JP2005296755A - Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system - Google Patents

Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system Download PDF

Info

Publication number
JP2005296755A
JP2005296755A JP2004114430A JP2004114430A JP2005296755A JP 2005296755 A JP2005296755 A JP 2005296755A JP 2004114430 A JP2004114430 A JP 2004114430A JP 2004114430 A JP2004114430 A JP 2004114430A JP 2005296755 A JP2005296755 A JP 2005296755A
Authority
JP
Japan
Prior art keywords
catalyst
steam reforming
carbon monoxide
production apparatus
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004114430A
Other languages
Japanese (ja)
Inventor
Takanari Matsumoto
隆也 松本
Yoshihiro Kobori
良浩 小堀
Iwao Anzai
巌 安斉
Seiichi Ueno
精一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004114430A priority Critical patent/JP2005296755A/en
Priority to PCT/JP2005/007195 priority patent/WO2005097317A1/en
Publication of JP2005296755A publication Critical patent/JP2005296755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam reforming catalyst for hydrocarbon compounds which catalyst advantageously performs purge with an oxygen-containing gas during, e.g., shutdown of a hydrogen production apparatus; a hydrogen production apparatus using the catalyst; and a fuel cell system. <P>SOLUTION: The steam reforming catalyst for hydrocarbon compounds comprises a carrier containing (a) alumina, (b) cerium oxide, and (c) barium oxide and/or magnesia as constituting components and rhodium carried by the carrier. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素化合物類の水蒸気改質触媒に関する。特に、水素製造装置の運転停止時などに酸素含有ガスによるパージを有利に行うことができる炭化水素化合物類の水蒸気改質触媒に関し、さらには該触媒を使用した水蒸気改質方法および水素製造装置並びに燃料電池システムに関する。   The present invention relates to a steam reforming catalyst for hydrocarbon compounds. In particular, the present invention relates to a steam reforming catalyst of hydrocarbon compounds that can be advantageously purged with an oxygen-containing gas when the operation of the hydrogen production apparatus is stopped, and further, a steam reforming method using the catalyst, a hydrogen production apparatus, and The present invention relates to a fuel cell system.

燃料電池システムの運転において、電力および熱需要の状況への対応、点検などのためシステムを停止する場合がある。その場合、システム内部に水および未改質燃料が存在したまま停止すると、触媒の劣化、再起動性の悪化、燃料の漏洩などの原因となる場合がある。そこで、停止時にはシステム内部を適当なガスでパージするのが好ましい。しかしながら、パージガスとして空気など酸素を含有するガスを用いる場合、酸素による改質触媒の劣化が無視できなかった。
水蒸気改質触媒としては、ニッケル、ルテニウム、ロジウムなどが有効であることが知られている(特許文献1)が、長期運転での寿命および酸素含有ガスによるパージへの耐性を両立する触媒系として十分な性能を持つものは知られていなかった。
特開平4−281845号公報
In the operation of the fuel cell system, the system may be stopped for the purpose of responding to and checking electric power and heat demand. In this case, if the system is stopped while water and unreformed fuel are present in the system, it may cause catalyst deterioration, restartability deterioration, fuel leakage, and the like. Therefore, it is preferable to purge the interior of the system with an appropriate gas when the system is stopped. However, when a gas containing oxygen such as air is used as the purge gas, deterioration of the reforming catalyst due to oxygen cannot be ignored.
As a steam reforming catalyst, nickel, ruthenium, rhodium and the like are known to be effective (Patent Document 1), but as a catalyst system that achieves both a long-term operation life and resistance to purging with an oxygen-containing gas. No one with sufficient performance was known.
JP-A-4-281845

本発明は、長期運転での寿命および酸素含有ガスによるパージへの耐性を両立する水蒸気改質触媒を提供し、安定的に長期運転が可能な水素製造装置および燃料電池システムを提供することを目的とする。   An object of the present invention is to provide a steam reforming catalyst that achieves both a long-term operation life and resistance to purging with an oxygen-containing gas, and to provide a hydrogen production apparatus and a fuel cell system capable of stable long-term operation. And

本発明者らは、高活性であり、長期の運転が可能で、且つ酸素含有ガスによるパージへの耐性に優れた水蒸気改質触媒について鋭意探索した結果、本発明を完成するに至ったものである。
すなわち、本発明は、(a)アルミナ、(b)セリア、および(c)バリアおよび/またはマグネシアを構成成分として含む担体に、ロジウムを担持させてなる炭化水素化合物類の水蒸気改質触媒に関する。
また本発明は、前記水蒸気改質触媒を用いて、炭化水素化合物類および水蒸気を含む原料混合物から、一酸化炭素および水素を含む混合ガスを製造することを特徴とする水蒸気改質方法に関する。
また本発明は、炭化水素化合物類を水蒸気改質反応させる改質部を有し、該改質部に前記水蒸気改質触媒を使用してなり、停止時に酸素を含むガスで改質部をパージすることを特徴とする水素製造装置に関する。
また本発明は、前記水蒸気改質方法により製造された一酸化炭素と水素を含む混合ガスを、後続の一酸化炭素除去工程で処理する工程を有することを特徴とする水素製造装置に関する。
また本発明は、前記一酸化炭素除去工程が水性ガス反応工程とそれに引き続く一酸化炭素選択酸化工程からなることを特徴とする前記水素製造装置に関する。
また本発明は、前記水素製造装置により製造される水素を燃料とすることを特徴とする燃料電池システムに関する。
As a result of earnest search for a steam reforming catalyst having high activity, capable of long-term operation, and excellent resistance to purge with an oxygen-containing gas, the present inventors have completed the present invention. is there.
That is, the present invention relates to a steam reforming catalyst of hydrocarbon compounds in which rhodium is supported on a carrier containing (a) alumina, (b) ceria, and (c) a barrier and / or magnesia as constituent components.
The present invention also relates to a steam reforming method, wherein a mixed gas containing carbon monoxide and hydrogen is produced from a raw material mixture containing hydrocarbon compounds and steam using the steam reforming catalyst.
In addition, the present invention has a reforming section for subjecting hydrocarbon compounds to a steam reforming reaction, and uses the steam reforming catalyst in the reforming section, and purges the reforming section with a gas containing oxygen when stopped. The present invention relates to a hydrogen production apparatus.
The present invention also relates to a hydrogen production apparatus comprising a step of treating a mixed gas containing carbon monoxide and hydrogen produced by the steam reforming method in a subsequent carbon monoxide removal step.
In addition, the present invention relates to the hydrogen production apparatus, wherein the carbon monoxide removal step includes a water gas reaction step and a subsequent carbon monoxide selective oxidation step.
The present invention also relates to a fuel cell system using hydrogen produced by the hydrogen production apparatus as a fuel.

以下、本発明を詳細に説明する。
本発明における水蒸気改質反応とは、炭化水素化合物類を触媒の存在下にスチームと反応させて、一酸化炭素および水素を含むリフォーミングガスに変換する反応のことを言う。
原料となる炭化水素化合物類とは、炭素数1〜40、好ましくは炭素数1〜30の有機化合物である。具体的には、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、芳香族炭化水素などを挙げることができ、また飽和脂肪族炭化水素、不飽和脂肪族炭化水素については、鎖状、環状を問わず使用できる。芳香族炭化水素についても単環、多環を問わず使用できる。このような炭化水素化合物類は置換基を含むことができる。置換基としては、鎖状、環状のどちらをも使用でき、例えば、アルキル基、シクロアルキル基、アリール基、アルキルアリール基およびアラルキル基等を挙げることができる。また、これらの炭化水素化合物類はヒドロキシ基、アルコキシ基、ヒドロキシカルボニル基、アルコキシカルボニル基、ホルミル基などのヘテロ原子を含有する置換基により置換されていても良い。
Hereinafter, the present invention will be described in detail.
The steam reforming reaction in the present invention refers to a reaction in which hydrocarbon compounds are reacted with steam in the presence of a catalyst to convert to a reforming gas containing carbon monoxide and hydrogen.
The hydrocarbon compounds as the raw material are organic compounds having 1 to 40 carbon atoms, preferably 1 to 30 carbon atoms. Specific examples include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, aromatic hydrocarbons, etc. In addition, saturated aliphatic hydrocarbons and unsaturated aliphatic hydrocarbons are linear or cyclic. Can be used regardless. Aromatic hydrocarbons can be used regardless of whether they are monocyclic or polycyclic. Such hydrocarbon compounds can contain substituents. As the substituent, either a chain or a ring can be used, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, and an aralkyl group. These hydrocarbon compounds may be substituted with a substituent containing a hetero atom such as a hydroxy group, an alkoxy group, a hydroxycarbonyl group, an alkoxycarbonyl group, or a formyl group.

本発明に使用できる炭化水素化合物類の具体例としてはメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテン、ペンテン、ヘキセンなどの不飽和脂肪族炭化水素、シクロペンタン、シクロヘキサンなど脂環式炭化水素、ベンゼン、トルエン、キシレン、ナフタレンなどの芳香族炭化水素を挙げることができる。また、これらの混合物も好適に使用でき、例えば、天然ガス、LPG、ナフサ、ガソリン、灯油、軽油など工業的に安価に入手できる材料を挙げることができる。またヘテロ原子を含む置換基を有する炭化水素化合物類の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、フェノール、アニソール、アセトアルデヒド、酢酸などを挙げることができる。   Specific examples of hydrocarbon compounds that can be used in the present invention include saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, and eicosane. And unsaturated aliphatic hydrocarbons such as ethylene, propylene, butene, pentene and hexene, alicyclic hydrocarbons such as cyclopentane and cyclohexane, and aromatic hydrocarbons such as benzene, toluene, xylene and naphthalene. Moreover, these mixtures can also be used suitably, For example, the material which can be obtained cheaply industrially, such as natural gas, LPG, naphtha, gasoline, kerosene, and light oil, can be mentioned. Specific examples of the hydrocarbon compound having a substituent containing a hetero atom include methanol, ethanol, propanol, butanol, dimethyl ether, phenol, anisole, acetaldehyde, acetic acid and the like.

また、上記原料に水素、水、二酸化炭素、一酸化炭素などを含む原料も使用できる。例えば、原料の前処理として水素化脱硫を実施する場合、反応に用いた水素の残留分は特に分離することなくそのまま使用することが出来る。   Moreover, the raw material which contains hydrogen, water, a carbon dioxide, carbon monoxide etc. in the said raw material can also be used. For example, when hydrodesulfurization is carried out as a pretreatment of the raw material, the hydrogen residue used in the reaction can be used as it is without separation.

本発明の水蒸気改質反応において、反応系に導入するスチームの量は、原料炭化水素化合物類に含まれる炭素原子モル数に対する水分子モル数の比(スチーム/カーボン比)として定義される値が、好ましくは0.3〜10、より好ましくは0.5〜5、さらに好ましくは1〜3の範囲であることが望ましい。この値が上記範囲より小さい場合には触媒上にコークが析出しやすく、また水素分率を上げることが出来なくなり、一方、大きい場合には改質反応は進むがスチーム発生設備、スチーム回収設備の肥大化を招く恐れがある。添加の方法は特に制限はないが、反応帯域に原料炭化水素化合物類と同時に導入しても良いし、反応器帯域の別々の位置からあるいは何回かに分けるなどして一部ずつ導入しても良い。   In the steam reforming reaction of the present invention, the amount of steam introduced into the reaction system is a value defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the raw material hydrocarbon compounds (steam / carbon ratio). Preferably, it is in the range of 0.3 to 10, more preferably 0.5 to 5, and still more preferably 1 to 3. If this value is smaller than the above range, coke is liable to deposit on the catalyst and the hydrogen fraction cannot be increased. On the other hand, if it is larger, the reforming reaction proceeds but the steam generation facility and steam recovery facility May cause enlargement. There are no particular restrictions on the method of addition, but it may be introduced into the reaction zone at the same time as the raw material hydrocarbon compounds, or it may be introduced in portions from separate positions or several times in the reactor zone. Also good.

また、一酸化炭素を主に取得する目的などの場合においては、二酸化炭素を原料ガスに添加することも出来る。この場合の二酸化炭素の添加量は原料に含まれる炭素原子モル数(二酸化炭素分は除く)に対する二酸化炭素分子モル数の比(二酸化炭素/カーボン比)として定義され、その値は好ましくは0.1〜5、より好ましくは0.1〜3の範囲である。しかし、水素の製造が目的の場合必ずしも二酸化炭素の添加は必要ではない。   In the case of mainly obtaining carbon monoxide, carbon dioxide can be added to the raw material gas. The amount of carbon dioxide added in this case is defined as the ratio of the number of moles of carbon dioxide molecules to the number of moles of carbon atoms contained in the raw material (excluding carbon dioxide) (carbon dioxide / carbon ratio). It is 1-5, More preferably, it is the range of 0.1-3. However, it is not always necessary to add carbon dioxide for the purpose of producing hydrogen.

本発明の水蒸気改質触媒は、(a)アルミナ、(b)セリア、および(c)バリアおよび/またはマグネシアを構成成分として含む担体に、ロジウムを担持させてなるものである。
ロジウムの担持方法に関して特に制限はなく、通常の含浸法など公知の方法を採用できる。通常、ロジウムの塩もしくは錯体として、水、エタノール若しくはアセトンなどの溶媒に溶解させ、担体に含浸させる。担持させる金属塩もしくは金属錯体は、塩化物、硝酸塩、硫酸塩、酢酸塩、アセト酢酸塩などが好適に用いられ、具体的には、塩化ロジウム、硝酸ロジウム、ロジウムカルボニルのような化合物を挙げることができるがこれらに限定されるものではない。
The steam reforming catalyst of the present invention is obtained by supporting rhodium on a carrier containing (a) alumina, (b) ceria, and (c) a barrier and / or magnesia as constituent components.
The rhodium loading method is not particularly limited, and a known method such as a normal impregnation method can be employed. Usually, as a rhodium salt or complex, it is dissolved in a solvent such as water, ethanol or acetone and impregnated into a carrier. As the metal salt or metal complex to be supported, chloride, nitrate, sulfate, acetate, acetoacetate, etc. are preferably used, and specific examples include compounds such as rhodium chloride, rhodium nitrate, and rhodium carbonyl. However, it is not limited to these.

該触媒中におけるロジウムの含有量は、ロジウム原子として、通常0.05〜20質量%、好ましくは0.1〜10質量%、さらに好ましくは0.3〜5質量%である。含有量がこの範囲より多い場合、活性金属の凝集が多くなり、表面に出る金属の割合が極度に減少するため好ましくない。また、該範囲より少ない場合には十分な活性を示すことが出来ないため、多量の触媒が必要となり反応器を必要以上に大きくする必要が出るなどの問題が生じる。   The rhodium content in the catalyst is usually 0.05 to 20% by mass, preferably 0.1 to 10% by mass, and more preferably 0.3 to 5% by mass as rhodium atoms. When the content is larger than this range, the aggregation of the active metal is increased, and the ratio of the metal appearing on the surface is extremely decreased, which is not preferable. In addition, when the amount is less than the above range, sufficient activity cannot be exhibited, so that a large amount of catalyst is required and the reactor needs to be enlarged more than necessary.

本発明の触媒に用いられる担体は、(a)アルミナ、(b)セリア、および(c)バリアおよび/またはマグネシアを構成成分として成るものである。セリアの構成割合は、アルミナに対して1〜50質量%、好ましくは1.5〜30質量%、さらに好ましくは2〜20質量%の範囲である。また、バリアおよび/またはマグネシアの構成割合についても、アルミナに対して1〜50質量%、好ましくは1.5〜30質量%、さらに好ましくは2〜20質量%の範囲である。これらが前記した割合より少ない場合には炭素析出を抑制する効果が不十分となり、一方、前記した割合より多い場合には表面積が小さくなり活性が低下するため好ましくない。
なお、担体には、本発明の効果を損なわない限りにおいて、必要に応じ、カルシア、スカンジア、イットリア、チタニア、ジルコニア、ハフニア、トリア、シリカ、シリカアルミナ、ゼオライトなどを適宜混合して使用することができる。
The support used in the catalyst of the present invention is composed of (a) alumina, (b) ceria, and (c) barrier and / or magnesia as constituent components. The composition ratio of ceria is 1 to 50% by mass, preferably 1.5 to 30% by mass, and more preferably 2 to 20% by mass with respect to alumina. The constituent ratio of the barrier and / or magnesia is also in the range of 1 to 50% by mass, preferably 1.5 to 30% by mass, and more preferably 2 to 20% by mass with respect to alumina. When these are less than the above-mentioned ratio, the effect of suppressing carbon deposition becomes insufficient, while when more than the above-mentioned ratio, the surface area becomes small and the activity is lowered, which is not preferable.
In addition, as long as the effect of the present invention is not impaired, the carrier may be used by appropriately mixing calcia, scandia, yttria, titania, zirconia, hafnia, tria, silica, silica alumina, zeolite, and the like as necessary. it can.

以上に記載した本発明の触媒を用いることで、水素製造装置の運転停止時に酸素を含有するガスによる装置内のパージが可能となる。酸素を含有するガスとしては通常空気が用いられるが、燃焼排ガス、燃料電池の空気極オフガスなど酸素濃度を落としたガスはさらに好ましく使用できる。パージする際の改質部の温度は通常室温〜400℃、好ましくは100℃〜300℃である。これ以上低いと水の凝縮が起こり十分パージの効果が得られない恐れがある。一方、これ以上高いと、予期せぬ触媒の劣化が進行する恐れがある。   By using the catalyst of the present invention described above, purging in the apparatus with a gas containing oxygen is possible when the hydrogen production apparatus is stopped. As the gas containing oxygen, air is usually used. However, a gas having a reduced oxygen concentration, such as combustion exhaust gas and air electrode off-gas of a fuel cell, can be used more preferably. The temperature of the reforming part at the time of purging is usually room temperature to 400 ° C, preferably 100 ° C to 300 ° C. If it is lower than this, water may condense and a sufficient purging effect may not be obtained. On the other hand, if it is higher than this, the catalyst may be deteriorated unexpectedly.

本発明の改質触媒の形態については特に制限はない。例えば、打錠成形し粉砕後適当な範囲に整粒した触媒、押し出し成形した触媒、適当なバインダーを加え押し出し成形した触媒、粉末状触媒などを用いることができる。もしくは、打錠成形し粉砕後適当な範囲に整粒した担体、押し出し成形した担体、粉末あるいは球形、リング状、タブレット状、円筒状、フレーク状など適当な形に成形した担体などに金属を担持した触媒などを用いることができる。 また、触媒自体をモノリス状、ハニカム状などに成形した触媒、あるいは適当な素材を用いたモノリスやハニカムなどに触媒をコーティングしたものなどを用いることができる。   There is no restriction | limiting in particular about the form of the reforming catalyst of this invention. For example, it is possible to use a catalyst formed by tableting and pulverized to an appropriate range, an extruded catalyst, an extruded catalyst added with an appropriate binder, a powdered catalyst, and the like. Alternatively, a metal is supported on a carrier formed by tableting and pulverized to an appropriate range, an extruded carrier, a powder or a carrier formed into an appropriate shape such as a sphere, ring, tablet, cylinder, or flake. Used catalysts can be used. Further, a catalyst obtained by forming the catalyst itself into a monolith shape, a honeycomb shape, or the like, or a monolith using a suitable material, a honeycomb coated with a catalyst, or the like can be used.

こうして得られた本発明の改質触媒は、必要であれば水素還元を行うことにより活性化される。   The reforming catalyst of the present invention thus obtained is activated by hydrogen reduction if necessary.

水蒸気改質反応に用いる反応器の形態としては、流通式固定床反応器が好ましく用いられるが、流動床反応器を用いることも可能である。反応器の形状としては、円筒状、平板状などそれぞれのプロセスの目的に応じた公知のいかなる形状を取ることができる。   As the form of the reactor used for the steam reforming reaction, a flow-type fixed bed reactor is preferably used, but a fluidized bed reactor can also be used. The shape of the reactor may be any known shape depending on the purpose of each process, such as a cylindrical shape or a flat plate shape.

反応器に導入される流通原料(原料+水蒸気)の空間速度は、GHSVが好ましくは100〜100,000h-1、より好ましくは300〜50,000h-1、さらに好ましくは500〜30,000h-1の範囲において、それぞれの目的に鑑み設定される。
反応温度は特に限定されるものではないが、好ましくは200〜1000℃、より好ましくは300〜900℃、さらに好ましくは500〜800℃の範囲である。
反応圧力についても特に限定されるものではなく、好ましくは大気圧〜20MPa、より好ましくは大気圧〜5MPa、さらに好ましくは大気圧〜1MPaの範囲で実施されるが、必要であれば大気圧以下で実施することも可能である。
The space velocity of the flow material introduced into the reactor (raw material + water vapor) is, GHSV is preferably 100~100,000h -1, more preferably 300~50,000h -1, more preferably 500~30,000H - In the range of 1 , it is set in consideration of each purpose.
Although reaction temperature is not specifically limited, Preferably it is 200-1000 degreeC, More preferably, it is 300-900 degreeC, More preferably, it is the range of 500-800 degreeC.
The reaction pressure is not particularly limited and is preferably carried out in the range of atmospheric pressure to 20 MPa, more preferably atmospheric pressure to 5 MPa, and further preferably atmospheric pressure to 1 MPa. It is also possible to implement.

また本発明は、前記水蒸気改質反応で得られる一酸化炭素と水素を含む混合ガスを、後続の一酸化炭素除去工程で処理する工程を有することを特徴とする水素製造装置を提供する。
本発明の水蒸気改質反応で得られる一酸化炭素と水素を含む混合ガスは、固体酸化物形燃料電池のような場合であればそのまま燃料電池用の燃料として用いることができる。また、リン酸形燃料電池や固体高分子形燃料電池のように一酸化炭素の除去が必要な場合には、一酸化炭素除去工程を併用することにより該燃料電池用水素の原料として好適に用いることができる。
The present invention also provides a hydrogen production apparatus comprising a step of treating a mixed gas containing carbon monoxide and hydrogen obtained by the steam reforming reaction in a subsequent carbon monoxide removal step.
The mixed gas containing carbon monoxide and hydrogen obtained by the steam reforming reaction of the present invention can be used as it is as a fuel for a fuel cell in the case of a solid oxide fuel cell. In addition, when carbon monoxide needs to be removed as in a phosphoric acid fuel cell or a polymer electrolyte fuel cell, the carbon monoxide removing step is used in combination, so that it is suitably used as a raw material for hydrogen for the fuel cell. be able to.

一酸化炭素の除去は、例えばシフト工程と一酸化炭素選択酸化工程で処理することにより実施できる。シフト工程とは一酸化炭素と水を反応させて水素と二酸化炭素に転換する工程であり、鉄−クロムの混合酸化物、銅−亜鉛の混合酸化物、白金、ルテニウム、イリジウムなどを含有する触媒を用い、一酸化炭素含有量を好ましくは2容量%以下、より好ましくは1容量%以下、さらに好ましくは0.5容量%以下までに減少させる。通常、リン酸形燃料電池ではこの状態の混合ガスを燃料として用いることができる。   The removal of carbon monoxide can be performed by, for example, performing a shift process and a carbon monoxide selective oxidation process. The shift step is a step of converting carbon monoxide and water into hydrogen and carbon dioxide, and a catalyst containing a mixed oxide of iron-chromium, a mixed oxide of copper-zinc, platinum, ruthenium, iridium, etc. The carbon monoxide content is preferably reduced to 2% by volume or less, more preferably 1% by volume or less, and even more preferably 0.5% by volume or less. Usually, in the phosphoric acid fuel cell, the mixed gas in this state can be used as fuel.

一方、固体高分子形燃料電池では、さらに一酸化炭素濃度を低減させることが必要であるので一酸化炭素選択酸化工程などで処理する。この工程では、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、銀、金などを含有する触媒を用い、残存する一酸化炭素モル数に対し、好ましくは0.5〜10倍モル、より好ましくは0.7〜5倍モル、さらに好ましくは1〜3倍モルの酸素を添加して一酸化炭素を選択的に二酸化炭素に転換することにより一酸化炭素濃度を低減させる。この場合、一酸化炭素の酸化と同時に共存する水素と反応させメタンを生成させることで一酸化炭素濃度の低減を図ることもできる。   On the other hand, in the polymer electrolyte fuel cell, since it is necessary to further reduce the carbon monoxide concentration, the treatment is performed in a carbon monoxide selective oxidation step or the like. In this step, a catalyst containing iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, etc. is used, and preferably 0.5 mol relative to the remaining number of moles of carbon monoxide. The carbon monoxide concentration is reduced by selectively converting carbon monoxide to carbon dioxide by adding 10 to 10 times mol, more preferably 0.7 to 5 times mol, and further preferably 1 to 3 times mol. Let In this case, the carbon monoxide concentration can be reduced by reacting with the coexisting hydrogen simultaneously with the oxidation of carbon monoxide to generate methane.

また本発明は、前記水素製造装置により製造される水素を燃料とする燃料電池システムを提供する。
以下、本発明の燃料電池システムについて説明する。図1は本発明の燃料電池システムの一例を示す概略図である。
図1において、燃料タンク3内の燃料は燃料ポンプ4を経て脱硫器5に流入する。脱硫器内には例えば銅−亜鉛系あるいはニッケル−亜鉛系の収着剤などを充填することができる。この時,必要であれば一酸化炭素選択酸化反応器11からの水素含有ガスを添加できる。脱硫器5で脱硫された燃料は水タンク1から水ポンプ2を経た水と混合した後、気化器6に導入されて気化され、改質器7に送り込まれる。
The present invention also provides a fuel cell system using hydrogen produced by the hydrogen production apparatus as fuel.
Hereinafter, the fuel cell system of the present invention will be described. FIG. 1 is a schematic view showing an example of a fuel cell system of the present invention.
In FIG. 1, the fuel in the fuel tank 3 flows into the desulfurizer 5 through the fuel pump 4. The desulfurizer can be filled with, for example, a copper-zinc-based or nickel-zinc-based sorbent. At this time, if necessary, the hydrogen-containing gas from the carbon monoxide selective oxidation reactor 11 can be added. The fuel desulfurized in the desulfurizer 5 is mixed with water from the water tank 1 through the water pump 2, introduced into the vaporizer 6, vaporized, and sent to the reformer 7.

改質器7の触媒として、(a)アルミナ、(b)セリア、および(c)バリアおよび/またはマグネシアを構成成分として含む担体にロジウムを担持させた水蒸気改質触媒を用い、改質器内に充填される。この時、スチーム/カーボン比は好ましくは1〜20、より好ましくは1.5〜10、さらに好ましくは2〜5に設定される。また、流通原料(原料+水蒸気)の空間速度は上記の触媒量基準、標準温度・圧力換算で、GHSVが好ましくは100〜100,000h-1、より好ましくは300〜50,000h-1、さらに好ましくは500〜30,000h-1の範囲に設定される。改質器反応管は燃料タンクからの燃料およびアノードオフガスを燃料とするバーナー18により加温され、好ましくは200〜1000℃、より好ましくは300〜900℃、さらに好ましくは500〜800℃の範囲に調節される。 As a catalyst for the reformer 7, a steam reforming catalyst in which rhodium is supported on a carrier containing (a) alumina, (b) ceria, and (c) a barrier and / or magnesia as a constituent component is used. Filled. At this time, the steam / carbon ratio is preferably set to 1 to 20, more preferably 1.5 to 10, and further preferably 2 to 5. Also, the space velocity is above catalysts basis of distribution material (raw material + water vapor), at standard temperature and pressure terms, GHSV is preferably 100~100,000H -1, more preferably 300~50,000H -1, further Preferably, it is set in the range of 500 to 30,000 h- 1 . The reformer reaction tube is heated by a burner 18 using fuel from the fuel tank and anode off-gas as fuel, preferably in the range of 200 to 1000 ° C., more preferably 300 to 900 ° C., and even more preferably in the range of 500 to 800 ° C. Adjusted.

この様にして製造された水素と一酸化炭素を含有する改質ガスは高温シフト反応器9、低温シフト反応器10、一酸化炭素選択酸化反応器11を順次通過させることで一酸化炭素濃度は燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、高温シフト反応器9には鉄−クロム系触媒、低温シフト反応器10には銅−亜鉛系触媒、一酸化炭素選択酸化反応器11にはルテニウム系触媒等を挙げることができる。   The reformed gas containing hydrogen and carbon monoxide produced in this way passes through the high temperature shift reactor 9, the low temperature shift reactor 10, and the carbon monoxide selective oxidation reactor 11 in sequence, so that the carbon monoxide concentration is reduced. It is reduced to the extent that it does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium-based catalyst for the high-temperature shift reactor 9, a copper-zinc-based catalyst for the low-temperature shift reactor 10, and a ruthenium-based catalyst for the carbon monoxide selective oxidation reactor 11. A catalyst etc. can be mentioned.

固体高分子型燃料電池17はアノード12、カソード13、固体高分子電解質14からなり、アノード側には上記の方法で得られた高純度の水素を含有する燃料ガスが、カソード側には空気ブロアー8から送られる空気が、それぞれ必要であれば適当な加湿処理を行った後(加湿装置は図示していない)導入される。
この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を促進するため、それぞれ、アノードには白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、カソードには白金黒、活性炭担持のPt触媒などが用いられる。通常アノード、カソードの両触媒とも、必要に応じてポリテトラフロロエチレン、低分子の高分子電解質膜素材、活性炭などと共に多孔質触媒層に成形される。
The polymer electrolyte fuel cell 17 comprises an anode 12, a cathode 13, and a solid polymer electrolyte 14, and a fuel gas containing high-purity hydrogen obtained by the above method is provided on the anode side, and an air blower is provided on the cathode side. The air sent from 8 is introduced after appropriate humidification processing (a humidifier is not shown) if necessary.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds at the cathode. In order to promote these reactions, platinum black and Pt catalyst or Pt-Ru alloy catalyst supported on activated carbon are used for the anode, and platinum black and Pt catalyst supported on activated carbon are used for the cathode. Usually, both the anode and cathode catalysts are formed into a porous catalyst layer together with polytetrafluoroethylene, a low molecular weight polymer electrolyte membrane material, activated carbon, and the like as necessary.

次いで、Nafion(デュポン社)、Gore(ゴア社)、Flemion(旭硝子社)、Aciplex(旭化成社)等の商品名で知られる高分子電解質膜の両側に該多孔質触媒層を積層し、MEA(Membrane Electrode Assembly:膜電極集合体)が形成される。さらにMEAを金属材料、グラファイト、カーボンコンポジットなどからなるガス供給機能、集電機能、特にカソードにおいては重要な排水機能等を持つセパレータで挟み込むことで燃料電池が組み立てられる。電気負荷15はアノード、カソードと電気的に連結される。
アノードオフガスはバーナー18において燃焼され改質管の加温に用いられた後排出される。カソードオフガスは排気口16から排出される。
Next, the porous catalyst layer is laminated on both sides of a polymer electrolyte membrane known by a trade name such as Nafion (DuPont), Gore (Gore), Flemion (Asahi Glass), Aciplex (Asahi Kasei), and the like. Membrane Electrode Assembly: Membrane electrode assembly) is formed. Further, the fuel cell is assembled by sandwiching the MEA with a separator having a gas supply function, a current collecting function, particularly an important drainage function in the cathode, and the like made of a metal material, graphite, carbon composite and the like. The electric load 15 is electrically connected to the anode and the cathode.
The anode off-gas is combusted in the burner 18 and used to warm the reforming tube, and then discharged. The cathode off gas is discharged from the exhaust port 16.

本発明によれば、従来困難であった、運転停止時において酸素含有ガスによるパージによっても活性低下が無く、かつ通常での運転での耐久性にも優れた水蒸気改質触媒が提供され、これを用いた燃料電池システムが提供される。   According to the present invention, there is provided a steam reforming catalyst, which has been difficult in the past and has no decrease in activity even by purging with an oxygen-containing gas when the operation is stopped, and has excellent durability in normal operation. A fuel cell system using the above is provided.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[触媒の調製例]
(1)表面積165g/cm2のγ−アルミナを触媒担体(1)とする。
(2)表面積165g/cm2のγ−アルミナに、担持CeO2量が12質量%になるように1Mの硝酸セリウム水溶液と担持BaO量が5質量%になるように1Mの硝酸バリウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、800℃で3時間空気焼成し、これを触媒担体(2)とする。
(3)表面積165g/cm2のγ−アルミナに、担持CeO2量が12質量%になるように1Mの硝酸セリウム水溶液と担持MgO量が5質量%になるように1Mの硝酸マグネシウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、800℃で3時間空気焼成し、これを触媒担体(3)とする。
[Catalyst preparation example]
(1) γ-alumina having a surface area of 165 g / cm 2 is used as the catalyst carrier (1).
(2) To 1-gamma alumina having a surface area of 165 g / cm 2 , add 1M cerium nitrate aqueous solution so that the amount of supported CeO 2 becomes 12% by mass and 1M barium nitrate aqueous solution so that the amount of supported BaO becomes 5% by mass. It was impregnated and dried, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain a catalyst carrier (2).
(3) Add 1M cerium nitrate aqueous solution so that the amount of supported CeO 2 is 12% by mass and 1M magnesium nitrate aqueous solution so that the amount of supported MgO is 5% by mass to γ-alumina having a surface area of 165 g / cm 2. It was impregnated and dried, dried at 120 ° C. for 12 hours, and then air calcined at 800 ° C. for 3 hours to obtain a catalyst carrier (3).

(A)上記担体(1)に、ルテニウム金属として担持量が2質量%になるように0.1Mの塩化ルテニウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、700℃で3時間水素還元し、触媒(A)とする。
(B)上記担体(2)に、ルテニウム金属として担持量が2質量%になるように0.1Mの塩化ルテニウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、700℃で3時間水素還元し、触媒(B)とする。
(C)上記担体(1)に、ロジウム金属として担持量が2質量%になるように0.1Mの塩化ロジウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、700℃で3時間水素還元し、触媒(C)とする。
(D)上記担体(2)に、ロジウム金属として担持量が2質量%になるように0.1Mの塩化ロジウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、700℃で3時間水素還元し、触媒(D)とする。
(E)上記担体(3)に、ロジウム金属として担持量が2質量%になるように0.1Mの塩化ロジウム水溶液を加え含浸担持し、乾固、120℃で12時間乾燥後、700℃で3時間水素還元し、触媒(E)とする。
(A) The carrier (1) is impregnated with 0.1M ruthenium chloride aqueous solution so that the supported amount of ruthenium metal is 2% by mass, dried and dried at 120 ° C. for 12 hours, and then at 700 ° C. Hydrogen reduction is performed for 3 hours to obtain a catalyst (A).
(B) The carrier (2) is impregnated with 0.1M ruthenium chloride aqueous solution so that the supported amount of ruthenium metal is 2% by mass, dried and dried at 120 ° C. for 12 hours, and then at 700 ° C. Hydrogen reduction is performed for 3 hours to obtain a catalyst (B).
(C) The carrier (1) was impregnated with a 0.1M rhodium chloride aqueous solution so that the loading amount was 2% by mass as rhodium metal, dried and dried at 120 ° C. for 12 hours, and then at 700 ° C. Hydrogen reduction is performed for 3 hours to obtain a catalyst (C).
(D) The carrier (2) is impregnated with a 0.1M rhodium chloride aqueous solution so that the loading amount is 2% by mass as rhodium metal, dried and dried at 120 ° C. for 12 hours, and then at 700 ° C. Hydrogen reduction is performed for 3 hours to obtain a catalyst (D).
(E) The carrier (3) was impregnated with 0.1M rhodium chloride aqueous solution so that the supported amount as rhodium metal was 2% by mass, dried and dried at 120 ° C. for 12 hours, and then at 700 ° C. Hydrogen reduction is performed for 3 hours to obtain a catalyst (E).

[比較例1]
触媒(A)を打錠成型し、粉砕後、250〜500μmの範囲に整粒したものを固定床流通式反応器に充填し、脱硫灯油(硫黄原子として0.05質量ppm以下)とスチームの混合ガスを原料として水蒸気改質反応を行った。
DSS(Daily Start-up & Shut-down)運転を想定し、次のように実験を行った。1サイクルは起動・定常状態・停止から成り、起動時はエアー雰囲気下20分で触媒を30℃から150℃まで昇温し、スチームを導入、エアーを停止、その後30分で触媒を500℃まで昇温し、灯油を導入、その後15分で700℃まで昇温する。700℃定常状態で80分反応を行い、この間に転化率の計測を行う。停止時は灯油を停止し、20分で300℃まで降温し、エアーを導入、スチームを停止、その後20分で30℃まで降温する。以上をDSS1サイクルとし、これの繰り返し実験を行った。反応条件は、スチーム/カーボン比3.0、触媒量6cm3、脱硫灯油流量0.244g/minであった。
[Comparative Example 1]
The catalyst (A) is tablet-molded, pulverized, and sized in the range of 250 to 500 μm, charged in a fixed bed flow reactor, desulfurized kerosene (0.05 mass ppm or less as sulfur atoms) and steam A steam reforming reaction was performed using a mixed gas as a raw material.
Assuming DSS (Daily Start-up & Shut-down) operation, the experiment was conducted as follows. One cycle consists of start-up, steady state, and stop. At start-up, the temperature of the catalyst is raised from 30 ° C to 150 ° C in an air atmosphere for 20 minutes, steam is introduced, the air is stopped, and then the catalyst is raised to 500 ° C in 30 minutes. The temperature is raised, kerosene is introduced, and then the temperature is raised to 700 ° C. in 15 minutes. The reaction is carried out in a steady state at 700 ° C. for 80 minutes, during which the conversion rate is measured. At the time of stop, kerosene is stopped, the temperature is lowered to 300 ° C. in 20 minutes, air is introduced, the steam is stopped, and then the temperature is lowered to 30 ° C. in 20 minutes. The above was made into DSS1 cycle, and this was repeated. The reaction conditions were a steam / carbon ratio of 3.0, a catalyst amount of 6 cm 3 , and a desulfurized kerosene flow rate of 0.244 g / min.

[比較例2]
触媒(A)の代りに触媒(B)を用いた以外は比較例1と同様に反応を行った。
[Comparative Example 2]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst (B) was used instead of the catalyst (A).

[比較例3]
触媒(A)の代りに触媒(C)を用いた以外は比較例1と同様に反応を行った。
[Comparative Example 3]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst (C) was used instead of the catalyst (A).

[実施例1]
触媒(A)の代りに触媒(D)を用いた以外は比較例1と同様に反応を行った。
[Example 1]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst (D) was used instead of the catalyst (A).

[実施例2]
触媒(A)の代りに触媒(E)を用いた以外は比較例1と同様に反応を行った。
[Example 2]
The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst (E) was used instead of the catalyst (A).

触媒A、B、C、D及びEを用いたDSS運転の経時変化に関して、転化率とDSSサイクル数で整理した結果を図2に示す。
図2から明らかなように、触媒(D)及び(E)を用いた場合には、エアーでパージ後も転化率約100%を維持できる時間が飛躍的に延びていることから触媒の劣化が緩和されていることが分かる。
FIG. 2 shows the results of the change over time in the DSS operation using the catalysts A, B, C, D and E, organized by the conversion rate and the number of DSS cycles.
As is apparent from FIG. 2, when the catalysts (D) and (E) are used, since the time during which the conversion rate can be maintained at about 100% after purging with air has been drastically increased, the deterioration of the catalyst has been reduced. It can be seen that it has been relaxed.

[実施例3]
触媒(D)を打錠成型し、粉砕後、250〜500μmの範囲に整粒したものを固定床流通式反応器に充填し、脱硫灯油(硫黄原子として0.05質量ppm以下)とスチームの混合ガスを原料として、700℃において連続で水蒸気改質反応を行った。連続運転における触媒劣化の経時変化を図3に示す。図3から明らかなように本発明の触媒は耐久性に優れた触媒であることが分かる。
[Example 3]
The catalyst (D) is tablet-molded, pulverized, and sized in the range of 250 to 500 μm, charged into a fixed bed flow reactor, desulfurized kerosene (0.05 mass ppm or less as sulfur atoms) and steam A steam reforming reaction was continuously performed at 700 ° C. using the mixed gas as a raw material. FIG. 3 shows changes with time in catalyst deterioration during continuous operation. As can be seen from FIG. 3, the catalyst of the present invention is a catalyst having excellent durability.

[実施例4]
図1に示した構成の燃料電池システムにおいて、改質器7の触媒として触媒(D)を用い、灯油を燃料として試験を行った。この時、改質器7に導入する原料のスチーム/カーボン比は3.0に設定した。アノード入口のガスを分析した結果、水素を72容量%(水蒸気を除外)含んでいた。
試験期間中、改質器は正常に作動し触媒の活性低下は認められなかった。燃料電池も正常に作動し電気負荷15も順調に運転された。
[Example 4]
In the fuel cell system having the configuration shown in FIG. 1, the test was performed using the catalyst (D) as the catalyst of the reformer 7 and kerosene as the fuel. At this time, the steam / carbon ratio of the raw material introduced into the reformer 7 was set to 3.0. As a result of analyzing the gas at the anode inlet, it contained 72% by volume of hydrogen (excluding water vapor).
During the test period, the reformer operated normally and no decrease in the activity of the catalyst was observed. The fuel cell also operated normally and the electric load 15 was operated smoothly.

本発明の燃料電池システムの一例を示す概略図である。It is the schematic which shows an example of the fuel cell system of this invention. 触媒A〜Eを用いたDDS運転における灯油転化率とDDSサイクル数の関係を示す図である。It is a figure which shows the relationship between the kerosene conversion and the DDS cycle number in the DDS operation using the catalyst AE. 触媒Dを用いた水蒸気改質反応における灯油転化率と経過時間の関係を示す図である。FIG. 3 is a diagram showing a relationship between kerosene conversion rate and elapsed time in a steam reforming reaction using a catalyst D.

符号の説明Explanation of symbols

1 水タンク
2 水ポンプ
3 燃料タンク
4 燃料ポンプ
5 脱硫器
6 気化器
7 改質器
8 空気ブロアー
9 高温シフト反応器
10 低温シフト反応器
11 選択酸化反応器
12 アノード
13 カソード
14 固体高分子電解質
15 電気負荷
16 排気口
17 固体高分子型燃料電池
18 加温用バーナー

DESCRIPTION OF SYMBOLS 1 Water tank 2 Water pump 3 Fuel tank 4 Fuel pump 5 Desulfurizer 6 Vaporizer 7 Reformer 8 Air blower 9 High temperature shift reactor 10 Low temperature shift reactor 11 Selective oxidation reactor 12 Anode 13 Cathode 14 Solid polymer electrolyte 15 Electric load 16 Exhaust port 17 Polymer electrolyte fuel cell 18 Heating burner

Claims (6)

(a)アルミナ、(b)セリア、および(c)バリアおよび/またはマグネシアを構成成分として含む担体に、ロジウムを担持させてなる炭化水素化合物類の水蒸気改質触媒。   A steam reforming catalyst of a hydrocarbon compound obtained by supporting rhodium on a carrier containing (a) alumina, (b) ceria, and (c) a barrier and / or magnesia as constituent components. 請求項1記載の水蒸気改質触媒を用いて、炭化水素化合物類および水蒸気を含む原料混合物から、一酸化炭素および水素を含む混合ガスを製造することを特徴とする水蒸気改質方法。   A steam reforming method comprising producing a mixed gas containing carbon monoxide and hydrogen from a raw material mixture containing hydrocarbon compounds and steam using the steam reforming catalyst according to claim 1. 炭化水素化合物類を水蒸気改質反応させる改質部を有し、該改質部に請求項1記載の水蒸気改質触媒を使用してなり、停止時に酸素を含むガスで改質部をパージすることを特徴とする水素製造装置。   A reforming section for performing a steam reforming reaction of hydrocarbon compounds, and using the steam reforming catalyst according to claim 1 in the reforming section, and purging the reforming section with a gas containing oxygen at the time of stoppage. The hydrogen production apparatus characterized by the above-mentioned. 請求項2記載の水蒸気改質方法により製造された一酸化炭素と水素を含む混合ガスを、後続の一酸化炭素除去工程で処理する工程を有することを特徴とする水素製造装置。   A hydrogen production apparatus comprising a step of treating a mixed gas containing carbon monoxide and hydrogen produced by the steam reforming method according to claim 2 in a subsequent carbon monoxide removal step. 一酸化炭素除去工程が水性ガス反応工程とそれに引き続く一酸化炭素選択酸化工程からなることを特徴とする請求項4に記載の水素製造装置。   5. The hydrogen production apparatus according to claim 4, wherein the carbon monoxide removal step comprises a water gas reaction step and a subsequent carbon monoxide selective oxidation step. 請求項3〜5のいずれかの項に記載の水素製造装置により製造される水素を燃料とすることを特徴とする燃料電池システム。



6. A fuel cell system using hydrogen produced by the hydrogen production apparatus according to claim 3 as fuel.



JP2004114430A 2004-04-08 2004-04-08 Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system Pending JP2005296755A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004114430A JP2005296755A (en) 2004-04-08 2004-04-08 Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system
PCT/JP2005/007195 WO2005097317A1 (en) 2004-04-08 2005-04-07 Catalyst for steam reforming, method for steam reforming, apparatus for producing hydrogen and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114430A JP2005296755A (en) 2004-04-08 2004-04-08 Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system

Publications (1)

Publication Number Publication Date
JP2005296755A true JP2005296755A (en) 2005-10-27

Family

ID=35124880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114430A Pending JP2005296755A (en) 2004-04-08 2004-04-08 Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system

Country Status (2)

Country Link
JP (1) JP2005296755A (en)
WO (1) WO2005097317A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229604A (en) * 2007-02-21 2008-10-02 Oita Univ Low temperature hydrogen-manufacturing catalyst, its manufacturing method, and hydrogen-manufacturing method
WO2009028113A1 (en) * 2007-08-29 2009-03-05 National University Corporation Oita University Catalyst for the production of hydrogen at low temperature, process for production of the catalyst, and process for production of hydrogen
JP2010528834A (en) * 2007-05-31 2010-08-26 コーニング インコーポレイテッド Catalyst for hydrogen production by autothermal reforming, its production and use
JP2014100684A (en) * 2012-11-21 2014-06-05 Nissan Motor Co Ltd Hydrogen-generating catalyst and system using hydrogen-generating catalyst
WO2015151477A1 (en) * 2014-04-02 2015-10-08 株式会社デンソー Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815013B2 (en) * 1980-07-17 1983-03-23 株式会社豊田中央研究所 Steam reforming catalyst and its manufacturing method
JP4212738B2 (en) * 1999-11-30 2009-01-21 本田技研工業株式会社 Stopping method of methanol reformer
JP3554884B2 (en) * 2000-01-07 2004-08-18 綜研化学株式会社 Filtration device and filtration method
JP4648567B2 (en) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 Autothermal reforming catalyst and method for producing fuel gas for fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229604A (en) * 2007-02-21 2008-10-02 Oita Univ Low temperature hydrogen-manufacturing catalyst, its manufacturing method, and hydrogen-manufacturing method
US9073043B2 (en) 2007-02-21 2015-07-07 National University Corporation Oita University Hydrogen production catalyst, production method of the same and hydrogen production method
JP2010528834A (en) * 2007-05-31 2010-08-26 コーニング インコーポレイテッド Catalyst for hydrogen production by autothermal reforming, its production and use
WO2009028113A1 (en) * 2007-08-29 2009-03-05 National University Corporation Oita University Catalyst for the production of hydrogen at low temperature, process for production of the catalyst, and process for production of hydrogen
JP2014100684A (en) * 2012-11-21 2014-06-05 Nissan Motor Co Ltd Hydrogen-generating catalyst and system using hydrogen-generating catalyst
WO2015151477A1 (en) * 2014-04-02 2015-10-08 株式会社デンソー Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus
JP2015196142A (en) * 2014-04-02 2015-11-09 株式会社豊田中央研究所 Steam modification catalyst, steam modification method and steam modification reaction apparatus using the same

Also Published As

Publication number Publication date
WO2005097317A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR101357431B1 (en) Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP4227779B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
WO2005097317A1 (en) Catalyst for steam reforming, method for steam reforming, apparatus for producing hydrogen and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4227777B2 (en) Water gas shift reaction method, hydrogen production apparatus and fuel cell system using the method
JP4227780B2 (en) Steam reforming catalyst, steam reforming method and fuel cell system
JP2011240273A (en) Adsorbent, its production method and fuel desulfurization method
JP2015150486A (en) Hydrogen production catalyst, production method thereof, and hydrogen production method
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
JP4754133B2 (en) Autothermal reforming method and apparatus, hydrogen production apparatus and fuel cell system
JP2004230317A (en) Desulfurization catalyst and desulfurization method for hydrocarbon, and fuel cell system
JP4227776B2 (en) Steam reforming catalyst and steam reforming method using metal-supported solid superacid catalyst
JP2011088778A (en) Hydrogen production apparatus and fuel cell system
JP2004284861A (en) Hydrogen production method and fuel cell system
JP4582976B2 (en) Method and fuel cell system for reducing carbon monoxide concentration
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP5117014B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP4037122B2 (en) Catalyst for selectively oxidizing carbon monoxide, method for reducing carbon monoxide concentration, and fuel cell system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
WO2011049130A1 (en) Device for producing hydrogen and fuel cell system
JP2003103171A (en) Catalyst and method for auto thermal reforming, hydrogen producing device and fuel cell system
JP2011088779A (en) Hydrogen production apparatus and fuel cell system
JP2004284862A (en) Hydrogen production method and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224