JP2000282157A - Foil conductor - Google Patents

Foil conductor

Info

Publication number
JP2000282157A
JP2000282157A JP32727999A JP32727999A JP2000282157A JP 2000282157 A JP2000282157 A JP 2000282157A JP 32727999 A JP32727999 A JP 32727999A JP 32727999 A JP32727999 A JP 32727999A JP 2000282157 A JP2000282157 A JP 2000282157A
Authority
JP
Japan
Prior art keywords
foil conductor
controlled
alloy
thickness
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32727999A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32727999A priority Critical patent/JP2000282157A/en
Publication of JP2000282157A publication Critical patent/JP2000282157A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cable conductor for signal transmission excellent in electrical conductivity, strength, bending resistance, fatigue resistance, heat resistance, plating properties or the like by forming a Cu-Ag alloy, in which the content of oxygen is controlled to a specified value and having a specified electrical conductivity and tensile strength, to a specified thickness and width. SOLUTION: In a Cu-Ag alloy, the content of oxygen is controlled to <=10 ppm, and the content of Ag is controlled to about 0.5 to 4.5 wt.% in the case of being worked without executing process annealing and to about 10% in the case of being applied with process annealing in such a manner that the frequency, conditions or the like are controlled, by which >=80% IACS electrical conductivity and >=700 N/mm tensile strength are obtd. This Cu-Ag alloy is formed into a ribbony shape in which thickness is controlled to <=30 μm, and the ratio of the width (w) to the thickness (t), i.e., w/t is controlled to >=10 to obtain a foil conductor suitable, e.g. for a cable for signal transmission. This foil conductor is, if required, coated with noble metal such as Ag and Au by an electroplating method or the like to prevent discoloration caused by oxidation or the like or is imparted with a noble feeling, thereby, it can be made suitable for decorative use.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号伝送用ケーブ
ルなどに適した導電率、強度、耐屈曲特性、耐疲労特
性、耐熱性、メッキ性などに優れる箔導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foil conductor excellent in electrical conductivity, strength, bending resistance, fatigue resistance, heat resistance, plating property, etc., suitable for signal transmission cables and the like.

【0002】[0002]

【従来の技術】信号伝送用ケーブルには、電気信号の減
衰抑制のための高導電率、機器組立時の外力に耐える強
度、繰返し曲げに耐える耐屈曲特性などが要求される。
さらにスピーカーケーブルの場合は、スピーカーの振動
で金属疲労を起こさない耐疲労特性、高出力時の自己発
熱で劣化しない耐熱性が要求される。そして、このよう
な信号伝送用ケーブルには、主にCuーCd合金の箔導
体が用いられていた。
2. Description of the Related Art Signal transmission cables are required to have high electrical conductivity for suppressing attenuation of electric signals, strength to withstand external forces when assembling equipment, and bending resistance to withstand repeated bending.
Further, in the case of a speaker cable, it is required to have fatigue resistance not causing metal fatigue due to speaker vibration and heat resistance not deteriorating due to self-heating at high output. In such a signal transmission cable, a foil conductor of a Cu-Cd alloy is mainly used.

【0003】[0003]

【発明が解決しようとする課題】しかし、Cu−Cd合
金は、有害なCdを1%近くも含有するため、鋳造作業
者の健康や環境汚染に問題があった。そこで、本発明者
らは、Cu−Cd合金箔導体の代替材を探索し、その結
果Cu−Ag系合金箔導体は信号伝送用ケーブルに要求
される前記諸特性を満足し得ることを知見し、さらに研
究を進めて本発明を完成させるに至った。本発明は、信
号伝送用ケーブルなどに適した導電率、強度、耐屈曲特
性、耐疲労特性、耐熱性、メッキ性などに優れる箔導体
を提供することを目的とする。
However, the Cu-Cd alloy contains almost 1% of harmful Cd, and thus has a problem in the health of the casting operator and environmental pollution. Therefore, the present inventors have searched for a substitute for a Cu-Cd alloy foil conductor, and as a result, have found that a Cu-Ag alloy foil conductor can satisfy the above-mentioned various characteristics required for a signal transmission cable. Further research has led to the completion of the present invention. An object of the present invention is to provide a foil conductor suitable for signal transmission cables and the like, which is excellent in electrical conductivity, strength, bending resistance, fatigue resistance, heat resistance, plating property and the like.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
導電率が80%IACS以上で引張強さが700N/m
2 以上のCu−Ag系合金からなることを特徴とする
箔導体である。
According to the first aspect of the present invention,
Conductivity of 80% IACS or more and tensile strength of 700 N / m
A foil conductor comprising a Cu—Ag alloy having a m 2 or more.

【0005】請求項2記載の発明は、Cu−Ag系合金
中の酸素量が10ppm以下であることを特徴とする請
求項1記載の箔導体である。
According to a second aspect of the present invention, there is provided the foil conductor according to the first aspect, wherein the amount of oxygen in the Cu-Ag alloy is 10 ppm or less.

【0006】請求項3記載の発明は、箔導体が厚さ
(t)、巾(w)のリボン状であり、前記厚さ(t)が
30μm以下で、前記幅(w)と厚さ(t)の比(w/
t)が10以上であることを特徴とする請求項1または
2記載の箔導体である。
According to a third aspect of the present invention, the foil conductor has a ribbon shape with a thickness (t) and a width (w), the thickness (t) is 30 μm or less, and the width (w) and the thickness (w). t) ratio (w /
3. The foil conductor according to claim 1, wherein t) is 10 or more.

【0007】請求項4記載の発明は、貴金属層が被覆さ
れていることを特徴とする請求項1、2、3のいずれか
に記載の箔導体である。
According to a fourth aspect of the present invention, there is provided the foil conductor according to any one of the first to third aspects, wherein the foil conductor is coated with a noble metal layer.

【0008】[0008]

【発明の実施の形態】本発明の箔導体は、Cu−Ag系
合金からなり、その導電率を80%IACS以上に規定
する理由は80%IACS未満では電気信号が良好に伝
送されなくなるためであり、その引張強さを700N/
mm2 以上に規定する理由は700N/mm2 未満では
機器組立時に掛かる外力に十分耐えられないことと、箔
導体に要求される耐屈曲特性や耐疲労特性が満足されな
くなるためである。前記Cu−Ag系合金のAgの含有
量は用途に応じて適宜選定されるが、素材(棒状鋳塊
等)から箔導体まで中間焼鈍を施さないで加工する場合
は、Agが0.5wt%未満では700N/mm2 以上の
引張強さが安定して得られず、Agが4.5wt%を超え
ると80%IACS以上の導電率が安定して得られなく
なる。このためAgの含有量は0.5〜4.5wt%が望
ましい。しかし、Agが10wt%程度に多量に含有され
ていても、中間焼鈍を、焼鈍回数や焼鈍条件等を調整し
て施すことにより、引張強さが780N/mm2以上、
導電率が80%IACS以上の所望の箔導体を得ること
ができる。前記Cu−Ag系合金は、特性改善に有用な
他の合金元素が含有されていても、また不可避不純物元
素が含まれていても微量であれば差支えない。Cu−A
g系合金中の酸素量が10ppm以下のものは良導電性
のAg相が短繊維状に均一に分散するので、導電率を余
り下げずに強度向上が図れる。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the foil conductor of the present invention is made of a Cu-Ag alloy and its electric conductivity is specified to be 80% IACS or more is that electric signals are not transmitted well when it is less than 80% IACS. And its tensile strength is 700N /
The reason for defining the mm 2 or more and can not sufficiently withstand the external force applied during device assembly is less than 700 N / mm 2, because the bending property and fatigue property required for the foil conductor is no longer satisfied. The Ag content of the Cu-Ag alloy is appropriately selected according to the application. However, when processing from a raw material (such as a bar-shaped ingot) to a foil conductor without performing intermediate annealing, the Ag content is 0.5 wt%. If it is less than 700 N / mm 2, a tensile strength of 700 N / mm 2 or more cannot be obtained stably, and if Ag exceeds 4.5 wt%, a conductivity of 80% IACS or more cannot be obtained stably. Therefore, the content of Ag is desirably 0.5 to 4.5 wt%. However, even if Ag is contained in a large amount of about 10% by weight, the tensile strength is 780 N / mm 2 or more by performing the intermediate annealing by adjusting the number of annealing times and the annealing conditions.
A desired foil conductor having a conductivity of 80% IACS or more can be obtained. The Cu-Ag-based alloy may contain other alloy elements useful for improving properties, or may contain unavoidable impurity elements, as long as they are trace amounts. Cu-A
If the amount of oxygen in the g-based alloy is 10 ppm or less, the highly conductive Ag phase is uniformly dispersed in the form of short fibers, so that the strength can be improved without significantly lowering the conductivity.

【0009】本発明の箔導体をリボン状に加工して用い
るときは、その厚さ(t)を30μm以下とし、且つ幅
(w)と厚さ(t)の比(w/t)を10以上にすると
耐屈曲特性および耐疲労特性が向上する。これは、前記
比(w/t)が10以上になると曲げ応力が巾方向へ良
好に分散するようになるためと考えられる。なお、スピ
ーカーケーブルに用いられる箔導体の巾(w)と厚さ
(t)の比(w/t)は13〜14が一般的である。
When the foil conductor of the present invention is processed into a ribbon shape and used, its thickness (t) should be 30 μm or less, and the ratio (w / t) of width (w) to thickness (t) should be 10 or less. By doing so, the bending resistance and the fatigue resistance are improved. This is probably because when the ratio (w / t) is 10 or more, the bending stress is favorably dispersed in the width direction. The ratio (w / t) of the width (w) to the thickness (t) of the foil conductor used for the speaker cable is generally 13 to 14.

【0010】本発明の箔導体をAgやAuなどの貴金属
で被覆すると、酸化などによる変色が防止され、また高
級感が出て装飾的用途に好適である。貴金属の被覆方法
は特に限定しないが、通常の電気メッキ法が安価で望ま
しい。
[0010] When the foil conductor of the present invention is coated with a noble metal such as Ag or Au, discoloration due to oxidation or the like is prevented, and a sense of quality is obtained, which is suitable for decorative use. The method of coating the noble metal is not particularly limited, but a normal electroplating method is inexpensive and desirable.

【0011】本発明の箔導体は、これを銅箔糸に整形し
たり、テフロン糸の周囲に螺旋状に巻付けたり、前記銅
箔糸を編組或いは撚合わせたりして用いることもでき
る。
[0011] The foil conductor of the present invention can be used by shaping it into a copper foil thread, spirally winding around a Teflon thread, or braiding or twisting the copper foil thread.

【0012】[0012]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)無酸素銅溶湯にAgを0.5〜4.5wt%
添加した銅合金溶湯を横型連続鋳造法により10mmφ
の棒状鋳塊に鋳造し、この棒状鋳塊を92μmφの線材
に連続伸線し、次いで圧延して、幅(w)300μm、
厚さ(t)22μmの箔導体(w/t=13. 6)を製
造した。得られた各々の箔導体について引張強さと導電
率を調べた。結果を表1に示す。比較のため同じ寸法の
従来のCu−0. 9wt%Cd合金箔導体についても同様
の調査を行った。
The present invention will be described below in detail with reference to examples. (Example 1) Ag is added to oxygen-free copper melt in an amount of 0.5 to 4.5 wt%.
The added copper alloy melt is 10mmφ by horizontal continuous casting method.
, And the rod-shaped ingot is continuously drawn into a wire having a diameter of 92 μm, and then rolled to a width (w) of 300 μm.
A foil conductor (w / t = 13.6) having a thickness (t) of 22 μm was produced. Each of the obtained foil conductors was examined for tensile strength and electrical conductivity. Table 1 shows the results. For comparison, a similar investigation was conducted on a conventional Cu-0.9 wt% Cd alloy foil conductor having the same dimensions.

【0013】[0013]

【表1】 [Table 1]

【0014】表1より明らかなように、本発明例のNo.1
〜6 は信号伝送用ケーブルなどとして必要な引張強さと
導電率を有し、特にNo.3〜6 は従来材(No.7) と同等以
上の特性を示した。No.3は同じAg量のNo.2より引張強
さが高い。これはNo.3は酸素量が少ないためAg相が繊
維状により均一に分散したためである。No.2は酸素を鋳
造直前に余分に含有させて鋳造した。
As is clear from Table 1, No. 1 of the present invention example
Nos. 6 to 6 have the necessary tensile strength and electrical conductivity as signal transmission cables, etc., and Nos. 3 to 6 in particular showed properties equal to or better than those of the conventional material (No. 7). No. 3 has a higher tensile strength than No. 2 having the same Ag amount. This is because in No. 3 the amount of oxygen was small and the Ag phase was more uniformly dispersed in a fibrous state. No. 2 was cast by adding excess oxygen immediately before casting.

【0015】(実施例2)実施例1で作製した10mm
φの棒状鋳塊を64〜100μmの種々径の線材に連続
伸線し、これを圧延して種々サイズの箔導体を製造し
た。得られた各々の箔導体について、図1に示す方法に
より屈曲試験を行い、破断に至るまでの繰返し曲げ回数
を調べた。結果を表2に示す。
(Example 2) 10 mm produced in Example 1
The rod-shaped ingot of φ was continuously drawn into wire rods of various diameters of 64 to 100 μm, which were rolled to produce foil conductors of various sizes. Each of the obtained foil conductors was subjected to a bending test by the method shown in FIG. 1, and the number of repeated bendings until breakage was examined. Table 2 shows the results.

【0016】[0016]

【表2】 [Table 2]

【0017】表2より明らかなように、本発明例の No.
11〜20はいづれも破断までの屈曲回数が7000回以上
で従来材と同等かそれ以上の耐屈曲特性を示した。耐屈
曲特性はAg量が多い程、また比(w/t)が大きい程
優れることが判る。
As is clear from Table 2, No. 1
All of the samples 11 to 20 exhibited bending resistance equal to or higher than that of the conventional material when the number of bendings before breaking was 7000 or more. It can be seen that the bending resistance is better as the Ag content is larger and the ratio (w / t) is larger.

【0018】(実施例3)実施例1で作製した10mm
φの棒状鋳塊を連続伸線して1mmφの線材(断面円
形)とし、この線材を用いて耐疲労特性を調べた。試験
条件は、回転数3000rpm、負荷応力±196N/
mm2 とした。結果を表3に示す。
(Embodiment 3) 10 mm manufactured in Embodiment 1
The rod-shaped ingot of φ was continuously drawn to form a 1 mmφ wire (circular cross section), and the fatigue resistance was examined using this wire. The test conditions were as follows: rotation speed 3000 rpm, load stress ± 196 N /
It was mm 2. Table 3 shows the results.

【0019】[0019]

【表3】 [Table 3]

【0020】表3より明らかなように、本発明例の No.
31〜36は、いずれも耐疲労特性が従来材のNo.37 より優
れた。なお、箔形状の試験材の耐疲労特性は、断面円形
の試験材の耐疲労特性で代用可能なことを別途確認し
た。
As is clear from Table 3, No. 1
Nos. 31 to 36 were all superior in fatigue resistance to No. 37 of the conventional material. It was separately confirmed that the fatigue resistance of the foil-shaped test material could be replaced by the fatigue resistance of the test material having a circular cross section.

【0021】(実施例4)実施例1で製造した箔導体を
室温から800℃までの種々温度で焼鈍し、焼鈍材のビ
ッカース硬さを測定して耐熱性(軟化開始温度と半軟化
温度)を調べた。結果を表4に示す。
Example 4 The foil conductor produced in Example 1 was annealed at various temperatures from room temperature to 800 ° C., and the Vickers hardness of the annealed material was measured to determine the heat resistance (softening start temperature and semi-softening temperature). Was examined. Table 4 shows the results.

【0022】[0022]

【表4】 [Table 4]

【0023】表4より明らかなように、本発明例の No.
41〜46は、いずれも耐熱性が従来材(No.47) を大幅に上
回った。
As is evident from Table 4, No. 1
In all of 41 to 46, the heat resistance significantly exceeded that of the conventional material (No. 47).

【0024】(実施例5)箔導体は、変色防止のため或
いは高級感を出すために、用途に応じてAgやAuなど
の貴金属層を被覆して用いられる。この貴金属層は加工
途中に被覆されるため、被覆後、貴金属層は伸線加工や
圧延加工で剥離してはならない。そこで、被覆後の貴金
属層の耐剥離性を調査した。
(Embodiment 5) A foil conductor is coated with a noble metal layer such as Ag or Au depending on the use in order to prevent discoloration or to give a sense of quality. Since the noble metal layer is coated during the processing, the noble metal layer must not be peeled off after the coating by wire drawing or rolling. Then, the peel resistance of the noble metal layer after coating was investigated.

【0025】実施例1で用いたのと同じ10mmφの棒
状鋳塊を2.6mmφの線材に連続伸線し、この線材を
皮剥ぎして800μmφの線材とし、この線材にAgを
5μm厚さに電気メッキした後伸線加工して100μm
φの線材とし、次いでこの線材を圧延して幅330μ
m、厚さ25μmの箔導体(w/t=13. 2)を製造
した。100μmφ線材表面、箔導体表面、前記箔導体
の3000回屈曲試験(実施例2と同じ試験)後の表面
を走査電子顕微鏡で観察し、Agメッキ層の密着状態を
調べた。結果を、Agメッキ層が全く剥離しなかったも
の(○)、若干剥離したもの(△)、母材が露出したも
の(×)の3段階に評価して表5に示した。
The same 10 mmφ rod-shaped ingot as used in Example 1 was continuously drawn to a 2.6 mmφ wire, and the wire was peeled to obtain an 800 μmφ wire, and Ag was added to the wire to a thickness of 5 μm. After electroplating, wire drawing and 100μm
φ wire, then roll this wire to 330μ width
m, and a foil conductor (w / t = 13.2) having a thickness of 25 μm was produced. The surface of the wire rod having a diameter of 100 μm, the surface of the foil conductor, and the surface of the foil conductor after the 3000-fold bending test (the same test as in Example 2) were observed with a scanning electron microscope to examine the adhesion state of the Ag plating layer. The results were evaluated in three grades: those in which the Ag plating layer was not peeled at all (全 く), those in which the Ag plating layer was slightly peeled (△), and those in which the base material was exposed (x).

【0026】[0026]

【表5】 [Table 5]

【0027】表5より明らかなように、本発明例の No.
51〜56はいずれもAgメッキ層が剥離するようなことが
なく、本発明の箔導体はAgメッキ層との親和性に優れ
ることが判った。これに対し、従来材(No.57) は、圧延
材にAgメッキ層の剥離が認められ、繰返し曲げ試験後
には母材の露出部分が認められた。
As is clear from Table 5, the sample No.
In any of Nos. 51 to 56, the Ag plating layer did not peel off, and it was found that the foil conductor of the present invention had excellent affinity with the Ag plating layer. On the other hand, in the conventional material (No. 57), peeling of the Ag plating layer was observed in the rolled material, and an exposed portion of the base material was observed after the repeated bending test.

【0028】(実施例6)無酸素銅溶湯にAgを7.0
wt%添加した銅合金溶湯を横型連続鋳造法により10m
mφの棒状鋳塊に鋳造し、この棒状鋳塊を連続伸線して
0.9mmφの線材とし、この線材をAr雰囲気中で、
550℃で30分間焼鈍し、その後92μmφの線材に
連続伸線し、次いで圧延して、幅(w)300μm、厚
さ(t)22μmの箔導体(w/t=13. 6)を製造
した。
(Example 6) Ag was added to the oxygen-free copper melt at 7.0.
10% molten copper alloy with wt% added by horizontal continuous casting method
Cast into a rod-shaped ingot of mφ, this rod-shaped ingot is continuously drawn into a wire of 0.9 mmφ, and this wire is placed in an Ar atmosphere.
Annealed at 550 ° C. for 30 minutes, then continuously drawn into a wire rod having a diameter of 92 μm, and then rolled to produce a foil conductor (w / t = 13.6) having a width (w) of 300 μm and a thickness (t) of 22 μm. .

【0029】得られた箔導体は、引張強さが860N/
mm2 、導電率が80.5%IACSであった。このよ
うにAgが高濃度でも、素材から箔導体までの加工途中
で適宜中間焼鈍を施すことにより、導電率が80%IA
CS以上、引張強さが700N/mm2 以上のCu−A
g系合金の箔導体を得ることができる。
The obtained foil conductor has a tensile strength of 860 N /
mm 2 , and the conductivity was 80.5% IACS. As described above, even when Ag is in a high concentration, the conductivity is 80% IA by appropriately performing intermediate annealing during the processing from the material to the foil conductor.
Cu-A with CS or higher and tensile strength of 700 N / mm 2 or higher
A g-based alloy foil conductor can be obtained.

【0030】以上、横型連続鋳造→連続伸線→圧延加工
の工程により製造した箔導体について説明したが、本発
明の箔導体は、水冷鋳造→押出→ダイス引抜加工などの
他の工程によって製造しても同様の特性が得られる。ま
たCu−Ag系合金のAgの含有量は0.5〜4.5wt
%が望ましいが、Agの含有量をさらに多くしても、加
工途中で、適宜、中間焼鈍を施すことにより所望の箔導
体を得ることができる。またCu−Ag系合金に含まれ
る酸素量が20ppm以下の場合について説明したが、
本発明の箔導体はCu−Ag系合金に含まれる酸素量が
さらに多い場合にも同様の優れた特性が得られる。さら
にAgをメッキにより被覆した箔導体について説明した
が、本発明の箔導体はAuやPtなどの他の貴金属をP
VCなどの他の方法により被覆しても同様の効果が得ら
れる。
The foil conductor manufactured by the steps of horizontal continuous casting → continuous drawing → rolling processing has been described above. However, the foil conductor of the present invention is manufactured by other steps such as water cooling casting → extrusion → die drawing processing. The same characteristics can be obtained. The Ag content of the Cu-Ag alloy is 0.5-4.5 wt.
% Is desirable, but even if the Ag content is further increased, a desired foil conductor can be obtained by appropriately performing intermediate annealing during processing. Also, the case where the amount of oxygen contained in the Cu-Ag-based alloy is 20 ppm or less has been described,
The foil conductor of the present invention can obtain the same excellent characteristics even when the amount of oxygen contained in the Cu-Ag alloy is further increased. Furthermore, the foil conductor coated with Ag by plating has been described. However, the foil conductor of the present invention is formed by adding another noble metal such as Au or Pt to P.
Similar effects can be obtained by coating with another method such as VC.

【0031】[0031]

【発明の効果】以上に述べたように、本発明の箔導体
は、信号伝送用ケーブルに要求される導電性、強度、耐
屈曲特性、耐疲労特性、耐熱性を具備しており、また貴
金属層の密着性にも優れ、有害なCdを含む従来材に十
分代替し得るものであり、工業上顕著な効果を奏する。
As described above, the foil conductor of the present invention has the conductivity, strength, bending resistance, fatigue resistance, and heat resistance required for a signal transmission cable. It has excellent layer adhesion and can be sufficiently substituted for conventional materials containing harmful Cd, and has an industrially significant effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で用いた箔導体の屈曲試験方法
の説明図である。
FIG. 1 is an explanatory diagram of a bending test method for a foil conductor used in an example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電率が80%IACS以上で引張強さ
が700N/mm2以上のCu−Ag系合金からなるこ
とを特徴とする箔導体。
1. A foil conductor comprising a Cu—Ag alloy having a conductivity of 80% IACS or more and a tensile strength of 700 N / mm 2 or more.
【請求項2】 Cu−Ag系合金中の酸素量が10pp
m以下であることを特徴とする請求項1記載の箔導体。
2. The oxygen content in a Cu—Ag alloy is 10 pp.
2. The foil conductor according to claim 1, wherein m is equal to or less than m.
【請求項3】 箔導体が厚さ(t)、巾(w)のリボン
状であり、前記厚さ(t)が30μm以下で、前記幅
(w)と厚さ(t)の比(w/t)が10以上であるこ
とを特徴とする請求項1または2記載の箔導体。
3. The foil conductor has a ribbon shape having a thickness (t) and a width (w), the thickness (t) being 30 μm or less, and a ratio (w) of the width (w) to the thickness (t). 3. The foil conductor according to claim 1, wherein / t) is 10 or more.
【請求項4】 貴金属層が被覆されていることを特徴と
する請求項1、2、3のいずれかに記載の箔導体。
4. The foil conductor according to claim 1, wherein the foil conductor is covered with a noble metal layer.
JP32727999A 1999-01-29 1999-11-17 Foil conductor Pending JP2000282157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32727999A JP2000282157A (en) 1999-01-29 1999-11-17 Foil conductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-23121 1999-01-29
JP2312199 1999-01-29
JP32727999A JP2000282157A (en) 1999-01-29 1999-11-17 Foil conductor

Publications (1)

Publication Number Publication Date
JP2000282157A true JP2000282157A (en) 2000-10-10

Family

ID=26360426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32727999A Pending JP2000282157A (en) 1999-01-29 1999-11-17 Foil conductor

Country Status (1)

Country Link
JP (1) JP2000282157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025353A (en) * 2000-07-07 2002-01-25 Hitachi Cable Ltd Flex resistant flat cable
JP2005235638A (en) * 2004-02-20 2005-09-02 Hitachi Cable Ltd Wiring materal and battery pack using the same
JP2010034067A (en) * 2009-09-25 2010-02-12 Hitachi Cable Ltd Wiring material for battery pack
WO2018181329A1 (en) 2017-03-27 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025353A (en) * 2000-07-07 2002-01-25 Hitachi Cable Ltd Flex resistant flat cable
JP4734695B2 (en) * 2000-07-07 2011-07-27 日立電線株式会社 Flex-resistant flat cable
JP2005235638A (en) * 2004-02-20 2005-09-02 Hitachi Cable Ltd Wiring materal and battery pack using the same
JP4665405B2 (en) * 2004-02-20 2011-04-06 日立電線株式会社 Battery pack
JP2010034067A (en) * 2009-09-25 2010-02-12 Hitachi Cable Ltd Wiring material for battery pack
WO2018181329A1 (en) 2017-03-27 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component
KR20190132346A (en) 2017-03-27 2019-11-27 후루카와 덴키 고교 가부시키가이샤 Aluminum alloy material and conductive member, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structural member and structural component using the same
EP3604579A4 (en) * 2017-03-27 2020-08-12 Furukawa Electric Co., Ltd. Aluminium alloy material, conductive member using same, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structure member, and structure component
US11466346B2 (en) 2017-03-27 2022-10-11 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, conductive component, spring member, spring component, semiconductor module member, semiconductor module component, structural member and structural component including the aluminum alloy material

Similar Documents

Publication Publication Date Title
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP2001148205A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JP2007172928A (en) Extra fine insulated wire, coaxial cable, its manufacturing method, and multiconductor cable using it
JPH0731939B2 (en) High strength, highly flexible conductor
JP2000199042A (en) PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JP4288844B2 (en) Extra fine copper alloy wire
JP2006307307A (en) Wiring cable for moving part in robot
JP2000282157A (en) Foil conductor
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JP2010205549A (en) Method of manufacturing wire conductor, and wire conductor
JP3775244B2 (en) Conductor for bending-resistant cable and method for manufacturing the same
JPH0790430A (en) Copper wire for extra fine wire and its production
JP3279374B2 (en) Copper alloy wire and method of manufacturing the same
JP3050554B2 (en) Magnet wire
CN113299421A (en) Copper alloy wire, plated wire, electric wire and cable
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JPS6047344B2 (en) Hot-dipped ultrafine copper alloy conductor
JPH11213761A (en) Composite conductor and its manufacture
JP2009097033A (en) Copper-alloy wire, copper alloy stranded wire, coaxial cable, multi-core cable, and manufacturing method of copper-alloy wire
JP3680541B2 (en) Method for producing copper alloy wire of Cu-Zr alloy
JP2006176833A (en) Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same
JP2000073153A (en) Copper alloy wire and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A131 Notification of reasons for refusal

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061215