを5〜20wt%添加した
Cu−( 5〜20wt%) Cr合金を用いたことを特徴
とする請求項1に記載の耐屈曲銅合金線。
5. The Cu—Cr alloy having a purity of 99.
The bending-resistant copper alloy wire according to claim 1, wherein a Cu- (5-20% by weight) Cr alloy obtained by adding 5-20% by weight of chromium to 9% by weight or more of pure copper is used.
【請求項6】 上記熱処理は、上記銅合金線材を500
℃以上に加熱された管状炉内を走行させながら行うもの
であることを特徴とする請求項1〜5に記載の耐屈曲銅
合金線。
6. The heat treatment comprises:
The bending-resistant copper alloy wire according to any one of claims 1 to 5, wherein the bending is performed while traveling in a tubular furnace heated to a temperature of not less than ° C.
【請求項7】 表面に錫めっき、銀めっき,ニッケルめ
っき,Sn−Pbはんだめっき,鉛フリーはんだめっき
のうちいずれかのめっきをさらに施したことを特徴とす
る上記請求項1〜5のいずれかに記載の耐屈曲銅合金
線。
7. The method according to claim 1, wherein the surface is further plated with any one of tin plating, silver plating, nickel plating, Sn—Pb solder plating, and lead-free solder plating. The flexible copper alloy wire described in the above.
【請求項8】 上記請求項1〜7のいずれかに記載の耐
屈曲銅合金線の単線を中心導体として用いたことを特徴
とするケーブル。
8. A cable using a single wire of the flexible copper alloy wire according to claim 1 as a central conductor.
【請求項9】 上記請求項1〜7のいずれかに記載の耐
屈曲銅合金線を複数撚り合わせてなる撚線を中心導体と
して用いたことを特徴とするケーブル。
9. A cable comprising, as a central conductor, a stranded wire obtained by twisting a plurality of the bent copper alloy wires according to claim 1 as a central conductor.
JP2000108017A 2000-04-05 2000-04-05 Bending resistant copper alloy wire and cable using the same Pending JP2001295011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108017A JP2001295011A (en) 2000-04-05 2000-04-05 Bending resistant copper alloy wire and cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108017A JP2001295011A (en) 2000-04-05 2000-04-05 Bending resistant copper alloy wire and cable using the same

Publications (1)

Publication Number Publication Date
JP2001295011A true JP2001295011A (en) 2001-10-26

Family

ID=18620934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108017A Pending JP2001295011A (en) 2000-04-05 2000-04-05 Bending resistant copper alloy wire and cable using the same

Country Status (1)

Country Link
JP (1) JP2001295011A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820498B1 (en) * 2007-02-07 2008-04-08 엘에스전선 주식회사 Micro coaxial cable for high bending performance
JP2008115423A (en) * 2006-11-02 2008-05-22 Hitachi Cable Ltd Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor
WO2012035862A1 (en) * 2010-09-17 2012-03-22 住友電気工業株式会社 Coaxial cable
WO2013014904A2 (en) 2011-07-28 2013-01-31 Yazaki Corporation Conductor for electric wire
CN102945689A (en) * 2012-10-09 2013-02-27 安徽联硕实业有限公司 Copper aluminum alloy wire
WO2013099242A1 (en) 2011-12-28 2013-07-04 Yazaki Corporation Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
CN103469001A (en) * 2013-09-26 2013-12-25 云南铜业科技发展股份有限公司 Copper-based superfine wire and preparation method thereof
WO2014103750A1 (en) * 2012-12-26 2014-07-03 矢崎総業株式会社 Insulated wire
JP5761400B1 (en) * 2014-02-21 2015-08-12 株式会社オートネットワーク技術研究所 Wire for connector pin, method for manufacturing the same, and connector
JP2016104909A (en) * 2015-12-21 2016-06-09 矢崎総業株式会社 Method for manufacturing wire conductor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698440A (en) * 1980-01-07 1981-08-07 Furukawa Kinzoku Kogyo Kk Copper alloy for lead wire having magnetism
JPH0693399A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy conductor
JPH06150722A (en) * 1992-11-05 1994-05-31 Furukawa Electric Co Ltd:The Conductor for coil
JPH06290639A (en) * 1993-03-31 1994-10-18 Fujikura Ltd High strength high conductance flexibility complex wire
JPH11213761A (en) * 1998-01-29 1999-08-06 Hitachi Cable Ltd Composite conductor and its manufacture
JPH11242914A (en) * 1998-02-25 1999-09-07 Yoshinokawa Electric Wire & Cable Co Ltd Highly durable movable electric wire, highly durable movable cable, and their manufacture
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing
JP2001176332A (en) * 1999-12-15 2001-06-29 Hitachi Cable Ltd Composite conductor, its manufacturing method, and cable using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698440A (en) * 1980-01-07 1981-08-07 Furukawa Kinzoku Kogyo Kk Copper alloy for lead wire having magnetism
JPH0693399A (en) * 1992-09-16 1994-04-05 Showa Electric Wire & Cable Co Ltd Production of cu-ag alloy conductor
JPH06150722A (en) * 1992-11-05 1994-05-31 Furukawa Electric Co Ltd:The Conductor for coil
JPH06290639A (en) * 1993-03-31 1994-10-18 Fujikura Ltd High strength high conductance flexibility complex wire
JPH11213761A (en) * 1998-01-29 1999-08-06 Hitachi Cable Ltd Composite conductor and its manufacture
JPH11242914A (en) * 1998-02-25 1999-09-07 Yoshinokawa Electric Wire & Cable Co Ltd Highly durable movable electric wire, highly durable movable cable, and their manufacture
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing
JP2001176332A (en) * 1999-12-15 2001-06-29 Hitachi Cable Ltd Composite conductor, its manufacturing method, and cable using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115423A (en) * 2006-11-02 2008-05-22 Hitachi Cable Ltd Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor
WO2008096947A1 (en) * 2007-02-07 2008-08-14 Ls Cable, Ltd. Micro coaxial cable for high bending performance
US8242358B2 (en) 2007-02-07 2012-08-14 Ls Cable & System Ltd. Micro coaxial cable for high bending performance
KR100820498B1 (en) * 2007-02-07 2008-04-08 엘에스전선 주식회사 Micro coaxial cable for high bending performance
CN103098146A (en) * 2010-09-17 2013-05-08 住友电气工业株式会社 Coaxial cable
WO2012035862A1 (en) * 2010-09-17 2012-03-22 住友電気工業株式会社 Coaxial cable
WO2013014904A2 (en) 2011-07-28 2013-01-31 Yazaki Corporation Conductor for electric wire
WO2013099242A1 (en) 2011-12-28 2013-07-04 Yazaki Corporation Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
US9214252B2 (en) 2011-12-28 2015-12-15 Yazaki Corporation Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
CN102945689A (en) * 2012-10-09 2013-02-27 安徽联硕实业有限公司 Copper aluminum alloy wire
WO2014103750A1 (en) * 2012-12-26 2014-07-03 矢崎総業株式会社 Insulated wire
JP2014127345A (en) * 2012-12-26 2014-07-07 Yazaki Corp Insulated wire
CN104885164A (en) * 2012-12-26 2015-09-02 矢崎总业株式会社 Insulated wire
CN103469001A (en) * 2013-09-26 2013-12-25 云南铜业科技发展股份有限公司 Copper-based superfine wire and preparation method thereof
JP5761400B1 (en) * 2014-02-21 2015-08-12 株式会社オートネットワーク技術研究所 Wire for connector pin, method for manufacturing the same, and connector
JP2016104909A (en) * 2015-12-21 2016-06-09 矢崎総業株式会社 Method for manufacturing wire conductor

Similar Documents

Publication Publication Date Title
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP2001148205A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JPH0731939B2 (en) High strength, highly flexible conductor
JP2000199042A (en) PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JP4288844B2 (en) Extra fine copper alloy wire
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
JP2001234309A (en) Method for producing extra-fine copper alloy stranded wire
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
JP3856073B2 (en) Method for producing Cu-Ag alloy
JP2020009629A (en) Twisted wire conductor and cable
JPH0352523B2 (en)
JP2865798B2 (en) Method for producing magnet wire made of Cu-Nb alloy conductor
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JPH06290639A (en) High strength high conductance flexibility complex wire
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP4143010B2 (en) Method for producing copper alloy conductor
JP3079644B2 (en) Copper alloy wires for electric and electronic equipment
JP2000282157A (en) Foil conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026