JPH04191351A - Clad metallic wire - Google Patents

Clad metallic wire

Info

Publication number
JPH04191351A
JPH04191351A JP32009490A JP32009490A JPH04191351A JP H04191351 A JPH04191351 A JP H04191351A JP 32009490 A JP32009490 A JP 32009490A JP 32009490 A JP32009490 A JP 32009490A JP H04191351 A JPH04191351 A JP H04191351A
Authority
JP
Japan
Prior art keywords
wire
composite metal
metal wire
strength
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32009490A
Other languages
Japanese (ja)
Inventor
Tetsuo Noma
野間 哲郎
Hideo Harada
英男 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP32009490A priority Critical patent/JPH04191351A/en
Publication of JPH04191351A publication Critical patent/JPH04191351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To obtain a nonmagnetic clad metallic wire excellent in electric conductivity and strength by coating the surface of a core wire consisting of high Mn nonmagnetic steel wire with Cu. CONSTITUTION:A coating layer 2 of Cu is formed on the surface of a nonmagnetic steel wire 1 having a composition containing, by weight, 0.05-0.35% C, 15-30% Mn, 2-14% Ni, and 4-18% Cr. When the cross-sectional area of the resulting Cu-coated clad wire is 100, the cross-sectional area of the Cu coating layer 2 is 10-70. The core wire 1 is nonmagnetized by incorporating large amounts of Mn as austenite forming element together with C, and further, coating with the Cu 2 excellent in electric conductivity is applied to the outside periphery of the nonmagnetic core wire 1 in which workability is improved by the addition of Ni and superior strength is provided by the incorporation of Cr, by which the nonmahnetic clad metallic wire suitable for a conducting wire for use in various precision electronic equipment which are easily affected by the increase in self-inductance as well as noise due to magnetism can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複合金属線に関し、詳細には、導電性及び強
度に優れると共に、非磁性を有する複合金属線に関し、
特には、ノイズや自己インダクタンスの増大をきらう音
響機器やコンピュータ等の如き精密電子機器用の導電線
として好適な複合金属線に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a composite metal wire, and more particularly, to a composite metal wire that has excellent conductivity and strength and is non-magnetic.
In particular, the present invention relates to a composite metal wire that is suitable as a conductive wire for precision electronic equipment such as audio equipment and computers where increases in noise and self-inductance are to be avoided.

(従来の技術) 電子機器用の導電線としては銅線か使用されいるが、近
年の電子機器の小型化、軽量化に伴い、銅線も細径化か
要求されるようになった。しかし銅線では強度的に対応
か難しく、強度に優れた導電線の開発か必要となってき
た。
(Prior Art) Copper wire is used as a conductive wire for electronic equipment, but as electronic equipment has become smaller and lighter in recent years, copper wire has also been required to have a smaller diameter. However, copper wire has difficulty meeting this requirement in terms of strength, and it has become necessary to develop a conductive wire with superior strength.

そこで、第2図に例示する如く鉄、鋼又はステンレス鋼
からなる芯線(3)の表面に銅(4)をクラット又はめ
っきにより被覆した複合金属線か開発され、高強度か要
求される導電線や、電子部品のIJ−ド線として使用さ
れいる。
Therefore, as shown in Fig. 2, a composite metal wire has been developed in which the surface of a core wire (3) made of iron, steel, or stainless steel is coated with copper (4) by crat or plating, and a conductive wire that requires high strength has been developed. It is also used as an IJ-wire for electronic components.

(発明が解決しようとする課題) ところが、前記従来の複合金属線においては、芯線が鉄
、鋼又はステンレス鋼からなるので磁性体であり、その
ため非磁性を有することも必要な音響機器やコンピュー
タ等の如き精密電子機器用の導電線としては好適に使用
し得ないという難点かあって、導電性及び強度に優れる
と共に非磁性を有する導電線の開発が強く望まれている
(Problem to be Solved by the Invention) However, since the core wire of the conventional composite metal wire is made of iron, steel, or stainless steel, it is a magnetic material. Because of the disadvantage that it cannot be suitably used as a conductive wire for precision electronic equipment such as, there is a strong desire to develop a conductive wire that has excellent conductivity and strength and is non-magnetic.

尚、従来の複合金属線の中、芯線をオーステナイ1〜系
ステンレス鋼にし2、Hつ計則を完全な焼鈍状態にする
と、非磁性状態となるが、高強度が得られず、又、少し
加工か加われは磁性を有するようになって非磁性状態の
安定性に欠け、更に高強度化のために加工硬化させると
磁性体になってしまうので、前記要望に対応し得ないも
のである。
In addition, in conventional composite metal wires, if the core wire is made of austenite 1 to 2 stainless steel and the H method is completely annealed, it will become non-magnetic, but high strength will not be obtained, and a little When processed, it becomes magnetic and lacks stability in a non-magnetic state, and when it is work-hardened to increase strength, it becomes a magnetic material, which cannot meet the above requirements.

本発明は、かかる事情に着目してなされたものであって
、その目的は前記従来の複合金属線か存する問題点を解
消し、導電性及び強度に優れると共に安定して非磁性を
有し得る複合金属線を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to solve the problems of the conventional composite metal wire, to have excellent conductivity and strength, and to be stably non-magnetic. The aim is to provide a composite metal wire.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る複合金°属線
は次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the composite metal wire according to the present invention has the following configuration.

即ち、請求項1記載の複合金属線は、高Mn非磁性鋼か
らなる芯線の表面に銅の被覆層を有する複合金属線であ
る。
That is, the composite metal wire according to the first aspect is a composite metal wire having a core wire made of high Mn nonmagnetic steel and a copper coating layer on the surface of the core wire.

請求項2記載の複合金属線は、前記銅被覆層の断面積か
線断面積の10〜70%である請求項1に記載の複合金
属線である。
The composite metal wire according to claim 2 is the composite metal wire according to claim 1, wherein the cross-sectional area of the copper coating layer is 10 to 70% of the cross-sectional area of the wire.

請求項3記載の再合金属線は、前記高耽非磁性鋼が、C
: 0.05〜0.35wt%、Mn : 15〜30
wt1’i; 、N+2〜14wt%、Cr : 4〜
+8wt%を含存し、残部か鉄及び不可避的不純物から
なる請求項1又は2に記載の複合金属線である。
In the recombined metal wire according to claim 3, the high-grade nonmagnetic steel is C
: 0.05-0.35wt%, Mn: 15-30
wt1'i; , N+2~14wt%, Cr: 4~
3. The composite metal wire according to claim 1 or 2, wherein the composite metal wire contains +8 wt% and the remainder consists of iron and inevitable impurities.

(作 用) 本発明に係る複合金属線は、前記の如く、高へ(n非磁
性鋼からなる芯線の表面に銅の被覆層を有する複合金属
線である。
(Function) As described above, the composite metal wire according to the present invention is a composite metal wire having a copper coating layer on the surface of the core wire made of non-magnetic steel.

上記高Mn非磁性鋼は、高強度を有し得る強度材料であ
ると共に、安定性に優れた非磁性体であって、加工を付
与しても非磁性状態を維持し得るものである。又、その
ため、加工硬化により、磁性体化させることなく、更に
高強度化させ得る。従って、上記高Mn非磁性鋼からな
る芯線は高強度及び安定した非磁性を有し得る。
The above-mentioned high Mn nonmagnetic steel is a strong material that can have high strength, and is also a highly stable nonmagnetic material that can maintain its nonmagnetic state even when subjected to processing. Moreover, it is therefore possible to further increase the strength by work hardening without turning the material into a magnetic material. Therefore, the core wire made of the high Mn nonmagnetic steel can have high strength and stable nonmagnetism.

一方、銅は優れた導電性を有すると共に安定性に優れた
非磁性体であるので、上記銅の被覆層は非磁性体であり
、且つ導電性に優れている。
On the other hand, since copper is a nonmagnetic material with excellent electrical conductivity and excellent stability, the copper coating layer is a nonmagnetic material and has excellent electrical conductivity.

本発明に係る複合金属線は、かかる芯線及び被覆層の複
合体であり、故に導電性及び強度に優れると共に安定し
て非磁性を有し得ることになる。
The composite metal wire according to the present invention is a composite of such a core wire and a coating layer, and therefore has excellent conductivity and strength, and can stably have non-magnetism.

前記銅被覆層の断面積を線断面積の10〜70%になる
ようにすると、より確実に複合金属線の導電性及び強度
を向上し得るようになるので、そうすることか望ましい
。尚、上記断面積か線断面積の10〜70%の場合に比
し、10%未満の場合は導電性か低くなり、本発明の利
用分野における複合金属線としては使用か困難となり、
又70%超の場合は強度か低くなり、従来の非磁性材料
であるオーステナイト系ステンレス鋼を芯材とする複合
金属線の焼鈍材に比へて強度的優位か得られなくなる。
If the cross-sectional area of the copper coating layer is 10 to 70% of the cross-sectional area of the wire, the conductivity and strength of the composite metal wire can be improved more reliably, so it is desirable to do so. In addition, compared to the case where the cross-sectional area is 10 to 70% of the wire cross-sectional area, when the cross-sectional area is less than 10%, the conductivity becomes low and it is difficult to use it as a composite metal wire in the field of application of the present invention.
Moreover, if it exceeds 70%, the strength will be low and it will not be possible to obtain any strength advantage over the conventional annealed composite metal wire material whose core material is austenitic stainless steel, which is a non-magnetic material.

前記芯線の高Mn非磁性鋼を、C: 0.05〜0.3
5ivt%、Mn : 15〜30wt%、Ni : 
2〜14wt%、Cr:4〜18wt%を含有し、残部
か鉄及び不可避的不純物からなるようにすると、より確
実に芯線の強度向上及び非磁性安定化かはかれ、高強度
及び安定した非磁性状態を有する複合金属線とし得るの
で、そうすることか望ましい。尚、上記成分の上限下限
の設定理由は下記の通りである(第3図参照)。
The high Mn nonmagnetic steel of the core wire has a C: 0.05 to 0.3.
5ivt%, Mn: 15-30wt%, Ni:
By containing 2 to 14 wt% of Cr and 4 to 18 wt% of Cr, with the remainder consisting of iron and unavoidable impurities, the strength of the core wire can be more reliably improved and non-magnetic stabilized, resulting in high strength and stable non-magnetic properties. It is desirable to do so because it can be a composite metal wire that has a magnetic state. The reasons for setting the upper and lower limits of the above components are as follows (see Figure 3).

Cは、強度向上及び非磁性安定化に有効な元素てあり、
O,oswt%未満ては従来技術以上の強度か得られず
、非磁性を安定して保持し難くなり、−方0.35wt
%超では加工性か低下するため、0.05〜0、35w
t%とする。
C is an element effective in improving strength and stabilizing non-magnetism,
If it is less than 0.35wt%, it will not be possible to obtain a strength higher than that of the conventional technology, and it will be difficult to stably maintain non-magnetism.
If it exceeds 0.05 to 0.35w, the workability will decrease.
It is assumed to be t%.

Mnは、Cと共に重要なオーステナイト形成元素であり
、非磁性を安定化させるために15wt%以上の添加か
必要であるが、30wt%超では加工性か著しく劣化す
るのて、15〜30wt%とする。
Mn is an important austenite-forming element along with C, and must be added in an amount of 15 wt% or more to stabilize non-magnetism, but if it exceeds 30 wt%, workability will deteriorate significantly, so Mn is added in an amount of 15 to 30 wt%. do.

Niは、加工性の向上に有効であり、2wt%未満ては
この効果は少なく、〜方14wt%を超えると経済性を
損なうために、2〜14wt%とする。尚、Niを含ま
ない高Mn非磁性鋼はステンレス鋼に較へて加工性か劣
る。本発明の利用分野における複合金属線の線径は01
.0mm以下の細径又は極細径での利用か大部分である
のてN1の添加は加工コスト低減のためには重要な意味
を持つ。
Ni is effective in improving processability, and if it is less than 2 wt%, this effect is small, and if it exceeds 14 wt%, it will impair economic efficiency, so it is set at 2 to 14 wt%. Note that high Mn nonmagnetic steel that does not contain Ni has inferior workability compared to stainless steel. The wire diameter of the composite metal wire in the field of application of the present invention is 01
.. The addition of N1 has an important meaning in reducing processing costs since most of the use is for small diameters of 0 mm or less or extremely small diameters.

Crは、製造工程での加熱による脱炭の発生を防止し、
それに起因する磁性化、及び強度低下等の不具合が生じ
るのを防止するのに有効な成分てあリ、4wt%未満て
はこの効果は少なく、又、+8wt%を超えると経済性
を損なうので、4〜18wt%とする。
Cr prevents the occurrence of decarburization due to heating during the manufacturing process,
The ingredients are effective in preventing problems such as magnetization and strength reduction caused by this, but if it is less than 4wt%, this effect will be small, and if it exceeds +8wt%, it will impair economic efficiency. The content should be 4 to 18 wt%.

尚、上記以外の元素も必要に応じ添加し得る。Note that elements other than those mentioned above may be added as necessary.

例えば、鋼溶製時の脱酸をより促進させるためにSiを
添加し得、この場合は0.10wt%未満ては脱酸効果
か少なく、3.00wt%超では熱間加工性を損なうの
で、0.10〜3.00wt%とすればよい。
For example, Si can be added to further promote deoxidation during steel melting. In this case, if it is less than 0.10 wt%, the deoxidizing effect will be small, and if it exceeds 3.00 wt%, hot workability will be impaired. , 0.10 to 3.00 wt%.

(実施例) 実施例1 C:0.25wt%、 Mn:24.0wt%、 Ni
:4.3wt%、 Cr: 6.1wt%を含有し、残
部か鉄及び不可避的不純物からなる高Mn鋼を溶製し、
ビレットに加工した後、線材への加工を行って00.7
mmの高Mn非磁性鋼製の芯線材を得、次いて焼鈍(1
000°CX2分)を施した。
(Example) Example 1 C: 0.25wt%, Mn: 24.0wt%, Ni
: 4.3 wt%, Cr: 6.1 wt%, and the balance consists of iron and inevitable impurities.
After processing into billet, processing into wire rod and 00.7
A core wire made of high Mn non-magnetic steel with a diameter of 1 mm was obtained, and then annealed (1
000°C for 2 minutes).

上記焼鈍後の芯線材に、下地めっきとしてシアン化鋼に
よるCuめっきを施し、次いて硫酸鋼浴による50μm
厚みのCuめっきを施した後、これを湿式伸線法(ダイ
ス枚数・11枚)によりΦ0.5mm迄伸線して、高M
n非磁性鋼製芯線の表面にCuの被覆層を有する複合金
属線を得た。
The core wire rod after the above annealing is subjected to Cu plating using cyanide steel as a base plating, and then 50 μm thick using a sulfuric acid steel bath.
After applying a thick Cu plating, this is drawn to a diameter of Φ0.5mm using the wet wire drawing method (number of dies: 11) to create a high M
A composite metal wire having a Cu coating layer on the surface of an n-nonmagnetic steel core wire was obtained.

この複合金属線の断面図を示すと第1図の通りであり、
(1)は高Mn非磁性鋼製芯線、(2)はCuの被覆層
を示すものである。このCu被覆層(2)の断面積比(
複合金属線の断面積に占めるCu被覆層(2)の断面積
の割合)は15%である。
A cross-sectional view of this composite metal wire is shown in Figure 1.
(1) shows a core wire made of high Mn nonmagnetic steel, and (2) shows a Cu coating layer. The cross-sectional area ratio of this Cu coating layer (2) (
The ratio of the cross-sectional area of the Cu coating layer (2) to the cross-sectional area of the composite metal wire was 15%.

上記複合金属線について引張試験及び透磁率測定を行っ
た。その結果を第1表に示す。
A tensile test and magnetic permeability measurement were performed on the above composite metal wire. The results are shown in Table 1.

比較例1 芯線材として00.7mmの5US304鋼製芯線材(
線材加工後、焼鈍(1150°CX 2分)したもの)
を用いた。かかる点を除き実施例1と同様の方法により
、5US304鋼製芯線表面にCu被覆層を有する複合
金属線(Φ0.5 mm、 Cu被覆層の断面積比:1
5%)を製造し、同様の試験を行った。又、この00.
5mmの線材を焼鈍(1000°CX2分)したものも
製造し、同様の試験を行った。それらの結果を第1表に
示す。
Comparative Example 1 00.7 mm 5US304 steel core wire (
After wire processing, annealing (1150°C for 2 minutes)
was used. A composite metal wire having a Cu coating layer on the surface of the 5US304 steel core wire (Φ0.5 mm, cross-sectional area ratio of the Cu coating layer: 1
5%) and conducted the same test. Also, this 00.
A 5 mm wire rod was also annealed (1000° C. for 2 minutes) and subjected to the same test. The results are shown in Table 1.

第1表から判る如く、比較例1の複合金属線は焼鈍され
ている場合、透磁率か低く非磁性であるが、引張強さか
48Kg/mm2と低く、又、焼鈍されていない場合は
引張強さか131Kg/mm2と高くなるが、透磁率か
大きく磁性化する。
As can be seen from Table 1, when the composite metal wire of Comparative Example 1 is annealed, it has a low magnetic permeability and is non-magnetic, but its tensile strength is as low as 48 Kg/mm2, and when it is not annealed, it has a low tensile strength. Although it becomes high at 131Kg/mm2, the permeability increases and becomes magnetic.

これらに対し、実施例1の複合金属線は、引張強さか1
47Kg/mm2と極めて高く、透磁率か低くて非磁性
である。
In contrast, the composite metal wire of Example 1 had a tensile strength of 1
It has an extremely high magnetic permeability of 47 kg/mm2, and is non-magnetic.

実施例2 芯線材の径を02.9mmとし、この点を除き実施例1
と同様の方法により同様の高Mn非磁性鋼製芯線材(焼
鈍上かりのもの)を得た。
Example 2 Example 1 except that the diameter of the core wire was 02.9 mm.
A similar high-Mn nonmagnetic steel core wire (after annealing) was obtained in the same manner as described above.

上記芯線材に、厚み:0.6mmのCuをクラッドした
。尚、このクラッドに際し、バイブ挿入法を採用した。
The core wire material was clad with Cu having a thickness of 0.6 mm. For this cladding, a vibrator insertion method was adopted.

次いで、これに伸線及び焼鈍(1000°CX1分)を
繰返して施しての0.8mmの線材(焼鈍上がりのもの
)にした後、伸線して00.5mmの複合金属線(Cu
層の断面積比:50%)に仕上げた。
Next, this was repeatedly subjected to wire drawing and annealing (1000°C for 1 minute) to make a 0.8 mm wire (after annealing), and then wire drawn to make a 0.5 mm composite metal wire (Cu
Layer cross-sectional area ratio: 50%).

上記複合金属線について実施例1と同様の試験を行った
。その結果を第1表に示す。
The same test as in Example 1 was conducted on the composite metal wire. The results are shown in Table 1.

比較例2 芯線材として02.9mmの5US304鋼製芯線材(
焼鈍上かりのもの)を用いた。伸線及び焼鈍の繰返し施
工の際の焼鈍は1000°CX3分とした。かかる点を
除き実施例2と同様の方法により、複合金属線(伸線上
かり、Φ0.5 mm、 Cu被覆層の断面積比50%
)を製造し、同様の試験を行った。又、この00.5m
mの線材を焼鈍したものも製造し、同様の試験を行った
。それらの結果を第1表に示す。
Comparative Example 2 02.9 mm 5US304 steel core wire (
Annealed steel) was used. Annealing during repeated wire drawing and annealing was performed at 1000°C for 3 minutes. A composite metal wire (wire drawing top, Φ0.5 mm, cross-sectional area ratio of Cu coating layer 50%) was prepared in the same manner as in Example 2 except for this point.
) and conducted similar tests. Also, this 00.5m
An annealed wire rod of m was also manufactured and the same test was conducted. The results are shown in Table 1.

実施例2の複合金属線は透磁率か低くて非磁性であり、
比較例2の複合金属線に比して非磁性領域での引張強さ
か高い。
The composite metal wire of Example 2 has low magnetic permeability and is non-magnetic,
Compared to the composite metal wire of Comparative Example 2, the tensile strength in the non-magnetic region is higher.

尚、比較例2の複合金属線は比較例1の複合金属線に比
し、又、実施例2の複合金属線は実施例1の複合金属線
に比し、Cu被覆層の断面積比か大きいため引張強さか
低い。
In addition, the composite metal wire of Comparative Example 2 is compared to the composite metal wire of Comparative Example 1, and the composite metal wire of Example 2 is compared to the composite metal wire of Example 1, and the cross-sectional area ratio of the Cu coating layer is Because it is large, its tensile strength is low.

実施例3 高Mn鋼として(: 0.16wt%、  Mn : 
18.1wt%、 Ni12、5wt%、  Cr :
 16.0wt%の組成のものを用いた。
Example 3 As high Mn steel (: 0.16 wt%, Mn:
18.1wt%, Ni12, 5wt%, Cr:
A composition having a composition of 16.0 wt% was used.

かかる点を除き実施例1と同様の方法により高Mn非磁
性鋼製芯線材を製造した後、焼鈍(1000°C×3分
)を施した。次いて、実施例1と同様の方法により、高
Mn非磁性鋼製芯線の表面にCLIの被覆層を形成せし
め、伸線加工、焼鈍を繰り返して、Φ0、08mmにし
た後更に焼純し、次に伸線加工を施してΦ0.050m
mの複合金属線を製造し、同様の試験を行った。その結
果を第1表に示す。
A high-Mn nonmagnetic steel core wire was produced in the same manner as in Example 1 except for this point, and then annealed (1000°C x 3 minutes). Next, by the same method as in Example 1, a CLI coating layer was formed on the surface of the high Mn nonmagnetic steel core wire, and wire drawing and annealing were repeated to obtain a diameter of 0.08 mm, followed by further annealing and purification. Next, wire drawing process is applied to Φ0.050m.
A composite metal wire of m was manufactured and the same test was conducted. The results are shown in Table 1.

実施例3の複合金属線は実施例1の複合金属線と同様に
引張強さか136Kg/mm” と極めて高く、透磁率
か低くて非磁性である。
Similar to the composite metal wire of Example 1, the composite metal wire of Example 3 has extremely high tensile strength of 136 kg/mm'', low magnetic permeability, and is nonmagnetic.

実施例4 実施例3と同様の組成を有する02.9mmの芯線材(
焼鈍上がりのもの)を用い、実施例2と同様の方法によ
り、芯線にCuをクラッドし、伸線加工、焼鈍を繰り返
して00.08mmにした後、更に焼鈍し、次に伸線加
工を施してΦ0.05mmの複合金属線を製造し、同様
の試験を行った。その結果を第1表に示す。
Example 4 A 02.9 mm core wire having the same composition as Example 3 (
Using a method similar to Example 2, the core wire was clad with Cu, wire drawing and annealing were repeated until the wire had a thickness of 0.08 mm, and the wire was further annealed and then wire drawn. A composite metal wire with a diameter of 0.05 mm was manufactured using the same method, and the same test was conducted. The results are shown in Table 1.

実施例4の複合金属線は、透磁率か低くて非磁性であり
、実施例2の複合金属線と同様に引張強さが高い。
The composite metal wire of Example 4 has low magnetic permeability and is non-magnetic, and like the composite metal wire of Example 2, has high tensile strength.

第   1   表 (以下余白) (発明の効果) 本発明に係る複合金属線は、以上述へた構成を有し作用
をなすものであって、高強度及び安定した非磁性を有し
得る高Mn非磁性鋼からなる芯線と、非磁性体であり且
つ導電性に優れている銅の被覆層との複合体にしてなる
ので、導電性及び強度に優れると共に安定して非磁性を
有し得る。換言すると、銅線と同様に優れた導電性及び
安定した非磁性を有すると共に、銅線よりも極めて高い
強度を有し得るという優れた効果を奏するものである。
Table 1 (blank below) (Effects of the invention) The composite metal wire according to the present invention has the above-mentioned structure and functions, and has a high Mn content that can have high strength and stable non-magnetism. Since it is a composite of a core wire made of non-magnetic steel and a coating layer of copper, which is a non-magnetic material and has excellent conductivity, it has excellent conductivity and strength, and can stably have non-magnetism. In other words, it has excellent conductivity and stable non-magnetism similar to copper wire, and has an excellent effect of having significantly higher strength than copper wire.

従って、導電性及び強度に優れると共に非磁性を有する
ことか必要な精密電子機器用の導電線として好適に使用
し得る。即ち、銅線では強度か低いために上記精密電子
機器の小型化、軽量化か難しく、従来の複合金属線では
非磁性状態の安定性に欠けてノイズや自己インダクタン
スの増大を招くが、本発明に係る複合金属線によれば、
ノイズや自己インダクタンスの増大を招くことなく、上
記精密電子機器の小型化、軽量化を容易に果たし得るよ
うになる。
Therefore, it can be suitably used as a conductive wire for precision electronic equipment that requires excellent conductivity and strength as well as non-magnetic properties. That is, copper wire has low strength, making it difficult to make the precision electronic equipment smaller and lighter, and conventional composite metal wire lacks stability in its non-magnetic state, leading to increased noise and self-inductance. According to the composite metal wire according to
The precision electronic equipment described above can be easily made smaller and lighter without increasing noise or self-inductance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1に係る複合金@線の断面図、第2図は
従来の複合金属線の断面図、第3図は複合金属線芯線の
高Mn非磁性鋼についての伸線加工度と透磁率との関係
を示す図である。 (1)−高Mn非磁性鋼製芯線 (2)(4)−Cu被
覆層(3)−鋼製又はステンレス鋼製の芯線特許出願人
  神鋼鋼線工業株式会社 代 理 人  弁理士  金欠 章− 第1図 第2図 第3図 伸線加工度(’/、)
Fig. 1 is a cross-sectional view of the composite gold @ wire according to Example 1, Fig. 2 is a cross-sectional view of a conventional composite metal wire, and Fig. 3 is a wire drawing process of high Mn nonmagnetic steel of the composite metal wire core wire. It is a figure showing the relationship between and magnetic permeability. (1) - High Mn non-magnetic steel core wire (2) (4) - Cu coating layer (3) - Steel or stainless steel core wire Patent applicant Shinko Wire Industry Co., Ltd. Representative Patent attorney Akira Kinkichi - Figure 1 Figure 2 Figure 3 Wire drawing degree ('/,)

Claims (3)

【特許請求の範囲】[Claims] (1)高Mn非磁性鋼からなる芯線の表面に銅の被覆層
を有することを特徴とする複合金属線。
(1) A composite metal wire characterized by having a copper coating layer on the surface of a core wire made of high Mn nonmagnetic steel.
(2)前記銅被覆層の断面積が線断面積の10〜70%
である請求項1に記載の複合金属線。
(2) The cross-sectional area of the copper coating layer is 10 to 70% of the wire cross-sectional area
The composite metal wire according to claim 1.
(3)前記高Mn非磁性鋼が、C:0.05〜0.35
wt%、Mn:15〜30wt%、Ni:2〜14wt
%、Cr:4〜18wt%を含有し、残部が鉄及び不可
避的不純物からなる請求項1又は2に記載の複合金属線
(3) The high Mn nonmagnetic steel has a C: 0.05 to 0.35
wt%, Mn: 15-30wt%, Ni: 2-14wt
%, Cr: 4 to 18 wt%, and the balance consists of iron and inevitable impurities.
JP32009490A 1990-11-24 1990-11-24 Clad metallic wire Pending JPH04191351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32009490A JPH04191351A (en) 1990-11-24 1990-11-24 Clad metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32009490A JPH04191351A (en) 1990-11-24 1990-11-24 Clad metallic wire

Publications (1)

Publication Number Publication Date
JPH04191351A true JPH04191351A (en) 1992-07-09

Family

ID=18117651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32009490A Pending JPH04191351A (en) 1990-11-24 1990-11-24 Clad metallic wire

Country Status (1)

Country Link
JP (1) JPH04191351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104946972A (en) * 2015-07-07 2015-09-30 常州东大中天钢铁研究院有限公司 Steel disc strip for diode lead and production technology of steel disc strip
JP2015173004A (en) * 2014-03-11 2015-10-01 株式会社フジクラ Stranded wire for cable and cable
CN111684095A (en) * 2018-02-01 2020-09-18 住友电气工业株式会社 Copper-clad steel wire and canted coil spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015173004A (en) * 2014-03-11 2015-10-01 株式会社フジクラ Stranded wire for cable and cable
CN104946972A (en) * 2015-07-07 2015-09-30 常州东大中天钢铁研究院有限公司 Steel disc strip for diode lead and production technology of steel disc strip
CN111684095A (en) * 2018-02-01 2020-09-18 住友电气工业株式会社 Copper-clad steel wire and canted coil spring

Similar Documents

Publication Publication Date Title
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2012017933A1 (en) Method for producing non-oriented electrical steel sheet
JPH0465022A (en) Wire conductor for automobile
JP2016046522A (en) Wiring material for coil
JP5644680B2 (en) Electrical steel sheet and manufacturing method thereof
JPH04191351A (en) Clad metallic wire
JP6453683B2 (en) Soft magnetic wire, bar and soft magnetic steel parts
JP2017128784A (en) Manufacturing method of soft magnetic steel component
JP6222498B2 (en) Metastable austenitic stainless steel strip or steel plate
JPS6338547A (en) High strength conductive copper alloy
JPH10265874A (en) Copper alloy for electrical/electronic parts and its production
JP4516887B2 (en) Hot-rolled sheet with extremely small material variation and method for producing molten steel for hot-rolled sheet
JPH01283707A (en) High strength conductor
JP2005015856A (en) Inexpensive stainless steel wire having excellent elongation characteristic, and fine wire and method for manufacturing the same
JPH06235048A (en) High strength nonmagnetic stainless steel and its production
JPS6338545A (en) High strength conductive copper alloy
JPH10110246A (en) High strength steel wire for acsr, reduced in iron loss in high magnetic field
JPH0238543A (en) Lead starting material for semiconductor
JPH10309627A (en) Plano wire for saw wire
JPH0218996A (en) Amorphous alloy material plated with metal and plating method
JP2006198623A (en) Solid wire for gas shield arc welding
JPS6338546A (en) High strength conductive copper alloy
JPH0653903B2 (en) Ni-Fe system high permeability magnetic alloy
JP3461604B2 (en) Method for producing steel wire with low power loss
JP2002157919A (en) Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire