JP2007023305A - Conductor element wire for electric wire for automobile, and its manufacturing method - Google Patents

Conductor element wire for electric wire for automobile, and its manufacturing method Download PDF

Info

Publication number
JP2007023305A
JP2007023305A JP2005202866A JP2005202866A JP2007023305A JP 2007023305 A JP2007023305 A JP 2007023305A JP 2005202866 A JP2005202866 A JP 2005202866A JP 2005202866 A JP2005202866 A JP 2005202866A JP 2007023305 A JP2007023305 A JP 2007023305A
Authority
JP
Japan
Prior art keywords
wire
conductor
copper alloy
manufacturing
conductor wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005202866A
Other languages
Japanese (ja)
Inventor
Teruichi Honda
照一 本田
Tetsuya Ashida
哲哉 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2005202866A priority Critical patent/JP2007023305A/en
Publication of JP2007023305A publication Critical patent/JP2007023305A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductor element wire, as a conductor wire for electric wire for automobiles, having high performance with respect to all of strength, impact resistance and electric conductivity, and also to provide its manufacturing method. <P>SOLUTION: The element wire is formed using a copper alloy having a composition consisting of, by weight, 0.03 to 0.3% Fe, 0.01 to 0.1% P and the balance Cu with inevitable impurities. In a preferable embodiment, Sn is further added. In a manufacturing process, annealing is carried out by being kept at 300 to 600°C for 0.5 to 4 h after cold wire drawing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車用ワイヤーハーネスなどの自動車用電線の芯線に用いられる導体素線およびその製造方法に関し、特に、軽量化と省スペースを目的とした細径化自動車用電線に用いられる導体芯線とその製造方法に関する。   The present invention relates to a conductor wire used for a core wire of an automobile electric wire such as an automobile wire harness and a method for manufacturing the same, and in particular, a conductor core wire used for a reduced-diameter automobile electric wire for weight reduction and space saving It relates to the manufacturing method.

自動車用ワイヤーハーネスは、自動車内部の各装置や制御機器などを電気的に接続する電線として広く用いられている(例えば、特許文献1〜4)。
近年、自動車の高性能化に伴って、搭載される装置や制御機器が増加し、それによって配線箇所が多くなり、使用されるワイヤーハーネスの総重量が増加している。一方で、自動車は、燃費向上や省資源の観点から車両の軽量化が進められており、ワイヤーハーネスも軽量で省スペースなものが求められている。その対策の一つとして導体の細径化が挙げられる。
BACKGROUND ART Wire harnesses for automobiles are widely used as electric wires for electrically connecting devices and control devices inside the automobile (for example, Patent Documents 1 to 4).
In recent years, with the improvement in performance of automobiles, the number of installed devices and control devices has increased, thereby increasing the number of wiring locations and increasing the total weight of the wire harness used. On the other hand, automobiles are being reduced in weight from the viewpoint of improving fuel consumption and saving resources, and wire harnesses are also required to be light and space-saving. One countermeasure is to reduce the conductor diameter.

従来の自動車用電線には、一般的に軟銅素線を7本拠り合せた芯線が用いられてきた。
芯線を細径化する際に留意すべき点は、細径化しても従来の芯線と比べて、強度や耐衝撃性が劣らないようにすることである。また、併せて耐屈曲性にも注意する必要がある。
強度と耐衝撃性は、ワイヤーハーネス配策時や取り付け時に断線を生じさせないために重要な特性である。また、耐屈曲性は、自動車走行中の振動などによって電線が断線しないために重要な特性である。
芯線の細径化は、用いる素線を細径化するか、または素線の使用本数を減らすかによって行なわれるが、いずれの態様であっても、素線の強度、耐衝撃性、耐屈曲性は、従来よりも向上させなければならない。
Conventionally, a core wire made of seven annealed copper wires has been used for conventional electric wires for automobiles.
A point to keep in mind when reducing the diameter of the core wire is that strength and impact resistance are not inferior to those of a conventional core wire even if the diameter is reduced. In addition, it is necessary to pay attention to the bending resistance.
Strength and impact resistance are important characteristics so as not to cause disconnection during wiring harness installation or installation. In addition, the bending resistance is an important characteristic because the electric wire does not break due to vibration or the like while the vehicle is running.
The diameter of the core wire is reduced depending on whether the strand to be used is thinned or the number of strands to be used is reduced. In any aspect, the strength, impact resistance, and bending resistance of the strands are reduced. It must be improved more than before.

これらの問題を解決する目的で、ステンレス素線やケブラー繊維などの異種材料素線を拠り合わせたり、Cu−Sn、Cu−Cr−Zr、Cu−Ni−Siなどの銅合金素線を用いたりする方法が提案されている(例えば、特許文献5、6)。
しかし、これらの芯線は、強度、耐衝撃性の向上と導電性向上とのバランス、および低コスト化の要求を完全に満足するものではない。
従って、ワイヤーハーネスの軽量化に適し、コスト面でも優位な自動車電線用の導体素線が求められている。
特許第3275506号公報 特開平06−060739号公報 特開平06−187831号公報 特開平11−224538号公報 特許第3156381号公報 特開平07−192535号公報
For the purpose of solving these problems, use different material wires such as stainless steel wires and Kevlar fibers, or use copper alloy wires such as Cu-Sn, Cu-Cr-Zr, Cu-Ni-Si, etc. Have been proposed (for example, Patent Documents 5 and 6).
However, these core wires do not completely satisfy the demands for strength, balance between improved impact resistance and improved conductivity, and cost reduction.
Accordingly, there is a demand for a conductor wire for automobile electric wires that is suitable for reducing the weight of a wire harness and that is superior in cost.
Japanese Patent No. 3275506 Japanese Patent Application Laid-Open No. 06-060739 Japanese Patent Laid-Open No. 06-187831 JP 11-224538 A Japanese Patent No. 3156381 Japanese Patent Laid-Open No. 07-192535

本発明の課題は、自動車用電線のための導体素線として、強度、耐衝撃性、導電率のいずれについても、高い性能を有する導体素線およびその製造方法を提供することである。   The subject of this invention is providing the conductor strand which has high performance, and its manufacturing method as a conductor strand for the electric wire for motor vehicles about intensity | strength, impact resistance, and electrical conductivity.

本発明者らは上記課題を解決すべく鋭意研究をした結果、銅合金の成分のうち、Fe、Pの含有量を特定の範囲に限定することによって、さらに好ましくは特定量のSnを加え、また好ましくは特定の温度条件での熱処理を施すことによって、前記課題を解決し得る素線が得られることを見出し、本発明を完成するに到った。
本発明は、次の特徴を有するものである。
(1)自動車用電線のための導体素線であって、銅合金からなり、該銅合金が、Feを0.03〜0.3wt%、Pを0.01〜0.1wt%含有し、残部がCuおよび不可避不純物であることを特徴とする、自動車用電線のための導体素線。
(2)上記銅合金が、さらに、Snを0.5wt%以下の量だけ含有し、該銅合金からFeとPとSnとを除いた残部が、Cuおよび不可避不純物であることを特徴とする、上記(1)記載の導体素線。
(3)引張強さが250MPa以上であり、かつ、破断時の伸びが15%以上であることを特徴とする、上記(1)または(2)記載の導体素線。
(4)自動車用電線のための導体素線の製造方法であって、
Feを0.03〜0.3wt%、Pを0.01〜0.1wt%含有し、残部がCuおよび不可避不純物である銅合金を用意し、冷間において該銅合金に伸線加工を施して、目的の線径を有する導体素線とする伸線工程と、
前記伸線工程の後に、前記導体素線に、300〜600℃の温度で0.5〜4時間維持する熱処理を施す熱処理工程とを、
有することを特徴とする、自動車用電線のための導体素線の製造方法。
(5)上記伸線工程において用意する銅合金が、さらに、Snを0.5wt%以下の量だけ含有し、該銅合金からFeとPとSnとを除いた残部が、Cuおよび不可避不純物であることを特徴とする、上記(4)記載の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have added a specific amount of Sn, more preferably by limiting the content of Fe and P to a specific range among the components of the copper alloy, Further, it has been found that a strand capable of solving the above-mentioned problems can be obtained by performing heat treatment preferably under a specific temperature condition, and the present invention has been completed.
The present invention has the following features.
(1) A conductor wire for an automobile electric wire, which is made of a copper alloy, and the copper alloy contains 0.03 to 0.3 wt% of Fe and 0.01 to 0.1 wt% of P, A conductor wire for an electric wire for an automobile, wherein the balance is Cu and inevitable impurities.
(2) The copper alloy further contains Sn in an amount of 0.5 wt% or less, and the balance obtained by removing Fe, P, and Sn from the copper alloy is Cu and inevitable impurities. The conductor wire according to (1) above.
(3) The conductor wire according to (1) or (2) above, wherein the tensile strength is 250 MPa or more and the elongation at break is 15% or more.
(4) A method for producing a conductor wire for an automobile electric wire,
Prepare a copper alloy containing 0.03-0.3 wt% Fe and 0.01-0.1 wt% P, the balance being Cu and inevitable impurities, and wire-drawing the copper alloy in the cold A wire drawing step to obtain a conductor wire having a desired wire diameter;
After the wire drawing step, a heat treatment step of performing heat treatment for maintaining the conductor wire at a temperature of 300 to 600 ° C. for 0.5 to 4 hours,
A method for producing a conductor wire for an automotive electric wire, comprising:
(5) The copper alloy prepared in the wire drawing step further contains Sn in an amount of 0.5 wt% or less, and the balance obtained by removing Fe, P, and Sn from the copper alloy is Cu and inevitable impurities. The manufacturing method according to (4) above, characterized in that it exists.

導体素線の材料である銅合金を、Cu−Fe−P合金(好ましい態様では、Cu−Fe−P−Sn合金)とし、Fe含有量を0.03〜0.3wt%とし、P含有量を0.01〜0.1wt%とすることで、細径化しながらも、従来と同等の強度・耐衝撃性を有する導体素線を得ることができる。
この導体素線を1本以上用いて形成した導体線は、当然に従来よりも細径化されており、該導体線を芯線として形成したハーネスは、従来と同じ配策方法を取ることができ、自動車の軽量化、燃費の向上、省スペース、省資源を達成することができる。
The copper alloy that is the material of the conductor wire is a Cu—Fe—P alloy (in a preferred embodiment, a Cu—Fe—P—Sn alloy), the Fe content is 0.03 to 0.3 wt%, and the P content is By setting the content to 0.01 to 0.1 wt%, it is possible to obtain a conductor wire having the same strength and impact resistance as the conventional one, while reducing the diameter.
The conductor wire formed by using one or more conductor wires is naturally thinner than the conventional wire, and the harness formed using the conductor wire as a core wire can take the same routing method as before. Car weight reduction, fuel efficiency improvement, space saving, resource saving can be achieved.

先ず、本発明による導体素線を説明する。
当該導体素線は、自動車用電線の芯線を形成するための素線であって、上記課題を達成し得るように組成を最適化された銅合金からなる。この導体素線を1以上用い、必要に応じて撚りを加え、自動車用電線の芯線を形成する。
当該導体素線を構成する銅合金の基本組成は、Fe含有量が0.03〜0.3wt%、P含有量が0.01〜0.1wt%であり、残部がCuと不可避不純物である。この基本組成によって、当該導体素線は上記作用を示す。
First, the conductor wire according to the present invention will be described.
The said conductor strand is a strand for forming the core wire of the electric wire for motor vehicles, Comprising: It consists of a copper alloy by which the composition was optimized so that the said subject could be achieved. One or more conductor wires are used and twisted as necessary to form a core wire for an automobile electric wire.
The basic composition of the copper alloy constituting the conductor wire is that the Fe content is 0.03 to 0.3 wt%, the P content is 0.01 to 0.1 wt%, and the balance is Cu and inevitable impurities. . Due to this basic composition, the conductor wire exhibits the above action.

上記銅合金におけるFeの含有量は、0.03〜0.3wt%(重量%)であるが、より好ましくは0.03〜0.2wt%であり、特に好ましい範囲は0.05〜0.2wt%である。Feの含有比率を特に好ましい範囲へと狭めるにつれて、上記作用がより顕著に示されるようになる。
Feの含有量が適正であれば、主として導体素線の機械的強度が向上する。Feの含有量が下限0.03wt%を下回ると、導体素線としたときに、目的の強度と耐衝撃性とが得られない。一方、Feの含有量が上限0.3wt%を超えると、耐衝撃性を得ることができず、また、導電性も低下する。
Although content of Fe in the said copper alloy is 0.03-0.3 wt% (weight%), More preferably, it is 0.03-0.2 wt%, The especially preferable range is 0.05-0. 2 wt%. As the content ratio of Fe is narrowed to a particularly preferable range, the above action becomes more prominent.
If the content of Fe is appropriate, the mechanical strength of the conductor wire is mainly improved. If the Fe content is less than the lower limit of 0.03 wt%, the desired strength and impact resistance cannot be obtained when a conductor wire is formed. On the other hand, if the Fe content exceeds the upper limit of 0.3 wt%, impact resistance cannot be obtained, and the conductivity is also lowered.

上記銅合金におけるPの含有量は、0.01〜0.1wt%であるが、より好ましくは0.01〜0.04wt%であり、特に好ましくは0.02〜0.04wt%である。
Feと共に、Pの含有比率を特に好ましい範囲へと狭めるにつれて、上記作用がより顕著に示されるようになる。Pの含有量が適正であれば、主として導体素線の機械的強度が向上する。Pの含有量が下限0.01wt%を下回ると、目的の強度と耐衝撃性とが得られない。一方、Pの含有量が上限0.1wt%を超えると、耐衝撃性を得ることができず、また、導電性も低下する。
Although content of P in the said copper alloy is 0.01-0.1 wt%, More preferably, it is 0.01-0.04 wt%, Most preferably, it is 0.02-0.04 wt%.
Along with Fe, the above-mentioned action becomes more prominent as the P content ratio is narrowed to a particularly preferable range. If the content of P is appropriate, the mechanical strength of the conductor wire is mainly improved. If the P content is less than the lower limit of 0.01 wt%, the desired strength and impact resistance cannot be obtained. On the other hand, if the P content exceeds the upper limit of 0.1 wt%, impact resistance cannot be obtained, and the conductivity is also lowered.

上記銅合金のより好ましい態様として、Fe、Pに加えてさらに、Snを添加する態様が挙げられる。この場合、上記銅合金からFeとPとSnとを除いた残部が、Cuおよび不可避不純物となる。
Snを添加することで導体素線の強度がより向上するという効果が得られる。Snの好ましい添加量は0.5wt%以下である。Snの添加が過度になり0.5wt%を越えると導電率が低下する傾向にあり、また、耐衝撃性を得ることが困難になる傾向にある。また、Sn添加による作用効果を顕著とするには、Snの含有量を0.05wt%以上とすることが好ましい。
これらの点から、Sn含有量の好ましい範囲は、0.05〜0.5wt%、より好ましくは0.05〜0.3wt%、特に好ましくは0.05〜0.25wt%である。
A more preferable embodiment of the copper alloy includes an embodiment in which Sn is further added in addition to Fe and P. In this case, the remainder obtained by removing Fe, P, and Sn from the copper alloy becomes Cu and inevitable impurities.
By adding Sn, an effect that the strength of the conductor wire is further improved can be obtained. The preferable addition amount of Sn is 0.5 wt% or less. When Sn is excessively added and exceeds 0.5 wt%, the conductivity tends to decrease, and it tends to be difficult to obtain impact resistance. Moreover, in order to make the effect by Sn addition remarkable, it is preferable to make Sn content 0.05 wt% or more.
From these points, the preferable range of the Sn content is 0.05 to 0.5 wt%, more preferably 0.05 to 0.3 wt%, and particularly preferably 0.05 to 0.25 wt%.

当該導体素線(銅合金素線)の強化機構は、Fe−P化合物が析出することによる析出強化によるものであり、好ましい態様としてSnによる固溶強化を加えることにより、さらに強度が向上する。
各添加元素〔Fe、P、さらに好ましい態様として加えられるSn〕の各含有量を、上記範囲とすることによって、強度および耐衝撃性の付与と導電性とがバランスよく得られる。また、目的の線径の導体素線へと伸線加工を施す前の段階にある母線(荒引線)を、連続鋳造圧延法によって製造することが可能になる。
The strengthening mechanism of the conductor element wire (copper alloy element wire) is due to precipitation strengthening due to precipitation of the Fe—P compound, and the strength is further improved by adding solid solution strengthening with Sn as a preferred embodiment.
By making each content of each additive element [Fe, P, Sn added as a more preferable embodiment] within the above range, imparting strength and impact resistance and conductivity can be obtained in a well-balanced manner. Moreover, it becomes possible to manufacture a bus bar (rough drawing wire) in a stage before drawing a conductor wire having a target wire diameter by a continuous casting and rolling method.

上記のように、銅合金に添加される金属は、FeとP、さらには好ましい態様として添加されるSnである。これら添加される金属以外の残部は、全て銅であることが理想的であるが、実際には、不可避不純物が存在する。
不可避不純物は、上記銅合金を構成する主たる元素〔Cu、Fe、P、さらに好ましい態様として添加されるSn〕以外に、精製上不可避的に存在する不純物であって、主として、例えば、鉛、砒素、ビスマス、酸素などが挙げられる。
鉛、砒素、ビスマスなど、金属の不可避不純物の合計含有量は、導体素線の導電性低下を防ぐことや、表面傷の発生を防ぐことなどから、0.01wt%以下とすることが好ましく、より好ましくは0.005wt%以下である。
また、酸素は、多く存在すると合金の溶解、圧延中に、合金元素〔Fe、P、さらに好ましい態様として加えられるSn〕による強化機構に悪影響を及ぼす可能性があるために、0.002wt%以下に抑えることが望ましい。
As described above, the metals added to the copper alloy are Fe and P, and Sn added as a preferred embodiment. Ideally, the balance other than the added metal is all copper, but in reality there are inevitable impurities.
Inevitable impurities are impurities inevitably present in addition to the main elements constituting the copper alloy [Cu, Fe, P, Sn added as a more preferable embodiment], and mainly include, for example, lead, arsenic , Bismuth, oxygen and the like.
The total content of unavoidable impurities of metals such as lead, arsenic, and bismuth is preferably 0.01 wt% or less from the viewpoint of preventing the conductivity of the conductor wire from being reduced or preventing the occurrence of surface scratches, More preferably, it is 0.005 wt% or less.
Further, if oxygen is present in a large amount, it may adversely affect the strengthening mechanism of the alloying elements [Fe, P, Sn added as a more preferable embodiment] during melting and rolling of the alloy. It is desirable to keep it at a minimum.

当該導体素線の線径は、0.05〜0.5mmであり、好ましくは0.1〜0.3mmである。素線の線径を前記の範囲とすることにより、細径化と材料強度とを両立させることができる。素線の線径が0.05mmより小さいと導体の材料強度を確保し難くなる傾向が強くなり、0.5mmより大きいと、これを用いて得られる芯線も太くなり、細径化というメリットがなくなる。   The wire diameter of the said conductor strand is 0.05-0.5 mm, Preferably it is 0.1-0.3 mm. By making the wire diameter of the element wire within the above range, it is possible to achieve both reduction in diameter and material strength. If the wire diameter is smaller than 0.05 mm, the tendency to make it difficult to secure the material strength of the conductor becomes stronger. If it is larger than 0.5 mm, the core wire obtained by using this becomes thicker, and there is an advantage of reducing the diameter. Disappear.

当該導体素線の引張強さは、250MPa以上であり、好ましくは300〜350MPaである。また、当該導体素線の破断時の伸びは、15%以上であり、好ましくは20〜25%である。
これら引張強さと破断時の伸びは、JIS C 3002に準拠して測定される。
The tensile strength of the said conductor strand is 250 Mpa or more, Preferably it is 300-350 Mpa. Further, the elongation at break of the conductor element wire is 15% or more, preferably 20 to 25%.
These tensile strength and elongation at break are measured according to JIS C 3002.

当該導体素線に上記の機械的性質を与えるためには、後述するとおり、素線を冷間において伸線加工によって形成した後に、後述の焼鈍を施すことが必須である。
当該導体素線が、冷間での伸線加工によって形成され、かつ、冷間での伸線加工の後で焼鈍を施されたものであることは、当該導体素線の金属組織を光学顕微鏡にて観察することによって判定することが可能である。即ち、焼鈍を施される前の組織は、繊維状の加工組織であるが、焼鈍を施されたものは、再結晶組織となる。
In order to give the above-mentioned mechanical properties to the conductor wire, it is essential that the wire is annealed as described later after the wire is formed by cold drawing as described later.
The fact that the conductor wire is formed by cold wire drawing and is annealed after cold wire drawing means that the metal structure of the conductor wire is optical microscope. It is possible to determine by observing at. That is, the structure before annealing is a fibrous processed structure, but the structure subjected to annealing is a recrystallized structure.

当該導体素線を用いて自動車用電線導体を形成するには、当該導体素線を目的の芯線径に応じた必要本数だけ用い、好ましい態様として撚り線とする。
図1は、当該導体素線を用いた自動車用電線導体の断面の一例を示した模式図である。同図の例では、当該導体素線1は7本用いられ、それらが撚られて自動車用電線導体(芯線)2となっており、それを覆って絶縁被覆層3が形成された構成となっている。
撚り線を形成するに際しては、基本的には当該導体素線を、従来の軟銅素線よりも細径化し、従来と同様の7本撚りを行なう。また、極細の素線の多数本撚り線とすることにより、電線の耐屈曲性がさらに向上し、また、撚り線の外周表面の凸凹が小さくなり、導体全体の断面形状が円形に近くなり、絶縁厚さを薄くすることができ、さらに、全周にわたり絶縁層の厚さのばらつきも小さくなる。その結果、絶縁層全体で耐磨耗性が向上すると同時に、部位毎の耐磨耗性のばらつきも小さくなるという効果も得られる。
In order to form an automobile electric wire conductor using the conductor wire, a necessary number of the conductor wires corresponding to the target core wire diameter is used, and a twisted wire is used as a preferred embodiment.
FIG. 1 is a schematic diagram showing an example of a cross section of an automobile electric wire conductor using the conductor wire. In the example of the figure, seven conductor wires 1 are used, which are twisted to form an automobile electric wire conductor (core wire) 2, and an insulating coating layer 3 is formed so as to cover it. ing.
When forming a stranded wire, basically, the conductor strand is made thinner than a conventional annealed copper strand, and the same seven strands as in the past are performed. In addition, by making a large number of strands of ultrafine strands, the bending resistance of the electric wire is further improved, the irregularities on the outer peripheral surface of the strands are reduced, and the cross-sectional shape of the entire conductor is nearly circular, The insulating thickness can be reduced, and the variation in the thickness of the insulating layer is reduced over the entire circumference. As a result, the wear resistance of the whole insulating layer is improved, and at the same time, the effect that the variation in the wear resistance of each part is reduced is also obtained.

撚り線を形成する場合の、当該導体素線の好ましい本数は7〜50程度であり、このような本数となるように、素線径を選択すればよい。
撚り線の撚り方は、公知の集合撚り、同心撚りであってもよい。集合撚りは、素線を集めて撚り合わせただけのものであり、製造コストが安いというメリットがある。同心撚りは、素線を同心円状に並べて、断面が多角形状、円形状になるように撚り合わせたものである。これらの撚りは、用途に応じて適宜選択すればよい。
In the case of forming a stranded wire, the preferred number of the conductor strands is about 7 to 50, and the strand diameter may be selected so as to be such a number.
The twisting method of the stranded wire may be a known collective twist or concentric twist. Collective twisting is simply a matter of collecting and twisting strands, and has the advantage of low manufacturing costs. In the concentric twisting, the strands are arranged concentrically and twisted so that the cross section becomes a polygonal shape or a circular shape. What is necessary is just to select these twists suitably according to a use.

次に当該導体素線の製造方法を説明する。
当該製造方法は、上記で説明した本発明による導体素線の好ましい製造方法であって、上記(4)に示したとおり、伸線工程と、熱処理工程とを、少なくとも有する。
Next, the manufacturing method of the said conductor strand is demonstrated.
The said manufacturing method is a preferable manufacturing method of the conductor strand by this invention demonstrated above, Comprising: As shown in said (4), it has a wire drawing process and a heat treatment process at least.

伸線工程において用意すべき銅合金は、本発明による導体素線の説明において述べた銅合金である。即ち、Cu−Fe−P合金、好ましい態様としてSnがさらに添加されたCu−Fe−P−Sn合金である。上記したように、不可避不純物が含まれていてもよい。   The copper alloy to be prepared in the wire drawing step is the copper alloy described in the explanation of the conductor wire according to the present invention. That is, a Cu—Fe—P alloy, and a preferred embodiment is a Cu—Fe—P—Sn alloy to which Sn is further added. As described above, inevitable impurities may be included.

伸線工程における伸線加工は、さらに、2段階の加工工程に分けられる。即ち、上記銅合金材料を荒引線の状態にまで荒引加工する伸線第一工程と、該荒引線を目的の素線径を有する導体素線にまで冷間において引き伸ばす伸線第二工程である。   The drawing process in the drawing process is further divided into two stages. That is, in the first wire drawing process for roughing the copper alloy material to the state of rough drawing, and in the second wire drawing process for drawing the rough drawing wire to a conductor wire having a target wire diameter in the cold state. is there.

伸線第一工程における荒引加工は、公知の加工法であればよいが、製造コストをより低く抑える方法として、銅合金湯の溶製と連続鋳造圧延法とによる鋳造・圧延を行なうことが好ましい。
連続鋳造圧延法とは、銅合金湯の溶製、鋳造、鋳塊から線材への圧延までの工程を、連続的に行なう方法である。
連続鋳造圧延法には、ホイルベルト式連続鋳造圧延法、ツインベルト式連続鋳造圧延法、DIP法が含まれる。例えば、「銅および銅合金の基礎と工業技術」(日本伸銅協会)を参照)などを適用して荒引線を製造することも可能である。
The roughing process in the first wire drawing step may be a known processing method, but as a method for lowering the manufacturing cost, it is possible to perform casting / rolling by melting copper alloy hot water and continuous casting rolling method. preferable.
The continuous casting and rolling method is a method of continuously performing steps from melting of copper alloy hot water, casting, and rolling from an ingot to a wire rod.
The continuous casting and rolling method includes a foil belt type continuous casting and rolling method, a twin belt type continuous casting and rolling method, and a DIP method. For example, it is also possible to manufacture rough drawn wire by applying “Basics and Industrial Technology of Copper and Copper Alloys” (Japan Copper and Brass Association).

伸線第一工程の一例を挙げる。
先ず、シャフト炉などで電気銅を溶解し、この銅溶湯を保持炉内に流し込み、上記添加元素(Fe、P、好ましい態様としてさらにSn)を規定値内で添加して銅合金湯を溶製する。
次に、前記銅合金溶湯を用い、連続鋳造圧延法にて鋳造・圧延を行ない(即ち、銅合金溶湯を用いて連続的に鋳造し熱間圧延を行ない)荒引線を得る。
該荒引線の線径は、特に限定はされないが、6〜13mm程度が好ましい。
An example of the first wire drawing process is given.
First, electrolytic copper is melted in a shaft furnace or the like, and this molten copper is poured into a holding furnace, and the above-described additional elements (Fe, P, and Sn as a preferred embodiment further) are added within specified values to melt the copper alloy hot water To do.
Next, casting and rolling are performed by the continuous casting and rolling method using the molten copper alloy (that is, continuous casting and hot rolling is performed using the molten copper alloy) to obtain a rough drawn wire.
The wire diameter of the rough drawn wire is not particularly limited, but is preferably about 6 to 13 mm.

上記と同様の銅合金溶湯を水冷鋳造法で鋳造し、これを熱間押出・熱間圧延によって目的の荒引線を得ることも可能である。ただし、この方法では、工程数が増えるために製造コストが高くなり、連続鋳造圧延法の場合と比べて導体素線の価格が高くなる。   It is also possible to cast a molten copper alloy similar to the above by a water-cooled casting method, and obtain a desired rough drawn wire by hot extrusion and hot rolling. However, in this method, the number of steps increases, so that the manufacturing cost increases, and the price of the conductor wire becomes higher compared to the case of the continuous casting and rolling method.

伸線第二工程では、上記のようにして得た荒引線に対して、冷間での伸線加工を施して加工効果による強度アップを図るとともに、目的の線径に仕上げる。
冷間での伸線加工方法自体は、公知の技術を用いてよく、ダイスによる伸線加工が一般的であるが、圧延加工、スウェージング加工などを適用してもよい。
冷間での伸線加工とは、室温(例えば、JIS Z 0050によれば5〜35℃)に保持した荒引線に、上記のダイスによる伸線加工、圧延加工、スウェージング加工などを行うことである。
In the second wire drawing step, the rough drawing wire obtained as described above is subjected to cold wire drawing to increase the strength due to the processing effect and finish to the target wire diameter.
The cold wire drawing method itself may use a known technique, and wire drawing by a die is generally used, but rolling, swaging, or the like may be applied.
Cold wire drawing means performing wire drawing, rolling, swaging, etc. with the above-mentioned die on a rough drawn wire held at room temperature (for example, 5 to 35 ° C. according to JIS Z 0050). It is.

導体素線の断面形状は、円形が一般的であるが、目的に応じて方形の他、扇形などの異形状であってもよい。
冷間での伸線加工に用いる装置は、スリップ式の連続伸線機を用いることが一般的であるが、ノンスリップ式の伸線機を用いてもかまわない。
The cross-sectional shape of the conductor wire is generally a circular shape, but may be a square shape or a different shape such as a sector depending on the purpose.
As a device used for cold wire drawing, a slip-type continuous wire drawing machine is generally used, but a non-slip type wire drawing machine may be used.

熱処理工程では、上記冷間工程によって得られた銅合金線に熱処理を施す。
この熱処理は、耐衝撃性向上を主目的として実施される。熱処理の温度は300〜600℃とするのが好ましく、450〜550℃とするのがより好ましい。加熱温度が300℃より低いと、伸びおよび導電性が低くなり、600℃より高い温度では引張強さが低くなる。伸びおよび引張強さの低下は、耐衝撃性が低くなる要因となり好ましくない。
また、熱処理時間は0.5〜4時間とすることが好ましく、0.5〜2時間とすることがより好ましい。熱処理時間が0.5時間より短いと伸びおよび導電性が低くなり、4時間より長いと引張強さが低くなる。
In the heat treatment step, heat treatment is performed on the copper alloy wire obtained by the cold step.
This heat treatment is carried out mainly for the purpose of improving impact resistance. The temperature of the heat treatment is preferably 300 to 600 ° C, more preferably 450 to 550 ° C. When the heating temperature is lower than 300 ° C., the elongation and the conductivity are lowered, and when the heating temperature is higher than 600 ° C., the tensile strength is lowered. A decrease in elongation and tensile strength is not preferable because it causes a decrease in impact resistance.
The heat treatment time is preferably 0.5 to 4 hours, more preferably 0.5 to 2 hours. When the heat treatment time is shorter than 0.5 hours, the elongation and conductivity are low, and when it is longer than 4 hours, the tensile strength is low.

焼鈍を施すための方法自体は、公知の方法を用いてよく、通電焼鈍が生産性の点で好ましいが、管状炉内を通過させる焼鈍、バッチ式の焼鈍等であってもよい。   A known method may be used for annealing, and current annealing is preferable from the viewpoint of productivity, but may be annealing through a tubular furnace, batch annealing, or the like.

本実施例では、Fe、P、Snの含有量を種々の値に変化させた銅合金を用いて導体素線を形成し、さらに、これらに熱処理を施したもの、施さないものを作製して、その性能を観察し、本発明による導体素線の含有量の設定値および熱処理の有無に臨界的意義があるかどうかを調べた。
Fe、P、Snの含有量が本発明による規定の範囲内に属するものとして、実施例品No.1〜10を作製した。
また、Fe、P、Snの含有量のうちのいずれかが本発明による規定の範囲から外れているものとして、比較例品No.11〜19を作製した。また、Fe、P、Snの含有量は本発明による規定の範囲内に属するが、熱処理を施さない試料として、比較例品No.20〜29を作製した。
またさらに、特許第3275506号に示された銅合金線を製作し、比較例品(No.30、31、)として本実施例品と性能を比較した。
また、比較例品No.32は、従来公知の軟銅線であって、連続鋳造圧延法で製造されたタフピッチ銅荒引線を、伸線加工し、熱処理を施して製造したものである。
In this example, conductor wires are formed using copper alloys in which the contents of Fe, P, and Sn are changed to various values, and further, those subjected to heat treatment and those not subjected to heat treatment are prepared. The performance was observed, and it was investigated whether the set value of the content of the conductor wire according to the present invention and the presence or absence of heat treatment had a critical significance.
As the content of Fe, P, Sn falls within the specified range according to the present invention, Example Product No. 1-10 were produced.
Moreover, any one of the contents of Fe, P, and Sn deviates from the specified range according to the present invention. 11-19 were produced. In addition, although the contents of Fe, P, and Sn belong within the specified range according to the present invention, as a sample not subjected to heat treatment, Comparative Example No. 20-29 were produced.
Furthermore, a copper alloy wire shown in Japanese Patent No. 3275506 was manufactured, and the performance was compared with the product of this example as a comparative product (No. 30, 31,).
Comparative product No. 32 is a conventionally known annealed copper wire, which is produced by drawing a tough pitch copper rough drawn wire produced by a continuous casting and rolling method and subjecting it to a heat treatment.

〔実施例品1〜10、比較例品11〜29の製作〕
シャフト炉にて電気銅を溶解し、この銅溶湯を保持炉内に転湯して、合金元素を表1に示す所定の割合だけ添加して銅合金溶湯を溶製した。
次に、この銅合金用溶湯に対して、ホイルベルト式連続鋳造圧延法にて、鋳造と圧延とを連続的に行い、線径8mmの銅合金荒引線を得た。
得られた荒引線に対して連続伸線機を用いて、引抜きダイスによる冷間加工を施して線径0.22mmの銅合金素線を得た。
得られた銅合金素線のうち、実施例品1〜10、比較例品11〜19に対しては、温度500℃の窒素雰囲気中に、1.5時間保持する熱処理(焼鈍)を施した。
[Production of Examples 1 to 10 and Comparative Examples 11 to 29]
The electrolytic copper was melted in a shaft furnace, this molten copper was rolled into a holding furnace, and alloy elements were added at a predetermined ratio shown in Table 1 to melt the molten copper alloy.
Next, the molten copper alloy was continuously cast and rolled by a foil belt type continuous casting and rolling method to obtain a copper alloy rough drawn wire having a wire diameter of 8 mm.
The obtained rough drawn wire was subjected to cold working with a drawing die using a continuous wire drawing machine to obtain a copper alloy strand having a wire diameter of 0.22 mm.
Among the obtained copper alloy strands, Examples 1 to 10 and Comparative Examples 11 to 19 were subjected to a heat treatment (annealing) for 1.5 hours in a nitrogen atmosphere at a temperature of 500 ° C. .

Figure 2007023305
Figure 2007023305

〔評価〕
実施例品1〜10、比較例品11〜32の導体素線に対して、引張強さ、導電率、耐衝撃性の測定を行った。評価方法はそれぞれ以下の通りとした。
化学成分:JIS H 3250(銅及び銅合金棒)に規定された分析方法
引張強さ:JIS Z 2241(金属材料引張試験方法)
導電率:JIS H 0505(非鉄金属材料の体積抵抗率及び導電率測定方法)
耐衝撃性:高速引張試験機を用いて1m/秒の引張速度で引張試験を行い、得られた応力−ひずみ曲線で囲まれた面積から衝撃吸収エネルギーを求めた。
[Evaluation]
Tensile strength, electrical conductivity, and impact resistance were measured for the conductor wires of Examples 1 to 10 and Comparative Examples 11 to 32. The evaluation methods were as follows.
Chemical composition: Analytical method defined in JIS H 3250 (copper and copper alloy bar) Tensile strength: JIS Z 2241 (Tensile test method for metal material)
Conductivity: JIS H 0505 (volume resistivity and conductivity measuring method of non-ferrous metal material)
Impact resistance: A tensile test was conducted at a tensile speed of 1 m / sec using a high-speed tensile tester, and the impact absorption energy was determined from the area surrounded by the obtained stress-strain curve.

表2に評価結果をまとめて示す。ここで耐衝撃性については従来品である軟銅線(No.32)より優れるものを◎、同等のものを○、劣るものを×で示した。自動車用電線として必要な導電性を、導電率70%以上であるとした。   Table 2 summarizes the evaluation results. Here, as for impact resistance, those superior to the conventional annealed copper wire (No. 32) are indicated by ◎, equivalents are indicated by ○, and inferior ones are indicated by ×. The conductivity required for the electric wire for automobiles is assumed to be 70% or more.

Figure 2007023305
Figure 2007023305

表2の評価結果から明らかなように、実施例品(本発明による導体素線)は、従来の軟銅線(No.32)に比べて、優れた耐衝撃性を有し、かつ自動車用電線として必要な導電性を確保していることが確認できた。
比較例品No.30、31の銅合金線は、強度・耐衝撃性は本発明品と遜色のない特性を示すものの、導電率が58〜65%と低く、自動車用電線として必要な導電性を満足していないことがわかった。
As is apparent from the evaluation results in Table 2, the example product (conductor wire according to the present invention) has superior impact resistance compared to the conventional annealed copper wire (No. 32), and is an electric wire for automobiles. As a result, it was confirmed that necessary conductivity was secured.
Comparative product No. Although the copper alloy wires 30 and 31 have the same strength and impact resistance as the products of the present invention, the electrical conductivity is as low as 58 to 65% and does not satisfy the electrical conductivity required for electric wires for automobiles. I understood it.

本発明によって、強度、耐衝撃性、導電率のいずれについても、高い性能を有する導体素線を提供することが可能となった。
また、当該導体素線を撚り合わせて、好ましい自動車用電線導体が得られた。
According to the present invention, it is possible to provide a conductor wire having high performance with respect to any of strength, impact resistance, and conductivity.
Moreover, the said conductor strand was twisted together and the preferable electric wire conductor for motor vehicles was obtained.

本発明による導体素線を用いて形成した自動車用電線の断面の一例を示した模式図である。It is the schematic diagram which showed an example of the cross section of the electric wire for motor vehicles formed using the conductor strand by this invention.

符号の説明Explanation of symbols

1 導体素線
2 芯線
3 絶縁被覆層
1 Conductor Wire 2 Core Wire 3 Insulation Covering Layer

Claims (5)

自動車用電線のための導体素線であって、銅合金からなり、該銅合金が、Feを0.03〜0.3wt%、Pを0.01〜0.1wt%含有し、残部がCuおよび不可避不純物であることを特徴とする、自動車用電線のための導体素線。   A conductor wire for an electric wire for an automobile, which is made of a copper alloy, the copper alloy contains 0.03 to 0.3 wt% of Fe, 0.01 to 0.1 wt% of P, and the balance is Cu Conductor strands for electric wires for automobiles, characterized in that they are inevitable impurities. 上記銅合金が、さらに、Snを0.5wt%以下の量だけ含有し、該銅合金からFeとPとSnとを除いた残部が、Cuおよび不可避不純物であることを特徴とする、請求項1記載の導体素線。   The copper alloy further contains Sn in an amount of 0.5 wt% or less, and the balance obtained by removing Fe, P, and Sn from the copper alloy is Cu and inevitable impurities. 1. A conductor wire according to 1. 引張強さが250MPa以上であり、かつ、破断時の伸びが15%以上であることを特徴とする、請求項1または2記載の導体素線。   The conductor wire according to claim 1 or 2, wherein the tensile strength is 250 MPa or more and the elongation at break is 15% or more. 自動車用電線のための導体素線の製造方法であって、
Feを0.03〜0.3wt%、Pを0.01〜0.1wt%含有し、残部がCuおよび不可避不純物である銅合金を用意し、冷間において該銅合金に伸線加工を施して、目的の線径を有する導体素線とする伸線工程と、
前記伸線工程の後に、前記導体素線に、300〜600℃の温度で0.5〜4時間維持する熱処理を施す熱処理工程とを、
有することを特徴とする、自動車用電線のための導体素線の製造方法。
A method for manufacturing a conductor wire for an electric wire for an automobile,
Prepare a copper alloy containing 0.03-0.3 wt% Fe and 0.01-0.1 wt% P, the balance being Cu and inevitable impurities, and wire-drawing the copper alloy in the cold A wire drawing step to obtain a conductor wire having a desired wire diameter;
After the wire drawing step, a heat treatment step of performing heat treatment for maintaining the conductor wire at a temperature of 300 to 600 ° C. for 0.5 to 4 hours,
A method for producing a conductor wire for an automotive electric wire, comprising:
上記伸線工程において用意する銅合金が、さらに、Snを0.5wt%以下の量だけ含有し、該銅合金からFeとPとSnとを除いた残部が、Cuおよび不可避不純物であることを特徴とする、請求項4記載の製造方法。   The copper alloy prepared in the wire drawing step further contains Sn in an amount of 0.5 wt% or less, and the balance obtained by removing Fe, P, and Sn from the copper alloy is Cu and inevitable impurities. The manufacturing method according to claim 4, wherein the manufacturing method is characterized.
JP2005202866A 2005-07-12 2005-07-12 Conductor element wire for electric wire for automobile, and its manufacturing method Pending JP2007023305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202866A JP2007023305A (en) 2005-07-12 2005-07-12 Conductor element wire for electric wire for automobile, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202866A JP2007023305A (en) 2005-07-12 2005-07-12 Conductor element wire for electric wire for automobile, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007023305A true JP2007023305A (en) 2007-02-01

Family

ID=37784477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202866A Pending JP2007023305A (en) 2005-07-12 2005-07-12 Conductor element wire for electric wire for automobile, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007023305A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111634A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Copper wire and method for manufacturing the same
DE112011102107T5 (en) 2010-06-24 2013-03-28 Fujikura Ltd. Automotive cable
JP2013083543A (en) * 2011-10-11 2013-05-09 Yazaki Corp Current detector
JP6172368B1 (en) * 2016-11-07 2017-08-02 住友電気工業株式会社 Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire
JP2018076583A (en) * 2017-07-03 2018-05-17 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
US20190259508A1 (en) * 2016-11-07 2019-08-22 Sumitomo Electric Industries, Ltd. Connector terminal wire
JP2020037745A (en) * 2019-11-01 2020-03-12 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
JP2020037744A (en) * 2019-11-01 2020-03-12 住友電気工業株式会社 Coated cable, cable with terminal and copper alloy wire
JP2021050417A (en) * 2020-12-03 2021-04-01 住友電気工業株式会社 Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy twisted wire, method for producing coated electric wire, method for producing copper alloy wire, and method for producing copper alloy twisted wire
US11631507B2 (en) * 2020-06-23 2023-04-18 Proterial, Ltd. Coaxial cable, coaxial cable producing method, and cable assembly
US11923104B2 (en) * 2020-09-15 2024-03-05 Proterial, Ltd. Cable

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111634A (en) * 2009-11-24 2011-06-09 Sumitomo Electric Ind Ltd Copper wire and method for manufacturing the same
DE112011102107T5 (en) 2010-06-24 2013-03-28 Fujikura Ltd. Automotive cable
US9349502B2 (en) 2010-06-24 2016-05-24 Fujikura Ltd. Automotive wire
JP2013083543A (en) * 2011-10-11 2013-05-09 Yazaki Corp Current detector
US20190259508A1 (en) * 2016-11-07 2019-08-22 Sumitomo Electric Industries, Ltd. Connector terminal wire
CN110012676A (en) * 2016-11-07 2019-07-12 住友电气工业株式会社 Covered electric cable, band terminal wires, copper alloy wire and copper alloy twisted wire
WO2018083836A1 (en) * 2016-11-07 2018-05-11 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
CN110012676B (en) * 2016-11-07 2021-08-03 住友电气工业株式会社 Covered electric wire, electric wire with terminal, copper alloy wire, and copper alloy stranded wire
JP2018077941A (en) * 2016-11-07 2018-05-17 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
JP6338133B1 (en) * 2016-11-07 2018-06-06 住友電気工業株式会社 Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire
CN109983141A (en) * 2016-11-07 2019-07-05 住友电气工业株式会社 Covered electric cable, band terminal wires, copper alloy wire and copper alloy twisted wire
CN113611439A (en) * 2016-11-07 2021-11-05 住友电气工业株式会社 Covered electric wire and electric wire with terminal
JP6172368B1 (en) * 2016-11-07 2017-08-02 住友電気工業株式会社 Covered wire, wire with terminal, copper alloy wire, and copper alloy twisted wire
US20190341164A1 (en) * 2016-11-07 2019-11-07 Sumitomo Electric Industries, Ltd. Covered Electrical Wire, Terminal-Equipped Electrical Wire, Copper Alloy Wire, and Copper Alloy Stranded Wire
US20190355489A1 (en) * 2016-11-07 2019-11-21 Sumitomo Electric Industries, Ltd. Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
WO2018083812A1 (en) * 2016-11-07 2018-05-11 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
US11315701B2 (en) * 2016-11-07 2022-04-26 Sumitomo Electric Industries, Ltd. Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
US11315702B2 (en) * 2016-11-07 2022-04-26 Sumitomo Electric Industries, Ltd. Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
JP2018076583A (en) * 2017-07-03 2018-05-17 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
JP2020037745A (en) * 2019-11-01 2020-03-12 住友電気工業株式会社 Covered electric wire, terminal-equipped electric wire, copper alloy wire, and copper alloy stranded wire
JP2020037744A (en) * 2019-11-01 2020-03-12 住友電気工業株式会社 Coated cable, cable with terminal and copper alloy wire
US11631507B2 (en) * 2020-06-23 2023-04-18 Proterial, Ltd. Coaxial cable, coaxial cable producing method, and cable assembly
US11923104B2 (en) * 2020-09-15 2024-03-05 Proterial, Ltd. Cable
JP7054482B2 (en) 2020-12-03 2022-04-14 住友電気工業株式会社 Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JP2021050417A (en) * 2020-12-03 2021-04-01 住友電気工業株式会社 Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy twisted wire, method for producing coated electric wire, method for producing copper alloy wire, and method for producing copper alloy twisted wire

Similar Documents

Publication Publication Date Title
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP5128109B2 (en) Electric wire conductor and manufacturing method thereof
JP5607853B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP6499190B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
US8951370B2 (en) Aluminum alloy wire material
JP5607855B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP6462662B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method
JP5354815B2 (en) Wire or cable
JP5147040B2 (en) Method for producing copper alloy conductor
JP6678579B2 (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
JP4986251B2 (en) Aluminum alloy conductor
WO2014155818A1 (en) Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductor
JP6534809B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, wire harness, and method of manufacturing aluminum alloy wire and aluminum alloy stranded wire
JP2011233533A (en) Method for producing aluminum wire for automobile
WO2016088887A1 (en) Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
JP6440476B2 (en) Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire and wire harness, and method for producing aluminum alloy wire
JP5228118B2 (en) Method for producing aluminum alloy conductor
JP5486870B2 (en) Manufacturing method of aluminum alloy wire
JP2014201783A (en) Aluminum alloy, aluminum alloy electric wire using aluminum alloy, wire harness for automobile using aluminum alloy electric wire and method of producing aluminum alloy strand
JP7398315B2 (en) Aluminum alloy wire and electric wire
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
CN106507679A (en) Electric wire or the method for cable, wire harness and manufacture aluminium alloy strand

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061215

A977 Report on retrieval

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A02