WO2015151477A1 - Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus - Google Patents

Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus Download PDF

Info

Publication number
WO2015151477A1
WO2015151477A1 PCT/JP2015/001739 JP2015001739W WO2015151477A1 WO 2015151477 A1 WO2015151477 A1 WO 2015151477A1 JP 2015001739 W JP2015001739 W JP 2015001739W WO 2015151477 A1 WO2015151477 A1 WO 2015151477A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam reforming
composite oxide
oxygen
ceria
catalyst
Prior art date
Application number
PCT/JP2015/001739
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 清
瀬戸 博邦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015151477A1 publication Critical patent/WO2015151477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present disclosure relates to a steam reforming catalyst, a steam reforming method using the same, and a steam reforming reaction apparatus, and more specifically, a method of reforming an oxygen-containing hydrocarbon with steam, a catalyst used therefor, and the catalyst.
  • the present invention relates to a reaction apparatus provided.
  • ethanol obtained from biomass is attracting attention as a carbon neutral fuel, particularly a CO 2 neutral fuel.
  • ethanol has a small calorific value, and in order to be used as a fuel for an internal combustion engine such as an automobile, it is desirable to use part or all of it reformed to hydrogen or carbon monoxide.
  • Patent Document 1 discloses an active metal component containing a silver component and a noble metal component other than the silver component, and alumina.
  • An oxygen-containing hydrocarbon reforming catalyst containing a solid acidic substance, and an oxygen-containing hydrocarbon reforming catalyst further containing at least one selected from an alkali metal component or an alkaline earth metal component are disclosed. Yes.
  • the oxygen-containing hydrocarbon reforming catalyst disclosed in Patent Document 1 has sufficient suppression of coking in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low. It wasn't.
  • Patent Document 2 discloses one selected from the group consisting of platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), and ruthenium (Ru). From the group consisting of the above active ingredient A and molybdenum (Mo), vanadium (V), tungsten (W), chromium (Cr), rhenium (Re), cobalt (Co), cerium (Ce) and iron (Fe).
  • a metal catalyst comprising one or more selected metals, an oxide thereof, an alloy thereof or an active component B which is a mixture thereof, and Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 on which the metal catalyst is supported.
  • coking is not sufficiently suppressed in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low. There wasn't.
  • JP 2010-207782 A discloses a carrier containing a composite oxide in which ceria and alumina are both dispersed on the nm scale, and a long-period periodic table 8 on the carrier.
  • a steam reforming catalyst containing at least one metal element belonging to Groups 10 to 10 is disclosed. According to the description of the publication, coking is unlikely to occur even in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low, and oxygen-containing hydrocarbons are efficiently reformed with water vapor. It is possible to generate hydrogen.
  • An object of the present invention is to provide a steam reforming catalyst for oxygen-containing hydrocarbon which is difficult to perform, and a method for steam reforming oxygen-containing hydrocarbon using the same.
  • the present inventors have found that at least one member belonging to the platinum group is present in a support containing a composite oxide in which ceria and alumina and, if necessary, zirconia are dispersed in the nm scale.
  • a composite oxide in which ceria and alumina and, if necessary, zirconia are dispersed in the nm scale In the steam reforming reaction of oxygen-containing hydrocarbons, by supporting at least one second metal element selected from the group consisting of the first metal element and the alkali metal, alkaline earth metal and rare earth elements
  • the present disclosure has been completed by finding that a steam reforming catalyst that exhibits catalytic activity and does not sufficiently cause coking can be obtained.
  • the steam reforming catalyst includes a support containing a composite oxide in which ceria and alumina are both dispersed on the nm scale, and at least one member belonging to the platinum group supported on the support. And at least one second metal element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements supported on the carrier, and oxygen-containing hydrocarbons by steam It is a catalyst for reforming.
  • the composite oxide further contains zirconia, and ceria, alumina, and zirconia are all in nm scale. Are distributed.
  • the first metal element supported on the carrier is rhodium.
  • the second metal element supported on the carrier is sodium, potassium, cesium, magnesium, It is at least one selected from the group consisting of strontium, barium, lanthanum and neodymium.
  • the steam reforming method of the oxygen-containing hydrocarbon is the steam reforming catalyst according to any one of the first to fourth aspects described above, in the presence of steam. In contact with
  • the oxygen-containing hydrocarbon is ethanol.
  • a steam reforming reaction apparatus is a catalytic reaction apparatus including the steam reforming catalyst according to any one of the first to fourth aspects, and the steam of the oxygen-containing hydrocarbon It can be suitably used for the reforming method.
  • the present inventors speculate as follows. That is, in the steam reforming catalyst, even if at least one metal element selected from the platinum group metal elements that are the supported first metal elements is oxidized during the steam reforming reaction, the composite oxide Since ceria or ceria-zirconia solid solution is contained inside, it is presumed that oxygen on the catalyst surface is absorbed by these, and the metal element is reduced to a metal state exhibiting high catalytic activity, and the catalytic activity is increased. Is done.
  • the adsorption sites on the surface of the composite oxide are increased as compared with the conventional steam reforming catalyst, and the water vapor adsorption capacity is improved. It is presumed that the catalytic activity is increased because water vapor efficiently contacts and reacts.
  • ceria and ceria-zirconia solid solution usually grows more easily in a reducing atmosphere such as a steam reforming reaction than in an oxidizing atmosphere, but in the steam reforming catalyst, ceria and alumina that do not form a solid solution with each other.
  • the ceria-zirconia solid solution and alumina act as a barrier to suppress the grain growth of the composite oxide at high temperatures, and also suppress the grain growth of the metal element supported thereon, so that the catalytic activity is increased.
  • ceria and ceria-zirconia solid solutions are more likely to grow in a reducing atmosphere such as a steam reforming reaction than in an oxidizing atmosphere, and tend to grow at 600 ° C. or higher. Inferred.
  • the present inventors speculate as follows. In general, it is believed that coking in a steam reforming catalyst occurs at acid sites on the support. Therefore, the present inventors have focused on the catalyst deterioration due to coking, particularly that the catalyst deterioration becomes remarkable under the reaction conditions with low S / C (steam / carbon).
  • the coking generated in the catalyst occurs because the dehydration reaction of oxygen-containing hydrocarbons such as ethanol proceeds on the strong acid point on the support, and the polymerization reaction of the generated olefins such as ethylene proceeds. I guessed it.
  • the above carrier contains ceria as a basic carrier and alumina as a neutral carrier, and contains a complex oxide containing zirconium as a neutral carrier as necessary. There is a point.
  • the second metal element contains at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements, which are basic components. It is possible to eliminate strong acid sites, and it is presumed that the above dehydration reaction and polymerization reaction, particularly the polymerization reaction is suppressed, and coking is less likely to occur. Thus, by including the support and the second metal element, it is presumed that coking is hardly caused in the steam reforming catalyst, and a decrease in catalytic activity is suppressed.
  • the basicity of a metal oxide generally used as a catalyst carrier increases in the order of silica ⁇ titania ⁇ alumina ⁇ zirconia ⁇ ceria ⁇ magnesia.
  • coking occurs even in an environment where no oxygen gas is present or in a condition where the molar ratio (S / C) of steam to carbon is low. It is difficult to efficiently reform oxygen-containing hydrocarbons with steam to generate hydrogen.
  • FIG. 6 is a graph showing the atomic ratio of Ce, Zr, and Al in a composite oxide obtained in Examples 1 to 10 in a minute range with a cross-sectional diameter of 0.5 nm.
  • 6 is a graph showing the catalytic activity at the initial stage in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
  • 6 is a graph showing the catalytic activity after durability in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
  • 6 is a graph showing the rate of decrease in activity by an endurance test in a steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
  • 6 is a graph showing the amount of carbon deposited on a catalyst after an endurance test in a steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 7, 9 and Comparative Example 1.
  • 6 is a graph showing the results of measuring the amount of acid sites (NH 3 desorption amount) by the ammonia temperature-programmed desorption (NH 3 -TPD) method for the carrier of the monolith catalyst obtained in Examples 1 to 7, 9 and Comparative Example 1. is there.
  • FIG. 3 is a view showing specifications of monolith catalyst samples of Examples 1 to 10 and Comparative Examples 1 to 8.
  • the steam reforming catalyst is a catalyst for reforming an oxygen-containing hydrocarbon with steam, a support containing a composite oxide in which both ceria and alumina are dispersed in nm scale, and a platinum group supported on the support.
  • At least one first metal element selected from the group consisting of metals hereinafter referred to as “first supported metal element”
  • first supported metal element At least one first metal element selected from the group consisting of metals
  • second supported metal element At least one second metal element selected from the group (hereinafter referred to as “second supported metal element”).
  • the steam reforming catalyst is high in the steam reforming reaction of oxygen-containing hydrocarbons. It shows catalytic activity.
  • nm-scale dispersion means that the composite oxide is divided into a plurality of microregions having a cross-sectional diameter of 1 nm or less and the composition is measured using a microanalyzer having high resolution. A state in which most of the minute region is formed by a plurality of components.
  • FE-STEM field emission scanning transmission microscope
  • HD-2000 manufactured by Hitachi, Ltd.
  • a microscopic region having a cross-sectional diameter of 1 nm or less means a region in a composite oxide through which the beam is transmitted when a beam having a diameter of 1 nm or less is irradiated to the composite oxide in a measurement using a microanalyzer. Means.
  • the cerium and aluminum contents in the minute regions are respectively charged ratios of cerium and aluminum ⁇ 20% (Preferably ⁇ 10%) and such a micro region is preferably 90% or more of the total micro region, and the zirconium content in the micro region is zirconium loading ratio ⁇ 20 % (Preferably ⁇ 10%) and such a micro region is more than 90% of the total micro region.
  • the composite oxide in which the composition of most of the microregions is almost the same as the charged composition has a substantially uniform composition and tends to exhibit higher catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons.
  • the charging ratio of cerium, aluminum and zirconium means the ratio (unit:%) of the charging amount of cerium, aluminum and zirconium to the total charging amount of the metal forming the composite oxide. Further, “within the range of the charging ratio ⁇ 20%” means, for example, 50 to 90% when the charging ratio is 70%.
  • the composite oxide and the first supported metal element exhibit a strong interaction, and grain growth of the first supported metal element on the support containing the composite oxide is suppressed even at a high temperature of 600 ° C. or higher. It is assumed that the catalytic activity is increased. Furthermore, ceria or ceria-zirconia solid solution usually grows more easily in a reducing atmosphere such as a steam reforming reaction than an oxidizing atmosphere, but ceria and alumina or ceria-zirconia solid solution and alumina, which do not form a solid solution with each other. It is presumed that the catalytic activity is enhanced because the composite oxide acts as a barrier to each other to suppress the grain growth of the complex oxide at a high temperature and the grain growth of the metal element supported thereon.
  • the action of reducing the first supported metal element from the oxide state to the metal state is also exhibited in ceria, but more effectively when ceria forms a solid solution with zirconia. Therefore, in the composite oxide, it is preferable that at least a part of each of ceria and zirconia forms a cubic ceria-zirconia solid solution.
  • the steam reforming catalyst can maintain a high pore volume of the mesopores of the composite oxide even after being exposed to a high temperature. This is presumably because sintering of the complex oxide at high temperatures is suppressed by the barrier action.
  • the range of the pore diameter of a mesopore means the range from the lower limit 3.5nm to 100nm which can be measured using a mercury porosimeter in principle.
  • the pore volume having a pore diameter of 3.5 to 100 nm is 0.07 cm 3 / g or more after calcination at 600 ° C. for 5 hours and after calcination at 800 ° C. for 5 hours.
  • 0.04 cm 3 / is preferably g or more, 600 after firing for 5 hours at ° C. 0.13 cm 3 / g in the are and 800 ° C. or higher after calcination for 5 hours 0.10 cm 3 / g or more in More preferably, it is 0.19 cm 3 / g or more after calcination at 600 ° C. for 5 hours, and particularly preferably 0.15 cm 3 / g or more after calcination at 800 ° C. for 5 hours.
  • the ceria crystallite diameter calculated from the half width of the peak of CeO 2 (220) by X-ray diffraction is 5 to 10 nm after baking at 600 ° C. for 5 hours, and at 800 ° C. for 5 hours. It is preferably 10 to 20 nm after firing, and 35 nm or less after firing at 1000 ° C. for 5 hours.
  • the ceria crystallite diameter is in the above range, sintering at high temperatures is further suppressed, and a sufficient pore volume tends to be ensured even after exposure to high temperatures.
  • the metal elements are highly dispersed in the mesopores. It is carried by.
  • the mesopores are a reaction field in the steam reforming reaction of oxygen-containing hydrocarbons, and a sufficient pore volume is secured even at high temperatures. For this reason, it is surmised that the steam reforming catalyst exhibits high catalytic activity even in the steam reforming reaction of oxygen-containing hydrocarbons at high temperatures.
  • the composite oxide can be produced, for example, by the following method.
  • a ceria precursor and an alumina precursor are deposited as a precipitate from an aqueous solution in which a cerium compound and an aluminum compound are dissolved or a solution containing water.
  • a zirconium compound can be dissolved in the aqueous solution or a solution containing water to precipitate the zirconia precursor as a precipitate.
  • a ceria precursor and a zirconia precursor are simultaneously deposited as precipitates, at least a part thereof forms a solid solution.
  • cerium compound aluminum compound and zirconium compound
  • salts such as sulfates, nitrates, chlorides and acetates are generally used.
  • solvent for dissolving the salt include water and alcohols.
  • a mixture of aluminum hydroxide, nitric acid and water can be used as an aqueous solution containing aluminum nitrate.
  • the precursor precipitate can be precipitated by adding an alkaline solution to the aqueous solution or a solution containing water to adjust the pH of the solution.
  • each precursor is added by instantly adding an alkaline solution and stirring vigorously, or by adjusting the pH at which each precursor begins to precipitate by adding hydrogen peroxide or the like, and then adding an alkaline solution or the like. Body precipitates can be deposited almost simultaneously.
  • the alkaline solution is added over time, for example, over 10 minutes to increase the neutralization time, or the pH of the solution is monitored and adjusted stepwise to the pH at which each precursor precipitates. Or by adding a buffer solution so that the pH of the solution is maintained at a pH at which the precipitate of each precursor precipitates (or Vice versa).
  • the alkaline solution examples include ammonia water, an aqueous solution in which ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate and the like are dissolved, or an alcohol solution.
  • ammonia water, an aqueous solution of ammonium carbonate or an alcohol solution is preferable because it volatilizes when the composite oxide is fired.
  • the pH of the alkaline solution is preferably 9 or more.
  • the precursor precipitate thus obtained is aged and then fired to obtain a composite oxide.
  • the precursor precipitate when the precursor precipitate is aged, dissolution and reprecipitation of the precipitate are promoted by heating heat, and the resulting composite oxide particles can be grown.
  • a composite oxide composed of crystallites having high crystallinity and an appropriate particle size can be obtained.
  • the aging temperature is preferably room temperature or higher, more preferably 100 to 200 ° C., and particularly preferably 100 to 150 ° C.
  • the aging temperature is less than the lower limit, the effect of aging is small, and the time required for aging tends to be long.
  • the upper limit when the upper limit is exceeded, the water vapor pressure becomes extremely high, so a pressure vessel is required and the production cost is high. Tend to be.
  • the precipitate can be fired in the air.
  • the firing temperature is preferably 300 to 800 ° C.
  • the firing temperature is less than the lower limit, the resulting composite oxide tends to lack stability as a carrier, and when the upper limit is exceeded, the specific surface area of the composite oxide tends to decrease.
  • the manufacturing method of the said complex oxide is not limited to the said embodiment.
  • the solution containing the precursor precipitate may be heated as it is to evaporate the solvent to dry the precipitate, and then fired.
  • the drying of the precipitate is preferably performed at the aging temperature.
  • the carrier used for the steam reforming catalyst is not particularly limited as long as it contains such a complex oxide, and even if it is composed only of the complex oxide, the complex oxide and other porous oxides. It may consist of a mixture with a product. Examples of the other porous oxides include alumina, ceria, zirconia, titania, silica and the like. These oxides may be used alone or in combination of two or more. . In the mixture of the composite oxide and another porous oxide, the content of the composite oxide is preferably 50% by mass or more. When the content of the composite oxide is less than the lower limit, the catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon tends to decrease.
  • the steam reforming catalyst includes a support containing such a composite oxide, at least one first metal element selected from the group consisting of platinum group metals supported on the support, and supported on the support. It contains at least one second metal element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements.
  • a platinum group metal ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir) and platinum (Pt) supported on the carrier. It is necessary to contain at least one first metal element selected from the group consisting of:
  • the at least one first metal element selected from the group consisting of the platinum group metals rhodium is more preferable from the viewpoint of showing high catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons.
  • the metal element which belongs to the said platinum group may be used individually by 1 type, or may use 2 or more types together.
  • the content of the first supported metal element in the steam reforming catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the support. If the content of the first supported metal element is less than the lower limit, sufficient catalytic activity tends not to be obtained in the steam reforming reaction of the oxygen-containing hydrocarbon. It tends to grow and the catalytic activity does not improve.
  • alkali metals lithium, sodium, potassium, rubidium and cesium
  • alkaline earth metals beryllium, magnesium, calcium, strontium and barium
  • rare earth elements supported on the carrier are supported.
  • At least one second metal element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements sodium is used from the viewpoint of high catalytic activity and prevention of catalyst deterioration in the steam reforming reaction of oxygen-containing hydrocarbons.
  • Na potassium
  • K cesium
  • Ms magnesium
  • Sr strontium
  • Ba barium
  • La lanthanum
  • Nd neodymium
  • it is at least one selected from the group consisting of sodium (Na), potassium (K), magnesium (Mg) and lanthanum (La).
  • at least one selected from the group consisting of the alkali metal, alkaline earth metal and rare earth element may be used alone or in combination of two or more.
  • the amount of the second supported metal element supported in the steam reforming catalyst is not particularly limited, but the ratio to the number of atoms of the first supported metal element is preferably 0.05 to 10, preferably 0.1 to 5 is more preferable. If the amount of the second supported metal element is less than the lower limit, sufficient catalytic activity or catalyst deterioration preventing effect tends to be not obtained in the steam reforming reaction of the oxygen-containing hydrocarbon.
  • the supported metal element covers the first supported metal element and the catalytic activity tends to decrease.
  • the composite oxide is contained in a solution containing a compound of the metal element of the first metal element and the second metal element at a predetermined concentration.
  • a method for immersing the carrier, impregnating the carrier with a solution containing a predetermined amount of metal element, and firing the carrier examples include a method of immersing the carrier, impregnating the carrier with a solution containing a predetermined amount of metal element, and firing the carrier.
  • the loading method of the first metal element and the second metal element is that after the first metal element is first supported and fired, the second metal element is supported and fired, or the second metal element is first supported and fired.
  • the first metal element may be supported and fired, or may be performed simultaneously.
  • the support containing the composite oxide may be used in the form of powder such as pellets, or the support containing the composite oxide is previously applied to a known base material such as a cordierite honeycomb base material by coating or the like. You may fix and use.
  • the firing temperature is preferably 200 to 600 ° C. If the firing temperature is less than the lower limit, the compound of the first metal element is not sufficiently thermally decomposed and becomes difficult to be in a metal state, so that the activity tends to be low. The element grows and the catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon tends to decrease.
  • the firing time is preferably from 0.1 to 100 hours. When the firing time is less than the lower limit, the compound of the metal element is not sufficiently thermally decomposed and becomes difficult to be in a metal state, and therefore the activity tends to be low. This is not possible, leading to an increase in cost for preparing the catalyst.
  • the shape of the steam reforming catalyst is not particularly limited, and can be formed into various shapes such as a pellet shape, a monolith shape, a honeycomb shape, or a foam shape according to the application.
  • Such a steam reforming catalyst is used to reform an oxygen-containing hydrocarbon with steam, and exhibits high catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon.
  • the steam reforming method for oxygen-containing hydrocarbons is a method for generating hydrogen by bringing oxygen-containing hydrocarbons into contact with the steam reforming catalyst in the presence of steam.
  • the steam reforming reaction apparatus used in such a steam reforming method is not particularly limited as long as it includes the steam reforming catalyst, and is conventionally known such as a fixed bed flow type reaction apparatus and a fluidized bed type reaction apparatus. Catalytic reactors can be used.
  • oxygen-containing hydrocarbon examples include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, and t-butyl alcohol, dimethyl ether, diethyl ether, ethyl methyl ether, And ethers.
  • alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, and t-butyl alcohol, dimethyl ether, diethyl ether, ethyl methyl ether, And ethers.
  • these oxygen-containing hydrocarbons since it is liquid at room temperature, it is easy to handle, has high safety, has high affinity with water (steam), and is easily available. It is preferable to apply to ethanol and diethyl ether, and more preferable to apply to methanol and ethanol.
  • the oxygen-containing hydrocarbon and the steam may be supplied independently to the reaction device, or may be supplied to the reaction device after mixing them in advance.
  • the mixing ratio of the oxygen-containing hydrocarbon and water vapor is not particularly limited.
  • the oxygen-containing hydrocarbon is ethanol
  • the water vapor to carbon molar ratio (S / C) is 0.2 to 2. It is preferable that the ratio is 0.4 to 1.
  • the temperature of the reforming reaction is preferably 250 to 650 ° C., more preferably 350 to 600 ° C.
  • the steam reforming catalyst it is possible to reform the oxygen-containing hydrocarbon even at a low temperature of 400 ° C. or lower, which has been conventionally low in catalytic activity and difficult to steam reform the oxygen-containing hydrocarbon. .
  • one non-overlapping particle in the composite oxide powder is irradiated with an electron beam with a diameter of 0.5 nm at an acceleration voltage of 200 kV, and characteristic X-rays generated from a sample are irradiated with the FE-STEM.
  • the composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm. The detection was performed by an EDX detector (“VAGE EDX system” manufactured by NCRAN). This elemental analysis was performed on five minute regions. Note that “a microscopic region having a cross-sectional diameter of 0.5 nm” means a region in the composite oxide through which an electron beam with a diameter of 0.5 nm irradiated to the composite oxide particle is transmitted.
  • Example 1 0.2 mol (75.1 g) of aluminum nitrate nonahydrate was added to 2000 ml of ion-exchanged water, and dissolved by stirring for 5 minutes with a propeller stirrer. The solution was stirred by adding the concentration of CeO 2 in terms of 28% by weight of the aqueous cerium nitrate solution 265 g (corresponding to 0.43 mol in terms of CeO 2) 5 minutes. Next, an aqueous solution in which 0.068 mol (18.1 g) of zirconyl nitrate dihydrate was dissolved in 30 g of ion-exchanged water was added to the mixed aqueous solution, followed by stirring for 5 minutes.
  • aqueous solution containing a precipitate.
  • the aqueous solution was heat-treated at 120 ° C. for 2 hours under a pressure of 2 atm to age the precipitate.
  • the aqueous solution containing the aged precipitate is heated to 400 ° C. at a rate of 100 ° C./hour, further calcined at 400 ° C. for 5 hours, and then calcined at 600 ° C. for 5 hours to ceria-zirconia-alumina composite oxidation
  • a product powder was prepared.
  • the obtained composite oxide powder was composed of about 80% by mass of CeO 2 , about 9% by mass of ZrO 2 and about 11% by mass of Al 2 O 3 , and the specific surface area was 100 m 2 / g. It was.
  • the obtained composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm according to the method described above.
  • the result is shown in FIG.
  • “ ⁇ ” represents a preparation ratio
  • “ ⁇ ” represents a composition ratio obtained by elemental analysis by the above method (hereinafter, the same applies to other examples).
  • the composite oxide powder contains a metal element having a substantially charged ratio in any minute region having a cross-sectional diameter of 0.5 nm, and ceria, zirconia, and alumina are dispersed in nm scale in the particles. It was confirmed that
  • ceria-zirconia-alumina composite oxide powder 267 g of ceria sol binder (solid content concentration: 10% by mass) and a predetermined amount of ion-exchanged water were mixed, and this mixture was mixed with a wet attritor with a predetermined particle size.
  • a slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm ⁇ length of 25 mm and a volume of 10.4 ml at a rate of 240 g per liter of the substrate, and then 500 ° C. For 3 hours.
  • a base material provided with the composite oxide powder is impregnated with a predetermined amount of rhodium nitrate solution in which rhodium is dissolved, and after supporting rhodium by a selective adsorption method, the base material is baked at 500 ° C. for 3 hours in the atmosphere.
  • a monolith sample containing rhodium and a composite oxide was prepared by supporting 4.8 g of rhodium per liter.
  • the monolith sample containing rhodium and the composite oxide was allowed to absorb a predetermined concentration and amount of an aqueous solution of sodium acetate trihydrate, dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 3 hours.
  • the monolith catalyst of Example 1 was obtained.
  • the amount of sodium supported per liter of monolith substrate was 0.024 mol / L.
  • Example 2 A monolith catalyst of Example 2 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
  • Example 3 A monolith catalyst of Example 3 was obtained in the same manner as in Example 1 except that an aqueous solution of cesium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of cesium supported per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 4 A monolith catalyst of Example 4 was obtained in the same manner as in Example 1 except that an aqueous solution of magnesium acetate tetrahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of magnesium supported per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 5 A monolith catalyst of Example 5 was obtained in the same manner as in Example 1 except that an aqueous solution of strontium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of strontium supported per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 6 A monolith catalyst of Example 6 was obtained in the same manner as in Example 1 except that an aqueous solution of barium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of barium supported per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 7 A monolith catalyst of Example 7 was obtained in the same manner as in Example 1 except that an aqueous solution of lanthanum (III) nitrate hexahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. .
  • the amount of lanthanum supported per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 8 A monolith catalyst of Example 8 was obtained in the same manner as in Example 1 except that an aqueous solution of neodymium (III) nitrate hexahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. .
  • the supported amount of neodymium per liter of monolith substrate was 0.024 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 9 A monolith catalyst of Example 9 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate.
  • the amount of potassium supported per liter of monolith substrate was 0.048 mol / L.
  • the obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
  • Example 10 0.2 mol (75.1 g) of aluminum nitrate nonahydrate was added to 2000 ml of ion-exchanged water, and dissolved by stirring for 5 minutes with a propeller stirrer. The solution was stirred by adding the concentration of CeO 2 in terms of 28% by weight of cerium nitrate aqueous solution 304g (corresponding to 0.5 mol CeO 2 conversion) 5 minutes. To the obtained mixed aqueous solution, 177 g of 25 mass% ammonia water was added and stirred for 10 minutes to obtain an aqueous solution containing a precipitate. The aqueous solution was heat-treated at 120 ° C. for 2 hours under a pressure of 2 atm to age the precipitate.
  • the aged aqueous solution containing the precipitate is heated to 400 ° C. at a rate of 100 ° C./hour, further calcined at 400 ° C. for 5 hours, and then calcined at 600 ° C. for 5 hours to obtain ceria-alumina composite oxide powder.
  • the obtained composite oxide powder was composed of about 89% by mass of CeO 2 and about 11% by mass of Al 2 O 3 , and the specific surface area was 90 m 2 / g.
  • the obtained composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm according to the method described above.
  • the result is shown in FIG.
  • “ ⁇ ” represents a preparation ratio
  • “ ⁇ ” represents a composition ratio obtained by elemental analysis by the above method (hereinafter, the same applies to other examples).
  • the composite oxide powder contains a metal element having a substantially charged ratio in any minute region having a cross-sectional diameter of 0.5 nm, and ceria and alumina are dispersed in nm scale in the particles. It was confirmed that there was.
  • a slurry was obtained.
  • This slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm ⁇ a length of 25 mm and a volume of 10.4 ml at a rate of 240 g of the composite oxide per 1 L of the substrate, and then at 500 ° C. Baked for 3 hours.
  • a base material provided with the composite oxide powder is impregnated with a predetermined amount of rhodium nitrate solution in which rhodium is dissolved, and after supporting rhodium by a selective adsorption method, the base material is baked at 500 ° C. for 3 hours in the atmosphere.
  • a monolith sample containing rhodium and a composite oxide was prepared by supporting 4.8 g of rhodium per liter.
  • the obtained monolith sample containing rhodium and composite oxide was allowed to absorb an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount, dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 3 hours. 1 monolith catalyst was obtained.
  • the amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
  • Comparative Example 1 A monolith catalyst of Comparative Example 1 was obtained in the same manner as in Example 1 except that the aqueous solution of sodium acetate trihydrate was not absorbed.
  • Comparative Example 2 A monolith catalyst of Comparative Example 2 was obtained in the same manner as in Example 10 except that the aqueous solution of potassium acetate was not absorbed.
  • Comparative Example 3 Comparative Example as in Comparative Example 1 except that ceria-zirconia composite oxide powder (manufactured by Anan Kasei Co., Ltd., specific surface area 120 m 2 / g) powder was used instead of the ceria-zirconia-alumina composite oxide powder. 3 monolith catalysts were obtained.
  • Comparative Example 4 ⁇ -alumina (manufactured by Showa Denko KK, specific surface area 150 m 2 / g) powder was used instead of the ceria-zirconia-alumina composite oxide powder, and the coating amount of ⁇ -alumina was 120 g / L.
  • the monolith catalyst of Comparative Example 3 was obtained in the same manner as Comparative Example 1.
  • the particle diameter of the ceria-zirconia solid solution of the ceria-zirconia composite oxide used here was about 15 nm, and the particle diameter of ⁇ -alumina was about 10 nm or less. Therefore, it is clear that even if these oxide powders are physically mixed as described above, they are not dispersed on the nm scale.
  • ceria sol solid content concentration 10 mass%, U-15 manufactured by Taki Chemical Co., Ltd.
  • ion-exchanged water 267 g of ceria sol (solid content concentration 10 mass%, U-15 manufactured by Taki Chemical Co., Ltd.) and a predetermined amount of ion-exchanged water are added to 240 g of the powder mixture of the obtained ceria-zirconia composite oxide powder and ⁇ -alumina powder.
  • the mixture was mixed and mixed with a wet attritor for 20 minutes to obtain a slurry.
  • This slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm ⁇ length of 25 mm and a volume of 10.4 ml at a rate of 240 g per liter of the substrate, and then fired at 500 ° C. for 3 hours. .
  • Comparative Example 6 instead of the ceria-zirconia-alumina composite oxide powder, a ceria-zirconia composite oxide (Anan Kasei Co., Ltd., specific surface area 120 m 2 / g) powder is used, and a predetermined amount is used instead of the aqueous solution of sodium acetate trihydrate.
  • a monolith catalyst of Comparative Example 6 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a concentration and a predetermined amount was used. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
  • Comparative Example 7 In place of the ceria-zirconia-alumina composite oxide powder, ⁇ -alumina (manufactured by Showa Denko KK, specific surface area 150 m 2 / g) powder was used, the coating amount of ⁇ -alumina was 120 g / L, and sodium acetate trihydrate A monolith catalyst of Comparative Example 7 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of the Japanese product. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
  • Comparative Example 8 instead of the ceria-zirconia-alumina composite oxide powder, the powder mixture of ceria-zirconia composite oxide powder and ⁇ -alumina obtained in Comparative Example 5 was used, and a predetermined concentration was used instead of the aqueous solution of sodium acetate trihydrate.
  • a monolith catalyst of Comparative Example 8 was obtained in the same manner as in Example 1 except that a predetermined amount of an aqueous solution of potassium acetate was used. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
  • FIG. 2 shows a graph showing the catalyst activity at the initial stage in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
  • FIG. 3 is a graph showing the catalytic activity after endurance in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
  • the monolithic catalysts of Examples 1 to 10 have a small activity decrease rate due to the durability test. It was confirmed. From these results, a platinum group metal element is supported on a carrier made of a composite oxide in which ceria, zirconia and alumina are dispersed in nm scale, and a composite oxide in which ceria and alumina are dispersed in nm scale. Furthermore, it was confirmed that the catalyst to which one or more metal elements of alkali metal, alkaline earth metal, and rare earth element were added had sufficiently excellent durability performance.
  • a platinum group metal element is supported on a composite oxide in which ceria, zirconia and alumina are dispersed in nm scale, and a composite oxide in which ceria and alumina are dispersed in nm scale. Furthermore, the catalyst added with one or more metal elements of alkali metal, alkaline earth metal, and rare earth element has an acid point amount on the support of less than 0.42 ⁇ mol / m 2, so that the ethanol steam reforming reaction is sufficiently small. It was confirmed that the decrease in activity due to coking was less likely to occur.
  • hydrogen can be generated by efficiently reforming an oxygen-containing hydrocarbon such as ethanol with steam without causing coking.
  • the steam reforming catalyst of the present disclosure has high catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons and is excellent in coking resistance, oxygen-containing hydrocarbons such as ethanol are used as fuels in internal combustion engines such as automobiles. When used, it is useful as a catalyst for reforming this with steam to produce hydrogen or carbon monoxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 This steam reforming catalyst is used for steam reforming of oxygen-containing hydrocarbons, and contains: a carrier that includes a compound oxide in which both ceria and alumina are dispersed at the nanometer scale; at least one first metallic element selected from the group consisting of the platinum group of metals, supported on the carrier; and at least one second metallic element selected from the group consisting of the alkali metals, alkaline earth metals, and rare earth elements, supported on the carrier. In so doing, coking is sufficiently unlikely to occur, even in environments devoid of oxygen gas, or under conditions of a low molar ratio (S/C) of steam to carbon; high activity is maintained even when exposed to high temperatures; and it is possible to more efficiently reform oxygen-containing hydrocarbons with steam.

Description

水蒸気改質触媒、それを用いた水蒸気改質方法、及び水蒸気改質反応装置Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年4月2日に出願された日本出願番号2014-75975号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2014-75975 filed on April 2, 2014, the contents of which are incorporated herein by reference.
 本開示は、水蒸気改質触媒、それを用いた水蒸気改質方法、及び水蒸気改質反応装置に関し、より詳しくは、酸素含有炭化水素を水蒸気により改質する方法、それに用いる触媒、及びこの触媒を備える反応装置に関する。 The present disclosure relates to a steam reforming catalyst, a steam reforming method using the same, and a steam reforming reaction apparatus, and more specifically, a method of reforming an oxygen-containing hydrocarbon with steam, a catalyst used therefor, and the catalyst. The present invention relates to a reaction apparatus provided.
 自動車などからの二酸化炭素の排出量の削減が求められる中、バイオマスから得られるエタノールがカーボンニュートラル、特にCOニュートラルな燃料として注目されている。しかしながら、エタノールは発熱量が小さく、自動車などの内燃機関の燃料として利用するには、その一部又は全部を水素や一酸化炭素などに改質して使用することが望ましい。 While reduction of carbon dioxide emissions from automobiles and the like is demanded, ethanol obtained from biomass is attracting attention as a carbon neutral fuel, particularly a CO 2 neutral fuel. However, ethanol has a small calorific value, and in order to be used as a fuel for an internal combustion engine such as an automobile, it is desirable to use part or all of it reformed to hydrogen or carbon monoxide.
 一方、自動車などの内燃機関において、水蒸気改質反応により燃料の一部又は全部から水素や一酸化炭素を生成させ、これらを内燃機関に供給することによって熱効率や内燃機関の始動性を向上させるという技術が知られている。この水蒸気改質反応は通常、吸熱反応であるため、内燃機関からの排熱を利用して水蒸気改質反応を行なうことによって熱効率を向上させることが可能となる。 On the other hand, in an internal combustion engine such as an automobile, hydrogen or carbon monoxide is generated from part or all of the fuel by a steam reforming reaction, and these are supplied to the internal combustion engine to improve thermal efficiency and startability of the internal combustion engine. Technology is known. Since this steam reforming reaction is usually an endothermic reaction, it is possible to improve the thermal efficiency by performing the steam reforming reaction using exhaust heat from the internal combustion engine.
 エタノールなどの酸素含有炭化水素を水蒸気により改質するための触媒としては、特開2005-185989号公報(特許文献1)には、銀成分及び銀成分以外の貴金属成分を含む活性金属成分とアルミナからなる固体酸性物質とを含有する酸素含有炭化水素の改質触媒、並びに、更にアルカリ金属成分又はアルカリ土類金属成分から選ばれる少なくとも1種を含む酸素含有炭化水素の改質触媒が開示されている。しかしながら、特許文献1に開示されている酸素含有炭化水素の改質触媒は、酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件においてコーキングの抑制が十分なものではなかった。 As a catalyst for reforming oxygen-containing hydrocarbons such as ethanol with water vapor, Japanese Patent Application Laid-Open No. 2005-185989 (Patent Document 1) discloses an active metal component containing a silver component and a noble metal component other than the silver component, and alumina. An oxygen-containing hydrocarbon reforming catalyst containing a solid acidic substance, and an oxygen-containing hydrocarbon reforming catalyst further containing at least one selected from an alkali metal component or an alkaline earth metal component are disclosed. Yes. However, the oxygen-containing hydrocarbon reforming catalyst disclosed in Patent Document 1 has sufficient suppression of coking in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low. It wasn't.
 また、特開2008-149313号公報(特許文献2)には、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)及びルテニウム(Ru)からなる群から選択された一つ以上の活性成分Aと、モリブデン(Mo)、バナジウム(V)、タングステン(W)、クロム(Cr)、レニウム(Re)、コバルト(Co)、セリウム(Ce)及び鉄(Fe)からなる群から選択された一つ以上の金属、その酸化物、その合金又はその混合物である活性成分Bとを含む金属触媒と、前記金属触媒が担持されたAl、TiO、ZrO、SiO、YSZ、Al-SiO、CeOからなる群から選択された一つ以上の担体とを含有する燃料改質反応用触媒、並びに、更にアルカリ金属及びアルカリ土類金属のうちから選択された一つ以上の活性成分Cをに含む燃料改質反応用触媒が開示されている。しかしながら、特許文献2に開示されている燃料改質反応用触媒においても、酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件においてコーキングの抑制が十分なものではなかった。 Japanese Patent Laid-Open No. 2008-149313 (Patent Document 2) discloses one selected from the group consisting of platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), and ruthenium (Ru). From the group consisting of the above active ingredient A and molybdenum (Mo), vanadium (V), tungsten (W), chromium (Cr), rhenium (Re), cobalt (Co), cerium (Ce) and iron (Fe). A metal catalyst comprising one or more selected metals, an oxide thereof, an alloy thereof or an active component B which is a mixture thereof, and Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 on which the metal catalyst is supported. , YSZ, Al 2 O 3 -SiO 2, the fuel reforming reaction catalyst containing a one or more carriers selected from the group consisting of CeO 2, and further alkali metal and Al Fuel reforming reaction catalyst containing the one or more active component C is selected from among Li-earth metal is disclosed. However, even in the fuel reforming reaction catalyst disclosed in Patent Document 2, coking is not sufficiently suppressed in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low. There wasn't.
 更に、特開2010-207782号公報(特許文献3)には、セリアとアルミナとがともにnmスケールで分散された複合酸化物を含む担体と、該担体に担持された長周期型周期表の8族~10族に属する少なくとも1種の金属元素とを含有する水蒸気改質触媒が開示されている。同公報の記載によれば、酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件においてもコーキングが起こりにくく、酸素含有炭化水素を水蒸気により効率的に改質して水素を生成させることが可能となっている。しかしながら、近年は、水蒸気改質触媒に対する要求特性が益々高まっており、酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件、更には時間的又は場所的にS/Cの変動があり部分的にS/Cが低くなるような条件においても、コーキングが十分に起こりにくく、高温下に曝されても高い活性を保持し、酸素含有炭化水素を水蒸気により効率的に改質することが可能な水蒸気改質触媒が求められるようになってきた。 Further, JP 2010-207782 A (Patent Document 3) discloses a carrier containing a composite oxide in which ceria and alumina are both dispersed on the nm scale, and a long-period periodic table 8 on the carrier. A steam reforming catalyst containing at least one metal element belonging to Groups 10 to 10 is disclosed. According to the description of the publication, coking is unlikely to occur even in an environment where oxygen gas is not present or in a condition where the molar ratio (S / C) of water vapor to carbon is low, and oxygen-containing hydrocarbons are efficiently reformed with water vapor. It is possible to generate hydrogen. However, in recent years, the required characteristics for the steam reforming catalyst have been increasing more and more, the environment where oxygen gas does not exist, the condition where the molar ratio (S / C) of steam and carbon is low, and further, the time or place of S Even under conditions where the S / C is low due to fluctuations in / C, coking is unlikely to occur sufficiently, high activity is maintained even when exposed to high temperatures, and oxygen-containing hydrocarbons are efficiently treated with steam There has been a demand for a steam reforming catalyst that can be reformed quickly.
特開2005-185989号公報JP 2005-185989 A 特開2008-149313号公報JP 2008-149313 A 特開2010-207782号公報JP 2010-207782 A
 本開示は、酸素含有炭化水素の水蒸気改質反応において、触媒活性が高く、更に酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件においてもコーキングが十分に起こりにくい酸素含有炭化水素の水蒸気改質触媒、及びこれを用いた酸素含有炭化水素の水蒸気改質方法を提供することを目的とする。 In the present disclosure, in the steam reforming reaction of an oxygen-containing hydrocarbon, coking sufficiently occurs even in an environment where the catalytic activity is high and the oxygen gas is not present or the molar ratio (S / C) of steam and carbon is low. An object of the present invention is to provide a steam reforming catalyst for oxygen-containing hydrocarbon which is difficult to perform, and a method for steam reforming oxygen-containing hydrocarbon using the same.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、セリアとアルミナ、必要に応じてジルコニアをnmスケールで分散させた複合酸化物を含む担体に、白金族に属する少なくとも1種の第一金属元素、及び、アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素を担持させることによって、酸素含有炭化水素の水蒸気改質反応において高い触媒活性を示し、コーキングが十分に起こりにくい水蒸気改質触媒が得られることを見出し、本開示を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have found that at least one member belonging to the platinum group is present in a support containing a composite oxide in which ceria and alumina and, if necessary, zirconia are dispersed in the nm scale. In the steam reforming reaction of oxygen-containing hydrocarbons, by supporting at least one second metal element selected from the group consisting of the first metal element and the alkali metal, alkaline earth metal and rare earth elements The present disclosure has been completed by finding that a steam reforming catalyst that exhibits catalytic activity and does not sufficiently cause coking can be obtained.
 本開示の第一の態様によれば、水蒸気改質触媒は、セリアとアルミナとがともにnmスケールで分散された複合酸化物を含む担体と、該担体に担持された白金族に属する少なくとも1種の第一金属元素と、前記担体に担持されたアルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素とを含有し、酸素含有炭化水素を水蒸気により改質するための触媒である。 According to the first aspect of the present disclosure, the steam reforming catalyst includes a support containing a composite oxide in which ceria and alumina are both dispersed on the nm scale, and at least one member belonging to the platinum group supported on the support. And at least one second metal element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements supported on the carrier, and oxygen-containing hydrocarbons by steam It is a catalyst for reforming.
 本開示の第二の態様によれば、上記第一の態様にかかる水蒸気改質触媒において、前記複合酸化物が、ジルコニアを更に含有しており、かつ、セリアとアルミナとジルコニアとがともにnmスケールで分散されたものである。 According to the second aspect of the present disclosure, in the steam reforming catalyst according to the first aspect, the composite oxide further contains zirconia, and ceria, alumina, and zirconia are all in nm scale. Are distributed.
 本開示の第三の態様によれば、上記第一または第二の態様にかかる水蒸気改質触媒においては、前記担体に担持された第一金属元素がロジウムである。 According to the third aspect of the present disclosure, in the steam reforming catalyst according to the first or second aspect, the first metal element supported on the carrier is rhodium.
 本開示の第四の態様によれば、上記第一ないし第三のいずれかの態様にかかる水蒸気改質触媒においては、前記担体に担持された第二金属元素がナトリウム、カリウム、セシウム、マグネシウム、ストロンチウム、バリウム、ランタン及びネオジムからなる群から選択される少なくとも1種である。 According to the fourth aspect of the present disclosure, in the steam reforming catalyst according to any one of the first to third aspects, the second metal element supported on the carrier is sodium, potassium, cesium, magnesium, It is at least one selected from the group consisting of strontium, barium, lanthanum and neodymium.
 本開示の第五の態様によれば、酸素含有炭化水素の水蒸気改質方法は、水蒸気の存在下で、酸素含有炭化水素を上記第一ないし第四のいずれかの態様にかかる水蒸気改質触媒に接触させることを含む。 According to the fifth aspect of the present disclosure, the steam reforming method of the oxygen-containing hydrocarbon is the steam reforming catalyst according to any one of the first to fourth aspects described above, in the presence of steam. In contact with
 本開示の第六の態様によれば、上記第五の態様にかかる水蒸気改質方法において、前記酸素含有炭化水素としてはエタノールである。 According to the sixth aspect of the present disclosure, in the steam reforming method according to the fifth aspect, the oxygen-containing hydrocarbon is ethanol.
 本開示の第七の態様によれば、水蒸気改質反応装置は、上記第一ないし第四のいずれかの態様にかかる水蒸気改質触媒を備える触媒反応装置であり、上記酸素含有炭化水素の水蒸気改質方法に好適に使用することができる。 According to a seventh aspect of the present disclosure, a steam reforming reaction apparatus is a catalytic reaction apparatus including the steam reforming catalyst according to any one of the first to fourth aspects, and the steam of the oxygen-containing hydrocarbon It can be suitably used for the reforming method.
 なお、上記水蒸気改質触媒によって酸素含有炭化水素の水蒸気改質反応における触媒活性が高くなる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、上記水蒸気改質触媒においては、担持された第一金属元素である白金族金属元素から選択される少なくとも1種の金属元素が水蒸気改質反応の際に酸化されたとしても、複合酸化物中にはセリア又はセリア-ジルコニア固溶体が含まれているため、これらによって触媒表面の酸素が吸収され、前記金属元素が高い触媒活性を示すメタル状態に還元されて前記触媒活性が高くなるものと推察される。また、セリア、アルミナ及びジルコニアをともにnmスケールで分散させることによって複合酸化物の表面の吸着サイトが従来の水蒸気改質触媒に比べて増加し、水蒸気の吸着能が向上して酸素含有炭化水素と水蒸気とが効率的に接触して反応するため、前記触媒活性が高くなるものと推察される。 Although the reason why the catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons is increased by the steam reforming catalyst is not necessarily clear, the present inventors speculate as follows. That is, in the steam reforming catalyst, even if at least one metal element selected from the platinum group metal elements that are the supported first metal elements is oxidized during the steam reforming reaction, the composite oxide Since ceria or ceria-zirconia solid solution is contained inside, it is presumed that oxygen on the catalyst surface is absorbed by these, and the metal element is reduced to a metal state exhibiting high catalytic activity, and the catalytic activity is increased. Is done. Also, by dispersing ceria, alumina, and zirconia on the nm scale, the adsorption sites on the surface of the composite oxide are increased as compared with the conventional steam reforming catalyst, and the water vapor adsorption capacity is improved. It is presumed that the catalytic activity is increased because water vapor efficiently contacts and reacts.
 また、セリアやセリア-ジルコニア固溶体は通常、水蒸気改質反応のような還元性雰囲気においては酸化性雰囲気に比べて粒成長しやすいが、上記水蒸気改質触媒においては、互いに固溶しないセリアとアルミナ又はセリア-ジルコニア固溶体とアルミナが互いに障壁として作用して高温時における複合酸化物の粒成長が抑制され、これに担持された前記金属元素の粒成長も抑制されるため、前記触媒活性が高くなるものと推察される。特に、セリアやセリア-ジルコニア固溶体は、水蒸気改質反応のような還元雰囲気では酸化雰囲気よりも粒成長しやすく、600℃以上で粒成長する傾向があるため、このようなアルミナによる障壁効果が大きいものと推察される。 In addition, ceria and ceria-zirconia solid solution usually grows more easily in a reducing atmosphere such as a steam reforming reaction than in an oxidizing atmosphere, but in the steam reforming catalyst, ceria and alumina that do not form a solid solution with each other. Alternatively, the ceria-zirconia solid solution and alumina act as a barrier to suppress the grain growth of the composite oxide at high temperatures, and also suppress the grain growth of the metal element supported thereon, so that the catalytic activity is increased. Inferred. In particular, ceria and ceria-zirconia solid solutions are more likely to grow in a reducing atmosphere such as a steam reforming reaction than in an oxidizing atmosphere, and tend to grow at 600 ° C. or higher. Inferred.
 更に、上記水蒸気改質触媒においてコーキングが発生しにくい理由は必ずしも定かではないが、本発明者らは以下のように推察する。一般に、水蒸気改質触媒におけるコーキングは担体上の酸点で起こると考えられている。そこで、本発明者らは、コーキングによる触媒劣化、特にS/C(スチーム/カーボン)が低い反応条件において触媒劣化が顕著になることに着目した。そして、触媒内において発生するコーキングは、担体上の強い酸点上で、エタノール等の酸素含有炭化水素の脱水反応が進行し、また、生成したエチレン等のオレフィン類の重合反応が進行するため起こるもの推察した。上記担体は、塩基性担体であるセリアと中性担体であるアルミナとを含み、必要に応じて中性担体であるジルコニウムを含む複合酸化物を含有するものであるため、少ないものの担体上に酸点が存在する。上記第二金属元素は、塩基性成分であるアルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の金属元素を含有するものであるため、前記複合酸化物担体上の強い酸点を消失させることが可能となり、前記の脱水反応及び重合反応、特に、重合反応が抑制され、コーキングが起こりにくくなるものと推察される。このように、前記担体及び前記第二金属元素を含んでいることにより、上記水蒸気改質触媒においてはコーキングが十分に起こりにくく、触媒活性の低下が抑制されるものと推察される。なお、触媒担体として一般的な金属酸化物の塩基度は、シリカ<チタニア<アルミナ<ジルコニア<セリア<マグネシアの順に高くなる。 Furthermore, although the reason why coking is difficult to occur in the steam reforming catalyst is not necessarily clear, the present inventors speculate as follows. In general, it is believed that coking in a steam reforming catalyst occurs at acid sites on the support. Therefore, the present inventors have focused on the catalyst deterioration due to coking, particularly that the catalyst deterioration becomes remarkable under the reaction conditions with low S / C (steam / carbon). The coking generated in the catalyst occurs because the dehydration reaction of oxygen-containing hydrocarbons such as ethanol proceeds on the strong acid point on the support, and the polymerization reaction of the generated olefins such as ethylene proceeds. I guessed it. The above carrier contains ceria as a basic carrier and alumina as a neutral carrier, and contains a complex oxide containing zirconium as a neutral carrier as necessary. There is a point. The second metal element contains at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, and rare earth elements, which are basic components. It is possible to eliminate strong acid sites, and it is presumed that the above dehydration reaction and polymerization reaction, particularly the polymerization reaction is suppressed, and coking is less likely to occur. Thus, by including the support and the second metal element, it is presumed that coking is hardly caused in the steam reforming catalyst, and a decrease in catalytic activity is suppressed. The basicity of a metal oxide generally used as a catalyst carrier increases in the order of silica <titania <alumina <zirconia <ceria <magnesia.
 上記水蒸気改質触媒、上記水蒸気改質方法、及び上記水蒸気改質反応装置によれば、酸素ガスが存在しない環境や水蒸気と炭素とのモル比(S/C)が低い条件においてもコーキングが起こりにくく、酸素含有炭化水素を水蒸気により効率的に改質して水素を生成させることが可能となる。 According to the steam reforming catalyst, the steam reforming method, and the steam reforming reaction apparatus, coking occurs even in an environment where no oxygen gas is present or in a condition where the molar ratio (S / C) of steam to carbon is low. It is difficult to efficiently reform oxygen-containing hydrocarbons with steam to generate hydrogen.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
実施例1~10で得た複合酸化物において、断面の直径が0.5nmの微小範囲内におけるCe、Zr及びAlの原子比を示すグラフである。 実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における初期段階での触媒活性を示すグラフである。 実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における耐久後の触媒活性を示すグラフである。 実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における耐久試験による活性低下率を示すグラフである。 実施例1~7、9及び比較例1で得たモノリス触媒についてのエタノールの水蒸気改質反応における耐久試験後の触媒上の炭素析出量を示すグラフである。 実施例1~7、9及び比較例1で得たモノリス触媒の担体についてアンモニア昇温脱離(NH-TPD)法により酸点量(NH脱離量)を測定した結果を示すグラフである。 実施例1~10及び比較例1~8のモノリス触媒試料の仕様を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing
6 is a graph showing the atomic ratio of Ce, Zr, and Al in a composite oxide obtained in Examples 1 to 10 in a minute range with a cross-sectional diameter of 0.5 nm. 6 is a graph showing the catalytic activity at the initial stage in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8. 6 is a graph showing the catalytic activity after durability in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8. 6 is a graph showing the rate of decrease in activity by an endurance test in a steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8. 6 is a graph showing the amount of carbon deposited on a catalyst after an endurance test in a steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 7, 9 and Comparative Example 1. 6 is a graph showing the results of measuring the amount of acid sites (NH 3 desorption amount) by the ammonia temperature-programmed desorption (NH 3 -TPD) method for the carrier of the monolith catalyst obtained in Examples 1 to 7, 9 and Comparative Example 1. is there. FIG. 3 is a view showing specifications of monolith catalyst samples of Examples 1 to 10 and Comparative Examples 1 to 8.
 以下、本開示を実施形態に即して詳細に説明する。 Hereinafter, the present disclosure will be described in detail according to the embodiment.
 先ず、水蒸気改質触媒について説明する。水蒸気改質触媒は、酸素含有炭化水素を水蒸気により改質するための触媒であり、セリアとアルミナとがともにnmスケールで分散された複合酸化物を含む担体と、該担体に担持された白金族金属からなる群から選択される少なくとも1種の第一金属元素と(以下、「第一担持金属元素」という。)と、前記担体に担持されたアルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素(以下、「第二担持金属元素」という。)とを含有するものである。 First, the steam reforming catalyst will be described. The steam reforming catalyst is a catalyst for reforming an oxygen-containing hydrocarbon with steam, a support containing a composite oxide in which both ceria and alumina are dispersed in nm scale, and a platinum group supported on the support. At least one first metal element selected from the group consisting of metals (hereinafter referred to as “first supported metal element”), and an alkali metal, alkaline earth metal and rare earth element supported on the carrier. It contains at least one second metal element selected from the group (hereinafter referred to as “second supported metal element”).
 このようなセリアとアルミナと、必要に応じてジルコニアとをnmスケールで分散させた複合酸化物を含む担体を使用することによって、水蒸気改質触媒は、酸素含有炭化水素の水蒸気改質反応において高い触媒活性を示すものとなる。 By using such a support containing a composite oxide in which ceria, alumina, and, if necessary, zirconia are dispersed in nm scale, the steam reforming catalyst is high in the steam reforming reaction of oxygen-containing hydrocarbons. It shows catalytic activity.
 ここで、「nmスケールの分散」とは、複合酸化物を断面の直径が1nm以下の複数の微小領域に分割してその組成を高分解能を有するミクロ分析装置を用いて測定した場合に、前記微小領域の大部分が複数の成分によって形成されている状態をいう。このようなミクロ分析が可能な装置としては、例えば、日立製作所製「HD-2000」などの電界放射型走査透過顕微鏡(FE-STEM)が挙げられる。なお、「断面の直径が1nm以下の微小領域」とは、ミクロ分析装置を用いた測定において直径が1nm以下のビームを複合酸化物に照射した場合にこのビームが透過した複合酸化物中の領域を意味する。 Here, “nm-scale dispersion” means that the composite oxide is divided into a plurality of microregions having a cross-sectional diameter of 1 nm or less and the composition is measured using a microanalyzer having high resolution. A state in which most of the minute region is formed by a plurality of components. As an apparatus capable of such microanalysis, for example, a field emission scanning transmission microscope (FE-STEM) such as “HD-2000” manufactured by Hitachi, Ltd. may be mentioned. Note that “a microscopic region having a cross-sectional diameter of 1 nm or less” means a region in a composite oxide through which the beam is transmitted when a beam having a diameter of 1 nm or less is irradiated to the composite oxide in a measurement using a microanalyzer. Means.
 複合酸化物としては、この複合酸化物を断面の直径が1nm以下の複数の微小領域に分割した場合に、前記微小領域内のセリウム及びアルミニウムの含有率がそれぞれセリウム及びアルミニウムの仕込み比率±20%(好ましくは±10%)の範囲内にあり且つこのような微小領域が全微小領域の90%以上であるものが好ましく、また、前記微小領域内のジルコニウムの含有率がジルコニウムの仕込み比率±20%(好ましくは±10%)の範囲内にあり且つこのような微小領域が全微小領域の90%以上であるものがより好ましい。このように大部分の微小領域の組成が仕込み組成とほぼ同一である複合酸化物は組成がほぼ均一であり、酸素含有炭化水素の水蒸気改質反応においてより高い触媒活性を示す傾向にある。なお、「セリウム、アルミニウム及びジルコニウムの仕込み比率」とは、それぞれ複合酸化物を形成する金属の全仕込み量に対するセリウム、アルミニウム及びジルコニウムの仕込み量の割合(単位:%)を意味する。また、「仕込み比率±20%の範囲内」とは、例えば、仕込み比率が70%の場合には50~90%を意味する。 As the composite oxide, when the composite oxide is divided into a plurality of minute regions having a cross-sectional diameter of 1 nm or less, the cerium and aluminum contents in the minute regions are respectively charged ratios of cerium and aluminum ± 20% (Preferably ± 10%) and such a micro region is preferably 90% or more of the total micro region, and the zirconium content in the micro region is zirconium loading ratio ± 20 % (Preferably ± 10%) and such a micro region is more than 90% of the total micro region. Thus, the composite oxide in which the composition of most of the microregions is almost the same as the charged composition has a substantially uniform composition and tends to exhibit higher catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons. In addition, “the charging ratio of cerium, aluminum and zirconium” means the ratio (unit:%) of the charging amount of cerium, aluminum and zirconium to the total charging amount of the metal forming the composite oxide. Further, “within the range of the charging ratio ± 20%” means, for example, 50 to 90% when the charging ratio is 70%.
 水蒸気改質触媒は、高温での酸素含有炭化水素の水蒸気改質反応においても高い触媒活性を示す傾向にある。この理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、複合酸化物には、固相反応性が低いセリア又はセリア-ジルコニア固溶体が含まれており、前記第一担持金属元素が酸化され且つ600℃以上の高温に曝されたとしても、前記複合酸化物との固相反応が進行しにくく、酸化物の状態で安定化せずに高い触媒活性を示すメタル状態に還元されるため、前記触媒活性が高くなるものと推察される。また、前記複合酸化物と前記第一担持金属元素は強い相互作用を示し、600℃以上の高温においても前記複合酸化物を含む担体上の前記第一担持金属元素の粒成長が抑制されるため、前記触媒活性が高くなるものと推察される。更に、セリアやセリア-ジルコニア固溶体は通常、水蒸気改質反応のような還元性雰囲気においては酸化性雰囲気に比べて粒成長しやすいが、互いに固溶しないセリアとアルミナ又はセリア-ジルコニア固溶体とアルミナが互いに障壁として作用して高温時における複合酸化物の粒成長が抑制され、これに担持された前記金属元素の粒成長も抑制されるため、前記触媒活性が高くなるものと推察される。 Steam reforming catalysts tend to exhibit high catalytic activity even in steam reforming reactions of oxygen-containing hydrocarbons at high temperatures. The reason for this is not necessarily clear, but the present inventors speculate as follows. That is, the composite oxide contains ceria or ceria-zirconia solid solution with low solid phase reactivity, and even if the first supported metal element is oxidized and exposed to a high temperature of 600 ° C. or higher, It is presumed that the catalytic activity is increased because the solid-phase reaction with the oxide is difficult to proceed and is reduced to a metal state exhibiting high catalytic activity without being stabilized in the state of oxide. In addition, the composite oxide and the first supported metal element exhibit a strong interaction, and grain growth of the first supported metal element on the support containing the composite oxide is suppressed even at a high temperature of 600 ° C. or higher. It is assumed that the catalytic activity is increased. Furthermore, ceria or ceria-zirconia solid solution usually grows more easily in a reducing atmosphere such as a steam reforming reaction than an oxidizing atmosphere, but ceria and alumina or ceria-zirconia solid solution and alumina, which do not form a solid solution with each other. It is presumed that the catalytic activity is enhanced because the composite oxide acts as a barrier to each other to suppress the grain growth of the complex oxide at a high temperature and the grain growth of the metal element supported thereon.
 また、前記第一担持金属元素を酸化物の状態からメタル状態に還元する作用はセリアでも発現するが、セリアがジルコニアと固溶体を形成している場合に、より効果的に発現する。したがって、複合酸化物においては、セリアとジルコニアのそれぞれ少なくとも一部が立方晶系のセリア-ジルコニア固溶体を形成していることが好ましい。 The action of reducing the first supported metal element from the oxide state to the metal state is also exhibited in ceria, but more effectively when ceria forms a solid solution with zirconia. Therefore, in the composite oxide, it is preferable that at least a part of each of ceria and zirconia forms a cubic ceria-zirconia solid solution.
 更に、水蒸気改質触媒は、高温に曝露された後においても複合酸化物のメソ細孔の細孔容積を高く維持することが可能となる。これは、前記障壁作用によって高温時の複合酸化物のシンタリングを抑制されるためであると推察される。なお、メソ細孔の細孔直径の範囲は、原理上、水銀ポロシメータを用いて測定可能な下限値3.5nmから100nmまでの範囲を意味する。前記複合酸化物の場合、細孔直径が3.5~100nmの細孔の容積は、600℃で5時間の焼成後において0.07cm/g以上であり且つ800℃で5時間の焼成後において0.04cm/g以上であることが好ましく、600℃で5時間の焼成後において0.13cm/g以上であり且つ800℃で5時間の焼成後において0.10cm/g以上であることがより好ましく、600℃で5時間の焼成後において0.19cm/g以上であり且つ800℃で5時間の焼成後において0.15cm/g以上であることが特に好ましい。 Furthermore, the steam reforming catalyst can maintain a high pore volume of the mesopores of the composite oxide even after being exposed to a high temperature. This is presumably because sintering of the complex oxide at high temperatures is suppressed by the barrier action. In addition, the range of the pore diameter of a mesopore means the range from the lower limit 3.5nm to 100nm which can be measured using a mercury porosimeter in principle. In the case of the composite oxide, the pore volume having a pore diameter of 3.5 to 100 nm is 0.07 cm 3 / g or more after calcination at 600 ° C. for 5 hours and after calcination at 800 ° C. for 5 hours. in 0.04 cm 3 / is preferably g or more, 600 after firing for 5 hours at ° C. 0.13 cm 3 / g in the are and 800 ° C. or higher after calcination for 5 hours 0.10 cm 3 / g or more in More preferably, it is 0.19 cm 3 / g or more after calcination at 600 ° C. for 5 hours, and particularly preferably 0.15 cm 3 / g or more after calcination at 800 ° C. for 5 hours.
 複合酸化物としては、X線回折によるCeO(220)のピークの半値幅から計算したセリアの結晶子径が、600℃で5時間の焼成後において5~10nmであり、800℃で5時間の焼成後において10~20nmであり、更に1000℃で5時間の焼成後において35nm以下であるものが好ましい。セリア結晶子径が前記範囲にあると高温時のシンタリングがより一層抑制され、高温に曝露された後においても十分な細孔容積を確保することができる傾向にある。 As the composite oxide, the ceria crystallite diameter calculated from the half width of the peak of CeO 2 (220) by X-ray diffraction is 5 to 10 nm after baking at 600 ° C. for 5 hours, and at 800 ° C. for 5 hours. It is preferably 10 to 20 nm after firing, and 35 nm or less after firing at 1000 ° C. for 5 hours. When the ceria crystallite diameter is in the above range, sintering at high temperatures is further suppressed, and a sufficient pore volume tends to be ensured even after exposure to high temperatures.
 このように細孔容積が十分に確保された複合酸化物を含む担体に前記第一担持金属元素及び/又は第二担持金属元素を担持させると、これらの金属元素はメソ細孔に高分散状態で担持される。また、このメソ細孔は、酸素含有炭化水素の水蒸気改質反応における反応場となるとともに、高温でも十分な細孔容積が確保されている。このため、水蒸気改質触媒は高温での酸素含有炭化水素の水蒸気改質反応においても高い触媒活性を示すものと推察される。 When the first supported metal element and / or the second supported metal element is supported on the support containing the composite oxide having a sufficiently secured pore volume, the metal elements are highly dispersed in the mesopores. It is carried by. The mesopores are a reaction field in the steam reforming reaction of oxygen-containing hydrocarbons, and a sufficient pore volume is secured even at high temperatures. For this reason, it is surmised that the steam reforming catalyst exhibits high catalytic activity even in the steam reforming reaction of oxygen-containing hydrocarbons at high temperatures.
 複合酸化物は、例えば、以下の方法により製造することができる。先ず、セリウム化合物及びアルミニウム化合物が溶解した水溶液又は水を含む溶液からセリア前駆体及びアルミナ前駆体を沈殿物として析出させる。このとき、必要に応じて前記水溶液又は水を含む溶液にジルコニウム化合物を溶解させて、ジルコニア前駆体を沈殿物として析出させることもできる。また、セリア前駆体とジルコニア前駆体を沈殿物として同時に析出させると、その少なくとも一部が固溶体を形成する。 The composite oxide can be produced, for example, by the following method. First, a ceria precursor and an alumina precursor are deposited as a precipitate from an aqueous solution in which a cerium compound and an aluminum compound are dissolved or a solution containing water. At this time, if necessary, a zirconium compound can be dissolved in the aqueous solution or a solution containing water to precipitate the zirconia precursor as a precipitate. Moreover, when a ceria precursor and a zirconia precursor are simultaneously deposited as precipitates, at least a part thereof forms a solid solution.
 セリウム化合物、アルミニウム化合物及びジルコニウム化合物としては、一般には硫酸塩、硝酸塩、塩化物、酢酸塩などの塩が用いられる。また、塩を溶解する溶媒としては水及びアルコール類が挙げられる。更に、例えば、硝酸アルミニウムを含む水溶液として水酸化アルミニウムと硝酸と水とを混合したものを使用することもできる。 As the cerium compound, aluminum compound and zirconium compound, salts such as sulfates, nitrates, chlorides and acetates are generally used. Examples of the solvent for dissolving the salt include water and alcohols. Furthermore, for example, a mixture of aluminum hydroxide, nitric acid and water can be used as an aqueous solution containing aluminum nitrate.
 前記前駆体の沈殿物は、前記水溶液又は水を含む溶液にアルカリ性溶液を添加して溶液のpHを調節することによって析出させることができる。このとき、アルカリ性溶液を瞬時に添加して強撹拌したり、過酸化水素水などを添加して各前駆体が沈殿し始めるpHを調節した後、アルカリ性溶液などを添加したりすることによって各前駆体の沈殿物をほぼ同時に析出させることができる。一方、アルカリ性溶液を時間をかけて、例えば10分以上かけて添加して中和時間を長くしたり、溶液のpHをモニタリングして各前駆体の沈殿物が析出するpHに段階的に調節したり、溶液のpHが各前駆体の沈殿物が析出するpHに保たれるように緩衝溶液を添加したりすることによってアルミナ前駆体の沈殿物を他の前駆体の沈殿物よりも先(又はその逆)に析出させることができる。 The precursor precipitate can be precipitated by adding an alkaline solution to the aqueous solution or a solution containing water to adjust the pH of the solution. At this time, each precursor is added by instantly adding an alkaline solution and stirring vigorously, or by adjusting the pH at which each precursor begins to precipitate by adding hydrogen peroxide or the like, and then adding an alkaline solution or the like. Body precipitates can be deposited almost simultaneously. On the other hand, the alkaline solution is added over time, for example, over 10 minutes to increase the neutralization time, or the pH of the solution is monitored and adjusted stepwise to the pH at which each precursor precipitates. Or by adding a buffer solution so that the pH of the solution is maintained at a pH at which the precipitate of each precursor precipitates (or Vice versa).
 前記アルカリ性溶液としては、アンモニア水や、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどが溶解した水溶液又はアルコール溶液が挙げられる。中でも、複合酸化物を焼成する際に揮発することからアンモニア水、炭酸アンモニウムの水溶液又はアルコール溶液が好ましい。また、前記前駆体の沈殿物の析出反応を促進させるという観点から、アルカリ性溶液のpHは9以上であることが好ましい。 Examples of the alkaline solution include ammonia water, an aqueous solution in which ammonium carbonate, sodium hydroxide, potassium hydroxide, sodium carbonate and the like are dissolved, or an alcohol solution. Among them, ammonia water, an aqueous solution of ammonium carbonate or an alcohol solution is preferable because it volatilizes when the composite oxide is fired. Further, from the viewpoint of promoting the precipitation reaction of the precursor precipitate, the pH of the alkaline solution is preferably 9 or more.
 その後、このようにして得られた前駆体の沈殿物を、熟成させた後、焼成することによって複合酸化物が得られる。 Thereafter, the precursor precipitate thus obtained is aged and then fired to obtain a composite oxide.
 前記複合酸化物の製造方法において、前駆体の沈殿物を熟成させると加温の熱によって沈殿物の溶解、再析出が促進されるとともに得られる複合酸化物粒子を成長させることができ、比較的結晶性が高く適度な粒子径を有する結晶子からなる複合酸化物を得ることができる。熟成温度としては、室温以上が好ましく、100~200℃がより好ましく、100~150℃が特に好ましい。熟成温度が前記下限未満になると熟成による促進効果が小さく、熟成に要する時間が長くなる傾向にあり、他方、前記上限を超えると水蒸気圧が極めて高くなるため、耐圧容器が必要となり製造コストが高くなる傾向にある。 In the method for producing a composite oxide, when the precursor precipitate is aged, dissolution and reprecipitation of the precipitate are promoted by heating heat, and the resulting composite oxide particles can be grown. A composite oxide composed of crystallites having high crystallinity and an appropriate particle size can be obtained. The aging temperature is preferably room temperature or higher, more preferably 100 to 200 ° C., and particularly preferably 100 to 150 ° C. When the aging temperature is less than the lower limit, the effect of aging is small, and the time required for aging tends to be long.On the other hand, when the upper limit is exceeded, the water vapor pressure becomes extremely high, so a pressure vessel is required and the production cost is high. Tend to be.
 前記複合酸化物の製造方法において、沈殿物の焼成は大気中で行なうことができる。焼成温度としては300~800℃が好ましい。焼成温度が前記下限未満になると得られる複合酸化物が担体としての安定性に欠ける傾向にあり、他方、前記上限を超えると複合酸化物の比表面積が低下する傾向にある。 In the method for producing the composite oxide, the precipitate can be fired in the air. The firing temperature is preferably 300 to 800 ° C. When the firing temperature is less than the lower limit, the resulting composite oxide tends to lack stability as a carrier, and when the upper limit is exceeded, the specific surface area of the composite oxide tends to decrease.
 以上、複合酸化物の製造方法について説明したが、前記複合酸化物の製造方法は上記実施形態に限定されるものではない。例えば、前駆体の沈殿物を含む溶液をそのまま加熱して溶媒を蒸発させて沈殿物を乾固させ、そのその後、焼成することもできる。この場合、沈殿物の乾固中に沈殿物が熟成されるため、沈殿物の乾固は前記熟成温度で実施することが好ましい。 As mentioned above, although the manufacturing method of complex oxide was demonstrated, the manufacturing method of the said complex oxide is not limited to the said embodiment. For example, the solution containing the precursor precipitate may be heated as it is to evaporate the solvent to dry the precipitate, and then fired. In this case, since the precipitate is aged during the drying of the precipitate, the drying of the precipitate is preferably performed at the aging temperature.
 水蒸気改質触媒に用いられる担体は、このような複合酸化物を含むものであれば特に制限はなく、前記複合酸化物のみからなるものであっても、前記複合酸化物と他の多孔質酸化物との混合物からなるものであってもよい。前記他の多孔質酸化物としては、アルミナ、セリア、ジルコニア、チタニア、シリカなどが挙げられ、これらの酸化物は1種を単独で使用しても2種以上を混合して使用してもよい。前記複合酸化物と他の多孔質酸化物との混合物において、前記複合酸化物の含有量としては50質量%以上が好ましい。前記複合酸化物の含有量が前記下限未満になると酸素含有炭化水素の水蒸気改質反応における触媒活性が低下する傾向にある。 The carrier used for the steam reforming catalyst is not particularly limited as long as it contains such a complex oxide, and even if it is composed only of the complex oxide, the complex oxide and other porous oxides. It may consist of a mixture with a product. Examples of the other porous oxides include alumina, ceria, zirconia, titania, silica and the like. These oxides may be used alone or in combination of two or more. . In the mixture of the composite oxide and another porous oxide, the content of the composite oxide is preferably 50% by mass or more. When the content of the composite oxide is less than the lower limit, the catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon tends to decrease.
 水蒸気改質触媒は、このような複合酸化物を含む担体と、これに担持された白金族金属からなる群から選択される少なくとも1種の第一金属元素と、及び、前記担体に担持されたアルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素とを含有するものである。 The steam reforming catalyst includes a support containing such a composite oxide, at least one first metal element selected from the group consisting of platinum group metals supported on the support, and supported on the support. It contains at least one second metal element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements.
 このような水蒸気改質触媒においては、該担体に担持された白金族金属(ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)及び白金(Pt))からなる群から選択される少なくとも1種の第一金属元素とを含有することが必要である。 In such a steam reforming catalyst, a platinum group metal (ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir) and platinum (Pt)) supported on the carrier. It is necessary to contain at least one first metal element selected from the group consisting of:
 前記白金族金属からなる群から選択される少なくとも1種の第一金属元素のうち、酸素含有炭化水素の水蒸気改質反応において高い触媒活性を示すという観点からロジウムがより好ましい。また、前記白金族に属する金属元素は1種を単独で使用しても2種以上を併用してもよい。 Among the at least one first metal element selected from the group consisting of the platinum group metals, rhodium is more preferable from the viewpoint of showing high catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons. Moreover, the metal element which belongs to the said platinum group may be used individually by 1 type, or may use 2 or more types together.
 水蒸気改質触媒中の第一担持金属元素の含有量としては、担体100質量部に対して0.1~20質量部が好ましく、0.5~10質量部がより好ましい。第一担持金属元素の含有量が前記下限未満になると酸素含有炭化水素の水蒸気改質反応において十分な触媒活性が得られない傾向にあり、他方、前記上限を超えると第一担持金属元素が粒成長して前記触媒活性が向上しない傾向にある。 The content of the first supported metal element in the steam reforming catalyst is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the support. If the content of the first supported metal element is less than the lower limit, sufficient catalytic activity tends not to be obtained in the steam reforming reaction of the oxygen-containing hydrocarbon. It tends to grow and the catalytic activity does not improve.
 また、このような水蒸気改質触媒においては、前記担体に担持されたアルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム及びセシウム)、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウム)及び希土類元素(スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム及びルテチウム)からなる群から選択される少なくとも1種の第二金属元素を含有することが必要である。 Moreover, in such a steam reforming catalyst, alkali metals (lithium, sodium, potassium, rubidium and cesium), alkaline earth metals (beryllium, magnesium, calcium, strontium and barium) and rare earth elements supported on the carrier are supported. Contains at least one second metal element selected from the group consisting of (scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium) It is necessary to.
 前記アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素のうち、酸素含有炭化水素の水蒸気改質反応において高い触媒活性及び触媒劣化防止という観点からナトリウム(Na)、カリウム(K)、セシウム(Cs)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)、ランタン(La)及びネオジム(Nd)からなる群から選択される少なくとも1種であることが好ましく、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)及びランタン(La)からなる群から選択される少なくとも1種であることがより好ましい。また、前記アルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種を単独で使用しても2種以上を併用してもよい。 Of the at least one second metal element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements, sodium is used from the viewpoint of high catalytic activity and prevention of catalyst deterioration in the steam reforming reaction of oxygen-containing hydrocarbons. (Na), potassium (K), cesium (Cs), magnesium (Mg), strontium (Sr), barium (Ba), lanthanum (La) and at least one selected from the group consisting of neodymium (Nd) It is preferable that it is at least one selected from the group consisting of sodium (Na), potassium (K), magnesium (Mg) and lanthanum (La). In addition, at least one selected from the group consisting of the alkali metal, alkaline earth metal and rare earth element may be used alone or in combination of two or more.
 水蒸気改質触媒中の第二担持金属元素の担持量としては、特に制限されないが、前記第一担持金属元素の原子数に対する比として、0.05~10であることが好ましく、0.1~5であることがより好ましい。第二担持金属元素の担持量が前記下限未満になると酸素含有炭化水素の水蒸気改質反応において十分な触媒活性や触媒劣化防止効果が得られない傾向にあり、他方、前記上限を超えると第二担持金属元素が第一担持金属元素を覆ってしまい前記触媒活性が低下する傾向にある。 The amount of the second supported metal element supported in the steam reforming catalyst is not particularly limited, but the ratio to the number of atoms of the first supported metal element is preferably 0.05 to 10, preferably 0.1 to 5 is more preferable. If the amount of the second supported metal element is less than the lower limit, sufficient catalytic activity or catalyst deterioration preventing effect tends to be not obtained in the steam reforming reaction of the oxygen-containing hydrocarbon. The supported metal element covers the first supported metal element and the catalytic activity tends to decrease.
 前記第一金属元素及び前記第二金属元素の担持方法としては、例えば、前記第一金属元素及び前記第二金属元素の金属元素の化合物を所定の濃度で含有する溶液に前記複合酸化物を含む担体を浸漬して所定量の金属元素を含む溶液を前記担体に含浸させ、これを焼成する方法などが挙げられる。なお、第一金属元素及び第二金属元素の担持方法は、先に第一金属元素を担持焼成した後に第二金属元素を担持し焼成しても、先に第二金属元素を担持焼成した後に第一金属元素を担持し焼成しても、同時に行ってもいずれでもよい。このとき、前記複合酸化物を含む担体はペレットなどの粉末状で使用してもよいし、予め、コーティングなどにより前記複合酸化物を含む担体をコージェライト製ハニカム基材などの公知の基材に固定化して使用してもよい。 As a method for supporting the first metal element and the second metal element, for example, the composite oxide is contained in a solution containing a compound of the metal element of the first metal element and the second metal element at a predetermined concentration. Examples include a method of immersing the carrier, impregnating the carrier with a solution containing a predetermined amount of metal element, and firing the carrier. In addition, the loading method of the first metal element and the second metal element is that after the first metal element is first supported and fired, the second metal element is supported and fired, or the second metal element is first supported and fired. The first metal element may be supported and fired, or may be performed simultaneously. At this time, the support containing the composite oxide may be used in the form of powder such as pellets, or the support containing the composite oxide is previously applied to a known base material such as a cordierite honeycomb base material by coating or the like. You may fix and use.
 このような担持方法における焼成は大気中で実施することができる。焼成温度としては200~600℃が好ましい。焼成温度が前記下限未満になると前記第一金属元素の化合物が十分に熱分解せず、メタル状態になりにくくなるため、活性が低くなる傾向にあり、他方、前記上限を超えると担持させた金属元素が粒成長して酸素含有炭化水素の水蒸気改質反応における触媒活性が低下する傾向にある。また、焼成時間としては0.1~100時間が好ましい。焼成時間が前記下限未満になると前記金属元素の化合物が十分に熱分解せず、メタル状態になりにくくなるため、活性が低くなる傾向にあり、他方、前記上限を超えてもそれ以上の効果は得られず、触媒を調製するためのコストの増大に繋がる。 Calcination in such a supporting method can be performed in the atmosphere. The firing temperature is preferably 200 to 600 ° C. If the firing temperature is less than the lower limit, the compound of the first metal element is not sufficiently thermally decomposed and becomes difficult to be in a metal state, so that the activity tends to be low. The element grows and the catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon tends to decrease. The firing time is preferably from 0.1 to 100 hours. When the firing time is less than the lower limit, the compound of the metal element is not sufficiently thermally decomposed and becomes difficult to be in a metal state, and therefore the activity tends to be low. This is not possible, leading to an increase in cost for preparing the catalyst.
 水蒸気改質触媒の形状は特に制限されず、用途に応じて、ペレット状、モノリス状、ハニカム状又はフォーム状など各種形状に成形することができる。 The shape of the steam reforming catalyst is not particularly limited, and can be formed into various shapes such as a pellet shape, a monolith shape, a honeycomb shape, or a foam shape according to the application.
 このような水蒸気改質触媒は、酸素含有炭化水素を水蒸気によって改質するために使用されるものであり、この酸素含有炭化水素の水蒸気改質反応において高い触媒活性を示すものである。 Such a steam reforming catalyst is used to reform an oxygen-containing hydrocarbon with steam, and exhibits high catalytic activity in the steam reforming reaction of the oxygen-containing hydrocarbon.
 次に、酸素含有炭化水素の水蒸気改質方法について説明する。酸素含有炭化水素の水蒸気改質方法は、水蒸気の存在下で、酸素含有炭化水素を前記水蒸気改質触媒に接触させて水素を生成させる方法である。 Next, a method for steam reforming of oxygen-containing hydrocarbon will be described. The steam reforming method for oxygen-containing hydrocarbons is a method for generating hydrogen by bringing oxygen-containing hydrocarbons into contact with the steam reforming catalyst in the presence of steam.
 このような水蒸気改質方法に用いられる水蒸気改質反応装置としては、前記水蒸気改質触媒を備えるものであれば特に制限はなく、固定床流通式反応装置、流動床式反応装置など従来公知の触媒反応装置を使用することができる。 The steam reforming reaction apparatus used in such a steam reforming method is not particularly limited as long as it includes the steam reforming catalyst, and is conventionally known such as a fixed bed flow type reaction apparatus and a fluidized bed type reaction apparatus. Catalytic reactors can be used.
 前記酸素含有炭化水素としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコールといったアルコール類、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、といったエーテル類などが挙げられる。これらの酸素含有炭化水素のうち、常温で液体であるため取り扱いやすく、安全性が高く、水(水蒸気)との親和性が高く、入手がしやすいという観点から、水蒸気改質方法を、メタノール、エタノール、ジエチルエーテルに対して適用することが好ましく、メタノール、エタノールに対して適用することがより好ましい。 Examples of the oxygen-containing hydrocarbon include alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, and t-butyl alcohol, dimethyl ether, diethyl ether, ethyl methyl ether, And ethers. Among these oxygen-containing hydrocarbons, since it is liquid at room temperature, it is easy to handle, has high safety, has high affinity with water (steam), and is easily available. It is preferable to apply to ethanol and diethyl ether, and more preferable to apply to methanol and ethanol.
 酸素含有炭化水素の水蒸気改質方法において、前記酸素含有炭化水素と水蒸気はそれぞれ独立して反応装置に供給してもよいし、予めこれらを混合した後、反応装置に供給してもよい。 In the steam reforming method of the oxygen-containing hydrocarbon, the oxygen-containing hydrocarbon and the steam may be supplied independently to the reaction device, or may be supplied to the reaction device after mixing them in advance.
 前記酸素含有炭化水素と水蒸気との混合比は特に制限はないが、例えば、酸素含有炭化水素がエタノールの場合においては、水蒸気と炭素のモル比(S/C)が0.2~2であることが好ましく、0.4~1であることがより好ましい。前記水蒸気改質触媒を用いることによって、従来、コーキングが発生していた低S/Cの条件下においても酸素含有炭化水素を改質することができる。すなわち、酸素含有炭化水素の水蒸気改質方法は、S/C=0.2~0.6(好ましくは0.4~0.6)の低S/Cの条件下での改質反応に特に有効である。 The mixing ratio of the oxygen-containing hydrocarbon and water vapor is not particularly limited. For example, when the oxygen-containing hydrocarbon is ethanol, the water vapor to carbon molar ratio (S / C) is 0.2 to 2. It is preferable that the ratio is 0.4 to 1. By using the steam reforming catalyst, the oxygen-containing hydrocarbon can be reformed even under low S / C conditions where coking has conventionally occurred. That is, the steam reforming method for oxygen-containing hydrocarbons is particularly suitable for reforming reactions under low S / C conditions of S / C = 0.2 to 0.6 (preferably 0.4 to 0.6). It is valid.
 前記改質反応の温度としては250~650℃が好ましく、350~600℃がより好ましい。前記水蒸気改質触媒を用いることによって、従来、触媒活性が低く、酸素含有炭化水素の水蒸気改質が困難であった400℃以下の低温においても酸素含有炭化水素を改質させることが可能となる。 The temperature of the reforming reaction is preferably 250 to 650 ° C., more preferably 350 to 600 ° C. By using the steam reforming catalyst, it is possible to reform the oxygen-containing hydrocarbon even at a low temperature of 400 ° C. or lower, which has been conventionally low in catalytic activity and difficult to steam reform the oxygen-containing hydrocarbon. .
 以下、実施例及び比較例に基づいて本開示をより具体的に説明するが、本開示は以下の実施例に限定されるものではない。なお、複合酸化物及び混合酸化物の各物性は以下の方法により測定した。 Hereinafter, the present disclosure will be described more specifically based on examples and comparative examples, but the present disclosure is not limited to the following examples. In addition, each physical property of complex oxide and mixed oxide was measured with the following method.
 <比表面積>
 全自動比表面積測定装置を用いて、液体窒素温度(-196℃)におけるN吸着を利用したBET一点法により算出した。
<Specific surface area>
Using a fully automatic specific surface area measuring device, the BET single point method using N 2 adsorption at liquid nitrogen temperature (−196 ° C.) was used.
 <粒子の各金属原子の分散性>
 電界放射型走査透過顕微鏡(FE-STEM、(株)日立製作所製「HD-2000」)を用いて、ロジウムを担持させる前の複合酸化物粒子の金属原子の分散性を以下の方法により観察した。
<Dispersibility of each metal atom of particle>
Using a field emission scanning transmission microscope (FE-STEM, “HD-2000” manufactured by Hitachi, Ltd.), the dispersibility of the metal atoms of the composite oxide particles before supporting rhodium was observed by the following method. .
 すなわち、前記FE-STEMにおいて、複合酸化物粉末中の重なりのない1つの粒子に直径0.5nmの電子線ビームを加速電圧200kVで照射し、試料から発生した特性X線を、前記FE-STEMに装着されたEDX検出器(NCRAN社製「Vatage EDX system」)により検出して、複合酸化物粒子について、断面の直径が0.5nmの微小領域内の元素分析を行なった。この元素分析を5箇所の微小領域について行なった。なお、「断面の直径が0.5nmの微小領域」とは、前記複合酸化物粒子に照射された直径0.5nmの電子線ビームが透過した複合酸化物中の領域を意味する。 That is, in the FE-STEM, one non-overlapping particle in the composite oxide powder is irradiated with an electron beam with a diameter of 0.5 nm at an acceleration voltage of 200 kV, and characteristic X-rays generated from a sample are irradiated with the FE-STEM. The composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm. The detection was performed by an EDX detector (“VAGE EDX system” manufactured by NCRAN). This elemental analysis was performed on five minute regions. Note that “a microscopic region having a cross-sectional diameter of 0.5 nm” means a region in the composite oxide through which an electron beam with a diameter of 0.5 nm irradiated to the composite oxide particle is transmitted.
 (実施例1)
 硝酸アルミニウム9水和物0.2モル(75.1g)を2000mlのイオン交換水に添加し、プロペラ撹拌器で5分間撹拌して溶解した。この溶液にCeO換算の濃度が28質量%の硝酸セリウム水溶液265g(CeO換算で0.43モルに相当)を添加して5分間撹拌した。次いで、この混合水溶液に、硝酸ジルコニル2水和物0.068モル(18.1g)をイオン交換水30gに溶解した水溶液を添加して5分間撹拌した。得られた混合水溶液に25質量%のアンモニア水177gを添加して10分間撹拌し、沈殿物を含む水溶液を得た。この水溶液を2気圧の加圧下、120℃で2時間加熱処理し、沈殿物を熟成させた。
Example 1
0.2 mol (75.1 g) of aluminum nitrate nonahydrate was added to 2000 ml of ion-exchanged water, and dissolved by stirring for 5 minutes with a propeller stirrer. The solution was stirred by adding the concentration of CeO 2 in terms of 28% by weight of the aqueous cerium nitrate solution 265 g (corresponding to 0.43 mol in terms of CeO 2) 5 minutes. Next, an aqueous solution in which 0.068 mol (18.1 g) of zirconyl nitrate dihydrate was dissolved in 30 g of ion-exchanged water was added to the mixed aqueous solution, followed by stirring for 5 minutes. To the obtained mixed aqueous solution, 177 g of 25 mass% ammonia water was added and stirred for 10 minutes to obtain an aqueous solution containing a precipitate. The aqueous solution was heat-treated at 120 ° C. for 2 hours under a pressure of 2 atm to age the precipitate.
 熟成させた沈殿物を含む水溶液を100℃/時間の昇温速度で400℃まで加熱し、更に400℃で5時間仮焼成した後、600℃で5時間焼成してセリア-ジルコニア-アルミナ複合酸化物粉末を調製した。得られた複合酸化物粉末は、約80質量%のCeOと約9質量%のZrOと約11質量%のAlによって構成されており、その比表面積は100m/gであった。 The aqueous solution containing the aged precipitate is heated to 400 ° C. at a rate of 100 ° C./hour, further calcined at 400 ° C. for 5 hours, and then calcined at 600 ° C. for 5 hours to ceria-zirconia-alumina composite oxidation A product powder was prepared. The obtained composite oxide powder was composed of about 80% by mass of CeO 2 , about 9% by mass of ZrO 2 and about 11% by mass of Al 2 O 3 , and the specific surface area was 100 m 2 / g. It was.
 得られた複合酸化物の粒子について、上述した方法に従って、断面の直径が0.5nmの微小領域内の元素分析を行なった。その結果を図1に示す。なお、図1中の「●」は仕込み比を表し、「○」は前記方法により元素分析した組成比を表す(以下、他の実施例においても同じ)。この結果から明らかなように、得られた複合酸化物粉末は、元素分析を行なったいずれの微小領域においてもCe、Zr及びAlの含有率がそれぞれこれらの仕込み比率(Ce=61%、Zr=10%、Al=29%)±約10%の範囲内(図1中の点線の範囲内)のものであった。すなわち、前記複合酸化物粉末は、断面の直径が0.5nmの微小領域のいずれにおいてもほぼ仕込み比率の金属元素を含むものであり、その粒子においてセリアとジルコニアとアルミナとがともにnmスケールで分散されたものであることが確認された。 The obtained composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm according to the method described above. The result is shown in FIG. In FIG. 1, “●” represents a preparation ratio, and “◯” represents a composition ratio obtained by elemental analysis by the above method (hereinafter, the same applies to other examples). As is clear from this result, the obtained composite oxide powder has Ce, Zr, and Al contents in each minute region subjected to elemental analysis, and their charging ratios (Ce = 61%, Zr = 10%, Al = 29%) ± 10% (within the dotted line in FIG. 1). That is, the composite oxide powder contains a metal element having a substantially charged ratio in any minute region having a cross-sectional diameter of 0.5 nm, and ceria, zirconia, and alumina are dispersed in nm scale in the particles. It was confirmed that
 次に、得られたセリア-ジルコニア-アルミナ複合酸化物粉末240g、セリアゾルバインダ(固形分濃度10質量%)267g及び所定量のイオン交換水を混合し、この混合物を湿式アトライタで所定の粒径まで粉砕してスラリーを得た。このスラリーを、直径23mm×長さ25mm、体積10.4mlのコージェライト製ハニカムモノリス基材(400セル/平方インチ)に基材1L当り上記複合酸化物が240gの割合で塗布した後、500℃で3時間焼成した。 Next, 240 g of the obtained ceria-zirconia-alumina composite oxide powder, 267 g of ceria sol binder (solid content concentration: 10% by mass) and a predetermined amount of ion-exchanged water were mixed, and this mixture was mixed with a wet attritor with a predetermined particle size. To obtain a slurry. The slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm × length of 25 mm and a volume of 10.4 ml at a rate of 240 g per liter of the substrate, and then 500 ° C. For 3 hours.
 次いで、この複合酸化物粉末を備える基材にロジウムが溶解している硝酸ロジウム水溶液を所定量含浸させ、選択吸着法によりロジウムを担持した後、大気中、500℃で3時間焼成して基材1L当り4.8gのロジウムを担持させて、ロジウムと複合酸化物を含むモノリス試料を調製した。 Next, a base material provided with the composite oxide powder is impregnated with a predetermined amount of rhodium nitrate solution in which rhodium is dissolved, and after supporting rhodium by a selective adsorption method, the base material is baked at 500 ° C. for 3 hours in the atmosphere. A monolith sample containing rhodium and a composite oxide was prepared by supporting 4.8 g of rhodium per liter.
 次に、得られたロジウムと複合酸化物を含むモノリス試料に、所定濃度、所定量の酢酸ナトリウム三水和物の水溶液を吸水させ、110℃で16時間乾燥した後、500℃で3時間焼成し、実施例1のモノリス触媒を得た。なお、モノリス基材1L当たりのナトリウムの担持量は0.024mol/Lであった。 Next, the monolith sample containing rhodium and the composite oxide was allowed to absorb a predetermined concentration and amount of an aqueous solution of sodium acetate trihydrate, dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 3 hours. Thus, the monolith catalyst of Example 1 was obtained. The amount of sodium supported per liter of monolith substrate was 0.024 mol / L.
 (実施例2)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸カリウムの水溶液を用いた以外は実施例1と同様にして実施例2のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.024mol/Lであった。
(Example 2)
A monolith catalyst of Example 2 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
 また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、元素分析を行なったいずれの微小領域においてもCe、Zr及びAlの含有率がそれぞれこれらの仕込み比率(Ce=61%、Zr=10%、Al=29%)±約10%の範囲内(図1中の点線の範囲内)のものであり、前記複合酸化物粉末は、断面の直径が0.5nmの微小領域のいずれにおいてもほぼ仕込み比率の金属元素を含むものであり、その粒子においてセリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。 In addition, elemental analysis was performed on the obtained composite oxide particles in the same manner as in Example 1. As a result, the obtained composite oxide powder had Ce, Zr, and Al contents in each of the minute regions subjected to elemental analysis, and the charge ratios thereof (Ce = 61%, Zr = 10%, Al = 29%) ± about 10% (within the range of the dotted line in FIG. 1), and the composite oxide powder has almost the same charge ratio in any of the minute regions having a cross-sectional diameter of 0.5 nm. It contained a metal element, and it was confirmed that ceria, zirconia, and alumina were dispersed in nm scale in the particles.
 (実施例3)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸セシウムの水溶液を用いた以外は実施例1と同様にして実施例3のモノリス触媒を得た。なお、モノリス基材1L当たりのセシウムの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
Example 3
A monolith catalyst of Example 3 was obtained in the same manner as in Example 1 except that an aqueous solution of cesium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of cesium supported per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例4)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸マグネシウム四水和物の水溶液を用いた以外は実施例1と同様にして実施例4のモノリス触媒を得た。なお、モノリス基材1L当たりのマグネシウムの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
Example 4
A monolith catalyst of Example 4 was obtained in the same manner as in Example 1 except that an aqueous solution of magnesium acetate tetrahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of magnesium supported per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例5)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸ストロンチウムの水溶液を用いた以外は実施例1と同様にして実施例5のモノリス触媒を得た。なお、モノリス基材1L当たりのストロンチウムの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
(Example 5)
A monolith catalyst of Example 5 was obtained in the same manner as in Example 1 except that an aqueous solution of strontium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of strontium supported per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例6)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸バリウムの水溶液を用いた以外は実施例1と同様にして実施例6のモノリス触媒を得た。なお、モノリス基材1L当たりのバリウムの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
(Example 6)
A monolith catalyst of Example 6 was obtained in the same manner as in Example 1 except that an aqueous solution of barium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of barium supported per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例7)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の硝酸ランタン(III)六水和物の水溶液を用いた以外は実施例1と同様にして実施例7のモノリス触媒を得た。なお、モノリス基材1L当たりのランタンの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
(Example 7)
A monolith catalyst of Example 7 was obtained in the same manner as in Example 1 except that an aqueous solution of lanthanum (III) nitrate hexahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. . The amount of lanthanum supported per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例8)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の硝酸ネオジム(III)六水和物の水溶液を用いた以外は実施例1と同様にして実施例8のモノリス触媒を得た。なお、モノリス基材1L当たりのネオジムの担持量は0.024mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
(Example 8)
A monolith catalyst of Example 8 was obtained in the same manner as in Example 1 except that an aqueous solution of neodymium (III) nitrate hexahydrate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. . The supported amount of neodymium per liter of monolith substrate was 0.024 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例9)
 酢酸ナトリウム三水和物の水溶液の代わりに、所定濃度、所定量の酢酸カリウムの水溶液を用いた以外は実施例1と同様にして実施例9のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.048mol/Lであった。また、得られた複合酸化物の粒子について、実施例1と同様に元素分析を行なった。その結果、得られた複合酸化物粉末は、セリアとジルコニアとアルミナがnmスケールで分散されたものであることが確認された。
Example 9
A monolith catalyst of Example 9 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of sodium acetate trihydrate. The amount of potassium supported per liter of monolith substrate was 0.048 mol / L. The obtained composite oxide particles were subjected to elemental analysis in the same manner as in Example 1. As a result, it was confirmed that the obtained composite oxide powder was obtained by dispersing ceria, zirconia, and alumina on the nm scale.
 (実施例10)
 硝酸アルミニウム9水和物0.2モル(75.1g)を2000mlのイオン交換水に添加し、プロペラ撹拌器で5分間撹拌して溶解した。この溶液にCeO換算の濃度が28質量%の硝酸セリウム水溶液304g(CeO換算で0.5モルに相当)を添加して5分間撹拌した。得られた混合水溶液に25質量%のアンモニア水177gを添加して10分間撹拌し、沈殿物を含む水溶液を得た。この水溶液を2気圧の加圧下、120℃で2時間加熱処理し、沈殿物を熟成させた。
(Example 10)
0.2 mol (75.1 g) of aluminum nitrate nonahydrate was added to 2000 ml of ion-exchanged water, and dissolved by stirring for 5 minutes with a propeller stirrer. The solution was stirred by adding the concentration of CeO 2 in terms of 28% by weight of cerium nitrate aqueous solution 304g (corresponding to 0.5 mol CeO 2 conversion) 5 minutes. To the obtained mixed aqueous solution, 177 g of 25 mass% ammonia water was added and stirred for 10 minutes to obtain an aqueous solution containing a precipitate. The aqueous solution was heat-treated at 120 ° C. for 2 hours under a pressure of 2 atm to age the precipitate.
 熟成させた沈殿物を含む水溶液を100℃/時間の昇温速度で400℃まで加熱し、更に400℃で5時間仮焼成した後、600℃で5時間焼成してセリア-アルミナ複合酸化物粉末を調製した。得られた複合酸化物粉末は、約89質量%のCeOと約11質量%のAlによって構成されており、その比表面積は90m/gであった。 The aged aqueous solution containing the precipitate is heated to 400 ° C. at a rate of 100 ° C./hour, further calcined at 400 ° C. for 5 hours, and then calcined at 600 ° C. for 5 hours to obtain ceria-alumina composite oxide powder. Was prepared. The obtained composite oxide powder was composed of about 89% by mass of CeO 2 and about 11% by mass of Al 2 O 3 , and the specific surface area was 90 m 2 / g.
 得られた複合酸化物の粒子について、上述した方法に従って、断面の直径が0.5nmの微小領域内の元素分析を行なった。その結果を図1に示す。なお、図1中の「●」は仕込み比を表し、「○」は前記方法により元素分析した組成比を表す(以下、他の実施例においても同じ)。この結果から明らかなように、得られた複合酸化物粉末は、元素分析を行なったいずれの微小領域においてもCe及びAlの含有率がそれぞれこれらの仕込み比率(Ce=71%、Al=29%)±約10%の範囲内(図1中の点線の範囲内)のものであった。すなわち、前記複合酸化物粉末は、断面の直径が0.5nmの微小領域のいずれにおいてもほぼ仕込み比率の金属元素を含むものであり、その粒子においてセリアとアルミナがnmスケールで分散されたものであることが確認された。 The obtained composite oxide particles were subjected to elemental analysis in a minute region having a cross-sectional diameter of 0.5 nm according to the method described above. The result is shown in FIG. In FIG. 1, “●” represents a preparation ratio, and “◯” represents a composition ratio obtained by elemental analysis by the above method (hereinafter, the same applies to other examples). As is clear from this result, the obtained composite oxide powder has a Ce and Al content ratio in each of the microscopic regions subjected to elemental analysis, and the charge ratios thereof (Ce = 71%, Al = 29%). ) Within a range of about ± 10% (within the dotted line in FIG. 1). That is, the composite oxide powder contains a metal element having a substantially charged ratio in any minute region having a cross-sectional diameter of 0.5 nm, and ceria and alumina are dispersed in nm scale in the particles. It was confirmed that there was.
 次に、得られたセリア-アルミナ複合酸化物粉末240g、セリアゾルバインダ(固形分濃度10質量%)267g及び所定量のイオン交換水を混合し、この混合物を湿式アトライタで所定の粒径まで粉砕してスラリーを得た。このスラリーを、直径23mm×長さ25mm、体積10.4mlのコージェライト製ハニカムモノリス基材(400セル/平方インチ)に基材1L当り上記複合酸化物240gの割合で塗布した後、500℃で3時間焼成した。 Next, 240 g of the obtained ceria-alumina composite oxide powder, 267 g of ceria sol binder (solid content concentration 10% by mass) and a predetermined amount of ion-exchanged water are mixed, and this mixture is pulverized to a predetermined particle size with a wet attritor. Thus, a slurry was obtained. This slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm × a length of 25 mm and a volume of 10.4 ml at a rate of 240 g of the composite oxide per 1 L of the substrate, and then at 500 ° C. Baked for 3 hours.
 次いで、この複合酸化物粉末を備える基材にロジウムが溶解している硝酸ロジウム水溶液を所定量含浸させ、選択吸着法によりロジウムを担持した後、大気中、500℃で3時間焼成して基材1L当り4.8gのロジウムを担持させて、ロジウムと複合酸化物を含むモノリス試料を調製した。 Next, a base material provided with the composite oxide powder is impregnated with a predetermined amount of rhodium nitrate solution in which rhodium is dissolved, and after supporting rhodium by a selective adsorption method, the base material is baked at 500 ° C. for 3 hours in the atmosphere. A monolith sample containing rhodium and a composite oxide was prepared by supporting 4.8 g of rhodium per liter.
 次に、得られたロジウムと複合酸化物を含むモノリス試料に、所定濃度、所定量の酢酸カリウムの水溶液を吸水させ、110℃で16時間乾燥した後、500℃で3時間焼成し、実施例1のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.024mol/Lであった。 Next, the obtained monolith sample containing rhodium and composite oxide was allowed to absorb an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount, dried at 110 ° C. for 16 hours, and then calcined at 500 ° C. for 3 hours. 1 monolith catalyst was obtained. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
 (比較例1)
 酢酸ナトリウム三水和物の水溶液を吸水させなかった以外は実施例1と同様にして比較例1のモノリス触媒を得た。
(Comparative Example 1)
A monolith catalyst of Comparative Example 1 was obtained in the same manner as in Example 1 except that the aqueous solution of sodium acetate trihydrate was not absorbed.
 (比較例2)
 酢酸カリウムの水溶液を吸水させなかった以外は実施例10と同様にして比較例2のモノリス触媒を得た。
(Comparative Example 2)
A monolith catalyst of Comparative Example 2 was obtained in the same manner as in Example 10 except that the aqueous solution of potassium acetate was not absorbed.
 (比較例3)
 前記セリア-ジルコニア-アルミナ複合酸化物粉末の代わりにセリア-ジルコニア複合酸化物(阿南化成(株)製、比表面積120m/g)粉末を用いた以外は、比較例1と同様にして比較例3のモノリス触媒を得た。
(Comparative Example 3)
Comparative Example as in Comparative Example 1 except that ceria-zirconia composite oxide powder (manufactured by Anan Kasei Co., Ltd., specific surface area 120 m 2 / g) powder was used instead of the ceria-zirconia-alumina composite oxide powder. 3 monolith catalysts were obtained.
 (比較例4)
 前記セリア-ジルコニア-アルミナ複合酸化物粉末の代わりにγ-アルミナ(昭和電工(株)製、比表面積150m/g)粉末を用い、γアルミナのコート量を120g/Lとしたた以外は、比較例1と同様にして比較例3のモノリス触媒を得た。
(Comparative Example 4)
Γ-alumina (manufactured by Showa Denko KK, specific surface area 150 m 2 / g) powder was used instead of the ceria-zirconia-alumina composite oxide powder, and the coating amount of γ-alumina was 120 g / L. The monolith catalyst of Comparative Example 3 was obtained in the same manner as Comparative Example 1.
 (比較例5)
 セリア-ジルコニア複合酸化物(阿南化成製、比表面積120m/g)粉末とγ-アルミナ(昭和電工(株)製、比表面積150m/g)粉末を質量比89:11の割合で回転式ブレンダーに入れて十分に混合した。得られた複合酸化物粉末中のCeO、ZrO及びAlの含有率は、実施例1で得た複合酸化物粉末全体のCeO、ZrO及びAlの含有率と同じであり、その比表面積は120m/gであった。また、ここで使用したセリア-ジルコニア複合酸化物のセリア-ジルコニア固溶体の粒子径は約15nm、γ-アルミナの粒子径は約10nm以下であった。従って、これらの酸化物粉末を上記のように物理的に混合してもnmスケールで分散した状態にならないことは明らかである。
(Comparative Example 5)
A ceria-zirconia composite oxide (manufactured by Anan Kasei, specific surface area 120 m 2 / g) powder and γ-alumina (manufactured by Showa Denko Co., Ltd., specific surface area 150 m 2 / g) powder are rotated at a mass ratio of 89:11. Place in blender and mix thoroughly. The content of CeO 2 , ZrO 2 and Al 2 O 3 in the obtained composite oxide powder is the same as the content of CeO 2 , ZrO 2 and Al 2 O 3 in the entire composite oxide powder obtained in Example 1. The specific surface area was 120 m 2 / g. The particle diameter of the ceria-zirconia solid solution of the ceria-zirconia composite oxide used here was about 15 nm, and the particle diameter of γ-alumina was about 10 nm or less. Therefore, it is clear that even if these oxide powders are physically mixed as described above, they are not dispersed on the nm scale.
 次に、得られたセリア-ジルコニア複合酸化物粉末とγ-アルミナ粉末の粉末混合物240gに、セリアゾル(固形分濃度10質量%、多木化学製U-15)267g及び所定量のイオン交換水を混合し、この混合物を湿式アトライタで20分間混合してスラリーを得た。このスラリーを、直径23mm×長さ25mm、体積10.4mlのコージェライト製ハニカムモノリス基材(400セル/平方インチ)に基材1L当り240gの割合で塗布した後、500℃で3時間焼成した。 Next, 267 g of ceria sol (solid content concentration 10 mass%, U-15 manufactured by Taki Chemical Co., Ltd.) and a predetermined amount of ion-exchanged water are added to 240 g of the powder mixture of the obtained ceria-zirconia composite oxide powder and γ-alumina powder. The mixture was mixed and mixed with a wet attritor for 20 minutes to obtain a slurry. This slurry was applied to a cordierite honeycomb monolith substrate (400 cells / square inch) having a diameter of 23 mm × length of 25 mm and a volume of 10.4 ml at a rate of 240 g per liter of the substrate, and then fired at 500 ° C. for 3 hours. .
 次いで、このセリア-ジルコニア複合酸化物粉末とγ-アルミナの粉末混合物を備える基材にロジウムが溶解している硝酸ロジウム水溶液を所定量含浸させ、選択吸着法によりロジウムを担持した後、大気中、500℃で3時間焼成して基材1L当り4.8gのロジウムを担持させて、セリア-ジルコニア複合酸化物粉末とγ-アルミナの混合粉末の担体にロジウムを担持した比較例例5のモノリス触媒を得た。 Next, after impregnating a predetermined amount of a rhodium nitrate aqueous solution in which rhodium is dissolved into a base material provided with a powder mixture of this ceria-zirconia composite oxide powder and γ-alumina and supporting rhodium by a selective adsorption method, The monolith catalyst of Comparative Example 5 which was calcined at 500 ° C. for 3 hours, loaded with 4.8 g of rhodium per liter of base material, and loaded with rhodium on the support of the mixed powder of ceria-zirconia composite oxide powder and γ-alumina. Got.
 (比較例6)
 前記セリア-ジルコニア-アルミナ複合酸化物粉末の代わりにセリア-ジルコニア複合酸化物(阿南化成(株)製、比表面積120m/g)粉末を用い、酢酸ナトリウム三水和物の水溶液の代わりに所定濃度、所定量の酢酸カリウムの水溶液を用いた以外は実施例1と同様にして比較例6のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.024mol/Lであった。
(Comparative Example 6)
Instead of the ceria-zirconia-alumina composite oxide powder, a ceria-zirconia composite oxide (Anan Kasei Co., Ltd., specific surface area 120 m 2 / g) powder is used, and a predetermined amount is used instead of the aqueous solution of sodium acetate trihydrate. A monolith catalyst of Comparative Example 6 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a concentration and a predetermined amount was used. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
 (比較例7)
 前記セリア-ジルコニア-アルミナ複合酸化物粉末の代わりにγ-アルミナ(昭和電工(株)製、比表面積150m/g)粉末を用い、γアルミナのコート量を120g/Lとし、酢酸ナトリウム三水和物の水溶液の代わりに所定濃度、所定量の酢酸カリウムの水溶液を用いた以外は実施例1と同様にして比較例7のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.024mol/Lであった。
(Comparative Example 7)
In place of the ceria-zirconia-alumina composite oxide powder, γ-alumina (manufactured by Showa Denko KK, specific surface area 150 m 2 / g) powder was used, the coating amount of γ-alumina was 120 g / L, and sodium acetate trihydrate A monolith catalyst of Comparative Example 7 was obtained in the same manner as in Example 1 except that an aqueous solution of potassium acetate having a predetermined concentration and a predetermined amount was used instead of the aqueous solution of the Japanese product. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
 (比較例8)
 前記セリア-ジルコニア-アルミナ複合酸化物粉末の代わりに比較例5で得たセリア-ジルコニア複合酸化物粉末とγ-アルミナの粉末混合物を用い、酢酸ナトリウム三水和物の水溶液の代わりに所定濃度、所定量の酢酸カリウムの水溶液を用いた以外は実施例1と同様にして比較例8のモノリス触媒を得た。なお、モノリス基材1L当たりのカリウムの担持量は0.024mol/Lであった。
(Comparative Example 8)
Instead of the ceria-zirconia-alumina composite oxide powder, the powder mixture of ceria-zirconia composite oxide powder and γ-alumina obtained in Comparative Example 5 was used, and a predetermined concentration was used instead of the aqueous solution of sodium acetate trihydrate. A monolith catalyst of Comparative Example 8 was obtained in the same manner as in Example 1 except that a predetermined amount of an aqueous solution of potassium acetate was used. The amount of potassium supported per liter of monolith substrate was 0.024 mol / L.
 [エタノールの水蒸気改質反応活性試験及び耐久試験]
 実施例1~10において得られたモノリス触媒試料及び比較例1~8において得られた比較用モノリス触媒試料について、水蒸気改質反応活性試験及び耐久試験を行った。
[Ethanol steam reforming reaction activity test and durability test]
A steam reforming reaction activity test and a durability test were performed on the monolith catalyst samples obtained in Examples 1 to 10 and the comparative monolith catalyst samples obtained in Comparative Examples 1 to 8.
 なお、実施例1~10及び比較例1~8のモノリス触媒試料の仕様を図7に示す。 The specifications of the monolith catalyst samples of Examples 1 to 10 and Comparative Examples 1 to 8 are shown in FIG.
 <耐熱処理>
 実施例1~10において得られたモノリス触媒試料及び比較例1~8において得られた比較用モノリス触媒試料を、それぞれ内径30.5mmのステンレス製反応管に充填し、この反応管を固定床流通式反応装置に装着した。次に、水蒸気改質反応ガス(S/C=0.25)を600℃で80分間供給し、コーキングが発生した後、大気中、700℃で30分焼成し、コークを酸化除去する処理を行った。
<Heat-resistant treatment>
The monolith catalyst samples obtained in Examples 1 to 10 and the comparative monolith catalyst samples obtained in Comparative Examples 1 to 8 were filled in stainless steel reaction tubes each having an inner diameter of 30.5 mm, and the reaction tubes were passed through a fixed bed. Attached to the reactor. Next, a steam reforming reaction gas (S / C = 0.25) is supplied at 600 ° C. for 80 minutes, and after coking is generated, baking is performed in the atmosphere at 700 ° C. for 30 minutes to oxidize and remove the coke. went.
 <蒸気改質反応活性試験>
 次に、このモノリス触媒試料に対して、4.5L/分のCO(14%)/Ar気流中に、エタノールと水との等モル混合水溶液(S/C=0.5)を1.2mL/分で添加して気化させた混合ガスを、モノリスの中心温度で490℃に加熱しながら、モノリス触媒に供給した。その時の出ガス中のH、CH、CO、CO濃度をガスクロマトグラフ法で測定した。このエタノール水蒸気改質反応を2.5時間継続し、初期段階で最大のH生成濃度を示した時を「初期活性」とし、反応開始から2.5時間後を「耐久後活性」とし、各々のH生成濃度を活性指標とした。実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における初期段階での触媒活性を示すグラフを図2に示す。また、実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における耐久後の触媒活性を示すグラフを図3に示す。
<Steam reforming reaction activity test>
Next, an equimolar mixed aqueous solution of ethanol and water (S / C = 0.5) in a CO 2 (14%) / Ar gas flow of 4.5 L / min was added to the monolith catalyst sample in the following manner. The gas mixture added and vaporized at 2 mL / min was supplied to the monolith catalyst while heating to 490 ° C. at the center temperature of the monolith. The H 2 , CH 4 , CO, and CO 2 concentrations in the exit gas at that time were measured by gas chromatography. This ethanol steam reforming reaction is continued for 2.5 hours, the time when the maximum H 2 production concentration is shown in the initial stage is “initial activity”, and 2.5 hours after the start of the reaction is “post-endurance activity”, Each H 2 production concentration was used as an activity index. FIG. 2 shows a graph showing the catalyst activity at the initial stage in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8. FIG. 3 is a graph showing the catalytic activity after endurance in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8.
 図2及び図3に示した実施例1~10の結果と比較例1~8の結果との比較から明らかなように、実施例1~10のモノリス触媒は、初期段階及び耐久後のいずれにおいても、高い活性率を示していることが確認され、十分に優れた活性を発揮することが確認された。 As is clear from the comparison between the results of Examples 1 to 10 and the results of Comparative Examples 1 to 8 shown in FIG. 2 and FIG. 3, the monolith catalysts of Examples 1 to 10 are in the initial stage and after the endurance. Also, it was confirmed that a high activity rate was exhibited, and it was confirmed that a sufficiently excellent activity was exhibited.
 また、実施例1~10及び比較例1~8で得たモノリス触媒についてのエタノールの水蒸気改質反応における耐久試験による活性低下率(1-耐久後H生成濃度/初期H生成濃度)×100(%))を示すグラフを図4に示す。 Further, the rate of decrease in activity by the durability test in the steam reforming reaction of ethanol for the monolith catalysts obtained in Examples 1 to 10 and Comparative Examples 1 to 8 (1-endurance H 2 production concentration / initial H 2 production concentration) × 100 (%)) is shown in FIG.
 図4に示した実施例1~10の結果と比較例1~8の結果との比較から明らかなように、実施例1~10のモノリス触媒は、耐久試験による活性低下率がいずれにおいても小さいことが確認された。これらの結果から、セリア、ジルコニア及びアルミナがnmスケールで分散している複合酸化物、並びに、セリアとアルミナがnmスケールで分散している複合酸化物からなる担体に、白金族金属元素を担持し、更に、アルカリ金属、アルカリ土類金属及び希土類元素の一種以上の金属元素を添加した触媒が、十分に優れた耐久性能を有することが確認された。 As is clear from the comparison between the results of Examples 1 to 10 and the results of Comparative Examples 1 to 8 shown in FIG. 4, the monolithic catalysts of Examples 1 to 10 have a small activity decrease rate due to the durability test. It was confirmed. From these results, a platinum group metal element is supported on a carrier made of a composite oxide in which ceria, zirconia and alumina are dispersed in nm scale, and a composite oxide in which ceria and alumina are dispersed in nm scale. Furthermore, it was confirmed that the catalyst to which one or more metal elements of alkali metal, alkaline earth metal, and rare earth element were added had sufficiently excellent durability performance.
 <炭素析出量測定試験>
 次いで、実施例1~7、9及び比較例1で得たモノリス触媒について、耐久試験後における触媒上の炭素析出量を測定した。炭素析出量は、O(10%)/Nガスを供給した時のCO生成量から算出した。得られた結果を図5に示す。
<Carbon deposition amount measurement test>
Next, for the monolith catalysts obtained in Examples 1 to 7, 9 and Comparative Example 1, the amount of carbon deposited on the catalyst after the durability test was measured. The amount of carbon deposition was calculated from the amount of CO 2 produced when O 2 (10%) / N 2 gas was supplied. The obtained results are shown in FIG.
 図5に示した実施例1~7、9の結果と比較例1の結果との比較から明らかなように、実施例1~7、9のモノリス触媒は触媒上の炭素析出量がいずれにおいても少ないことが確認された。これらの結果より、実施例にかかる触媒が比較例の触媒より耐久後活性が高かったのは、炭素析出が抑制されたためと考えられる。 As is clear from the comparison between the results of Examples 1 to 7 and 9 shown in FIG. 5 and the results of Comparative Example 1, the monolith catalysts of Examples 1 to 7 and 9 have any carbon deposition amount on the catalyst. It was confirmed that there were few. From these results, it is considered that the post-endurance activity of the catalyst according to the example was higher than that of the comparative example because carbon deposition was suppressed.
 <担体の酸特性評価試験>
 次に、実施例1~7、9及び比較例1で得たモノリス触媒の担体について、酸特性の評価をアンモニア昇温脱離(NH-TPD)法による酸点量(NH脱離量)の測定により行った。NH-TPDは、100℃で20分間NH(500ppm)/Nガスを供給し、100℃で50分間Nガスでパージした後、Nガスを供給しながら20℃/分で600℃まで昇温した時に脱離したNH量から算出した。得られた結果を図6に示す。
<Acid characteristic evaluation test of carrier>
Next, for the carrier of the monolith catalyst obtained in Examples 1 to 7, 9 and Comparative Example 1, the acid property was evaluated by the acid point amount (NH 3 desorption amount) by ammonia temperature programmed desorption (NH 3 -TPD) method. ). NH 3 -TPD is supplied with NH 3 (500 ppm) / N 2 gas at 100 ° C. for 20 minutes, purged with N 2 gas at 100 ° C. for 50 minutes, and then at 600 ° C. at 20 ° C./minute while supplying N 2 gas. It was calculated from the amount of NH 3 desorbed when the temperature was raised to ° C. The obtained result is shown in FIG.
 図6に示した実施例1~7、9の結果と比較例1の結果との比較から明らかなように、実施例1~7、9のモノリス触媒の担体上の比表面積当たりの酸点量は十分に少ないことが確認された。この結果より、実施例の触媒で炭素析出量が少なかったのは、担体上の酸点量が少ないためと考えられる。 As apparent from the comparison between the results of Examples 1 to 7 and 9 shown in FIG. 6 and the results of Comparative Example 1, the amount of acid sites per specific surface area on the support of the monolith catalysts of Examples 1 to 7 and 9 Was confirmed to be small enough. From this result, it is considered that the amount of carbon deposition in the catalyst of the example was small because the amount of acid sites on the support was small.
 以上の結果より、セリア、ジルコニア及びアルミナがnmスケールで分散している複合酸化物、並びに、セリアとアルミナがnmスケールで分散している複合酸化物からなる担体に、白金族金属元素を担持し、更に、アルカリ金属、アルカリ土類金属及び希土類元素の一種以上の金属元素を添加した触媒は、担体上の酸点量が0.42μmol/m未満となり十分に少ないため、エタノール水蒸気改質反応においてコーキングによる活性低下が起こりにくいことが確認された。 Based on the above results, a platinum group metal element is supported on a composite oxide in which ceria, zirconia and alumina are dispersed in nm scale, and a composite oxide in which ceria and alumina are dispersed in nm scale. Furthermore, the catalyst added with one or more metal elements of alkali metal, alkaline earth metal, and rare earth element has an acid point amount on the support of less than 0.42 μmol / m 2, so that the ethanol steam reforming reaction is sufficiently small. It was confirmed that the decrease in activity due to coking was less likely to occur.
 以上説明したように、本開示によれば、コーキングを起こすことなく、エタノールなどの酸素含有炭化水素を水蒸気によって効率的に改質して水素を生成させることが可能となる。 As described above, according to the present disclosure, hydrogen can be generated by efficiently reforming an oxygen-containing hydrocarbon such as ethanol with steam without causing coking.
 したがって、本開示の水蒸気改質触媒は、酸素含有炭化水素の水蒸気改質反応における触媒活性が高く、耐コーキング性にも優れるため、自動車などの内燃機関においてエタノールなどの酸素含有炭化水素を燃料として使用した場合に、これを水蒸気により改質して水素や一酸化炭素を生成させる際の触媒などとして有用である。 Therefore, since the steam reforming catalyst of the present disclosure has high catalytic activity in the steam reforming reaction of oxygen-containing hydrocarbons and is excellent in coking resistance, oxygen-containing hydrocarbons such as ethanol are used as fuels in internal combustion engines such as automobiles. When used, it is useful as a catalyst for reforming this with steam to produce hydrogen or carbon monoxide.

Claims (7)

  1.  酸素含有炭化水素を水蒸気により改質するための水蒸気改質触媒であって、
     セリアとアルミナとがともにnmスケールで分散された複合酸化物を含む担体と、
     該担体に担持された白金族金属からなる群から選択される少なくとも1種の第一金属元素と、
     前記担体に担持されたアルカリ金属、アルカリ土類金属及び希土類元素からなる群から選択される少なくとも1種の第二金属元素と、
     を含有する水蒸気改質触媒。
    A steam reforming catalyst for reforming oxygen-containing hydrocarbons with steam,
    A carrier containing a composite oxide in which both ceria and alumina are dispersed on a nanometer scale;
    At least one first metal element selected from the group consisting of platinum group metals supported on the carrier;
    At least one second metal element selected from the group consisting of alkali metals, alkaline earth metals and rare earth elements supported on the carrier;
    A steam reforming catalyst.
  2.  前記複合酸化物は、ジルコニアを更に含有しており、かつ、セリアとアルミナとジルコニアとがともにnmスケールで分散されたものである請求項1に記載の水蒸気改質触媒。 The steam reforming catalyst according to claim 1, wherein the composite oxide further contains zirconia, and ceria, alumina, and zirconia are dispersed in nm scale.
  3.  前記担体に担持された第一金属元素がロジウムである請求項1又は2に記載の水蒸気改質触媒。 The steam reforming catalyst according to claim 1 or 2, wherein the first metal element supported on the carrier is rhodium.
  4.  前記担体に担持された第二金属元素がナトリウム、カリウム、セシウム、マグネシウム、ストロンチウム、バリウム、ランタン及びネオジムからなる群から選択される少なくとも1種である請求項1~3のうちのいずれか一項に記載の水蒸気改質触媒。 The second metal element supported on the carrier is at least one selected from the group consisting of sodium, potassium, cesium, magnesium, strontium, barium, lanthanum, and neodymium. The steam reforming catalyst according to 1.
  5.  水蒸気の存在下で、酸素含有炭化水素を請求項1~4のうちのいずれか一項に記載の水蒸気改質触媒に接触させること、を備える酸素含有炭化水素の水蒸気改質方法。 A method for steam reforming of an oxygen-containing hydrocarbon, comprising bringing the oxygen-containing hydrocarbon into contact with the steam reforming catalyst according to any one of claims 1 to 4 in the presence of steam.
  6.  前記酸素含有炭化水素がエタノールである請求項5に記載の水蒸気改質方法。 The steam reforming method according to claim 5, wherein the oxygen-containing hydrocarbon is ethanol.
  7.  請求項1~4のうちのいずれか一項に記載の水蒸気改質触媒を備える水蒸気改質反応装置。 A steam reforming reaction apparatus comprising the steam reforming catalyst according to any one of claims 1 to 4.
PCT/JP2015/001739 2014-04-02 2015-03-26 Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus WO2015151477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-075975 2014-04-02
JP2014075975A JP2015196142A (en) 2014-04-02 2014-04-02 Steam modification catalyst, steam modification method and steam modification reaction apparatus using the same

Publications (1)

Publication Number Publication Date
WO2015151477A1 true WO2015151477A1 (en) 2015-10-08

Family

ID=54239823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001739 WO2015151477A1 (en) 2014-04-02 2015-03-26 Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus

Country Status (2)

Country Link
JP (1) JP2015196142A (en)
WO (1) WO2015151477A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6700637B2 (en) * 2017-03-07 2020-05-27 株式会社豊田中央研究所 Steam reforming catalyst and method for producing the same
JPWO2022158473A1 (en) * 2021-01-20 2022-07-28

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296755A (en) * 2004-04-08 2005-10-27 Nippon Oil Corp Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system
JP2007000703A (en) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP2010184202A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Catalyst for generating hydrogen and method for producing the catalyst
JP2010207782A (en) * 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc Steam reforming catalyst, steam reforming method using the same and steam reforming reaction device
JP2011088778A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296755A (en) * 2004-04-08 2005-10-27 Nippon Oil Corp Steam reforming catalyst, steam reforming method, hydrogen production apparatus, and fuel cell system
JP2007000703A (en) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP2010184202A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Catalyst for generating hydrogen and method for producing the catalyst
JP2010207782A (en) * 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc Steam reforming catalyst, steam reforming method using the same and steam reforming reaction device
JP2011088778A (en) * 2009-10-22 2011-05-06 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Also Published As

Publication number Publication date
JP2015196142A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP5263677B2 (en) Ammonia decomposition catalyst, ammonia decomposition method using the same, and ammonia decomposition reaction apparatus
JP5127380B2 (en) Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP2006346598A (en) Steam reforming catalyst
US7863217B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP6725994B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
US20180141028A1 (en) Catalyst for high temperature steam reforming
JP5565569B2 (en) Exhaust gas purification catalyst
JP5207139B2 (en) Steam reforming catalyst, steam reforming method using the same, and steam reforming reaction apparatus
JP2012016685A (en) Exhaust gas purifying catalyst, and method for producing same
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP5574222B2 (en) CO oxidation catalyst and exhaust gas purification method using the same
JP5105544B2 (en) Steam reforming catalyst
WO2015151477A1 (en) Steam reforming catalyst, steam reforming method using same, and steam reforming reaction apparatus
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
EP2823887B1 (en) Oxidation catalyst and exhaust gas purification method using same
JP2010094625A (en) Catalyst for cleaning exhaust gas
JP2014030778A (en) Fuel reforming catalyst
JP4483348B2 (en) catalyst
JP4269560B2 (en) Hydrogen production catalyst
JP4120862B2 (en) Catalyst for CO shift reaction
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2014113518A (en) Fuel reforming catalyst
JP2002273227A (en) Shift catalyst and its manufacturing method
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022639

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15773510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016022639

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160929