JP2010205549A - Method of manufacturing wire conductor, and wire conductor - Google Patents

Method of manufacturing wire conductor, and wire conductor Download PDF

Info

Publication number
JP2010205549A
JP2010205549A JP2009049505A JP2009049505A JP2010205549A JP 2010205549 A JP2010205549 A JP 2010205549A JP 2009049505 A JP2009049505 A JP 2009049505A JP 2009049505 A JP2009049505 A JP 2009049505A JP 2010205549 A JP2010205549 A JP 2010205549A
Authority
JP
Japan
Prior art keywords
wire
copper alloy
alloy fine
wire conductor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009049505A
Other languages
Japanese (ja)
Inventor
Masahiro Ichikawa
昌宏 市川
Hiroto Nozaki
裕人 野崎
Teruto Nakatsu
照人 仲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2009049505A priority Critical patent/JP2010205549A/en
Publication of JP2010205549A publication Critical patent/JP2010205549A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire conductor which can be made thin in diameter and light in weight, and does not have loosening in the element wires and is superior in flexibility. <P>SOLUTION: After stranding a plurality of peripheral copper alloy fine wires 12 with a diameter 0.01 mm or more and 0.6 mm or less around a center copper alloy fine wire 11 with the diameter 0.01 mm or more and 0.6 mm or less, a circular compression processing is applied on the stranded wire so that only the peripheral copper alloy fine wires 12 may be compressed in substance. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用電線などに用いられる電線導体の製造方法および電線導体に関する。   The present invention relates to a method for producing a wire conductor used for an automobile wire and the like, and a wire conductor.

近年、自動車用電線においては、細径化および軽量化の要求が高まっている。   In recent years, there is an increasing demand for reducing the diameter and weight of automobile wires.

従来、自動車用電線の導体には、軟銅線または軟銅線に錫メッキなどを施した線を撚り合わせたものが用いられてきた。しかし、これらの軟銅線や錫メッキ軟銅線は加工性に優れるものの、機械的強度に乏しいために、外径が大きくなり、また、その結果、重量も重くなるという問題がある。   Conventionally, as a conductor of an automobile electric wire, an annealed copper wire or a wire obtained by twisting an annealed copper wire with tin plating or the like has been used. However, although these annealed copper wires and tin-plated annealed copper wires are excellent in workability, there is a problem that the outer diameter is increased due to poor mechanical strength, and as a result, the weight is also increased.

この点に関し、例えば、特許文献1には、中心素線として、銅に比べ比重の小さいステンレス鋼を用い、その周りに銅または銅合金からなる周辺素線を撚り合わせたものを、自動車用電線の導体として用いることが記載されている。また、特許文献2には、Mgなどの金属元素を1.0質量%未満含有させた銅合金に特定の伸線加工を施すことにより引張強度などの機械的特性を高めた素線を用いた自動車用電線導体が記載されている。比重の小さい、あるいは引張強度の大きい素線を用いることにより、細線化、軽量化を図ろうとしたものである。   In this regard, for example, in Patent Document 1, a stainless steel having a specific gravity smaller than that of copper is used as a center wire, and a peripheral wire made of copper or a copper alloy is twisted around the wire. It is described that it is used as a conductor. Patent Document 2 uses a wire whose mechanical properties such as tensile strength are improved by performing specific wire drawing on a copper alloy containing less than 1.0 mass% of a metal element such as Mg. An automotive wire conductor is described. By using a strand having a small specific gravity or a high tensile strength, it is intended to reduce the thickness and weight.

ところで、上記特許文献には、素線のバラケを防止し、撚線形状の安定化を図るため、撚り合わせた素線に円形圧縮加工を施すことが記載されている。しかしながら、上記特許文献のような、単に円形圧縮を施しただけの電線導体においては、確かに素線のバラケが防止され、撚線形状の安定化が図られる反面、可撓性が損なわれるおそれがあった。可撓性が低下すると、配線の作業性が低下するとともに、配線場所などの制約によって配線設計の自由度が減少するという問題を生じる。   By the way, the above-mentioned patent document describes that a circular compression process is performed on the twisted strands in order to prevent the strands from being separated and to stabilize the twisted strand shape. However, in the case of a wire conductor that is simply subjected to circular compression as in the above-mentioned patent document, the stranding of the strands is surely prevented and the stranded wire shape is stabilized, but the flexibility may be impaired. was there. When the flexibility is lowered, the workability of the wiring is lowered, and there is a problem that the degree of freedom in the wiring design is reduced due to restrictions on the wiring place and the like.

そこで、本発明者らは、鋭意研究により原因を検討した結果、「中心銅合金細線に対する周辺銅合金細線による拘束度合い」が可撓性に大きく影響することが分かった。   Thus, as a result of studying the cause by earnest research, the present inventors have found that “the degree of restraint by the peripheral copper alloy fine wire relative to the central copper alloy fine wire” greatly affects the flexibility.

例えば、上記特許文献の記載(特許文献1、2共に選択図参照)から分かるように、単に円形圧縮を施すと中心細材も変形し、中心銅合金細材と周辺銅合金細材との拘束度合いが非常に高いものとなってしまう。かかる場合、可撓性を著しく低下させてしまい、配線設計の自由度を大きく減少させてしまうという課題が生じていた。   For example, as can be seen from the description of the above-mentioned patent documents (refer to the selection diagrams for both Patent Documents 1 and 2), if the circular compression is simply applied, the center fine material is also deformed, and the restraint between the central copper alloy fine material and the peripheral copper alloy fine material The degree will be very high. In such a case, there has been a problem that the flexibility is remarkably lowered and the degree of freedom in wiring design is greatly reduced.

特開2004−288625号公報JP 2004-288625 A 特開2008−16284号公報JP 2008-16284 A

本発明の目的は、細径化および軽量化が可能で、しかも、素線のバラケが生ずることはなく、かつ可撓性にも優れる電線導体を製造することができる方法、およびそのよう方法により製造された電線導体を提供することにある。   An object of the present invention is to provide a method of manufacturing a wire conductor that can be reduced in diameter and weight, and that does not cause strand breakage and is excellent in flexibility, and by such a method. The object is to provide a manufactured wire conductor.

上記目的を達成するため、請求項1に記載された発明は、直径0.01mm以上0.6mm以下の中心銅合金細線の周りに、直径0.01mm以上0.6mm以下の周辺銅合金細線を複数本撚り合わせた後、この撚線に対し、前記周辺銅合金細線のみが実質的に圧縮されるように円形圧縮加工を施すことを特徴とする電線導体の製造方法である。   In order to achieve the above object, the invention described in claim 1 is characterized in that a peripheral copper alloy fine wire having a diameter of 0.01 mm to 0.6 mm is disposed around a central copper alloy fine wire having a diameter of 0.01 mm to 0.6 mm. After twisting a plurality of wires, a circular compression process is performed on the stranded wire so that only the peripheral copper alloy fine wire is substantially compressed.

請求項2に記載された発明は、請求項1記載の電線導体の製造方法において、前記撚線に対し、前記電線導体の断面において前記中心銅合金細線とその周りの前記周辺銅合金細線との接触長が、前記中心銅合金細線の周囲長の1/4以下となるように、前記円形圧縮加工が施されることを特徴とするものである。   Invention of Claim 2 is the manufacturing method of the electric wire conductor of Claim 1, Comprising: With respect to the said stranded wire, in the cross section of the said electric wire conductor, the said center copper alloy fine wire and the said surrounding copper alloy fine wire of the circumference | surroundings The circular compression process is performed such that the contact length is ¼ or less of the peripheral length of the central copper alloy fine wire.

請求項3に記載された発明は、請求項1または2記載の電線導体の製造方法において、前記円形圧縮加工の円形圧縮加工率が85%以上99%以下であることを特徴とするものである。   The invention described in claim 3 is characterized in that, in the method of manufacturing an electric wire conductor according to claim 1 or 2, the circular compression processing rate of the circular compression processing is 85% or more and 99% or less. .

請求項4に記載された発明は、請求項1乃至3のいずれか1項記載の電線導体の製造方法において、前記円形圧縮加工は、複数回の圧縮加工を含むことを特徴とするものである。   According to a fourth aspect of the present invention, in the method for manufacturing an electric wire conductor according to any one of the first to third aspects, the circular compression process includes a plurality of compression processes. .

請求項5に記載された発明は、請求項1乃至4のいずれか1項記載の電線導体の製造方法において、前記電線導体は、0.1mm以下の断面積を有することを特徴とするものである。 The invention described in claim 5 is the method of manufacturing a wire conductor according to any one of claims 1 to 4, wherein the wire conductor has a cross-sectional area of 0.1 mm 2 or less. It is.

請求項6に記載された発明は、請求項5記載の電線導体の製造方法において、前記電線導体は、100N以上の引張破断荷重を有することを特徴とするものである。   The invention described in claim 6 is the method of manufacturing an electric wire conductor according to claim 5, wherein the electric wire conductor has a tensile breaking load of 100 N or more.

請求項7に記載された発明は、請求項1乃至6のいずれか1項記載の電線導体の製造方法において、前記電線導体は、自動車用電線導体であることを特徴とするものである。   The invention described in claim 7 is the method of manufacturing a wire conductor according to any one of claims 1 to 6, wherein the wire conductor is a wire conductor for an automobile.

請求項8に記載された発明は、請求項1乃至7のいずれか1項記載の電線導体の製造方法において、前記銅合金は、1質量%以上24質量%未満のAgを含有することを特徴とするものである。   Invention of Claim 8 is a manufacturing method of the electric wire conductor of any one of Claims 1 thru | or 7, The said copper alloy contains 1 mass% or more and less than 24 mass% Ag. It is what.

請求項9に記載された発明は、直径0.01mm以上0.6mm以下の中心銅合金細線の周りに、直径0.01mm以上0.6mm以下の周辺銅合金細線を複数本撚り合わせ、円形圧縮加工を施してなる電線導体であって、前記中心銅合金細線は圧縮前の断面形状が略保持されていることを特徴とする電線導体である。   According to the ninth aspect of the present invention, a plurality of peripheral copper alloy thin wires having a diameter of 0.01 mm to 0.6 mm are twisted around a central copper alloy thin wire having a diameter of 0.01 mm to 0.6 mm, and circular compression is performed. A wire conductor formed by processing, wherein the central copper alloy fine wire has a substantially retained cross-sectional shape before compression.

請求項10に記載された発明は、請求項9記載の電線導体において、前記電線導体の断面において前記中心銅合金細線とその周りの前記周辺銅合金細線との接触長が、前記中心銅合金細線の周囲長の1/4以下であることを特徴とするものである。   According to a tenth aspect of the present invention, in the electric wire conductor according to the ninth aspect, a contact length between the central copper alloy fine wire and the surrounding copper alloy fine wire around the electric wire conductor in the cross section of the electric wire conductor is the central copper alloy fine wire. It is characterized in that it is ¼ or less of the perimeter of.

本発明によれば、細径化および軽量化が可能で、しかも素線のバラケが生ずることはなく、かつ可撓性にも優れる電線導体を得ることができる。   According to the present invention, it is possible to obtain an electric wire conductor that can be reduced in diameter and weight, and that does not cause strand breakage and is excellent in flexibility.

本発明の一実施形態の電線導体を用いた自動車用電線の一例を示す断面図である。It is sectional drawing which shows an example of the electric wire for motor vehicles using the electric wire conductor of one Embodiment of this invention. 本発明の一実施形態の圧縮加工前の電線導体を示す断面図である。It is sectional drawing which shows the electric wire conductor before the compression process of one Embodiment of this invention.

以下、本発明の実施の形態について説明する。なお、説明は図面に基づいて行うが、それらの図面は単に図解のために提供されるものであって、本発明はそれらの図面により何ら限定されるものではない。   Embodiments of the present invention will be described below. Although the description will be made based on the drawings, the drawings are provided for illustration only, and the present invention is not limited to the drawings.

図1は、本発明の一実施形態の電線導体を用いた自動車用電線を示す断面図である。
図1に示すように、この自動車用電線は、電線導体1と、その外周に設けられた絶縁被覆2とから構成されている。
FIG. 1 is a cross-sectional view showing an automobile electric wire using an electric wire conductor according to an embodiment of the present invention.
As shown in FIG. 1, this automobile electric wire is composed of a wire conductor 1 and an insulating coating 2 provided on the outer periphery thereof.

電線導体1は、中心銅合金細線11の周りに周辺銅合金細線12を複数本、例えば6本撚り合わせ、断面が略円形状となるように圧縮加工を施した構造を有する。円形圧縮加工は、中心銅合金細線11は圧縮されず、周辺銅合金細線12のみが実質的に圧縮されるように施されている。すなわち、中心銅合金細線11は圧縮加工前の断面形状(円形状)を保持しており、その外側に位置する周辺銅合金細線12のみが、全体の断面形状が円形状になるような形状に圧縮されている。なお、図2は、圧縮加工前の電線導体1を示したものである。   The electric wire conductor 1 has a structure in which a plurality of, for example, six peripheral copper alloy fine wires 12 are twisted around a central copper alloy fine wire 11 and subjected to compression processing so that the cross section becomes a substantially circular shape. The circular compression process is performed such that only the peripheral copper alloy fine wire 12 is substantially compressed without compressing the central copper alloy fine wire 11. That is, the central copper alloy fine wire 11 holds the cross-sectional shape (circular shape) before compression processing, and only the peripheral copper alloy fine wire 12 positioned outside the central copper alloy fine wire 12 has such a shape that the entire cross-sectional shape becomes a circular shape. It is compressed. FIG. 2 shows the electric wire conductor 1 before compression processing.

なお、電線導体1は、その断面において中心銅合金細線11とその周りの周辺銅合金細線12との接触長が、中心銅合金細線の周囲長の1/4以下となっていることが好ましく、1/5以下となっていることがより好ましい。中心銅合金細線11と周辺銅合金細線12との接触長が、中心銅合金細線の周囲長の1/4より大きいと、中心銅合金細線11に対する周辺銅合金細線12による拘束の度合いが増し、電線導体1の可撓性が低下する。   In addition, it is preferable that the contact length of the center copper alloy fine wire 11 and the surrounding copper alloy fine wire 12 around the wire conductor 1 is ¼ or less of the circumference of the central copper alloy fine wire in the cross section of the wire conductor 1. More preferably, it is 1/5 or less. When the contact length between the central copper alloy fine wire 11 and the peripheral copper alloy fine wire 12 is larger than 1/4 of the peripheral length of the central copper alloy fine wire, the degree of restraint by the peripheral copper alloy fine wire 12 on the central copper alloy fine wire 11 increases. The flexibility of the wire conductor 1 is reduced.

中心銅合金細線11および周辺銅合金細線12に用いられる銅合金細線は、Mg、Ag、Sn、Znなどの金属元素を1種以上含有し、残部がCuおよび不可避的不純物よりなる合金で形成される直径0.01mm以上0.6mm以下、好ましくは直径0.03mm以上0.3mm以下のものである。銅合金細線の直径が上記範囲に満たないと、引張破断荷重が低下し、上記範囲を超えると、電線の細径化を図ることができない。   The copper alloy fine wires used for the central copper alloy fine wire 11 and the peripheral copper alloy fine wire 12 are formed of an alloy containing at least one metal element such as Mg, Ag, Sn, Zn, and the like, the balance being Cu and inevitable impurities. The diameter is 0.01 mm or more and 0.6 mm or less, preferably 0.03 mm or more and 0.3 mm or less. If the diameter of the copper alloy fine wire is less than the above range, the tensile breaking load is reduced. If the copper alloy fine wire exceeds the above range, the electric wire cannot be reduced in diameter.

また、銅合金細線は、縦弾性係数が110GPa以上であることが好ましく、120GPa以上であることがより好ましい。縦弾性係数が上記より小さい場合には、前述したような条件を満足する円形圧縮加工を施すことが困難になる。なお、銅合金細線の縦弾性係数は、いずれも汎用の引張試験機により測定することができる。   In addition, the copper alloy fine wire has a longitudinal elastic modulus of preferably 110 GPa or more, and more preferably 120 GPa or more. When the longitudinal elastic modulus is smaller than the above, it is difficult to perform a circular compression process that satisfies the above-described conditions. In addition, all the longitudinal elastic modulus of a copper alloy fine wire can be measured with a general purpose tensile testing machine.

銅合金細線の材料としては、特にAgを1質量%以上24質量%未満含有し、残部がCuおよび不可避的不純物よりなる合金が高い強度が得られ、かつ加工性にも優れることから好ましい。Agの含有量は、3質量%以上14質量%未満であることがより好ましい。中心銅合金細線11および周辺銅合金細線12は、同種の銅合金細線で構成されていてもよく、異種の銅合金細線で構成されていてもよい。ただし、その直径については、略同径のものが使用される。   As a material for the copper alloy fine wire, an alloy containing 1% by mass to less than 24% by mass of Ag and the balance of Cu and inevitable impurities being obtained is particularly preferable because of high strength and excellent workability. The content of Ag is more preferably 3% by mass or more and less than 14% by mass. The central copper alloy fine wire 11 and the peripheral copper alloy fine wire 12 may be made of the same kind of copper alloy fine wire, or may be made of different types of copper alloy fine wires. However, the diameter is substantially the same.

本発明の目的のためには、上記銅合金細線として、以下のような方法で製造されたものを使用することが好ましい。   For the purpose of the present invention, it is preferable to use the copper alloy fine wire produced by the following method.

Agを上記範囲、すなわち、好ましくは1質量%以上24質量%未満、より好ましくは3質量%以上14質量%未満の範囲で含有し、残部が実質的にCuおよび不可避的不純物よりなる合金の鋳造ロッドに縮径のための冷間加工を行い、この冷間加工の途中で1回以上の熱処理を施す。最後に熱処理を施した後に99%以上の減面率で最終線径にまで冷間加工を行う。熱処理は、400〜600℃の温度で1〜100時間行うことが好ましい。   Casting of an alloy containing Ag in the above-mentioned range, that is, preferably in the range of 1 to 24% by mass, more preferably in the range of 3 to 14% by mass, with the balance being substantially Cu and inevitable impurities. The rod is subjected to cold working for diameter reduction, and one or more heat treatments are performed during the cold working. After the final heat treatment, cold working is performed to the final wire diameter with a reduction in area of 99% or more. The heat treatment is preferably performed at a temperature of 400 to 600 ° C. for 1 to 100 hours.

あるいは、Agを上記範囲、すなわち、好ましくは1質量%以上24質量%未満、好ましくは3質量%以上14質量%未満の範囲で含有し、残部が実質的にCuおよび不可避的不純物よりなる合金の鋳造ロッドに析出熱処理を施し、中間冷間加工を行った後、焼鈍・回復のための回復熱処理を施し、さらに99%以上の減面率で最終線径にまで冷間加工を行う。析出熱処理は、400〜600℃の温度で1〜100時間、また、回復熱処理は、200〜450℃の温度で5〜100時間施すことが好ましい。   Alternatively, an alloy containing Ag in the above range, that is, preferably in the range of 1 to 24% by mass, preferably in the range of 3 to 14% by mass, with the balance being substantially made of Cu and inevitable impurities. Precipitation heat treatment is performed on the casting rod, intermediate cold working is performed, recovery heat treatment for annealing / recovery is performed, and cold working is further performed to a final wire diameter with a reduction in area of 99% or more. The precipitation heat treatment is preferably performed at a temperature of 400 to 600 ° C. for 1 to 100 hours, and the recovery heat treatment is preferably performed at a temperature of 200 to 450 ° C. for 5 to 100 hours.

なお、上記減面率は、以下の式で定義される。
減面率R(%)=[(S−S)/S]×100
(S:加工前の断面積、S:加工後の断面積)
The area reduction rate is defined by the following formula.
Area reduction ratio R (%) = [(S 0 −S) / S 0 ] × 100
(S 0 : cross-sectional area before processing, S: cross-sectional area after processing)

このようにして製造された銅合金細線は、高い強度と高い導電率を有している。   The copper alloy fine wire thus manufactured has high strength and high electrical conductivity.

電線導体1は、前述したように円形圧縮加工が施されている。円形圧縮加工は、圧縮を複数回繰り返すことにより行うことが好ましい。これにより円形圧縮加工時の銅合金細線の加工割れを抑制乃至防止することができる。   As described above, the wire conductor 1 is subjected to circular compression processing. The circular compression process is preferably performed by repeating the compression a plurality of times. Thereby, the process crack of the copper alloy fine wire at the time of circular compression processing can be suppressed thru | or prevented.

また、円形圧縮加工率(圧縮を複数回繰り返す場合には、そのトータルの加工率)は85%以上99%以下の範囲が好ましい。円形圧縮加工率が85%未満であると前述したような条件を満足する円形圧縮加工を施すことが困難になり、電線導体1の可撓性が低下する。逆に、円形圧縮加工率が99%を超えると、素線のバラケが生じやすくなる。円形圧縮加工率は90%以上98%以下の範囲がより好ましい。ここで、円形圧縮加工率(%)は、加工前の撚線の外径をL1、加工後の撚線の外径(つまり、電線導体1の外径)をL2としたとき、次式で求められる。
円形圧縮加工率(%)=(L2/L1)×100
Further, the circular compression processing rate (the total processing rate when compression is repeated a plurality of times) is preferably in the range of 85% to 99%. If the circular compression processing rate is less than 85%, it becomes difficult to perform the circular compression processing that satisfies the above-described conditions, and the flexibility of the wire conductor 1 is reduced. On the other hand, when the circular compression processing rate exceeds 99%, the strands of the strands are likely to occur. The circular compression ratio is more preferably in the range of 90% to 98%. Here, the circular compression rate (%) is expressed by the following equation when the outer diameter of the twisted wire before processing is L1, and the outer diameter of the twisted wire after processing (that is, the outer diameter of the wire conductor 1) is L2. Desired.
Circular compression rate (%) = (L2 / L1) × 100

また、電線導体1の断面積は0.1mm以下のものについて特に有効である。電線導体1の断面積が0.1mmを超えると、電線の細径化、軽量化を十分に図ることができなくなる。 In addition, the cross-sectional area of the wire conductor 1 is particularly effective when the cross-sectional area is 0.1 mm 2 or less. When the cross-sectional area of the wire conductor 1 exceeds 0.1 mm 2, diameter of the wire, it can not be achieved sufficiently lightweight.

さらに、電線導体1は、引張破断荷重が100N以上であることが好ましい。この電線導体1の引張破断荷重は、汎用の引張試験機により測定することができる。   Furthermore, the electric wire conductor 1 preferably has a tensile breaking load of 100 N or more. The tensile breaking load of the electric wire conductor 1 can be measured with a general-purpose tensile testing machine.

絶縁被覆2は、塩化ビニル樹脂、ポリオレフィン、架橋ポリオレフィンなどにより形成される。ポリオレフィンとしては、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、超低密度ポリエチレン(VLDPE)、鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン、ポリイソブチレン、エチレン・酢酸ビニル共重合体(EVA)、エチレン・アクリル酸エチル共重合体(EEA)、エチレン・アクリル酸メチル共重合体(EMA)、エチレン・プロピレン共重合体、エチレン・プロピレン・ジエン三元共重合体、エチレン・ブテン共重合体などが挙げられる。絶縁被覆2を形成する絶縁材料には、酸化防止剤などの添加剤が添加されていてもよい。本発明においては、電線導体1に円形圧縮加工が施されているため、円形圧縮加工が施されていない場合に比べ、絶縁被覆2の厚さを薄くすることができる。   The insulating coating 2 is formed of vinyl chloride resin, polyolefin, cross-linked polyolefin or the like. Polyolefins include low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), very low density polyethylene (VLDPE), linear low density polyethylene (LLDPE), polypropylene, polyisobutylene, ethylene and acetic acid. Vinyl copolymer (EVA), ethylene / ethyl acrylate copolymer (EEA), ethylene / methyl acrylate copolymer (EMA), ethylene / propylene copolymer, ethylene / propylene / diene terpolymer, And ethylene / butene copolymer. Additives such as antioxidants may be added to the insulating material forming the insulating coating 2. In the present invention, since the wire conductor 1 is subjected to a circular compression process, the thickness of the insulating coating 2 can be reduced as compared with a case where the circular compression process is not performed.

このように構成される自動車用電線においては、電線導体1の撚り合わせ素線として、直径0.01mm以上0.6mm以下の銅合金細線が使用されているため、細径であっても高い機械的強度および導電性を有することができる。したがって、電線の細径化、軽量化を図ることができる。しかも、中心銅合金細線11は圧縮されず、周辺銅合金細線12のみが実質的に圧縮されるように円形圧縮加工が施されているため、末端における素線のバラケの発生が抑制されるとともに、従来のような円形圧縮加工にともなう可撓性の低下も抑制される。さらに、可撓性の低下が抑制されることによって、配線の作業性が向上し、かつ配線場所などの制約がなくなるため、配線設計の自由度も増大する。   In the electric wire for automobiles configured as described above, a copper alloy fine wire having a diameter of 0.01 mm or more and 0.6 mm or less is used as a twisted strand of the electric wire conductor 1, so that even a small diameter is a high machine. Strength and conductivity. Therefore, it is possible to reduce the diameter and weight of the electric wire. In addition, since the central copper alloy fine wire 11 is not compressed, and the circular compression process is performed so that only the peripheral copper alloy fine wire 12 is substantially compressed, the occurrence of strand breakage at the end is suppressed. Moreover, the fall of the flexibility accompanying the conventional circular compression process is also suppressed. Furthermore, by suppressing the decrease in flexibility, the workability of the wiring is improved, and restrictions on the wiring place and the like are eliminated, so that the degree of freedom in wiring design increases.

以上、本発明の電線導体を自動車用電線の導体に適用した例について説明したが、本発明はこのような例に限定されるものではなく、各種電線・ケーブルに広く適用可能であり、それらの電線・ケーブルの細径化、軽量化を図ることができるとともに、素線のバラケが防止され、かつ可撓性にも優れる電線・ケーブルとすることができる。   As mentioned above, although the example which applied the electric wire conductor of the present invention to the conductor of the electric wire for cars was explained, the present invention is not limited to such an example, and can be widely applied to various electric wires and cables. The wire / cable can be reduced in diameter and weight, and the wire / cable can be prevented from being broken and excellent in flexibility.

次に、本発明を実施例によりさらに詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

[銅合金細線の製造]
(製造例1)
0.6質量%のSnと残部がCuからなるCu−Sn合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、これに冷間心線加工を施して、線径0.02mmの細線(1)を得た。
[Manufacture of copper alloy fine wires]
(Production Example 1)
A Cu-Sn alloy consisting of 0.6% by mass of Sn and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. Cold wire processing was performed to obtain a thin wire (1) having a wire diameter of 0.02 mm.

(製造例2)
0.6質量%のMgと残部がCuからなるCu−Mg合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、これに冷間心線加工を施して、線径0.02mmの細線(2)を得た。
(Production Example 2)
A Cu-Mg alloy composed of 0.6% by mass of Mg and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. Cold wire processing was performed to obtain a thin wire (2) having a wire diameter of 0.02 mm.

(製造例3)
0.9質量%のZnと残部がCuからなるCu−Zn合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、これに冷間心線加工を施して、線径0.02mmの細線(3)を得た。
(Production Example 3)
A Cu-Zn alloy consisting of 0.9% by mass of Zn and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. Cold wire processing was performed to obtain a thin wire (3) having a wire diameter of 0.02 mm.

(製造例4)
1質量%のAgと残部がCuからなるCu−Ag合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、冷間加工を施して線径0.02mmの細線(4)を得た。
(Production Example 4)
A Cu-Ag alloy composed of 1% by mass of Ag and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. And a thin wire (4) having a wire diameter of 0.02 mm was obtained.

(製造例5)
10質量%のAgと残部がCuからなるCu−Ag合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、冷間加工を施して線径0.02mmの細線(5)を得た。
(Production Example 5)
A Cu-Ag alloy consisting of 10% by mass of Ag and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce a casting rod of 8 mmφ, and cold working is performed. And a thin wire (5) having a wire diameter of 0.02 mm was obtained.

(製造例6)
10質量%のAgと残部がCuからなるCu−Ag合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、これに冷間加工を施して5mmφ(減面率61%)とし、次いで450℃で10時間の熱処理を行った後、冷間加工を施して2mmφ(減面率84%)とし、次いで370で15時間の熱処理を行って、線径0.05mm(減面率99.93%)、導電率(IACS)65%、引張強さ1420MPaの細線(6)を得た。
(Production Example 6)
A Cu-Ag alloy consisting of 10% by mass of Ag and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. Processed to 5 mmφ (area reduction 61%), then heat treated at 450 ° C. for 10 hours, then cold worked to 2 mmφ (area reduction 84%), then 370 for 15 hours heat treatment To obtain a fine wire (6) having a wire diameter of 0.05 mm (area reduction rate: 99.93%), electrical conductivity (IACS) of 65%, and tensile strength of 1420 MPa.

(製造例7)
10質量%のAgと残部がCuからなるCu−Ag合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、8mmφの鋳造ロッドを作製し、これに冷間加工を施して5mmφ(減面率61%)とし、次いで450℃で10時間の熱処理を行った後、冷間加工を施して、線径0.05mm(減面率99.0%)、導電率(IACS)63%、引張強さ1530MPaの細線(7)を得た。
(Production Example 7)
A Cu-Ag alloy consisting of 10% by mass of Ag and the balance of Cu is continuously cast by a horizontal continuous casting machine having a graphite mold having a water-cooling jacket on the outer periphery to produce an 8 mmφ casting rod. After processing to 5 mmφ (area reduction rate 61%), followed by heat treatment at 450 ° C. for 10 hours, cold processing is performed to obtain a wire diameter of 0.05 mm (area reduction rate 99.0%). A thin wire (7) having a rate (IACS) of 63% and a tensile strength of 1530 MPa was obtained.

[電線導体の製造]
実施例1
細線(1)を7本、そのうちの1本を中心に撚り合わせた後、この撚線をダイスの穴に通すことにより円形圧縮加工を施し、電線導体を得た。円形圧縮加工は、穴径の異なる2個のダイスに撚線を通過させ、円形圧縮加工率がトータルで95%となるように行った。
[Manufacture of wire conductors]
Example 1
Seven fine wires (1) were twisted around one of them, and then the twisted wire was passed through a hole in a die to perform a circular compression process to obtain an electric wire conductor. The circular compression process was performed such that the stranded wire was passed through two dies having different hole diameters so that the circular compression ratio was 95% in total.

実施例2〜7
細線(1)に代えて細線(2)〜(7)をそれぞれ用いた以外は実施例1と同様にして電線導体を得た。
Examples 2-7
A wire conductor was obtained in the same manner as in Example 1 except that the thin wires (2) to (7) were used instead of the thin wire (1).

実施例8〜11、参考例1
円形圧縮加工率がトータルで80%(参考例1)、85%(実施例8)、90%(実施例9)、98%(実施例10)、または99%(実施例11)となるようにした以外は実施例4と同様にして電線導体を得た。
Examples 8-11, Reference Example 1
The circular compression rate is 80% (Reference Example 1), 85% (Example 8), 90% (Example 9), 98% (Example 10), or 99% (Example 11) in total. An electric wire conductor was obtained in the same manner as in Example 4 except that.

参考例2、比較例1
円形圧縮回数を1回とするか(参考例2)、または、円形圧縮加工を全く行わなかった(比較例1)以外は実施例4と同様にして電線導体を得た。
Reference Example 2, Comparative Example 1
A wire conductor was obtained in the same manner as in Example 4 except that the number of times of circular compression was set to 1 (Reference Example 2) or no circular compression was performed (Comparative Example 1).

上記実施例1〜11、参考例1、2、および比較例1で得られた電線導体について、下記に示す方法で、細線のバラケおよび可撓性を評価した。これらの結果を、電線導体の直径および断面積、中心銅合金細線の断面形状、断面における中心銅合金細線及び周辺銅合金細線の接触長(l)の中心銅合金細線の周囲長(L)に対する割合(l/L)とともに表1に示す。中心銅合金細線の断面形状と、断面における中心銅合金細線と周辺銅合金細線の接触長(l)の中心銅合金細線の周囲長(L)に対する割合(l/L)は、導体断面写真から求めた。   The wire conductors obtained in Examples 1 to 11, Reference Examples 1 and 2, and Comparative Example 1 were evaluated for thin wire breakage and flexibility by the methods described below. These results are obtained by comparing the diameter and cross-sectional area of the wire conductor, the cross-sectional shape of the central copper alloy fine wire, the contact length (l) of the central copper alloy fine wire and the peripheral copper alloy fine wire in the cross section with respect to the peripheral length (L) of the central copper alloy fine wire. It shows in Table 1 with a ratio (l / L). The cross-sectional shape of the central copper alloy fine wire and the ratio (l / L) of the contact length (l) of the central copper alloy fine wire and the peripheral copper alloy fine wire in the cross-section to the peripheral length (L) of the central copper alloy fine wire are as follows. Asked.

[素線のバラケ]
電線導体を切断し、その切断端における細線のバラケの有無を目視により確認した。
[可撓性]
電線導体の一端を張力計を介して固定し、半径0.5mmのマンドレルに中心角度90度の範囲で巻き付けたときの張力を測定した。そして、その張力が、円形圧縮加工を施す前の電線導体について同様に測定した張力と比較して同等以下であった場合を○、大きかった場合を×とした。
[Bare of strands]
The electric wire conductor was cut, and the presence or absence of a thin wire breakage at the cut end was confirmed visually.
[Flexibility]
One end of the wire conductor was fixed via a tension meter, and the tension was measured when the wire conductor was wound around a mandrel having a radius of 0.5 mm within a range of a central angle of 90 degrees. And the case where the tension | tensile_strength was equal or less compared with the tension | tensile_strength similarly measured about the electric wire conductor before giving circular compression processing was made into (circle), and the case where it was large was set as x.

Figure 2010205549
Figure 2010205549

なお、本発明は上記実施例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   In addition, this invention is not limited to the said Example, All modifications and changes are possible unless it deviates from the category of this invention.

1…電線導体、2…絶縁被覆、11…中心銅合金細線、12…周辺銅合金細線。   DESCRIPTION OF SYMBOLS 1 ... Electric wire conductor, 2 ... Insulation coating, 11 ... Center copper alloy fine wire, 12 ... Peripheral copper alloy fine wire.

Claims (10)

直径0.01mm以上0.6mm以下の中心銅合金細線の周りに、直径0.01mm以上0.6mm以下の周辺銅合金細線を複数本撚り合わせた後、この撚線に対し、前記周辺銅合金細線のみが実質的に圧縮されるように円形圧縮加工を施すことを特徴とする電線導体の製造方法。   A plurality of peripheral copper alloy fine wires having a diameter of 0.01 mm to 0.6 mm are twisted around a central copper alloy fine wire having a diameter of 0.01 mm to 0.6 mm, and then the peripheral copper alloy is applied to the twisted wire. A method for producing an electric wire conductor, wherein a circular compression process is performed so that only a thin wire is substantially compressed. 前記撚線に対し、前記電線導体の断面において前記中心銅合金細線とその周りの前記周辺銅合金細線との接触長が、前記中心銅合金細線の周囲長の1/4以下となるように、前記円形圧縮加工が施されることを特徴とする請求項1記載の電線導体の製造方法。   With respect to the stranded wire, the contact length of the central copper alloy fine wire and the peripheral copper alloy fine wire around it in the cross section of the electric wire conductor is ¼ or less of the peripheral length of the central copper alloy fine wire, The method of manufacturing a wire conductor according to claim 1, wherein the circular compression process is performed. 前記円形圧縮加工の円形圧縮加工率が85%以上99%以下であることを特徴とする請求項1または請求項2記載の電線導体の製造方法。   The method for manufacturing an electric wire conductor according to claim 1 or 2, wherein a circular compression processing rate of the circular compression processing is 85% or more and 99% or less. 前記円形圧縮加工は、複数回の圧縮加工を含むことを特徴とする請求項1乃至3のいずれか1記載の電線導体の製造方法。   The method of manufacturing a wire conductor according to claim 1, wherein the circular compression process includes a plurality of compression processes. 前記電線導体は、0.1mm以下の断面積を有することを特徴とする請求項1乃至4のいずれか1項記載の電線導体の製造方法。 The wire conductor, the manufacturing method according to claim 1 or wire conductor according to any one of the 4 and having a sectional area of 0.1 mm 2 or less. 前記電線導体は、100N以上の引張破断荷重を有することを特徴とする請求項5記載の電線導体の製造方法。   6. The method of manufacturing an electric wire conductor according to claim 5, wherein the electric wire conductor has a tensile breaking load of 100 N or more. 前記電線導体は、自動車用電線導体であることを特徴とする請求項1乃至6のいずれか1項記載の電線導体の製造方法。   The method of manufacturing an electric wire conductor according to claim 1, wherein the electric wire conductor is an automobile electric wire conductor. 前記銅合金は、1質量%以上24質量%未満のAgを含有することを特徴とする請求項1乃至7のいずれか1項記載の電線導体の製造方法。   The said copper alloy contains 1 mass% or more and less than 24 mass% Ag, The manufacturing method of the electric wire conductor of any one of the Claims 1 thru | or 7 characterized by the above-mentioned. 直径0.01mm以上0.6mm以下の中心銅合金細線の周りに、直径0.01mm以上0.6mm以下の周辺銅合金細線を複数本撚り合わせ、円形圧縮加工を施してなる電線導体であって、
前記中心銅合金細線は圧縮前の断面形状が略保持されていることを特徴とする電線導体。
A wire conductor in which a plurality of peripheral copper alloy fine wires having a diameter of 0.01 mm to 0.6 mm are twisted around a central copper alloy fine wire having a diameter of 0.01 mm to 0.6 mm and circular compression processing is performed. ,
The center copper alloy fine wire has a substantially unchanged cross-sectional shape before being compressed.
前記電線導体の断面において前記中心銅合金細線とその周りの前記周辺銅合金細線との接触長が、前記中心銅合金細線の周囲長の1/4以下であることを特徴とする請求項9記載の電線導体。   The contact length between the central copper alloy fine wire and the peripheral copper alloy fine wire around the central copper alloy fine wire in a cross section of the wire conductor is ¼ or less of the peripheral length of the central copper alloy fine wire. Wire conductors.
JP2009049505A 2009-03-03 2009-03-03 Method of manufacturing wire conductor, and wire conductor Withdrawn JP2010205549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049505A JP2010205549A (en) 2009-03-03 2009-03-03 Method of manufacturing wire conductor, and wire conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049505A JP2010205549A (en) 2009-03-03 2009-03-03 Method of manufacturing wire conductor, and wire conductor

Publications (1)

Publication Number Publication Date
JP2010205549A true JP2010205549A (en) 2010-09-16

Family

ID=42966841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049505A Withdrawn JP2010205549A (en) 2009-03-03 2009-03-03 Method of manufacturing wire conductor, and wire conductor

Country Status (1)

Country Link
JP (1) JP2010205549A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034186A1 (en) 2009-09-17 2011-03-24 株式会社ユポ・コーポレーション Energy conversion film
JP2012172174A (en) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd Method for manufacturing high-conductivity and high-strength trolley wire, and high-conductivity and high-strength trolley wire
WO2015159671A1 (en) * 2014-04-14 2015-10-22 株式会社オートネットワーク技術研究所 Copper alloy strand, copper alloy twisted wire, and automotive electric wire
JP2019021556A (en) * 2017-07-20 2019-02-07 住友電気工業株式会社 Power cable
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034186A1 (en) 2009-09-17 2011-03-24 株式会社ユポ・コーポレーション Energy conversion film
JP2012172174A (en) * 2011-02-18 2012-09-10 Sumitomo Electric Ind Ltd Method for manufacturing high-conductivity and high-strength trolley wire, and high-conductivity and high-strength trolley wire
WO2015159671A1 (en) * 2014-04-14 2015-10-22 株式会社オートネットワーク技術研究所 Copper alloy strand, copper alloy twisted wire, and automotive electric wire
JP2015203136A (en) * 2014-04-14 2015-11-16 株式会社オートネットワーク技術研究所 Copper alloy element wire, copper alloy stranded wire and wire for automobile
CN106232843A (en) * 2014-04-14 2016-12-14 株式会社自动网络技术研究所 Copper alloy wire, copper-alloy stranded conductor and electric wire for automobiles
US20170040081A1 (en) * 2014-04-14 2017-02-09 Autonetworks Technologies, Ltd. Copper alloy element wire, copper alloy stranded wire, and automotive electric wire
US10074452B2 (en) * 2014-04-14 2018-09-11 Autonetworks Technologies, Ltd. Copper alloy element wire, copper alloy stranded wire, and automotive electric wire
JP2019021556A (en) * 2017-07-20 2019-02-07 住友電気工業株式会社 Power cable
WO2023238476A1 (en) * 2022-06-08 2023-12-14 Swcc株式会社 Electrical-property-inspection conductor wire and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5751268B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
JP6872175B2 (en) Copper alloy wire and copper alloy stranded wire
US10074452B2 (en) Copper alloy element wire, copper alloy stranded wire, and automotive electric wire
JP6201815B2 (en) Method for producing copper alloy stranded wire
KR20170041164A (en) Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire
JP2008166141A (en) Electric wire conductor, and insulation wire
JP6080336B2 (en) Electric wire / cable
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP2010205549A (en) Method of manufacturing wire conductor, and wire conductor
JP2014173097A (en) Aluminum alloy wire, aluminum alloy stranded wire, insulation wire and wire harness
JP5443744B2 (en) Electric wire conductor manufacturing method and electric wire conductor
JP6345910B2 (en) Aluminum alloy, aluminum alloy electric wire using aluminum alloy, automobile wire harness using aluminum alloy electric wire, and method of manufacturing aluminum alloy wire
WO2018084263A1 (en) Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
JP5608993B2 (en) Automotive wire conductors and automotive wires
JP2018045855A (en) Flat cable
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP2020037745A (en) Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
WO2024043284A1 (en) Aluminum-based wire, aluminum-based strand wire, and aluminum-based cable
JP7054482B2 (en) Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JPH0689622A (en) Manufacture of stranded wire for wiring
JPH11224538A (en) Electric wire conductor for automobile
JP6135949B2 (en) Copper alloy wire, copper alloy stranded wire, covered wire, and wire with terminal
JP2021140958A (en) Plated copper wire, twisted plated wire and electric insulated wire
WO2016002895A1 (en) Electrical wire or cable, wire harness, and method for manufacturing aluminum alloy strand
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605