JP2005296008A - 水銀レダクターゼ活性を有する新規耐熱性タンパク質 - Google Patents

水銀レダクターゼ活性を有する新規耐熱性タンパク質 Download PDF

Info

Publication number
JP2005296008A
JP2005296008A JP2005080332A JP2005080332A JP2005296008A JP 2005296008 A JP2005296008 A JP 2005296008A JP 2005080332 A JP2005080332 A JP 2005080332A JP 2005080332 A JP2005080332 A JP 2005080332A JP 2005296008 A JP2005296008 A JP 2005296008A
Authority
JP
Japan
Prior art keywords
protein
mercury
gene
amino acid
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005080332A
Other languages
English (en)
Inventor
Shigenori Kuramitsu
成紀 倉光
Ryoji Masui
良治 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2005080332A priority Critical patent/JP2005296008A/ja
Publication of JP2005296008A publication Critical patent/JP2005296008A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

【課題】水銀レダクターゼ活性を有する新規耐熱性タンパク質を提供する。
【解決手段】特定のアミノ酸配列からなるタンパク質は、水銀レダクターゼ活性を有する。このタンパク質は、超好熱性古細菌であって、好気性thermoacidophilic crenarchaeonの1種であるスルホロブス・トコダイイ(Sulfolobus tokodaii)種7(JCM10545)の遺伝子配列から、水銀レダクターゼ活性を有するタンパク質をコードすると推定される遺伝子をクローニングし、これを大腸菌を用いて発現させることにより得たものである。
【選択図】図1

Description

本発明は、水銀レダクターゼ活性を有する新規耐熱性タンパク質に関する。なお、本出願は、国の委託の成果に係る出願である。
水銀レダクターゼは、NAD(P)Hの存在下に2価水銀イオンに作用して、水銀およびNAD(P)(+)を生成する機能を有する酵素であり、この機能を利用したバイオセンサーの開発が行われている(例えば、特許文献1参照)。従来、知られている水銀レダクターゼとしては、アシネトバクター属菌由来の酵素(例えば、非特許文献1参照)、アエロモナス属菌由来の酵素(例えば、非特許文献1参照)、バチラス属菌由来の酵素(例えば、非特許文献2参照)、ストレプトコッカス属菌(例えば、非特許文献3参照)などがある。しかしながら、耐熱性水銀レダクターゼは、いまだ知られていない。耐熱性水銀レダクターゼは、工業的用途を広げるものと期待されている。
他方、超好熱性古細菌(例えば、非特許文献4参照)についての研究があり、スルホロブス属細菌の1種であるスルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)(例えば、非特許文献5参照)は、その遺伝子が既に解析されている(例えば、非特許文献6参照)。したがって、この超好熱古細菌が、ソルビトールデヒドロゲナーゼを産生するとすれば、それは優れた耐熱性を有すると予想される。
特許3035654号公報 FEBS Lett., 234, 280-282, 1988 FEBS Lett., 247, 333-336, 1989 J. Gen. Microbiol.,131, 1053-1059, 1985 Advances in Protein Chemistry, Volume 48, Enzymes and Proteins from Hyperthermophilic Microorganisms (M.Adams ed.), Academic Press (1996) Suzuki, T. et al., Extremophiles, 2002 Feb;6(1):39-44 Kawarabayashi,Y. et al., "Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7", DNA Res. 8(4), 123-140 (2001)
本発明は、このような事情に鑑みなされたものであり、水銀レダクターゼ活性を持つ新規耐熱性タンパク質の提供を、その目的とする。
前記目的を達成するために、超好熱性古細菌であるスルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)のゲノム情報について調べたところ、この細菌が、水銀レダクターゼを産生する可能性があることを突き止めた。この知見に基づき、さらに研究を重ねたところ、この細菌の遺伝子から、水銀レダクターゼ活性を持つ新規耐熱性タンパク質を発現させることに成功し、本発明に到達した。
すなわち、本発明のタンパク質は、下記の(a)または(b)のタンパク質である。
(a) 配列番号1のアミノ酸配列からなる耐熱性タンパク質。
(b) 配列番号1のアミノ酸配列において、1つ以上のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、水銀レダクターゼ活性を有する耐熱性タ
ンパク質。
なお、スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)は、理化学研究所生物基盤研究部微生物系統保存施設に保存されており、第三者の要求により分譲可能である。
スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)の生育温度は80℃であり、生育限界温度が87℃であるから、本発明のタンパク質は、80〜87℃の高温であっても活性がある。
本発明のタンパク質の酵素反応の温度条件は、好ましくは、55〜95℃の範囲であり、より好ましくは、65〜95℃の範囲であり、さらに好ましくは、75〜95℃の範囲であり、最適には、85〜95℃の範囲である。
前記水銀レダクターゼ活性は、NAD(P)Hの存在下に2価水銀イオンに作用して、水銀およびNAD(P)(+)を生成する機能である。
前述のように、本発明の新規耐熱性タンパク質は、超好熱性古細菌由来であり、具体的には、スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)由来である。但し、本発明のタンパク質は、この菌が産生するものに限定されず、遺伝子工学的手法により、他の生物が産生するものであってもよい。
つぎに、本発明の発現ベクターは、前記本発明のタンパク質をコードするDNAまたは配列番号2に記載のDNAを含むベクターである。
つぎに、本発明の形質転換体は、前記本発明のベクターにより形質転換された形質転換体である。なお、宿主は特に制限されず、例えば、大腸菌等がある。
つぎに、本発明のタンパク質の製造方法は、前記本発明の形質転換体を培養する工程と、前記培養工程において発現した前記タンパク質を回収する工程とを含む製造方法である。
つぎに、本発明の製造方法は、酵素反応により、NAD(P)Hおよび塩化水銀(II)からNAD(P)(+)および水銀を製造する方法であって、前記酵素として前記本発明のタンパク質を用い、温度55〜95℃の条件で前記酵素反応を行う製造方法である。なお、前記温度条件は、65〜95℃の範囲であることがより好ましく、75〜95℃の範囲であることがさらに好ましく、最適には、85〜95℃の範囲である。このように、前記本発明のタンパク質を用いれば、温度55〜95℃の高温領域で酵素反応を実施でき、この結果、工業的な用途が広がる。なお、この製造方法において、前記酵素反応のpHは、pH7〜9の範囲が好ましい。
以下、本発明について、さらに詳細に説明する。
本発明者らは、海洋底から採取された超好熱性古細菌であって、好気性thermoacidophilic crenarchaeonの1種であるスルホロブス・トコダイイ(Sulfolobus tokodaii)種7(JCM10545)の遺伝子配列から水銀レダクターゼ活性を示すと推定される遺伝子(配列番号2)をクローニングし、これを大腸菌を用いて発現させることにより、本発明の新規耐熱性タンパク質を得るに至った。遺伝子のクローニング方法は、後記した実施例1に記載した通り実施した。クローニングされた遺伝子の塩基配列は配列番号2に示す通りであり、また、その推定アミノ酸配列は配列番号1に示す通りである。なお、本発明の耐熱性タンパク質は、水銀レダクターゼ活性を有していれば、配列番号1のアミノ酸配列において、一つ以上若しくは数個のアミノ酸残基が、欠質、置換、付加若しくは挿入されていてもよい。このアミノ酸配列における「アミノ酸の欠失、置換、付加若しくは挿入」は、当業者に公知の方法(例えば、突然変異誘発法)に従って実施することができる。
本発明のタンパク質は、前述の本発明のタンパク質の製造方法により製造可能であるが、これに限定されず、他の製造方法で製造されてもよい。例えば配列番号1に示すように、そのアミノ酸配列が決定されているタンパク質については、その配列を元に当業者に公知の手法、例えば、個々のアミノ酸を化学的に重合してタンパク質を合成する方法に従って調製することができる。
本発明のタンパク質をコードする遺伝子の一例としては、配列番号2に示す遺伝子がある。前記遺伝子は、例えば、後記する実施例2に示すように超好熱性古細菌スルホロブス
・トコダイイ(Sulfolobus tokodaii)(JCM10545)のゲノムから、例えば配列番号2で示される塩基配列の一部をプライマーとして用いるPCR法あるいは該DNA断片をプローブとして用いるハイブリダイゼーション法により調製することができる。また、その塩基配列をもとに、当業者に公知である核酸化学合成法等に従って前記遺伝子を得ることもできるが、これらに限定されない。
本発明の発現ベクターは、前記遺伝子もしくは配列番号2のDNAを適当なベクターに挿入することによって得ることができる。本発明の遺伝子を挿入するためのベクターは、宿主中で複製可能なものであれば、特に制限されるものではなく、例えば、プラスミドDNA、ファージDNA、AcMNPVなどのバキュロウイルスなどが挙げられる。プラスミドDNAは、大腸菌やアグロバクテリウムからアルカリ抽出法またはその変法などにより調製することができる。また、市販プラスミドとして、例えばpET-11a(Novagen社製)あるいはバチルス属の宿主を用いた分泌型のプラスミドなどを用いてもよい。これらのプラスミドは、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子などが含まれていてもよい。
ベクターへの遺伝子等の挿入は、例えば、精製された遺伝子の塩基配列を適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位またはマルチクローニングサイトに挿入してベクターに連結する方法などを用いることができるが、これらに限定されない。また、本発明の遺伝子の機能が発揮されるように、本発明の発現ベクターには本発明の遺伝子のほか、プロモーター、ターミネーター、リボソーム結合配列などを組み込んでいてもよい。さらに、本発明の遺伝子も他のタンパク質のコードする配列を融合したものを挿入してもよい。
前記発現ベクターで宿主生物を形質転換すれば、本発明の形質転換体が得られる。宿主生物としては、本発明の遺伝子を発現できるものであれば、特に制限されるものではなく、例えば、大腸菌などの原核細胞が挙げられるが、これらに限定されない。形質転換法としては、既に公知である塩化カルシウム法などを使用することができるが、これらの方法に限定されない。
本発明のタンパク質の製造方法は、前記形質転換体を培養する工程と、前記培養工程において発現した前記タンパク質を回収する工程とを含む製造方法である。前記培養する方法は、宿主細胞の培養に用いられる通常の方法に従って行われる。大腸菌等の微生物を宿主とした形質転換体を培養する培地としては、微生物が資化し得る炭素源、窒素源、無機塩類などを含有し、形質転換体の培養を効率的に行えるものであれば、天然培地、合成培地などのいずれを用いてもよい。本発明のタンパク質の回収は、特に制限されない。前記タンパク質が菌体内または細胞内に生産される場合には、菌体または細胞を破砕することによって前記タンパク質を回収する。また、本発明の前記タンパク質が菌体外または細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離などにより菌体または細胞を除去した後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば、硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーなどを単独でまたは適宜組み合わせて用いることにより、培養物中から本発明のタンパク質を単離精製することができる。なお、培養液をそのまま使用する場合、熱処理をすることにより、他のタンパク質が失活するので、実質上、本発明のタンパク質のみの酵素液として使用できる。
以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらにより限定されない。
染色体DNAの調製
スルホロブス・トコダイイ(Sulfolobus tokodaii(JCM10545))をL培地中で37℃にて一晩培養して集菌したものに、SSC溶液(0.15M NaCl、0.015M クエン酸ナトリウム)10mL、0.5M EDTA0.2mL、100mg/mL ニワトリ卵白リゾチーム0.1mLおよび10%非イオン性界面活性剤Brij-58を0.5mL加え、0℃で30分間放置した後、プロテイナーゼK(Merck社製)5mgを10%SDS0.2mLに溶かした溶液を加え、37℃で2、3日間放置した。この溶液に水飽和フェノール、クロロホルム、イソアミルアルコールの混合溶液を加えて、37℃で1時間放置した後、水層を分取し、そこへエタノールを加えてDNAを沈殿濃縮した。このDNAの沈殿をTE溶液(10mM Tris−HCl(pH7.5)、1mM EDTA(pH8.0))10mLに溶解し、リボヌクレアーゼ0.25mL(最終濃度0.25mg/mL)を加えて、37℃で一晩放置した後、エタノールで沈殿させた。次いで、DNAをTE溶液5mLに溶解した後、260nmの吸光度より、DNA濃度を決定した(Clarke,L. & Carbon,J. (1979) Methods Enzymol. 68,396-408)。
発現プラスミドの構築と遺伝子発現
1.発現プラスミドの構築
耐熱性水銀レダクターゼ遺伝子の翻訳領域の後ろに制限酵素BamHI、NotIサイトを含むDNAを構築する目的で下記のDNAプライマーを合成し、このプライマーを用いたPCRで耐熱性水銀レダクターゼ遺伝子の翻訳領域の後ろに制限酵素サイトを導入した。用いたDNAポリメラーゼはKOD-plus-(東洋紡社製)であった。
Forward primer(配列番号3):5'-TGACCGAAATGCGTTTGGTAATTGTAGGTAAT-3'
Reverse primer(配列番号4):5'-ATATGGATCCGCGGCCGCTTATTAGTCAACACAACAGCTCAT-3'
PCR反応後、増幅断片を制限酵素BamHIで切断し、その遺伝子断片を精製した。pET-11a(Novagen社製)を制限酵素NdeIで切断し、Klenow fragmentで末端を平滑化した後、制限酵素BamHIでさらに切断したものを精製し、上記の構造遺伝子とT4リガーゼで15℃、30分間反応させ連結した。連結したDNAの一部を大腸菌DH5αのコンピテントセルに導入し、アンピシリンを含むLB寒天プレートに適量まき、37℃で一晩培養し、形質転換体のコロニーを得た。得られた形質転換体をアンピシリンを含むLB培地(18mL)で24時間培養し、その培養液から発現プラスミドを改変アルカリSDS法で精製した。精製プラスミドのインサートの塩基配列は、BigDye Terminator kit(登録商標:Applied Biosystems社製)とABI PRISM 3700 DNA Analyzer(登録商標:Applied Biosystems社製)を用いて決定し、インサートの塩基配列が耐熱性水銀レダクターゼ遺伝子の正しい配列であることを確認した。
2.組換え遺伝子の発現
大腸菌Rosetta-gami(DE3)(Novagen社製)のコンピテントセルを融解して、ファルコンチューブに0.1mL移した。その中に上記1.の精製発現プラスミドの溶液0.002mLを加え氷中に20分間放置した後、42℃でヒートショックを90秒間行い、氷中に1分間放置した後、クロラムフェニコールとアンピシリンを含むLB寒天プレートに適量まき、37℃で一晩培養し、形質転換体を得た。得られた形質転換体をアンピシリンを含むLB培地(5mL)で18時間培養し、耐熱性水銀レダクターゼ遺伝子を発現した。培養後、遠心分離(13,000G、10分)で集菌した。
集菌した菌体に、破砕液(20mM Tris−HCl、100mM KCl、pH7.5)を0.2mL加え、超音波発生器で細胞を破砕し、その懸濁液を0.1mLずつ2本のサンプルチューブに分けた。一方のサンプルチューブは遠心分離(13,000G、10分)して上清と沈殿に分け、沈殿は破砕液0.1mLで懸濁した。もう一方のサンプルチューブは、熱処理(70℃、10分)を施した後、遠心分離(13,000G、10分)して上清と沈殿に分け、沈殿は破砕液0.1mLで懸濁した。これらの試料の一部をSDS−ポリアクリルアミドゲル電気泳動(PAGE)で分析し、発現を確認できた。この結果を図1のSDS−PAGE写真に示す。
耐熱性水銀レダクターゼの発現が見られた試料についてSDSポリアクリルアミドゲル電気泳動を行った後、エレクトロブロッティングによってPVDF膜に転写し、染色によって可視化された目的組換えタンパク質である耐熱性水銀レダクターゼのバンドを切り出し、プロテインシーケンサーModel492Procise(Applied Biosystems社製)を用いて、アミノ末端配列を解析した結果、配列番号5に示すように7残基のアミノ末端配列が決定できた。この配列により、発現タンパク質が耐熱性水銀レダクターゼであることを確認できた。この発現タンパク質は、456アミノ酸残基より構成されており、その推定分子量は50.1kDaであり、図1の結果とほぼ一致した。
組換え大腸菌の大量培養
実施例2と同様にして調製したプラスミドDNA(pET−11aベクター)を用いて、大腸菌DH5α株を常法に従い形質転換した。形質転換された大腸菌DH5αからアルカリSDS法を用いてプラスミドDNAを抽出した。このプラスミドDNAを用いて、大腸菌ロゼッタ・ガミ(Rosetta−Gami)(DE3)株を形質転換した。プレート上に生えてきたコロニーを3白金耳量とり、5mLのLBL培地(1%ペプトン、0.5%酵母抽出液、0.5%NaCl、0.1%ラクトース、50μg/mLアンピシリン、40μg/mLクロラムフェニコール)に植菌して、培養開始直前まで約6時間、37℃で前培養した。この前培養液を全量、3Lの4×LBL培地(4%ペプトン、2%酵母抽出液、 2%NaCl、50μg/mLアンピシリン)に加え、高密度培養槽(ABLE社製)にて37℃、pH7.2、圧力0.02Paでコンピュータプログラム制御し、培養した。pHは、オートクレーブ済みの2M HCl(和光純薬社製)および2M NaOH(和光純薬社製)で調整した。集菌約7時間前にオートクレーブ済みの300mL発現誘導液(10%ラクトース、20%グリセロール)を加えた。大腸菌の生育度が定常期に入ったところ(培養開始25時間後)で大型遠心分離機(Beckman社製、商品名AvantiHP−30I)を用い集菌した。回収した菌体は、−30℃で保存した。この時、菌体を少量、別に取り、150mM NaCl、20mM Tris−HCl(pH8)、5mM β−メルカプトエタノール(和光純薬社製)に溶解・懸濁し、超音波破砕装置(TOMY社製、商品名UD−201)で破砕した。この溶液を2等分し、一方を9100G、4℃で10分間、遠心分離し、上清と沈殿に分け、他方を75℃に設定した恒温槽(TAITEC社製、商品名DryThermoUnit DTU−1C)で10分間、加熱した後、9100G、4℃で10分間、遠心分離し、上清と沈殿に分けた。これら4種の上清および沈殿(沈殿は、菌体破砕液にて再懸濁)に変性剤(62.5mM Tris−HCl(pH6.8)、10%グリセロール、2%SDS、2.4%β−メルカプトエタノール、0.005%ブロムフェノールブルー(和光純薬社製))を加え、95℃で5分間加熱し、変性させた。これらの変性させたタンパク質溶液を12.5%または15%(発現させるタンパク質の分子量により異なる)ポリアクリルアミドゲルに加え、SDS−PAGEにて電気泳動を行った。染色液(和光純薬社製、商品名Quick−CBB)を用い、電気泳動後のゲルを染色・脱色し、目的タンパク質の発現を確認した。
組換えタンパク質の精製
実施例3において、−30℃で保存してあった菌体を、150mM NaCl、20mM Tris−HCl(pH8)、5mM β−メルカプトエタノールに溶解・懸濁し、超音波破砕装置(TOMY社製、商品名UD−201)で破砕し、75℃に設定した恒温槽(TAITEC社製、商品名DryThermoUnit DTU−1C)で、10分間、加熱した後、すばやく冷却した。次に、この破砕菌体液を大型遠心分離機(Beckman社製、商品名Avanti HP−30I)を用いて、100,000Gで1時間、遠心分離し、上清を回収した。
つぎに、この上清をタンパク質精製装置(Amersham Biosciences社製、AKTATM explorer)を用いて、1.20M 硫安、20mM Tris−HCl(pH8.0)、5mM β−メルカプトエタノールの緩衝溶液に置換した後、疎水交換カラム(Amersham Biosciences社製、RESOURCETMIso 6mL)に通した。1.2M→0の硫安濃度勾配で溶出させ、各画分をSDS−PAGEにて確認し、目的タンパク質の画分を回収した。
つぎに、回収した画分を20mM Tris−HCl(pH8.0)、5mM β−メルカプトエタノールの緩衝溶液に置換した後、陰イオン交換カラム(東ソー社製、商品名TSK−GEL BioAssistTM Q 6mL)に通した。塩化ナトリウムで溶出を行い、溶出してきた各画分をSDS−PAGEにて確認し、目的タンパク質の画分を回収した。
つぎに、回収した画分を、10mMのリン酸緩衝溶液に置換した後、ヒドロキシアパタイトカラム(Bioscale社製、商品名Ceramic Hydroxyapatite、Type I Column、CHT−101)に通した。高濃度リン酸緩衝溶液で溶出を行い、溶出してきた各画分をSDS−PAGE電気泳動にて確認し、目的タンパクの画分を回収した。
つぎに、回収した画分を、遠心濃縮チューブ(ミリポア社製、VIVASPINTM 10000)を用いて遠心分離して濃縮し、タンパク質精製装置(GILSON社製)を用いて、20mM Tris−HCl(pH8.0)、5mM β−メルカプトエタノール、150M NaClで平衡化したゲルろ過カラム(Amersham Biosciences社製、HiLoadTM 16/60、SuperdexTM 200)に通した。溶出してきた各画分をSDS−PAGE電気泳動にて確認し、目的タンパク質の画分を回収した。
つぎに、回収した画分を、50mM NaCl、20mM Tris−HCl(pH8.0)、5mM β−メルカプトエタノールに置換した後、遠心濃縮チューブ(ミリポア社製、VIVASPINTM 10000)を用いて遠心分離して濃縮し、活性測定に供した。
活性測定
1.測定方法
つぎに、前記実施例4において精製したタンパク質について、下記の種々条件下で、その活性を測定した。この活性測定は、つぎの通りである。すなわち、100μMのNADPH(興人社製)と、100μMの塩化水銀(II)(和光純薬社製)と、500nMの前記実施例4において精製したタンパク質とを含む50mMの緩衝溶液(後述のとおり、各測定によって種類が異なる)を20秒間反応させたときの、NADPHの減少を340nmの吸収をモニターすることで測定した。吸光度の測定には、分光光度計(HITACHI社製、商品名U−3000)を用いた。
2.至適温度
25、35、45、55、65、75、85、90、95℃の各温度において、前記測定を行い、kappを求めた。緩衝溶液には、リン酸ナトリウム(pH7.0)を用いた。測定結果を、下記表1および図2のグラフに示す。図示のとおり、90℃で最も高い活性が認められ、至適温度が90℃程度であることが分かった。
(表1)
温度(℃) k app (min -1
25 4.89
35 5.68
45 7.41
55 16.1
65 29.6
75 51.8
85 80.5
90 85.2
95 83.6
3.至適pH
pH7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0の各条件で、前記測定を行い、kappを求めた。緩衝溶液には、pH7.0〜9.0までは、50mMのリン酸ナトリウムを、pH9.5〜11.0までは、Glycine−NaOH緩衝溶液用いた。反応温度は、85℃とした。なお、pH6.5以下の酸性領域についても前記測定を行ったが、NADPHの分解が顕著となり、測定値の信頼性が薄いため、それらの結果は割愛した。測定結果を、下記表2および図3のグラフに示す。図示のとおり、pH7.0で最も高い活性が認められ、至適pHが7程度であることが分かった。
(表2)
pH k app (min -1
7.0 85.4
7.5 81.0
8.0 60.4
8.5 39.3
9.0 32.4
9.5 26.9
10.0 11.8
10.5 0.016
11.0 0.020
4. M 、V max およびk cat の算出
前記測定において、前記実施例4において精製したタンパク質の濃度を、500nMに代えて1μMに固定して、塩化水銀(II)の濃度を0、2、4、6.15、25、50、70、100μMと変えることで、塩化水銀(II)の濃度と初速度v0との関係を求めた。反応温度は、85℃とした。測定結果を下記表3および図4のグラフに示す。
(表3)
塩化水銀(II)の濃度(μM) v 0 (μM/min)
0 0
2 6.55
4 12.67
6.25 17.12
15 32.56
25 46.78
50 61.96
70 66.92
100 68.02
上記測定結果より、KM、Vmaxおよびkcatを算出した。算出結果を下記表4に示す。
(表4)
M (μM) V max (μM/min) k cat (min -1
19.8 89.9 89.9
5.熱安定性
前記測定に先立ち、前記実施例4において精製したタンパク質を、85℃および95℃で、0.5、1、1.5、2、2.5、3時間前処理した。前記前処理物を用いて、前記測定を行った。反応温度は、85℃とした。この測定には、500nMの前記実施例4において精製したタンパク質に代えて、20μMの前記実施例4において精製したタンパク質の溶液(100mMのKCl、50mMのリン酸ナトリウム(pH7.0))を用いた。なお、前処理時間0時間は、前処理を行っていないものである。前処理時間0時間の活性を基準(100%)として各前処理時間での残存活性を求めた。測定結果を、下記表5および図5のグラフに示す。図示のとおり、95℃の前処理では、徐々に活性の低下が見られ、3時間後には、15%程度まで活性が低下していたが、85℃の前処理では、3時間行ってもほぼ100%の活性を保持していた。
(表5)
残存活性(%)
前処理時間(時間) 85℃ 95℃
0 100 100
0.5 102 67.4
1 104 40.2
1.5 98.1 23.4
2 94.3 20.5
2.5 98.7 19.1
3 97.9 15.0
6.二次構造の熱安定性
この測定では、前記測定方法に代えて、5μMの前記実施例4において精製したタンパク質、100mMのKCl、50mMのリン酸ナトリウムからなる反応溶液を、pH7.0の条件で、25℃から95℃まで1℃/minの速度で温度を上昇させたときの222nmの円偏光二色性スペクトルの変化を測定した。測定には、円偏光二色性分散計(日本分光社製、商品名J−720W)を用いた。なお、ここで用いた222nmは、α−へリックス由来の吸収波長である。測定結果を、図6のグラフに示す。図示のとおり、25℃から95℃までの連続温度変化を見ても、前記実施例4において精製したタンパク質の二次構造がほぼ保たれていることが分かった。
本発明により、水銀レダクターゼ活性を有する新規耐熱性タンパク質が提供できる。本発明のタンパク質は、高温下で使用することが可能であり、工業的用途が広がると共に、基質濃度の増加、反応効率の向上、混入微生物の除去、保存期間および耐用期間の延長などの多くの利点がもたらされる。
図1は、本発明の一実施例における組換えタンパク質のSDS-PAGE写真である。 図2は、本発明の一実施例における温度とkappとの関係を示すグラフである。 図3は、本発明の一実施例におけるpHとkappとの関係を示すグラフである。 図4は、本発明の一実施例における塩化水銀(II)の濃度−初速度v0プロットである。 図5は、本発明の一実施例における85℃および95℃での前処理時間と残存活性の関係を示すグラフである。 図6は、本発明の一実施例における精製タンパク質を25℃から95℃まで1℃/minで温度変化させたときの円偏光二色性スペクトルの変化を示すグラフである。
配列番号1:耐熱性水銀レダクターゼのアミノ酸配列
配列番号2:耐熱性水銀レダクターゼのアミノ酸配列をコードする塩基配列
配列番号3:耐熱性水銀レダクターゼの構造遺伝子の末端に制限酵素部位BamHIおよびNotIを導入するための順方向プライマー
配列番号4:耐熱性水銀レダクターゼの構造遺伝子の末端に制限酵素部位BamHIおよびNotIを導入するための逆方向プライマー
配列番号5:N末端アミノ酸配列

Claims (9)

  1. 下記の(a)または(b)の耐熱性タンパク質
    (a) 配列番号1のアミノ酸配列からなる耐熱性タンパク質。
    (b) 配列番号1のアミノ酸配列において、1つ若しくは数個のアミノ酸残基が、欠失、置換、付加若しくは挿入されたアミノ酸配列からなり、水銀レダクターゼ活性を有する耐熱性タンパク質。
  2. 前記水銀レダクターゼ活性が、NAD(P)Hの存在下に2価水銀イオンに作用して、水銀およびNAD(P)(+)を生成する機能である請求項1記載のタンパク質。
  3. 超好熱性古細菌由来である請求項1または2記載のタンパク質。
  4. 超好熱性古細菌が、スルホロブス・トコダイイ(Sulfolobus tokodaii)(JCM10545)である請求項3記載のタンパク質。
  5. 請求項1から4のいずれかに記載のタンパク質をコードするDNAまたは配列番号2に記載のDNAを含むベクター。
  6. 請求項5記載のベクターにより形質転換された形質転換体。
  7. 請求項1から4のいずれかに記載のタンパク質の製造方法であって、請求項6記載の形質転換体を培養する工程と、前記培養工程において発現した前記タンパク質を回収する工程とを含む製造方法。
  8. 酵素反応により、NAD(P)Hおよび塩化水銀(II)からNAD(P)(+)および水銀を製造する方法であって、前記酵素として請求項1から4のいずれかに記載のタンパク質を用い、温度55〜95℃の条件で前記酵素反応を行う製造方法。
  9. 前記酵素反応のpHが、pH7〜9の範囲である請求項8記載の製造方法。
JP2005080332A 2004-03-19 2005-03-18 水銀レダクターゼ活性を有する新規耐熱性タンパク質 Withdrawn JP2005296008A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080332A JP2005296008A (ja) 2004-03-19 2005-03-18 水銀レダクターゼ活性を有する新規耐熱性タンパク質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004080864 2004-03-19
JP2005080332A JP2005296008A (ja) 2004-03-19 2005-03-18 水銀レダクターゼ活性を有する新規耐熱性タンパク質

Publications (1)

Publication Number Publication Date
JP2005296008A true JP2005296008A (ja) 2005-10-27

Family

ID=35328299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080332A Withdrawn JP2005296008A (ja) 2004-03-19 2005-03-18 水銀レダクターゼ活性を有する新規耐熱性タンパク質

Country Status (1)

Country Link
JP (1) JP2005296008A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530596A (ja) * 2011-08-12 2014-11-20 メロ バイオテクノロジー インコーポレイテッドMello Biotechnology,Inc. 原核細胞内の真核pol−2プロモーターからの誘導可能な発現

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530596A (ja) * 2011-08-12 2014-11-20 メロ バイオテクノロジー インコーポレイテッドMello Biotechnology,Inc. 原核細胞内の真核pol−2プロモーターからの誘導可能な発現

Similar Documents

Publication Publication Date Title
EP1182253A2 (en) Method for improving the thermostability of proteins
JP2005296010A (ja) 2−イソプロピルリンゴ酸シンターゼ活性を有する新規耐熱性タンパク質
JP2005296008A (ja) 水銀レダクターゼ活性を有する新規耐熱性タンパク質
EP1487974A4 (en) NAD PHOSPHITE OXYDOREDUCTASE, NEW CATALYST FROM BACTERIA USEFUL FOR REGENERATING NAD (P) H
JP4280827B2 (ja) アセチルグルタミン酸キナーゼ活性を有する新規耐熱性タンパク質
JP4250762B2 (ja) 6−n−ヒドロキシアミノプリンの代謝活性を有する新規耐熱性タンパク質
JP2004298185A (ja) ホスホグリセリン酸デヒドロゲナーぜ活性を有する新規耐熱性タンパク質
JP4287144B2 (ja) 新規ギ酸脱水素酵素及びその製造方法
JP4292294B2 (ja) ピロリン−5−カルボン酸レダクターゼ活性を有する新規耐熱性タンパク質
JP2005296009A (ja) クエン酸シンターゼ活性を有する新規耐熱性タンパク質
JP2006254869A (ja) アミロ−α−1,6−グリコシダーゼ活性を有する新規耐熱性タンパク質
JP2005296012A (ja) ホスホエノールピルビン酸シンターゼ活性を有する新規耐熱性タンパク質
JP2006288390A (ja) Gdp−マンノースピロホスホリラーゼ活性を有する新規耐熱性タンパク質
JP4280826B2 (ja) シスタチオニン−γ−シンターゼ活性を有する新規耐熱性タンパク質
JP2005296011A (ja) アデニロコハク酸リアーゼ活性を有する新規耐熱性タンパク質
JP2005261347A (ja) ソルビトールデヒドロゲナーゼ活性を有する新規耐熱性タンパク質
JP2000069971A (ja) 新規な耐熱性蟻酸脱水素酵素
JP2006288391A (ja) エノラーゼ活性を有する新規耐熱性タンパク質
JP2005261346A (ja) フラクトキナーゼ活性を有する新規耐熱性タンパク質
JP2005261348A (ja) アコニット酸ヒドラターゼ活性を有する新規耐熱性タンパク質
JP2004298189A (ja) フマル酸ヒドラターゼ活性を有する新規耐熱性タンパク質
JP2005261345A (ja) グリセルアルデヒド−3−ホスフェートデヒドロゲナーゼ活性を有する新規耐熱性タンパク質
JP2006254868A (ja) 4−α−グルカノトランスフェラーゼ活性を有する新規耐熱性タンパク質
JP2006288389A (ja) Gmpシンターゼ活性を有する新規耐熱性タンパク質
JP2006254867A (ja) D−乳酸デヒドロゲナーゼ活性を有する新規耐熱性タンパク質

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603