JP2005285576A - Manufacturing device of in-line type organic electroluminescent element - Google Patents

Manufacturing device of in-line type organic electroluminescent element Download PDF

Info

Publication number
JP2005285576A
JP2005285576A JP2004098403A JP2004098403A JP2005285576A JP 2005285576 A JP2005285576 A JP 2005285576A JP 2004098403 A JP2004098403 A JP 2004098403A JP 2004098403 A JP2004098403 A JP 2004098403A JP 2005285576 A JP2005285576 A JP 2005285576A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing apparatus
line type
type organic
organic electroluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098403A
Other languages
Japanese (ja)
Inventor
Susumu Kamikawa
進 神川
Hirohiko Morizaki
裕彦 森崎
Kozo Wada
宏三 和田
Takashi Yoshitake
隆 吉武
Masahiko Aida
聖彦 合田
Etsuro Hirai
悦郎 平井
Toshiro Kobayashi
敏郎 小林
Mitsuo Kato
光雄 加藤
Tatsuya Hirano
竜也 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Primetals Technologies Holdings Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Hitachi Metals Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Hitachi Metals Machinery Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004098403A priority Critical patent/JP2005285576A/en
Priority to TW094106283A priority patent/TW200539740A/en
Priority to KR1020050020364A priority patent/KR100692170B1/en
Priority to CNB2005100547673A priority patent/CN100482850C/en
Publication of JP2005285576A publication Critical patent/JP2005285576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing device of an in-line type electroluminescent element with improved film-forming quality and high production efficiency. <P>SOLUTION: In the manufacturing device of the in-line type organic electroluminescent element, a holder integrated with a mask is used to retain a substrate, to which a cooling plate is fitted to suppress temperature rise of the substrate and continuous conveyance is carried out. Further, a structure is realized in which the substrate is continuously conveyed without stop between treatment rooms of different degrees of vacuum, with differential exhaust parts D1 to D4 provided inside the device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板を連続的に搬送して、有機材料等の蒸発材料を蒸着させて、有機エレクトロルミネセンス(以下、ELと略す。)素子を形成するインライン式有機EL製造装置に関する。   The present invention relates to an in-line organic EL manufacturing apparatus that continuously conveys a substrate and deposits an evaporation material such as an organic material to form an organic electroluminescence (hereinafter abbreviated as EL) element.

図10に、現在、一般的に使用されている有機EL製造装置を示す。
図10に示す装置は、所謂、クラスタ型と呼ばれる装置であり、ロボットハンドを有する搬送室を多角形形状に形成し、搬送室の周囲に複数の処理室を設けたものである。図10に示すように、有機EL製造装置40の場合、成膜工程ユニット41は、各処理室への基板の搬送を行う搬送室42と、基板の搬入を行う基板搬入口43と、基板の洗浄を行う洗浄室44と、基板上に成膜を行う成膜室45、46、47とを有し、複数のゲートバルブ48を介して、搬送室42の周囲に、これらの処理室が配置される。有機EL素子は電極層を含めて複数の薄膜により構成されるため、有機EL製造装置40には、薄膜毎の処理室となる成膜室45、46、47が設けられている(「有機ELのはなし」、日刊工業新聞社、p98、図53より)。
FIG. 10 shows an organic EL manufacturing apparatus that is currently generally used.
The apparatus shown in FIG. 10 is a so-called cluster type apparatus, in which a transfer chamber having a robot hand is formed in a polygonal shape, and a plurality of processing chambers are provided around the transfer chamber. As shown in FIG. 10, in the case of the organic EL manufacturing apparatus 40, the film forming process unit 41 includes a transfer chamber 42 that transfers a substrate to each processing chamber, a substrate carry-in port 43 that carries a substrate, A cleaning chamber 44 for cleaning and film forming chambers 45, 46, 47 for forming a film on the substrate are provided, and these processing chambers are arranged around the transfer chamber 42 via a plurality of gate valves 48. Is done. Since the organic EL element is composed of a plurality of thin films including the electrode layer, the organic EL manufacturing apparatus 40 is provided with film forming chambers 45, 46, 47 serving as processing chambers for each thin film (“organic EL From the Nikkan Kogyo Shimbun, p98, Fig. 53).

基板上に成膜を行う場合には、基板搬入口43に搬入された基板を、ゲートドア48を開けて処理室(例えば、成膜室45)へ搬入し、ゲートドア48を閉じ、真空度を調整した後、基板上に1層目の成膜を行う。そして、1層目の成膜の終了後、再びゲートドア48を開け、基板を成膜室45から搬出し、次の処理室(例えば、成膜室46)へ基板を搬入し、2層目の成膜を同様に行う。このようにして成膜された基板は、受渡室49を通って工程ユニット50へ搬送され、工程ユニット51、52にて下処理されたカバーガラスと貼り合わされて、FPD(フラットパネルディスプレイ)となる有機EL素子の完成品が作製される。   When film formation is performed on the substrate, the substrate carried into the substrate carry-in port 43 is opened into the processing chamber (for example, the film formation chamber 45) by opening the gate door 48, the gate door 48 is closed, and the degree of vacuum is adjusted. After that, the first layer is formed on the substrate. After the film formation for the first layer is completed, the gate door 48 is opened again, the substrate is unloaded from the film formation chamber 45, and the substrate is loaded into the next processing chamber (for example, the film formation chamber 46). Film formation is performed in the same manner. The substrate thus formed is transported to the process unit 50 through the delivery chamber 49 and bonded to the cover glass that has been pretreated in the process units 51 and 52 to form an FPD (flat panel display). A finished product of the organic EL element is produced.

特開2002−348659号公報JP 2002-348659 A 特開2003−157973号公報JP 2003-157773 A

有機EL素子を用いたFPDにおいて、製造コストの低減は今後の大きな課題である。そのためには、基板1枚当たりの製造時間の短縮、材料の利用効率の向上が必須事項となる。ところが、図10に示したクラスタ型の有機EL製造装置においては、薄膜毎に独立した処理室を有し、処理室毎に基板の搬入、搬出を行う必要があるうえ、処理室毎に真空度を調整するため、基板1枚の当たりの製造時間が長いという問題がある。   In FPDs using organic EL elements, reduction of manufacturing costs is a major issue in the future. For this purpose, it is essential to shorten the manufacturing time per substrate and improve the material utilization efficiency. However, the cluster type organic EL manufacturing apparatus shown in FIG. 10 has an independent processing chamber for each thin film, and it is necessary to carry in and out the substrate for each processing chamber, and the degree of vacuum for each processing chamber. Therefore, there is a problem that the manufacturing time per substrate is long.

これに対して、製造時間の短縮のため、インライン式と呼ばれる有機EL製造装置が提案されている(例えば、特許文献1、特許文献2)。
インライン式の有機EL製造装置は、有機EL素子のための複数の成膜室が同一の真空容器内に直線的に配置され、これらの成膜室間のゲートバルブが排除された構成を有する。成膜時には、基板が複数の成膜室の上方を連続的に搬送されながら成膜されることで、基板の搬送及び真空度調整に伴う時間を短縮して、製造時間の短縮を図ろうとするものである。
On the other hand, in order to shorten the manufacturing time, an organic EL manufacturing apparatus called an inline type has been proposed (for example, Patent Document 1 and Patent Document 2).
The in-line type organic EL manufacturing apparatus has a configuration in which a plurality of film forming chambers for organic EL elements are linearly arranged in the same vacuum container, and a gate valve between these film forming chambers is eliminated. At the time of film formation, the substrate is formed while being continuously transferred over a plurality of film formation chambers, so that the time required for substrate transfer and vacuum adjustment is shortened, thereby reducing the manufacturing time. Is.

しかしながら、有機EL製造装置は、有機EL素子の成膜を行う成膜室以外にも、雰囲気(真空度)の異なる複数の処理室(例えば、図10における洗浄室44、電極成膜室47等)を有するものであり、有機EL素子の成膜を行うための成膜室のみを同一真空容器内に配置しても、他の処理室との間には、依然としてゲートバルブが必要である。従って、これらの処理室間で基板の搬送を行う場合には、搬送の度にゲートバルブの開閉を行う必要があり、ゲートバルブの開閉の度に各々の処理室において真空度を調整する必要がある。中には、真空度調整室を設け、真空度調整室で真空度を調整した後、処理室へ基板の搬送を行うものもあるが、実質的には連続搬送ができない状態であるうえ、真空度調整のための時間が掛かるため、製造時間の短縮に限界があり、生産効率の向上は望めない。   However, the organic EL manufacturing apparatus has a plurality of processing chambers having different atmospheres (degrees of vacuum) (for example, the cleaning chamber 44, the electrode film forming chamber 47 in FIG. Even if only the film forming chamber for forming the organic EL element is disposed in the same vacuum vessel, a gate valve is still necessary between the other processing chambers. Therefore, when transferring a substrate between these processing chambers, it is necessary to open and close the gate valve each time the transfer is performed, and it is necessary to adjust the degree of vacuum in each processing chamber each time the gate valve is opened and closed. is there. Some of them have a vacuum degree adjustment chamber, and after adjusting the degree of vacuum in the vacuum degree adjustment chamber, the substrate is transferred to the processing chamber. Since it takes time to adjust the degree, there is a limit to shortening the manufacturing time, and improvement in production efficiency cannot be expected.

又、インライン式の有機EL製造装置では、有機EL素子の成膜を行うための成膜室において、基板が連続的に搬送されるため、成膜室の蒸発源の温度の影響を連続的に受けることになり、基板温度が上昇しやすい。基板温度の上昇は、薄膜の再蒸発を招き、薄膜の品質を悪化させてしまう原因となる。特に、成膜速度を上げるためには、無効蒸気を低減することができるので、蒸発源を基板に近づけることが望ましいが、基板温度がより蒸発源の影響を受けやすくなり、成膜速度の向上と成膜品質の向上を両立できない。又、蒸発源を基板から遠ざけ、基板温度を適切に維持するようにした場合、成膜品質は向上するが、無効蒸気が多くなり、成膜速度が遅くなり、やはり、成膜速度の向上と成膜品質の向上を両立できない。つまり、上記インライン式の有機EL製造装置では、成膜品質の向上を図ると共に、製造時間を短縮することが難しく、生産効率の向上は望めなかった。   Further, in the in-line type organic EL manufacturing apparatus, since the substrate is continuously transported in the film forming chamber for forming the organic EL element, the influence of the temperature of the evaporation source in the film forming chamber is continuously affected. The substrate temperature tends to rise. The increase in the substrate temperature causes re-evaporation of the thin film and causes deterioration of the quality of the thin film. In particular, in order to increase the deposition rate, it is desirable to reduce the ineffective vapor, so it is desirable to bring the evaporation source closer to the substrate, but the substrate temperature is more susceptible to the evaporation source and the deposition rate is improved. And film quality cannot be improved at the same time. In addition, when the evaporation source is kept away from the substrate and the substrate temperature is appropriately maintained, the film formation quality is improved, but the amount of ineffective vapor is increased and the film formation rate is decreased. It is impossible to improve film quality. That is, in the in-line type organic EL manufacturing apparatus, it is difficult to improve the film formation quality and shorten the manufacturing time, and it is impossible to improve the production efficiency.

加えて、上記インライン式の有機EL製造装置では、有機EL素子の成膜を行うための成膜室において、例えば、ベルト式の搬送装置の上で、基板が連続的に搬送されながら成膜されるため、基板位置の位置ずれを起こしやすく、又、特に、大型の基板の場合、基板自体のたわみの問題もあり、成膜不良を起こしやすかった。   In addition, in the in-line type organic EL manufacturing apparatus, in the film forming chamber for forming the organic EL element, for example, the film is formed while the substrate is continuously transferred on the belt type transfer apparatus. Therefore, the position of the substrate is likely to be displaced, and in particular, in the case of a large-sized substrate, there is a problem of the deflection of the substrate itself, and film formation is liable to occur.

上述したように、上記インライン式の有機EL製造装置には、量産性を考慮した場合、成膜品質、生産効率等の点で解決すべき課題が多く残っている。   As described above, in the in-line organic EL manufacturing apparatus, many problems remain to be solved in terms of film formation quality, production efficiency, and the like when mass productivity is considered.

本発明は上記課題に鑑みなされたもので、成膜品質を向上させると共に、生産効率の高いインライン式有機EL製造装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an in-line type organic EL manufacturing apparatus with high production efficiency while improving film formation quality.

上記課題を解決する本発明の請求項1に係るインライン式有機EL製造装置は、
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機EL素子を形成するインライン式有機EL製造装置であって、
前記基板に成膜される薄膜のパターンが形成されたマスクを備えると共に、たわみを防止して前記基板を保持する保持手段を有し、
前記搬送手段は、前記保持手段を用いて、前記複数の処理室へ前記基板を連続的に搬送することを特徴とする。
パターニングのためのマスクと基板を保持する保持手段とを一体化して構成することで、保持手段に基板のマスク機能を持たせることができ、製造装置へのマスク単体の個別の搬送や製造装置でのマスクの基板への取付等が不要となり、マスクに関わる工程時間を短縮することが可能である。又、保持手段により基板を保持するので、自重等による基板のたわみを防止することができる。
The in-line type organic EL manufacturing apparatus according to claim 1 of the present invention for solving the above-described problems is
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic EL manufacturing apparatus that forms an organic EL element on the substrate through predetermined processing in the plurality of processing chambers,
A mask having a thin film pattern formed on the substrate; and holding means for holding the substrate while preventing deflection.
The transport means transports the substrate continuously to the plurality of processing chambers using the holding means.
By integrating the mask for patterning and the holding means for holding the substrate, the holding means can have the mask function of the substrate, and the individual mask to the manufacturing apparatus and the manufacturing apparatus can be used. It is not necessary to attach the mask to the substrate, and the process time for the mask can be shortened. Further, since the substrate is held by the holding means, it is possible to prevent the substrate from being bent due to its own weight or the like.

上記課題を解決する本発明の請求項2に係るインライン式有機EL製造装置は、
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機EL素子を形成するインライン式有機EL製造装置であって、
前記基板に成膜される有機薄膜のパターンが形成されたマスクを備え、たわみを防止して前記基板を保持する第1保持手段と、
前記基板に成膜される電極薄膜のパターンが形成されたマスクを備え、たわみを防止して前記基板を保持する第2保持手段と、
装置内部で前記第1保持手段から前記第2保持手段へ前記基板を付け替える交換手段とを有し、
前記搬送手段は、前記第1保持手段又は前記第2保持手段を用いて、前記複数の処理室へ前記基板を連続的に搬送することを特徴とする。
例えば、有機薄膜を成膜する処理室と電極薄膜を成膜する処理室との間に交換手段を設け、有機薄膜の成膜終了後に、第1保持手段から第2保持手段へ基板を付け替えるようにする。
The in-line type organic EL manufacturing apparatus according to claim 2 of the present invention for solving the above-described problems is
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic EL manufacturing apparatus that forms an organic EL element on the substrate through predetermined processing in the plurality of processing chambers,
A first holding means comprising a mask on which a pattern of an organic thin film formed on the substrate is formed, preventing the deflection and holding the substrate;
A second holding means comprising a mask on which a pattern of an electrode thin film formed on the substrate is formed, preventing the deflection and holding the substrate;
An exchange means for changing the substrate from the first holding means to the second holding means inside the apparatus,
The transfer means may transfer the substrate continuously to the plurality of processing chambers using the first holding means or the second holding means.
For example, an exchange means is provided between the processing chamber for forming the organic thin film and the processing chamber for forming the electrode thin film, and the substrate is transferred from the first holding means to the second holding means after the organic thin film is formed. To.

上記課題を解決する本発明の請求項3に係るインライン式有機EL製造装置は、
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機EL素子を形成するインライン式有機EL製造装置であって、
互いに真空度の異なる処理室の間に設けられ、各処理室における真空度の中間の真空度を独立して制御可能な差動排気部を有し、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記基板を連続的に搬送することを特徴とする。
例えば、有機薄膜を成膜する処理室と電極薄膜を成膜する処理室との間に差動排気部を設けることで、ゲートバルブを不要として、基板を停止させることなく、連続的に搬送を行うことができ、基板の搬送を効率よく行うことができる。又、差動排気部を介して、各処理室が接続されるので、各処理室の真空度が互いの処理室に影響を与えることがない。
The in-line type organic EL manufacturing apparatus according to claim 3 of the present invention for solving the above-described problems is
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic EL manufacturing apparatus that forms an organic EL element on the substrate through predetermined processing in the plurality of processing chambers,
Provided between the processing chambers having different vacuum degrees, and having a differential exhaust unit that can independently control the intermediate vacuum degree in each processing chamber,
The transporting means transports the substrate continuously between the processing chambers having different degrees of vacuum through the differential exhaust unit.
For example, by providing a differential evacuation unit between the processing chamber for forming the organic thin film and the processing chamber for forming the electrode thin film, a gate valve is not required, and the substrate can be continuously transferred without stopping. It is possible to carry out the substrate efficiently. In addition, since the processing chambers are connected via the differential evacuation unit, the degree of vacuum of each processing chamber does not affect each processing chamber.

上記課題を解決する本発明の請求項4に係るインライン式有機EL製造装置は、
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機EL素子を形成するインライン式有機EL製造装置であって、
前記基板の温度上昇を抑える冷却部材を有し、
前記搬送手段は、前記複数の処理室へ、前記冷却部材と共に前記基板を連続的に搬送することを特徴とする。
例えば、冷却部材は、放熱性がよいもの、又は、熱容量の大きいものとし、基板から冷却部材への熱伝導をさせることにより、基板の温度上昇を抑えて、基板の搬送速度を上げた状態でも基板への連続成膜を可能とし、生産効率の向上を図ることができる。
The in-line type organic EL manufacturing apparatus according to claim 4 of the present invention for solving the above-described problems is
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic EL manufacturing apparatus that forms an organic EL element on the substrate through predetermined processing in the plurality of processing chambers,
A cooling member for suppressing temperature rise of the substrate;
The transport means transports the substrate together with the cooling member to the plurality of processing chambers.
For example, the cooling member should have good heat dissipation or a large heat capacity, and heat conduction from the substrate to the cooling member can suppress the temperature rise of the substrate and increase the substrate transport speed. It is possible to continuously form a film on the substrate, and to improve the production efficiency.

上記課題を解決する本発明の請求項5に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
互いに真空度の異なる処理室の間に設けられ、各処理室における真空度の中間の真空度を独立して制御可能な差動排気部を有し、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とする。
The in-line type organic EL manufacturing apparatus according to claim 5 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
Provided between the processing chambers having different vacuum degrees, and having a differential exhaust unit that can independently control the intermediate vacuum degree in each processing chamber,
The transfer means continuously moves the substrate between the processing chambers having different degrees of vacuum using the holding means, the first holding means, or the second holding means via the differential exhaust section. It is transported.

上記課題を解決する本発明の請求項6に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記基板の温度上昇を抑える冷却部材を、前記保持手段、前記第1保持手段又は前記第2保持手段に設け、
前記搬送手段は、前記複数の処理室へ、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とする。
The in-line type organic EL manufacturing apparatus according to claim 6 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
A cooling member that suppresses the temperature rise of the substrate is provided in the holding means, the first holding means, or the second holding means,
The transport means transports the substrate continuously to the plurality of processing chambers using the holding means, the first holding means, or the second holding means.

上記課題を解決する本発明の請求項7に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記基板の温度上昇を抑える冷却部材を、前記保持手段、前記第1保持手段又は前記第2保持手段に設け、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とする。
The in-line type organic EL manufacturing apparatus according to claim 7 of the present invention for solving the above-mentioned problems is
In the inline-type organic EL manufacturing apparatus,
A cooling member that suppresses the temperature rise of the substrate is provided in the holding means, the first holding means, or the second holding means,
The transfer means continuously moves the substrate between the processing chambers having different degrees of vacuum using the holding means, the first holding means, or the second holding means via the differential exhaust section. It is transported.

上記課題を解決する本発明の請求項8に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記保持手段、前記第1保持手段又は前記第2保持手段を洗浄する洗浄手段を設け、
前記保持手段、前記第1保持手段又は前記第2保持手段を再利用可能としたことを特徴とする。
An in-line type organic EL manufacturing apparatus according to claim 8 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
A cleaning means for cleaning the holding means, the first holding means or the second holding means;
The holding means, the first holding means, or the second holding means can be reused.

上記課題を解決する本発明の請求項9に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記搬送手段は、前記保持手段、前記第1保持手段又は前記第2保持手段の位置決めを行う位置決め部材を有することを特徴とする。
従って、連続搬送を行う搬送手段においても、保持手段、第1保持手段又は第2保持手段の位置決め精度が向上するので、基板自体の位置決め精度も向上し、成膜不良を防止することができる。
The in-line type organic EL manufacturing apparatus according to claim 9 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
The conveying means includes a positioning member for positioning the holding means, the first holding means, or the second holding means.
Accordingly, since the positioning means of the holding means, the first holding means, or the second holding means is improved in the transfer means that performs continuous transfer, the positioning accuracy of the substrate itself is improved, and film formation defects can be prevented.

上記課題を解決する本発明の請求項10に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記保持手段、前記第1保持手段又は前記第2保持手段を複数収容可能なカセットを有し、
前記カセットを用いて、所定の処理室にて真空度の大きな変更を行うと共に、
前記搬送手段は、真空度の変更後に、前記保持手段、前記第1保持手段又は前記第2保持手段を、前記カセットから連続的に搬送することを特徴とする。
例えば、成膜のための処理室と封止のための処理室との間の処理室で、複数の基板を収容するカセットの周囲の真空度を、高真空度/大気圧に切り替えるようにする。
The in-line type organic EL manufacturing apparatus according to claim 10 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
A cassette capable of accommodating a plurality of the holding means, the first holding means or the second holding means;
Using the cassette, a large change in the degree of vacuum in a predetermined processing chamber,
The conveying means continuously conveys the holding means, the first holding means or the second holding means from the cassette after changing the degree of vacuum.
For example, the degree of vacuum around a cassette that accommodates a plurality of substrates is switched between a high degree of vacuum / atmospheric pressure in a processing room between a processing room for film formation and a processing room for sealing. .

上記課題を解決する本発明の請求項11に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記差動排気部は、更に真空度の高い他の差動排気部を備えることを特徴とする。
例えば、有機薄膜を成膜する処理室と電極薄膜を成膜する処理室との間等、雰囲気の影響を互いに与えたくない処理室間には、中間の真空度を有する差動排気部を設けるだけでなく、更に高真空度の差動排気部を別途設けることで、各処理室の雰囲気が互いの処理室に影響を与えないようにしている。
An in-line type organic EL manufacturing apparatus according to claim 11 of the present invention for solving the above-described problems is provided.
In the inline-type organic EL manufacturing apparatus,
The differential exhaust unit includes another differential exhaust unit having a higher degree of vacuum.
For example, a differential exhaust unit having an intermediate degree of vacuum is provided between processing chambers that do not want to affect each other, such as between a processing chamber for forming an organic thin film and a processing chamber for forming an electrode thin film. In addition, a differential exhaust unit having a higher degree of vacuum is additionally provided so that the atmosphere of each processing chamber does not affect each processing chamber.

上記課題を解決する本発明の請求項12に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記基板と前記冷却部材との間に、前記基板からの熱を前記冷却部材へ伝導して拡散する熱伝導部材を設けたことを特徴とする。
熱伝導部材としては、例えば、熱伝導性があり、接触面の表面粗さに追従可能な柔らかい素材を用いる。
The in-line type organic EL manufacturing apparatus according to claim 12 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
A heat conduction member for conducting and diffusing heat from the substrate to the cooling member is provided between the substrate and the cooling member.
As the heat conducting member, for example, a soft material having heat conductivity and capable of following the surface roughness of the contact surface is used.

上記課題を解決する本発明の請求項13に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記冷却部材は、再利用可能であることを特徴とする。
The in-line type organic EL manufacturing apparatus according to claim 13 of the present invention for solving the above-described problems is
In the inline-type organic EL manufacturing apparatus,
The cooling member is reusable.

上記課題を解決する本発明の請求項14に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記基板及び前記冷却部材、又は、前記基板若しくは前記冷却部材からの輻射熱を吸収する輻射熱吸収手段を設けたことを特徴とする。
例えば、輻射熱吸収手段として、ヘリウム冷凍機のクライオ面を用い、基板、冷却部材からの輻射熱を吸収することにより、基板の温度上昇を抑えて、基板の搬送速度を上げた状態でも基板への連続成膜を可能とし、生産効率の向上を図ることができる。
An in-line type organic EL manufacturing apparatus according to claim 14 of the present invention for solving the above-mentioned problems is provided.
In the inline-type organic EL manufacturing apparatus,
The substrate and the cooling member, or radiant heat absorbing means for absorbing radiant heat from the substrate or the cooling member is provided.
For example, using a cryo-surface of a helium refrigerator as a radiant heat absorption means, absorbing radiant heat from the substrate and the cooling member, suppressing the temperature rise of the substrate, and continuing to the substrate even when the substrate transport speed is increased Film formation is possible, and production efficiency can be improved.

上記課題を解決する本発明の請求項15に係るインライン式有機EL製造装置は、
上記インライン式有機EL製造装置において、
前記搬送手段は、搬送速度を一定としたものであると共に、
複数の処理室における薄膜の成膜速度を各々制御するようにしたことを特徴とする。
An in-line type organic EL manufacturing apparatus according to claim 15 of the present invention for solving the above-mentioned problems is provided.
In the inline-type organic EL manufacturing apparatus,
The transport means has a constant transport speed,
It is characterized in that the film forming speed of the thin film in each of the plurality of processing chambers is controlled.

本発明によれば、基板を保持する保持手段(ホルダ)と基板用のマスクとを一体化し、ホルダを用いて基板を保持するようにしたので、簡単な構造で、基板のたわみを防止すると共に、マスク機能をホルダに持たせることができる。基板のたわみを防止することにより、基板のたわみによる成膜不良を低減することができ、又、ホルダにマスク機能を持たせることにより、マスクに関わる工程時間を短縮することが可能となり、生産効率の向上を図ることができる。加えて、成膜される薄膜に応じて、異なるパターンが形成されたマスクをホルダに装着しておき、製造装置内でホルダを交換することにより、基板に異なるパターンの薄膜を形成することができる。   According to the present invention, since the holding means (holder) for holding the substrate and the mask for the substrate are integrated and the substrate is held using the holder, the substrate can be prevented from being bent with a simple structure. The holder can have a mask function. By preventing the deflection of the substrate, film formation defects due to the deflection of the substrate can be reduced, and by providing the holder with a mask function, the process time related to the mask can be shortened, resulting in production efficiency. Can be improved. In addition, a thin film with a different pattern can be formed on the substrate by attaching a mask with a different pattern to the holder according to the thin film to be formed and replacing the holder in the manufacturing apparatus. .

本発明によれば、異なる真空度の処理室の間に、差動排気部による中間圧力室を設けたので、異なる真空度の処理室間にゲートバルブを設置する必要がなくなり、又、圧力調整も不要となり、基板を停止させることなく、連続搬送を行なうこと可能である。その結果、搬送速度の高速化が容易となり、生産効率を向上させることができる。   According to the present invention, since the intermediate pressure chamber by the differential evacuation unit is provided between the processing chambers having different vacuum degrees, it is not necessary to install a gate valve between the processing chambers having different vacuum degrees, and pressure adjustment is performed. Therefore, continuous conveyance can be performed without stopping the substrate. As a result, the conveyance speed can be easily increased, and the production efficiency can be improved.

本発明によれば、熱伝導部材を介した冷却部材や輻射熱を吸収する輻射熱吸収手段等を用いるので、基板の温度上昇を抑えることができ、高速の搬送速度で、連続して成膜を行なうことが可能となり、生産効率を向上させることができる。又、基板の温度上昇を抑えることで、基板と蒸発源との距離を近づけることができ、無効な蒸気量を減少させて、蒸発材料の無駄を減少させることができる。   According to the present invention, since the cooling member via the heat conducting member or the radiant heat absorbing means for absorbing radiant heat is used, the temperature rise of the substrate can be suppressed, and the film is continuously formed at a high transfer speed. Production efficiency can be improved. Further, by suppressing the temperature rise of the substrate, the distance between the substrate and the evaporation source can be reduced, and the amount of ineffective vapor can be reduced, thereby reducing the waste of the evaporation material.

本発明によれば、搬送手段にホルダの位置決め部材を設けたので、成膜を行う処理室での位置決めの精度を向上させることができ、成膜不良の発生を防止して、生産効率を向上させることができる。   According to the present invention, since the holder positioning member is provided in the transfer means, it is possible to improve the positioning accuracy in the processing chamber in which film formation is performed, and to prevent the occurrence of film formation defects and improve production efficiency. Can be made.

本発明によれば、複数のホルダを収容可能なカセットを、装置の搬入部、搬出部だけでなく、装置内部の圧力変化の大きい処理室間においても使用するので、カセットと共に複数の基板、ホルダの周囲の真空度を一括して変更することで、真空度の変更に伴う調整時間を短縮し、余分な待ち時間を減らし、成膜のための処理室、封止のための処理室等の処理能力を十分に生かすようにして、生産効率の向上を図ることができる。   According to the present invention, since a cassette that can accommodate a plurality of holders is used not only in the loading / unloading section of the apparatus, but also between processing chambers having a large pressure change inside the apparatus, a plurality of substrates and holders together with the cassette are used. By changing the degree of vacuum around the chamber at once, the adjustment time associated with the change in the degree of vacuum is shortened, the extra waiting time is reduced, and the processing chamber for film formation, the processing chamber for sealing, etc. Production efficiency can be improved by making full use of the processing capacity.

本発明は、インライン式有機EL製造装置において、その量産性を向上するべく、成膜膜質、生産効率に着目して、基板搬送に係る部分、基板温度に係る部分を工夫したものである。その具体的な実施形態のいくつかを図1乃至図9に示し、特に、基板搬送の効率に係る部分を図1〜図4へ、基板温度に係る部分を図5〜図8へ、そして、装置全体の構成を図9に示して、詳細な説明を行う。   In the in-line type organic EL manufacturing apparatus of the present invention, in order to improve the mass productivity, the part relating to the substrate transport and the part relating to the substrate temperature are devised by paying attention to the film forming film quality and the production efficiency. Some of the specific embodiments are shown in FIGS. 1 to 9, and in particular, the portion related to the efficiency of substrate transfer is shown in FIGS. 1 to 4, the portion related to the substrate temperature is shown in FIGS. 5 to 8, and The configuration of the entire apparatus is shown in FIG. 9 and will be described in detail.

図1、図2に、本発明に係るインライン式有機EL製造装置で用いられるホルダの実施形態例を示す。
なお、図1(a)、図2(a)は基板及びホルダの斜視図であり、図1(b)、図2(b)は、各々図1(a)のA−A線矢視断面図、図2(a)のB−B線矢視断面図である。
1 and 2 show an embodiment of a holder used in an inline-type organic EL manufacturing apparatus according to the present invention.
1 (a) and 2 (a) are perspective views of the substrate and the holder, and FIGS. 1 (b) and 2 (b) are cross-sectional views taken along line AA in FIG. 1 (a). FIG. 3 is a cross-sectional view taken along line BB in FIG. 2 (a).

図1に示すように、ホルダ1A(保持手段)は、矩形状の基板2aの周縁部をその下方側から保持するL字断面のフレーム3aと、フレーム3aの中央部に十字状に配置され、基板2aをその下方側から保持する保持部材4aとを有し、フレーム3aと十字状の保持部材4aが形成する開口部分に、成膜される薄膜のパターンが形成されたマスク5aを配設したものである。なお、保持部材4aは十字状に限らず、例えば、中央に1本でも多数本の組み合わせでもよい。ホルダ1Aでは、一枚の基板2aをホルダ1Aの上方から設置し、図1における基板2aの下面側に、マスク5aによるパターンが成膜され、図1の例では、一枚の基板2aに4枚分の有機EL素子となる薄膜が成膜される。保持部材4aやマスク5aのパターンは、有機EL素子の大きさにより決定され、1枚板の基板2aから、大きさに応じて4枚、6枚、8枚・・・の有機EL素子が成膜される。つまり、ホルダ1Aは、1枚板の基板2aに対応したものであり、フレーム3aと保持部材4aにより、1枚板の基板2aの周縁部を保持して、自重等によるたわみを防止すると共に、マスク5aにより基板2aへ成膜するパターンのマスク機能を提供するものである。なお、マスク5aは保持部材4aと一体になっており、基板2aと接する側に位置する。   As shown in FIG. 1, the holder 1A (holding means) is arranged in a cross shape at the center of the frame 3a and an L-shaped frame 3a that holds the peripheral edge of the rectangular substrate 2a from below. A holding member 4a for holding the substrate 2a from below is provided, and a mask 5a on which a thin film pattern to be formed is formed is disposed in an opening formed by the frame 3a and the cross-shaped holding member 4a. Is. Note that the holding member 4a is not limited to a cross shape, and may be, for example, one in the center or a combination of many. In the holder 1A, a single substrate 2a is installed from above the holder 1A, and a pattern is formed on the lower surface side of the substrate 2a in FIG. 1 by the mask 5a. In the example of FIG. A thin film to be an organic EL element is formed. The pattern of the holding member 4a and the mask 5a is determined by the size of the organic EL element, and four, six, eight, etc. organic EL elements are formed from a single substrate 2a according to the size. Be filmed. That is, the holder 1A corresponds to the single substrate 2a, holds the peripheral portion of the single substrate 2a by the frame 3a and the holding member 4a, and prevents deflection due to its own weight, etc. The mask function of the pattern formed on the substrate 2a by the mask 5a is provided. The mask 5a is integrated with the holding member 4a and is located on the side in contact with the substrate 2a.

又、図2に示すように、ホルダ1B(保持手段)は、矩形状の基板2bの周縁部をその下方側から保持するL字断面のフレーム3bを、複数個(図2においては4個)平面配置して一体化したものであり、各フレーム3bが形成する開口部分に、成膜される薄膜のパターンが形成されたマスク5bを配設したものである。ホルダ1Bでは、4枚の基板2bをホルダ1Bの上方から設置し、図2における基板2bの下面側に、マスク5bによるパターンが成膜され、4枚の基板2b各々に有機EL素子の薄膜が成膜される。つまり、ホルダ1Bは、切り板の基板2bに対応したものであり、フレーム3bにより、切り板の基板2bの周縁部を保持して、自重等によるたわみを防止すると共に、マスク5bにより基板2bへ成膜するパターンのマスク機能を提供するものである。   Further, as shown in FIG. 2, the holder 1B (holding means) includes a plurality (four in FIG. 2) of L-shaped cross-section frames 3b that hold the peripheral edge of the rectangular substrate 2b from the lower side. The mask 5b on which the pattern of the thin film to be formed is formed is disposed in the opening formed by each frame 3b. In the holder 1B, four substrates 2b are installed from above the holder 1B, a pattern is formed by the mask 5b on the lower surface side of the substrate 2b in FIG. 2, and a thin film of an organic EL element is formed on each of the four substrates 2b. A film is formed. That is, the holder 1B corresponds to the substrate 2b of the cut plate, holds the peripheral edge portion of the substrate 2b of the cut plate by the frame 3b, prevents deflection due to its own weight, etc., and moves to the substrate 2b by the mask 5b. The mask function of the pattern to form into a film is provided.

なお、図1、図2には図示していないが、基板2a、2bのたわみをより効果的に抑えるため、基板2a、2bの上方側から基板2a、2bを押さえ付ける押付部材を設けるようにしてもよい。例えば、後述の図7における冷却板13は、押付部材としての機能も果たすものである。又、静電チャック、マグネットチャックを用い、フレーム3a、3bと押付部材との間に、基板2a、2bを挟み込むように保持してもよい。   Although not shown in FIGS. 1 and 2, in order to more effectively suppress the deflection of the substrates 2a and 2b, a pressing member for pressing the substrates 2a and 2b from above is provided. May be. For example, the cooling plate 13 shown in FIG. 7 described later also functions as a pressing member. Moreover, you may hold | maintain so that the board | substrates 2a and 2b may be pinched | interposed between flame | frame 3a, 3b and a pressing member using an electrostatic chuck and a magnet chuck.

本発明に係るインライン式有機EL製造装置(以下、本製造装置と略す)は、基板を搬送しながら成膜を行うものである。上記ホルダ1A、1Bを用いて基板を搬送することで、基板のたわみを防止して、搬送しながら成膜を行うことができ、基板のたわみに伴う成膜不良を防止することができる。又、薄膜のパターンに応じて、異なるパターンが形成されたマスクを有するホルダを予め用意すれば、各々異なる薄膜パターンを成膜することが可能である。例えば、本製造装置では、有機薄膜用のマスクを有するホルダA(第1保持手段)と、電極薄膜用のマスクを有するホルダB(第2保持手段)とを各々別々に用いることで、各々異なる薄膜パターンを形成することが可能となる。又、後述の図9に示すように、ホルダの洗浄を行う洗浄室24、29(洗浄手段)を設け、使用後のホルダを洗浄し、巡回させることで、ホルダの再利用が可能となり、生産効率の向上を図ることが可能である。又、ホルダとマスクを一体化することで、マスク単体の個別の搬送を不要とすることができ、マスクのための搬送装置などを別途設ける必要がなくなる。   The in-line type organic EL manufacturing apparatus (hereinafter abbreviated as the present manufacturing apparatus) according to the present invention performs film formation while transporting a substrate. By transporting the substrate using the holders 1A and 1B, it is possible to prevent the substrate from being bent and to form a film while transporting it, and to prevent a film formation defect caused by the deflection of the substrate. Further, if a holder having a mask on which a different pattern is formed according to the thin film pattern is prepared in advance, it is possible to form different thin film patterns. For example, in this manufacturing apparatus, the holder A (first holding means) having a mask for an organic thin film and the holder B (second holding means) having a mask for an electrode thin film are separately used, which are different from each other. A thin film pattern can be formed. Also, as shown in FIG. 9 to be described later, cleaning chambers 24 and 29 (cleaning means) for cleaning the holder are provided, and the holder can be reused by cleaning and circulating the holder after use. It is possible to improve efficiency. Further, by integrating the holder and the mask, it is possible to eliminate the need for individual conveyance of the mask alone, and it is not necessary to separately provide a conveyance device for the mask.

ホルダ1は、図3に示すようなカセット6に複数収容され、装置搬入口(例えば、図9の搬入部E1参照)等にカセット6と共に設置される。カセット6は、開口部を有する箱状の筐体の内部に、対向配置された複数の溝部6aを設け、1対の溝部6aに1つのホルダ1を挿入して設置することで、複数のホルダ1を1つのカセット6内に収容するものである。このように、複数のホルダ1を収容可能なカセット6を、装置搬入口等、雰囲気(真空度)の大きな切り替えが必要な場所で用いることで、複数のホルダ、即ち、複数の基板に対して、一回の圧力制御で所望の雰囲気(圧力)へ調整でき、雰囲気(圧力)の調整時間の短縮を図ることができる。又、一旦、所望の圧力(雰囲気)に切り替えれば、成膜室等の雰囲気(真空度)に影響を与えることがなく、カセット6からホルダ1を順次取り出し、連続搬送を行いながら、成膜処理できるため、余分な搬送時間や雰囲気(真空度)の調整時間等が低減でき、生産効率を向上させることが可能である。例えば、図9においては、大気/真空切替室22a、22b(大気/真空の切替)、真空/N2切替室31(真空/N2の切替)、N2/大気切替室35a、35b(N2/大気の切替)等でカセット6が用いられ、異なる雰囲気(真空度)の処理室間を、カセット6と共に複数のホルダ1を通過させることができる。 A plurality of holders 1 are accommodated in a cassette 6 as shown in FIG. 3 and installed together with the cassette 6 at an apparatus carry-in entrance (for example, refer to the carry-in part E1 in FIG. 9). The cassette 6 is provided with a plurality of opposed groove portions 6a in a box-shaped housing having an opening, and a single holder 1 is inserted and installed in a pair of groove portions 6a. 1 is accommodated in one cassette 6. In this way, by using the cassette 6 that can accommodate a plurality of holders 1 at a place where a large change in atmosphere (vacuum degree) is required, such as an apparatus carry-in port, a plurality of holders, that is, a plurality of substrates, can be used. The pressure can be adjusted to a desired atmosphere (pressure) by a single pressure control, and the adjustment time of the atmosphere (pressure) can be shortened. Further, once the pressure (atmosphere) is switched to a desired value, the film formation process is performed while the holder 1 is sequentially taken out from the cassette 6 and continuously conveyed without affecting the atmosphere (vacuum degree) of the film formation chamber or the like. Therefore, it is possible to reduce extra conveyance time, adjustment time of atmosphere (degree of vacuum), etc., and improve production efficiency. For example, in FIG. 9, the atmosphere / vacuum switching chambers 22a and 22b (atmosphere / vacuum switching), the vacuum / N 2 switching chamber 31 (vacuum / N 2 switching), and the N 2 / atmosphere switching chambers 35a and 35b (N 2 / air switching), the cassette 6 is used, and a plurality of holders 1 can be passed together with the cassette 6 between processing chambers of different atmospheres (degrees of vacuum).

図4に、本製造装置で用いられる搬送装置の実施形態の一例を示す。
なお、図4(a)は成膜室における搬送装置を側面方向から見た概略図であり、図4(b)は、図4(a)のC−C線矢視断面図である。
In FIG. 4, an example of embodiment of the conveying apparatus used with this manufacturing apparatus is shown.
4A is a schematic view of the transfer device in the film forming chamber as viewed from the side, and FIG. 4B is a cross-sectional view taken along the line CC in FIG. 4A.

ホルダ1Aは、たわみ防止機能、マスク機能を有するものであるが、搬送装置7(搬送手段)に設けられた位置決め部材8a、8bを用いることで、搬送されながらも、搬送装置7上での位置精度を向上させるガイド(案内)としても機能するものである。具体的には、搬送装置7は、直線状に配置された2本のベルト7aと、ベルト7aを駆動する複数のローラ7bとを有しており、2本のベルト7a上の所定位置に位置決め部材8a、8bが配設される。位置決め部材8aは、ホルダ1Aの進行方向の位置決めを行うためのものであり、位置決め部材8bは、ホルダ1Aの進行方向に垂直な方向の位置決めを行うためのものである。ベルト7a、ローラ7bは、基板の成膜部分に影響を与えない位置、具体的には、ホルダ1Aのフレーム3aの部分に配置されて、ホルダ1Aと共に基板を搬送可能に支持するものである。そして、成膜を行う際には、成膜される薄膜の膜厚が、基板の搬送方向に沿って均一になるように、一定の所定速度でホルダ1Aを移動させる。   The holder 1A has a deflection preventing function and a mask function. However, the holder 1A uses the positioning members 8a and 8b provided in the transport device 7 (transport means), so that the position on the transport device 7 is transported. It also functions as a guide (guide) for improving accuracy. Specifically, the conveying device 7 has two belts 7a arranged in a straight line and a plurality of rollers 7b for driving the belts 7a, and is positioned at a predetermined position on the two belts 7a. Members 8a and 8b are disposed. The positioning member 8a is for positioning the holder 1A in the traveling direction, and the positioning member 8b is for positioning in the direction perpendicular to the traveling direction of the holder 1A. The belt 7a and the roller 7b are disposed at a position that does not affect the film forming portion of the substrate, specifically, the frame 3a portion of the holder 1A, and supports the substrate together with the holder 1A so that the substrate can be conveyed. When film formation is performed, the holder 1A is moved at a constant predetermined speed so that the film thickness of the thin film to be formed becomes uniform along the substrate transport direction.

このように、位置決め部材8a、8bにより、搬送時のホルダ1Aの位置決めが正確に行われることにより、ホルダ1Aが有する基板の位置決めも正確に行われることになる。つまり、ホルダ1Aの下方側に配置され、蒸発材料を供給する蒸発源9に対しても、成膜時の位置決め精度が向上することになり、位置ずれによる成膜不良を低減することが可能となる。なお、本実施例においては、ベルト7a側のみに凸状の位置決め部材8a、8bを設けた構成としたが、ホルダ1A側に、位置決め部材8a、8b対応する凹部を設け、互いに嵌合させることで位置決めを行ってもよいし、逆に、ベルト7a側に凹部を、ホルダ1A側に凸部を設け、互いに嵌合させることで位置決めを行ってもよい。なお、ロールを適切に配置し、かつ、ホルダ1Aをスリップさせることなく、ロールとホルダ1A間の摩擦力を保持できる場合は、ベルト式コンベアでなく、ローラ式コンベアでホルダ1Aを搬送してもよい。   As described above, the positioning member 8a, 8b accurately positions the holder 1A during conveyance, so that the substrate included in the holder 1A is also accurately positioned. That is, the positioning accuracy at the time of film formation is improved with respect to the evaporation source 9 that is disposed below the holder 1A and supplies the evaporation material, and it is possible to reduce film formation defects due to misalignment. Become. In the present embodiment, the convex positioning members 8a and 8b are provided only on the belt 7a side, but the concave portions corresponding to the positioning members 8a and 8b are provided on the holder 1A side and are fitted to each other. Alternatively, positioning may be performed, or conversely, a concave portion may be provided on the belt 7a side and a convex portion provided on the holder 1A side, and positioning may be performed by fitting each other. In addition, even if it arrange | positions a roll appropriately and the frictional force between a roll and the holder 1A can be hold | maintained without slipping the holder 1A, even if it conveys the holder 1A with a roller type conveyor instead of a belt type conveyor Good.

インライン式有機EL製造装置では、生産効率を向上させるため、薄膜の蒸発材料を供給する蒸発源を、1つの真空室内に直線状に配置し、各蒸発源の上方を基板が連続的に搬送されながら成膜される構成としている。従来のインライン式有機EL製造装置では、上記構成により基板温度が上昇し易く、生産効率と成膜品質がトレードオフの関係にあった。そこで、本製造装置では、基板が連続搬送されながら成膜される状態においても、基板の温度上昇を抑えることで、良好な成膜状態になるようにして、生産効率を向上させている。その具体的な実施形態例を図5、図7に示す。   In an in-line organic EL manufacturing apparatus, in order to improve production efficiency, evaporation sources that supply thin film evaporation materials are arranged linearly in one vacuum chamber, and substrates are continuously conveyed above each evaporation source. However, the film is formed. In the conventional in-line type organic EL manufacturing apparatus, the substrate temperature is likely to rise due to the above-described configuration, and the production efficiency and the film formation quality are in a trade-off relationship. Therefore, in this manufacturing apparatus, even in the state where the substrate is deposited while being continuously conveyed, the production efficiency is improved by suppressing the temperature rise of the substrate so as to obtain a favorable film formation state. Specific embodiments thereof are shown in FIGS.

図5は、複数の蒸発源9が配置された真空容器の内部を示す概略図である。
図5に示すように、本製造装置は、基板温度の上昇を抑えるため、基板や後述の冷却板12(図7参照)からの輻射熱を吸収するクライオパネル10a、10b(輻射熱吸収手段)を備える。クライオパネル10a、10bは、蒸発源9から供給される蒸発材料の蒸着を妨げない空間に、ホルダ1の両面に近接するように平行に配置されているものであり、蒸発源9の数に応じて、搬送装置に沿って複数設けられる。クライオパネル10a、10bは、クライオポンプ等の内部に用いられるクライオパネルと同等のものであり、液体He等を用いた冷凍機のクライオ面を用いたものである。
FIG. 5 is a schematic view showing the inside of a vacuum vessel in which a plurality of evaporation sources 9 are arranged.
As shown in FIG. 5, the manufacturing apparatus includes cryopanels 10a and 10b (radiant heat absorbing means) that absorb radiant heat from the substrate and a cooling plate 12 (see FIG. 7) described later in order to suppress an increase in the substrate temperature. . The cryopanels 10 a and 10 b are arranged in parallel so as to be close to both surfaces of the holder 1 in a space that does not hinder evaporation of the evaporation material supplied from the evaporation source 9, depending on the number of evaporation sources 9. A plurality of them are provided along the conveying device. The cryopanels 10a and 10b are equivalent to a cryopanel used inside a cryopump or the like, and use a cryosurface of a refrigerator using liquid He or the like.

真空容器の内部では、基板の周囲は真空であるため、基板からの熱伝導を媒介する気体がほとんどない。そこで、本発明では、低温(−20℃〜−200℃)に維持可能なクライオパネル10a、10bを用い、基板等からの輻射熱を積極的に吸収すること(冷輻射)で、基板の温度上昇を防ぐようにしている。   Inside the vacuum container, since the periphery of the substrate is a vacuum, there is almost no gas that mediates heat conduction from the substrate. Therefore, in the present invention, the cryopanels 10a and 10b that can be maintained at a low temperature (−20 ° C. to −200 ° C.) are used to actively absorb the radiant heat from the substrate or the like (cold radiation), thereby increasing the temperature of the substrate. To prevent.

図6に、クライオパネルを使用しない場合と使用した場合の基板の温度変化を示す。
これは、ガラス基板の初期温度を25℃、クライオパネル10a、10bの温度を−200℃、蒸発源9の温度を300℃、基板の搬送速度を5.8mm/secとして、成膜回数を連続12回行ったものである。
FIG. 6 shows the temperature change of the substrate when the cryopanel is not used and when it is used.
This is because the initial temperature of the glass substrate is 25 ° C., the temperature of the cryopanels 10a and 10b is −200 ° C., the temperature of the evaporation source 9 is 300 ° C., and the substrate transport speed is 5.8 mm / sec. This was done 12 times.

図6(a)のクライオパネルを使用しない場合と、図6(b)のクライオパネルを使用する場合の比較から、クライオパネルによる冷却により、基板温度の上昇がかなり抑えられていることがわかる。   From the comparison between the case where the cryopanel of FIG. 6A is not used and the case of using the cryopanel of FIG. 6B, it can be seen that the rise in the substrate temperature is considerably suppressed by the cooling by the cryopanel.

図7は、図1に示したホルダ1Aに、熱伝導部材、冷却部材を設けた構成を示す断面図である。
図7に示すホルダは、図1に示したホルダ1Aに柔構造物11(熱伝導部材)、冷却板12(冷却部材)を設けたものである。具体的には、ホルダ1Aが保持する基板2a上に柔構造物11が配設され、更に、柔構造物11上に冷却板12が配設された構成である。これらの柔構造物11、冷却板12は、基板2aの成膜される面の反対側の面に配置される。なお、基板2aから冷却板12への熱伝導性が十分に確保できれば、柔構造物11は必ずしも設ける必要はない。
FIG. 7 is a cross-sectional view showing a configuration in which a heat conducting member and a cooling member are provided on the holder 1A shown in FIG.
The holder shown in FIG. 7 is obtained by providing a flexible structure 11 (heat conducting member) and a cooling plate 12 (cooling member) on the holder 1A shown in FIG. Specifically, the flexible structure 11 is disposed on the substrate 2 a held by the holder 1 </ b> A, and the cooling plate 12 is disposed on the flexible structure 11. The flexible structure 11 and the cooling plate 12 are disposed on the surface opposite to the surface on which the substrate 2a is formed. If the thermal conductivity from the substrate 2a to the cooling plate 12 can be sufficiently secured, the flexible structure 11 is not necessarily provided.

上記構成は、基板2aからの熱伝導、熱拡散を、冷却板12側へ積極的に行うことで、基板2aの温度上昇を抑えようとするものである。具体的には、Cu等の熱伝導性の高い材料により冷却板12を構成し、基板2aを冷却板12に接触させ、基板2aの温度を熱伝導、熱拡散により逃がして、基板2a自体の温度上昇を防止している。又、冷却板12自体の体積を大きくする等、冷却板12自体の熱容量を大きくする構成として、冷却板12を含めた基板2a側の温度が上昇し難いようにしてもよい。更に、冷却板12と基板2aとの熱伝導性をよりよくするために、互いの接触面の密着性をよくする柔構造物11を、冷却板12と基板2aとの間に挟みこむようにしてもよい。柔構造物11としては、例えば、シリコンゴム、グラファイトシート、カーボンシート等を用いる。又、熱伝導率が0.2W/(m・K)程度であっても、真空中で脱ガス量が少なく、基板との密着性のよいものがあれば、柔構造物として用いることができ、例えば、ジェル状のものも用いることが可能である。   The above configuration is intended to suppress the temperature rise of the substrate 2a by positively conducting heat conduction and heat diffusion from the substrate 2a to the cooling plate 12 side. Specifically, the cooling plate 12 is made of a material having high thermal conductivity such as Cu, the substrate 2a is brought into contact with the cooling plate 12, the temperature of the substrate 2a is released by heat conduction and thermal diffusion, and the substrate 2a itself is released. Temperature rise is prevented. In addition, the temperature on the substrate 2a side including the cooling plate 12 may be difficult to increase by increasing the heat capacity of the cooling plate 12 itself, such as by increasing the volume of the cooling plate 12 itself. Further, in order to improve the thermal conductivity between the cooling plate 12 and the substrate 2a, the flexible structure 11 that improves the adhesion between the contact surfaces may be sandwiched between the cooling plate 12 and the substrate 2a. Good. As the flexible structure 11, for example, silicon rubber, graphite sheet, carbon sheet, or the like is used. Even if the thermal conductivity is about 0.2 W / (m · K), it can be used as a flexible structure if it has a low degassing amount in vacuum and has good adhesion to the substrate. For example, a gel-like one can also be used.

本製造装置では、基板2aを搬入する前に、冷却板12を予め基板2a上に取り付け、基板2aの成膜、封止処理後、搬出時に基板2a上から取り外すようにする。この場合、一度使用した冷却板12は20℃程度まで冷却して、再利用するようにする。又、本製造装置の内部において、成膜前に冷却板12を基板2a上に取り付け、成膜後に冷却板12を基板2a上から取り外すようにしてもよい。この場合、一度使用した冷却板12を本製造装置内で冷却できるようにすれば、冷却板12を装置内で巡回させて、再利用するようにすることも可能である。   In the present manufacturing apparatus, before the substrate 2a is carried in, the cooling plate 12 is mounted on the substrate 2a in advance, and after the film formation and sealing processing of the substrate 2a, it is removed from the substrate 2a when carried out. In this case, the cooling plate 12 once used is cooled to about 20 ° C. and reused. Further, in the present manufacturing apparatus, the cooling plate 12 may be attached to the substrate 2a before film formation, and the cooling plate 12 may be removed from the substrate 2a after film formation. In this case, if the cooling plate 12 once used can be cooled in the manufacturing apparatus, the cooling plate 12 can be circulated in the apparatus and reused.

図8に、基板と冷却板との間に、柔構造物を挟まない場合と挟む場合の基板の温度変化を示す。
これは、ガラス基板の初期温度を25℃、柔構造物11(シリコンゴム)の厚みを1mm、冷却板12(Cu)の厚みを5mm、蒸発源の温度を300℃、基板の搬送速度を5.8mm/secとして、成膜回数を連続12回行ったものである。
FIG. 8 shows the temperature change of the substrate when the flexible structure is not sandwiched between the substrate and the cooling plate.
This is because the initial temperature of the glass substrate is 25 ° C., the thickness of the flexible structure 11 (silicon rubber) is 1 mm, the thickness of the cooling plate 12 (Cu) is 5 mm, the temperature of the evaporation source is 300 ° C., and the conveyance speed of the substrate is 5 8 mm / sec, the number of film formations was continuously performed 12 times.

図8(a)の柔構造物を挟まない場合と、図8(b)の柔構造物を挟む場合の比較から、基板2aから冷却板12への熱伝導、熱拡散が、接触性のよい柔構造物11を介して行われて、基板温度の上昇がかなり抑えられることがわかる。更に、図5に示したクライオパネル10a、10bを併用することで、図8(c)に示すように、より効果的に基板温度の上昇を抑えることが可能となる。   From the comparison between the case where the flexible structure in FIG. 8A is not sandwiched and the case where the flexible structure in FIG. 8B is sandwiched, the heat conduction and thermal diffusion from the substrate 2a to the cooling plate 12 have good contact. It can be seen that the increase in the substrate temperature is considerably suppressed by the flexible structure 11. Further, by using the cryopanels 10a and 10b shown in FIG. 5 together, as shown in FIG. 8C, it is possible to more effectively suppress the substrate temperature from rising.

このように、熱幅射の吸収や熱伝導を用いた基板の冷却により、基板の温度上昇を抑えることができるので、基板の搬送速度を高速にした状態でも、連続的に成膜を行うことが可能となり、生産効率を向上させることができる。又、基板の温度上昇を抑えることができるので、基板と蒸発源の距離を近づけ、無効蒸気量を減少させた状態で成膜を行うことが可能となり、蒸発材料の無駄を減少することができる。   As described above, since the temperature rise of the substrate can be suppressed by absorbing the thermal irradiance and cooling the substrate using heat conduction, the film can be continuously formed even when the substrate transport speed is high. It is possible to improve production efficiency. In addition, since the temperature rise of the substrate can be suppressed, it is possible to perform film formation in a state where the distance between the substrate and the evaporation source is reduced and the amount of ineffective vapor is reduced, and waste of the evaporation material can be reduced. .

図9に、本製造装置の概略の平面図を示す。
なお、図中「P」は真空ポンプを示し、「N2」は窒素の供給ラインを示す。
FIG. 9 shows a schematic plan view of the manufacturing apparatus.
In the figure, “P” indicates a vacuum pump, and “N 2 ” indicates a nitrogen supply line.

図9に示すように、本製造装置は、FPDにおける有機EL素子の形成をインラインで行うために構成されたものであり、独立して雰囲気及び真空度を制御可能な複数の処理室と、複数の処理室へ基板を連続的に搬送する搬送装置とを有し、各処理室において、異なる条件下で、各々目的にあった所定の処理を実行できるように構成されているものである。   As shown in FIG. 9, this manufacturing apparatus is configured to perform in-line formation of organic EL elements in an FPD, and includes a plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum, and a plurality of processing chambers. And a transfer device for continuously transferring the substrate to the process chamber, and each process chamber can be configured to execute a predetermined process for each purpose under different conditions.

本製造装置では、ゲートドア21の設置箇所をできるだけ少なくすることで、ゲートドア21の開閉に伴う時間、そして、真空度の調整時間を削減するようにしており、その結果、基板を停止させることなく、各処理室への基板の連続搬送を可能としている。具体的には、雰囲気(真空度)を大きく変える処理室との接続部分のみにゲートバルブ21を設け、他の部分においては、中間圧力とするための差動排気を行う差動排気部D1〜D4を設けることで、各処理室間の圧力差を保つようにしている。   In this manufacturing apparatus, the time required for opening and closing the gate door 21 and the time for adjusting the degree of vacuum are reduced by reducing the number of installation locations of the gate door 21 as much as possible. As a result, without stopping the substrate, The substrate can be continuously transferred to each processing chamber. Specifically, the gate valve 21 is provided only in the connection portion with the processing chamber that greatly changes the atmosphere (degree of vacuum), and in other portions, the differential exhaust portions D1 to D1 that perform differential exhaust for setting an intermediate pressure. By providing D4, the pressure difference between the processing chambers is maintained.

ゲートバルブ21は、雰囲気(真空度)が大きく変わる処理室の前後に設けられており、差動排気部D1〜D4では、基板が連続搬送されるのに対して、ゲートバルブ21が設けられた処理室の前後では、所定の雰囲気(真空度)に変更されるまで、基板の搬送が停止される。そこで、本製造装置では、基板を保持するホルダを複数枚収容可能なカセット6を用いることで、カセット6と共に複数枚のホルダ1、基板の周囲の雰囲気を、一括して切り替えることができる。カセット6の周囲の雰囲気は、所定の処理室にて、大気/真空、真空/N2、N2/大気等に変更される。又、カセット6を用いることで、雰囲気切り替え後の基板の連続搬送を可能とし、生産効率の向上を図ることができる。特に、カセット6を、装置の内部である封止室33の前後の処理室で用いることで、雰囲気の一括変更、ホルダ1、基板の一括移動を行ない、雰囲気変更のための調整時間を短縮し、余分な待ち時間を減らして、成膜工程、封止工程の処理能力の低下を防止している。 The gate valve 21 is provided before and after the processing chamber in which the atmosphere (degree of vacuum) changes greatly. In the differential exhaust parts D1 to D4, the substrate is continuously conveyed, whereas the gate valve 21 is provided. Before and after the processing chamber, the transfer of the substrate is stopped until the atmosphere is changed to a predetermined atmosphere (degree of vacuum). Thus, in this manufacturing apparatus, by using the cassette 6 that can accommodate a plurality of holders for holding the substrate, the atmosphere around the plurality of holders 1 and the substrate can be switched together with the cassette 6. The atmosphere around the cassette 6 is changed to air / vacuum, vacuum / N 2 , N 2 / air, etc. in a predetermined processing chamber. Further, by using the cassette 6, it is possible to continuously transport the substrate after switching the atmosphere, and to improve the production efficiency. In particular, by using the cassette 6 in the processing chambers before and after the sealing chamber 33 inside the apparatus, the atmosphere is changed at once, the holder 1 and the substrate are moved at once, and the adjustment time for changing the atmosphere is shortened. The extra waiting time is reduced to prevent a decrease in processing capability of the film forming process and the sealing process.

差動排気部D1〜D4は、その空間が、ホルダが通過できる開口部を有する仕切り壁により形成される。差動排気部D1、D2、D4に隣接し、異なる真空度を有する各処理室間の圧力差を保つようにするため、差動排気部D1、D2、D4での真空度は、各処理室の真空度の中間の真空度に制御される。差動排気部D1、D2、D4の真空度は、差動排気部D1、D2、D4を排気する真空ポンプや図示しないバランス用のN2を用いることで、適切な真空度に制御される。差動排気部D3は、差動排気部D1、D2、D4とは、異なる目的のために設けられたものであり、具体的には、各処理室間の雰囲気が互いに影響を与えないようにするため、隣接する各処理室の真空度より更に高真空度の圧力に制御される。 The differential exhaust parts D1 to D4 are formed by a partition wall having an opening through which the holder can pass. In order to maintain a pressure difference between the processing chambers adjacent to the differential exhaust units D1, D2, and D4 and having different vacuum degrees, the vacuum levels in the differential exhaust units D1, D2, and D4 are set to the respective process chambers. The degree of vacuum is controlled to an intermediate degree of vacuum. The degree of vacuum of the differential exhaust parts D1, D2, and D4 is controlled to an appropriate degree of vacuum by using a vacuum pump that exhausts the differential exhaust parts D1, D2, and D4 and N 2 for balance (not shown). The differential exhaust unit D3 is provided for a different purpose from the differential exhaust units D1, D2, and D4. Specifically, the atmosphere between the processing chambers does not affect each other. Therefore, the pressure is controlled to a higher vacuum level than the vacuum level of each adjacent processing chamber.

本製造装置では、プラズマ洗浄室24−有機EL成膜室25間、プラズマ洗浄室24−ホルダ搬送室27間に、差動排気部D1、D2を設けることで、両処理室間の真空度の圧力差を保つようにしている。例えば、プラズマ洗浄室24の圧力をPl、有機EL成膜室25の圧力をP3とし、Pl>P3とする場合、Pl>P2>P3となる圧力P2の差動排気部D1を設けることで、Pl、P3の圧力を保ち易くして、処理室間のゲートバルブを不要としている。同様に、ホルダ搬送室27の圧力は、有機EL成膜室25の圧力と同じ圧力P3であるので、Pl>P4>P3となる圧力P4の差動排気部D2を設けることで、Pl、P3の圧力を保ち易くして、処理室間のゲートバルブを不要としている。   In this manufacturing apparatus, by providing the differential exhaust parts D1 and D2 between the plasma cleaning chamber 24 and the organic EL film forming chamber 25 and between the plasma cleaning chamber 24 and the holder transfer chamber 27, the degree of vacuum between the processing chambers can be increased. The pressure difference is maintained. For example, when the pressure of the plasma cleaning chamber 24 is Pl, the pressure of the organic EL film forming chamber 25 is P3, and Pl> P3, by providing a differential exhaust part D1 with a pressure P2 that satisfies Pl> P2> P3, It is easy to maintain the pressures of Pl and P3, and a gate valve between the processing chambers is not necessary. Similarly, since the pressure in the holder transfer chamber 27 is the same pressure P3 as the pressure in the organic EL film forming chamber 25, Pl and P3 are provided by providing a differential exhaust part D2 having a pressure P4 that satisfies Pl> P4> P3. Therefore, the gate valve between the processing chambers is unnecessary.

又、有機EL成膜室25−電極成膜室28間には、両処理室の真空度より高真空度の差動排気部D3を設けることで、両処理室の無効蒸気が互いに入り込まないようにしている。例えば、電極成膜室28の圧力をP7とすると、P7>P3>P5となる圧力P5の差動排気部D3を設けることで、互いの処理室の雰囲気に影響を与えることなく、処理室間のゲートバルブを不要としている。更に、P7とP5との圧力差が大きい場合には、P7>P6>P5となる圧力P6の差動排気部D4、つまり、隣接する電極成膜室28、差動排気部D3の各真空度の中間の圧力P6の差動排気部D4を、差動排気部D3に直列に接続して設ければ、両処理室間の真空度の圧力差を保ち易くなる。   Further, by providing a differential exhaust part D3 having a degree of vacuum higher than the vacuum degree of both processing chambers between the organic EL film forming chamber 25 and the electrode film forming chamber 28, the ineffective vapors of both processing chambers are prevented from entering each other. I have to. For example, when the pressure in the electrode film forming chamber 28 is P7, the differential exhaust part D3 having a pressure P5 satisfying P7> P3> P5 is provided, so that the atmosphere between the processing chambers is not affected. The gate valve is unnecessary. Further, when the pressure difference between P7 and P5 is large, the differential evacuation part D4 having the pressure P6 satisfying P7> P6> P5, that is, the vacuum degree of the adjacent electrode film forming chamber 28 and the differential evacuation part D3. If the differential exhaust part D4 having the intermediate pressure P6 is connected in series to the differential exhaust part D3, it becomes easy to maintain the pressure difference in the degree of vacuum between the two processing chambers.

このように、差動排気部D1〜D4を設けることで、ゲートドア21の設置を不要とし、基板を停止させることなく、連続搬送が可能となり、生産効率が向上することとなる。   As described above, by providing the differential exhaust portions D1 to D4, it is not necessary to install the gate door 21, and continuous conveyance is possible without stopping the substrate, thereby improving the production efficiency.

本製造装置における基板の動きS1〜S3、カセット6の動きK1〜K3、ホルダ1の動きH1、H2を説明する。
なお、有機EL素子のパターンが形成されたマスクを予め装着したホルダをホルダA(第1保持手段)、電極のパターンが形成されたマスクを予め装着したホルダをホルダB(第2保持手段)として、以降の説明を行う。
The movements S1 to S3 of the substrate, the movements K1 to K3 of the cassette 6, and the movements H1 and H2 of the holder 1 in this manufacturing apparatus will be described.
Note that a holder in which a mask on which an organic EL element pattern is formed is mounted in advance is a holder A (first holding means), and a holder in which a mask on which an electrode pattern is formed is mounted in advance is a holder B (second holding means). The following explanation will be given.

基板自体は、S1、S2、S3の順に移動し、その移動の過程で、有機EL成膜室25にて有機EL素子の薄膜が形成され、電極成膜室28にて電極が形成され、封止処理室33で封止が行われて、有機EL素子によるFPDが製造される。   The substrate itself moves in the order of S1, S2, and S3, and in the course of the movement, a thin film of an organic EL element is formed in the organic EL film forming chamber 25, an electrode is formed in the electrode film forming chamber 28, and sealed. Sealing is performed in the stop treatment chamber 33, and the FPD by the organic EL element is manufactured.

ホルダAに基板を設置する。そして、基板を有する複数のホルダAをカセット6に収容して搬入部E1へ設置する。本製造装置が始動すると、ゲートバルブ21aを開け、カセット6を大気/真空切替室22aに移動し、ゲートバルブ21aを閉じた後、大気/真空切替室22aにて真空ポンプにより、大気から所定真空度まで排気を行う。所定真空度に到達すると、ゲートバルブ21bを開け、カセット待機室23へカセット6を移動する。このカセット待機室23からマスクホルダ交換室26までは、ホルダAが基板と共に連続的に搬送されることになる。全てのホルダAをカセット6から搬出した後、空のカセット6に使用後のホルダA、つまり、基板を有しない空きホルダAが戻され、その後、空きホルダAと共にカセット6が大気/真空切替室22bへ移動される。そして、ゲートバルブ21cを閉じた後、大気/真空切替室22bが大気圧へ戻され、ゲートバルブ21dを開けた後、カセット6が搬出部E2へ搬出される。   A substrate is set in the holder A. Then, a plurality of holders A having substrates are accommodated in the cassette 6 and installed in the carry-in part E1. When the manufacturing apparatus is started, the gate valve 21a is opened, the cassette 6 is moved to the atmosphere / vacuum switching chamber 22a, the gate valve 21a is closed, and then a predetermined vacuum is generated from the atmosphere by a vacuum pump in the atmosphere / vacuum switching chamber 22a. Exhaust to a degree. When the predetermined degree of vacuum is reached, the gate valve 21 b is opened and the cassette 6 is moved to the cassette standby chamber 23. From the cassette standby chamber 23 to the mask holder replacement chamber 26, the holder A is continuously transferred together with the substrate. After all the holders A have been unloaded from the cassette 6, the used holder A, that is, the empty holder A having no substrate, is returned to the empty cassette 6, and the cassette 6 together with the empty holder A is in the atmosphere / vacuum switching chamber. Moved to 22b. Then, after closing the gate valve 21c, the atmosphere / vacuum switching chamber 22b is returned to atmospheric pressure, and after opening the gate valve 21d, the cassette 6 is unloaded to the unloading section E2.

図9のカセット移動範囲K1に示すように、基板及びホルダAの搬入に使用するカセット6は、所定領域内のみを巡回するように移動するため、少なくとも2つ以上の複数のカセット6を用いれば、大気/真空切替室22a、22bにおいて、独立して大気/真空の切り替えを行うことで、大気/真空の切り替えに伴う時間を削減して、生産効率を高めることが可能である。又、カセット待機室23から複数のホルダAを連続的に搬送している間に、大気/真空切替室22aにおいて、次のカセット6の雰囲気を真空に切り替えておけば、大気/真空切替室22aからカセット待機室23へカセット6を順次移動することができ、異なるカセット6に収容した複数のホルダAを、連続的に本製造装置内部の処理室内へ搬送することが可能となる。   As shown in the cassette movement range K1 in FIG. 9, since the cassette 6 used for carrying in the substrate and the holder A moves so as to circulate only within a predetermined area, if at least two or more cassettes 6 are used. In the air / vacuum switching chambers 22a and 22b, the air / vacuum switching is independently performed, so that the time required for air / vacuum switching can be reduced and the production efficiency can be increased. Further, if the atmosphere of the next cassette 6 is switched to vacuum in the atmosphere / vacuum switching chamber 22a while the plurality of holders A are continuously conveyed from the cassette standby chamber 23, the atmosphere / vacuum switching chamber 22a. The cassette 6 can be moved sequentially from the cassette standby chamber 23 to the cassette standby chamber 23, and a plurality of holders A accommodated in different cassettes 6 can be continuously conveyed into the processing chamber inside the manufacturing apparatus.

カセット待機室23へ移動されたカセット6からは、本製造装置内部の処理室へホルダAが順次搬送される。最初に、プラズマ洗浄室24(洗浄手段)へ移動され、ホルダAに装着されたマスクと共に基板の成膜面がO2プラズマ等を用いて洗浄される。洗浄されたホルダAは、差動排気部D1を通って、有機EL成膜室25へ順次搬送され、複数層の有機薄膜が成膜される。有機EL成膜室25は、図4に示すような搬送装置、図5に示すようなクライオパネル、図7に示すような冷却板等を有するため、ホルダAの位置ずれがなく搬送が可能であると共に、基板の温度上昇を所定範囲内に抑えて成膜を行うことが可能である。有機EL成膜室25では、搬送装置の搬送速度を一定の所定速度にし、各々の有機薄膜の成膜速度を適切に設定することで、所定の厚さの有機薄膜が成膜されるようにしている。なお、有機EL成膜室25は、成膜する薄膜の積層数やその目的に応じて、複数の蒸発源等が設けられている。 From the cassette 6 moved to the cassette standby chamber 23, the holder A is sequentially conveyed to the processing chamber inside the manufacturing apparatus. First, the substrate is moved to the plasma cleaning chamber 24 (cleaning means), and the film forming surface of the substrate together with the mask mounted on the holder A is cleaned using O 2 plasma or the like. The cleaned holder A is sequentially transferred to the organic EL film forming chamber 25 through the differential exhaust part D1, and a plurality of layers of organic thin films are formed. The organic EL film forming chamber 25 has a transfer device as shown in FIG. 4, a cryopanel as shown in FIG. 5, a cooling plate as shown in FIG. In addition, it is possible to perform film formation while suppressing the temperature rise of the substrate within a predetermined range. In the organic EL film forming chamber 25, the transfer speed of the transfer device is set to a predetermined constant speed, and the film formation speed of each organic thin film is appropriately set so that an organic thin film having a predetermined thickness is formed. ing. The organic EL film forming chamber 25 is provided with a plurality of evaporation sources and the like depending on the number of thin films to be formed and the purpose thereof.

有機EL成膜室25にて有機薄膜が成膜された後、基板を有するホルダAは、マスクホルダ交換室26(交換手段)へ順次搬送され、ここで、基板のみがホルダAから取り外され、ホルダBに付け替えられる。つまり、基板を保持するホルダを、有機EL素子用のホルダAから電極用のホルダBへ交換している。   After the organic thin film is formed in the organic EL film formation chamber 25, the holder A having the substrate is sequentially transferred to the mask holder replacement chamber 26 (exchange means), where only the substrate is removed from the holder A, It is replaced with the holder B. That is, the holder for holding the substrate is changed from the holder A for the organic EL element to the holder B for the electrode.

取り外されたホルダAは、ホルダ搬送室27を通り、差動排気部D2を経由し、プラズマ洗浄室24で洗浄された後、カセット待機室23のカセット6へ順次戻される。カセット6に最大搭載毎数のホルダAが戻されると、カセット6は大気/真空切替室22bへ移動され、大気に切替後、搬出部E2へ搬出される。このように、ホルダAは、図9のホルダの移動の軌跡H1に示すように、搬入部E1からカセット6と共に搬入され、複数の処理室を経た後、プラズマ洗浄室24で洗浄され、カセット6と共に、搬出部E2へ戻される。ホルダAはプラズマ洗浄室24で洗浄されるため再利用が可能であり、例えば、カセット待機室23等にて、基板のみをホルダAに設置できるように構成すれば、基板のみを本製造装置の搬入部E1にセットするだけですむ。   The removed holder A passes through the holder transfer chamber 27, passes through the differential exhaust portion D2, is cleaned in the plasma cleaning chamber 24, and then is sequentially returned to the cassette 6 in the cassette standby chamber 23. When the maximum number of holders A mounted in the cassette 6 are returned, the cassette 6 is moved to the atmosphere / vacuum switching chamber 22b, switched to the atmosphere, and then carried out to the carry-out part E2. In this way, as shown by the movement path H1 of the holder in FIG. 9, the holder A is loaded together with the cassette 6 from the loading portion E1, passes through a plurality of processing chambers, and is then cleaned in the plasma cleaning chamber 24. At the same time, it is returned to the carry-out part E2. Since the holder A is cleaned in the plasma cleaning chamber 24, it can be reused. For example, if the cassette standby chamber 23 or the like is configured so that only the substrate can be placed in the holder A, only the substrate is used in the manufacturing apparatus. You only need to set it in the loading section E1.

一方、電極用のホルダBは、基板が設置されない状態でカセット6に複数収容されて搬入部E3へ設置される。本製造装置が始動すると、ゲートバルブ21gを開け、カセット6を大気/真空/N2切替室35aに移動し、ゲートバルブ21gを閉じる。その後、大気/真空/N2切替室35aにて真空ポンプにより、大気から所定真空度まで排気を行い、所定真空度に到達するとN2を供給してN2雰囲気に切り替える。そして、ゲートバルブ21hを開け、カセット待機室34へカセット6を移動する。全てのホルダBをカセット6から搬出した後、空のカセット6に使用後のホルダBが戻される。このとき、ホルダBには、有機EL素子が形成され、封止処理が行われた基板が設置されている。その後、基板、ホルダBと共にカセット6が大気/真空/N2切替室35bへ移動され、ゲートバルブ21iを閉じた後、大気/真空/N2切替室35bが大気圧へ戻される。大気/真空/N2切替室35bが大気圧へ戻った後、ゲートバルブ21jを開け、基板、ホルダBと共にカセット6が搬出部E4へ搬出される。 On the other hand, a plurality of electrode holders B are accommodated in the cassette 6 and installed in the carry-in section E3 without a substrate being installed. When this manufacturing apparatus is started, the gate valve 21g is opened, the cassette 6 is moved to the atmosphere / vacuum / N 2 switching chamber 35a, and the gate valve 21g is closed. Thereafter, the air is evacuated from the atmosphere to a predetermined degree of vacuum by a vacuum pump in the atmosphere / vacuum / N 2 switching chamber 35a. When the degree of vacuum is reached, N 2 is supplied to switch to the N 2 atmosphere. Then, the gate valve 21 h is opened, and the cassette 6 is moved to the cassette standby chamber 34. After carrying out all the holders B from the cassette 6, the used holder B is returned to the empty cassette 6. At this time, the holder B is provided with a substrate on which an organic EL element is formed and a sealing process is performed. Thereafter, the cassette 6 together with the substrate and the holder B is moved to the atmosphere / vacuum / N 2 switching chamber 35b, and after closing the gate valve 21i, the atmosphere / vacuum / N 2 switching chamber 35b is returned to atmospheric pressure. After the atmosphere / vacuum / N 2 switching chamber 35b returns to atmospheric pressure, the gate valve 21j is opened, and the cassette 6 is unloaded together with the substrate and holder B to the unloading section E4.

図9のカセット移動範囲K3に示すように、ホルダBの搬入に使用するカセット6も、所定領域内のみを巡回するように移動する。従って、少なくとも2つ以上の複数のカセット6を用いれば、大気/真空/N2切替室35a、35bにおいて、独立して大気/真空の切り替えを行うことで、大気/真空/N2の切り替えに伴う時間を削減して、生産効率を高めることが可能である。又、カセット待機室34から複数のホルダBを連続的に搬送している間に、大気/真空/N2切替室35aにおいて、次のカセット6の雰囲気をN2に切り替えておけば、大気/真空/N2切替室35aからカセット待機室34へカセット6を順次移動することができ、異なるカセット6に収容した複数のホルダBを、連続的に本製造装置内部の処理室内へ搬送することが可能となる。 As shown in the cassette movement range K3 in FIG. 9, the cassette 6 used for carrying in the holder B also moves so as to circulate only within a predetermined area. Therefore, if at least two or more cassettes 6 are used, the atmosphere / vacuum / N 2 switching chambers 35a and 35b can be switched to the atmosphere / vacuum / N 2 by independently switching the atmosphere / vacuum. It is possible to increase the production efficiency by reducing the time involved. If the atmosphere of the next cassette 6 is switched to N 2 in the atmosphere / vacuum / N 2 switching chamber 35a while the plurality of holders B are continuously conveyed from the cassette standby chamber 34, the atmosphere / vacuum / The cassette 6 can be sequentially moved from the vacuum / N 2 switching chamber 35a to the cassette standby chamber 34, and a plurality of holders B accommodated in different cassettes 6 can be continuously transferred into the processing chamber inside the manufacturing apparatus. It becomes possible.

ホルダBは、図9のホルダの移動の軌跡H2に示すように、搬入部E3からカセット6と共に搬入され、カセット待機室34へ移動されたカセット6から、順次処理室内へ搬送され、その後、カセット6と共に、搬出部E4へ戻される。本製造装置内部では、ホルダBは、カセット待機室34へ移動されたカセット6から封止処理室33を通過して、カセット待機室32のカセット6へ移動される。そして、ゲートバルブ21fを開け、カセット6と共にホルダBを真空/N2切替室31へ移動し、ゲートバルブ21fを閉じた後、真空ポンプを用いてN2雰囲気から所定の真空度へ切り替える。所定の真空度へ到達後、ゲートバルブ21eを開け、カセット6と共にホルダBをカセット待機室30へ移動する。そして、ホルダBが、カセット待機室30へ移動されたカセット6から順次搬送され、ホルダ洗浄室29(洗浄手段)にてマスクと共に洗浄され、差動排気部D4、D3を通過して、ホルダ交換室26へ搬送される。 As shown by the movement path H2 of the holder in FIG. 9, the holder B is carried together with the cassette 6 from the carry-in section E3 and is sequentially transferred from the cassette 6 moved to the cassette standby chamber 34 into the processing chamber. 6 is returned to the unloading section E4. Inside the manufacturing apparatus, the holder B is moved from the cassette 6 moved to the cassette standby chamber 34 to the cassette 6 in the cassette standby chamber 32 through the sealing processing chamber 33. Then, opening the gate valve 21f, the holder B to move to the vacuum / N 2 switching compartment 31 with cassette 6, after closing the gate valve 21f, switching from N 2 atmosphere to a predetermined degree of vacuum by using a vacuum pump. After reaching a predetermined degree of vacuum, the gate valve 21 e is opened, and the holder B is moved to the cassette standby chamber 30 together with the cassette 6. Then, the holder B is sequentially transported from the cassette 6 moved to the cassette standby chamber 30 and cleaned with the mask in the holder cleaning chamber 29 (cleaning means), passes through the differential exhaust parts D4 and D3, and replaces the holder. It is conveyed to the chamber 26.

ホルダ交換室26において、ホルダBに付け替えられた基板は、ホルダBと共に差動排気部D3、D4を通過して、電極成膜室28へ順次搬送される。電極成膜室28では、有機EL素子の配線となる金属薄膜が形成される。金属薄膜が形成された基板は、ホルダBと共にカセット待機室30のカセット6へ順次戻される。最大搭載数のホルダBがカセット6へ戻ると、ゲートバルブ21eを開け、カセット6と共にホルダBを真空/N2切替室31へ移動し、ゲートバルブ21eを閉じた後、N2を供給して真空雰囲気からN2雰囲気へ切り替える。そして、ゲートバルブ21fを開け、カセット6と共にホルダBをカセット待機室32へ移動し、ゲートバルブ21fを閉じる。その後、カセット待機室32に移動されたカセット6からホルダBを封止処理室33へ順次搬送し、封止材を用いて、有機EL素子の封止を行う。封止後、ホルダBはカセット待機室34のカセット6へ順次搬送され、最大搭載数のホルダBがカセット6へ戻ると、ゲートバルブ21iを開け、カセット6と共にホルダBを大気/真空/N2切替室35bへ移動する。ゲートバルブ21iを閉じた後、大気/真空/N2切替室35bを大気圧へ戻し、その後、ゲートバルブ21jを開けて、カセット6と共にホルダBを搬出部E4へ搬出する。このとき、ホルダBと共に、有機EL素子が形成され、封止処理が行われた基板、つまり、有機EL素子のFPDが完成した状態で基板が搬出される。 In the holder exchange chamber 26, the substrate changed to the holder B passes through the differential exhaust parts D 3 and D 4 together with the holder B, and is sequentially transferred to the electrode film forming chamber 28. In the electrode film forming chamber 28, a metal thin film that forms the wiring of the organic EL element is formed. The substrate on which the metal thin film is formed is sequentially returned to the cassette 6 in the cassette standby chamber 30 together with the holder B. When the maximum number of holders B are returned to the cassette 6, the gate valve 21e is opened, the holder B is moved together with the cassette 6 to the vacuum / N 2 switching chamber 31, the gate valve 21e is closed, and N 2 is supplied. Switch from vacuum to N 2 atmosphere. Then, the gate valve 21f is opened, the holder B is moved together with the cassette 6 to the cassette standby chamber 32, and the gate valve 21f is closed. Thereafter, the holder B is sequentially transferred from the cassette 6 moved to the cassette standby chamber 32 to the sealing processing chamber 33, and the organic EL element is sealed using a sealing material. After sealing, the holder B is sequentially transferred to the cassette 6 in the cassette standby chamber 34. When the maximum number of holders B returns to the cassette 6, the gate valve 21i is opened, and the holder B is moved to the atmosphere / vacuum / N 2 together with the cassette 6. It moves to the switching chamber 35b. After the gate valve 21i is closed, the atmosphere / vacuum / N 2 switching chamber 35b is returned to atmospheric pressure, and then the gate valve 21j is opened to carry the holder B together with the cassette 6 to the carry-out section E4. At this time, together with the holder B, the substrate on which the organic EL element is formed and the sealing process is performed, that is, the FPD of the organic EL element is completed, is carried out.

本発明に係るインライン式有機EL製造装置で用いられるホルダの実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the holder used with the in-line type organic EL manufacturing apparatus which concerns on this invention. 本発明に係るインライン式有機EL製造装置で用いられるホルダの実施形態の他の一例を示す図である。It is a figure which shows another example of embodiment of the holder used with the in-line type organic EL manufacturing apparatus which concerns on this invention. 図1、2に示すホルダを収容するカセットを示す図である。It is a figure which shows the cassette which accommodates the holder shown in FIG. 本発明に係るインライン式有機EL製造装置で用いられる搬送装置の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the conveying apparatus used with the in-line type organic EL manufacturing apparatus which concerns on this invention. 本発明に係るインライン式有機EL製造装置で用いられる輻射熱吸収手段の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the radiant heat absorption means used with the in-line type organic EL manufacturing apparatus which concerns on this invention. 図5に示した輻射熱吸収手段の効果を比較するグラフである。It is a graph which compares the effect of the radiant heat absorption means shown in FIG. 本発明に係るインライン式有機EL製造装置で用いられる冷却部材、熱伝導部材の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the cooling member used with the in-line type organic EL manufacturing apparatus which concerns on this invention, and a heat conductive member. 図7に示した熱伝導部材の効果を比較するグラフである。It is a graph which compares the effect of the heat conductive member shown in FIG. 本発明に係るインライン式有機EL製造装置の実施形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the in-line type organic EL manufacturing apparatus which concerns on this invention. 従来のクラスタ型の有機EL製造装置の概略図である。It is the schematic of the conventional cluster type organic electroluminescent manufacturing apparatus.

符号の説明Explanation of symbols

1、1A、1B ホルダ
6 カセット
8a、8b 位置決め部材
10a、10b クライオパネル
11 柔構造物
12 冷却板
D1、D2、D3、D4 差動排気部
1, 1A, 1B Holder 6 Cassette 8a, 8b Positioning member 10a, 10b Cryopanel 11 Flexible structure 12 Cooling plate D1, D2, D3, D4 Differential exhaust part

Claims (15)

独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機エレクトロルミネセンス素子を形成するインライン式有機エレクトロルミネセンス製造装置であって、
前記基板に成膜される薄膜のパターンが形成されたマスクを備えると共に、たわみを防止して前記基板を保持する保持手段を有し、
前記搬送手段は、前記保持手段を用いて、前記複数の処理室へ前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic electroluminescence manufacturing apparatus for forming an organic electroluminescence element on the substrate through a predetermined process in the plurality of processing chambers,
A mask having a thin film pattern formed on the substrate; and holding means for holding the substrate while preventing deflection.
The in-line type organic electroluminescence manufacturing apparatus, wherein the transport unit transports the substrate continuously to the plurality of processing chambers using the holding unit.
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機エレクトロルミネセンス素子を形成するインライン式有機エレクトロルミネセンス製造装置であって、
前記基板に成膜される有機薄膜のパターンが形成されたマスクを備え、たわみを防止して前記基板を保持する第1保持手段と、
前記基板に成膜される電極薄膜のパターンが形成されたマスクを備え、たわみを防止して前記基板を保持する第2保持手段と、
装置内部で前記第1保持手段から前記第2保持手段へ前記基板を付け替える交換手段とを有し、
前記搬送手段は、前記第1保持手段又は前記第2保持手段を用いて、前記複数の処理室へ前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic electroluminescence manufacturing apparatus for forming an organic electroluminescence element on the substrate through a predetermined process in the plurality of processing chambers,
A first holding means comprising a mask on which a pattern of an organic thin film formed on the substrate is formed, preventing the deflection and holding the substrate;
A second holding means comprising a mask on which a pattern of an electrode thin film formed on the substrate is formed, preventing the deflection and holding the substrate;
An exchange means for changing the substrate from the first holding means to the second holding means inside the apparatus,
The in-line type organic electroluminescence manufacturing apparatus, wherein the transport unit transports the substrate continuously to the plurality of processing chambers using the first holding unit or the second holding unit.
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機エレクトロルミネセンス素子を形成するインライン式有機エレクトロルミネセンス製造装置であって、
互いに真空度の異なる処理室の間に設けられ、各処理室における真空度の中間の真空度を独立して制御可能な差動排気部を有し、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic electroluminescence manufacturing apparatus that forms an organic electroluminescence element on the substrate through predetermined processing in the plurality of processing chambers,
Provided between the processing chambers having different vacuum degrees, and having a differential exhaust unit that can independently control the intermediate vacuum degree in each processing chamber,
The in-line type organic electroluminescence manufacturing apparatus, wherein the transport means transports the substrate continuously between the processing chambers having different degrees of vacuum through the differential exhaust section.
独立して雰囲気及び真空度を制御可能な複数の処理室と、
前記複数の処理室へ基板を連続的に搬送する搬送手段とを有し、
前記複数の処理室における所定の処理を経て、前記基板に有機エレクトロルミネセンス素子を形成するインライン式有機エレクトロルミネセンス製造装置であって、
前記基板の温度上昇を抑える冷却部材を有し、
前記搬送手段は、前記複数の処理室へ、前記冷却部材と共に前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
A plurality of processing chambers capable of independently controlling the atmosphere and the degree of vacuum;
Transport means for continuously transporting the substrate to the plurality of processing chambers,
An in-line type organic electroluminescence manufacturing apparatus for forming an organic electroluminescence element on the substrate through a predetermined process in the plurality of processing chambers,
A cooling member for suppressing temperature rise of the substrate;
The in-line type organic electroluminescence manufacturing apparatus, wherein the transport means transports the substrate continuously with the cooling member to the plurality of processing chambers.
請求項1又は請求項2に記載のインライン式有機エレクトロルミネセンス製造装置において、
互いに真空度の異なる処理室の間に設けられ、各処理室における真空度の中間の真空度を独立して制御可能な差動排気部を有し、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to claim 1 or 2,
Provided between the processing chambers having different vacuum degrees, and having a differential exhaust unit that can independently control the intermediate vacuum degree in each processing chamber,
The transfer means continuously moves the substrate between the processing chambers having different degrees of vacuum using the holding means, the first holding means, or the second holding means via the differential exhaust section. An in-line type organic electroluminescence manufacturing apparatus characterized by transporting.
請求項1又は請求項2に記載のインライン式有機エレクトロルミネセンス製造装置において、
前記基板の温度上昇を抑える冷却部材を、前記保持手段、前記第1保持手段又は前記第2保持手段に設け、
前記搬送手段は、前記複数の処理室へ、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to claim 1 or 2,
A cooling member that suppresses the temperature rise of the substrate is provided in the holding means, the first holding means, or the second holding means,
The in-line type organic electroluminescence characterized in that the transport means continuously transports the substrate to the plurality of processing chambers using the holding means, the first holding means, or the second holding means. manufacturing device.
請求項5に記載のインライン式有機エレクトロルミネセンス製造装置において、
前記基板の温度上昇を抑える冷却部材を、前記保持手段、前記第1保持手段又は前記第2保持手段に設け、
前記搬送手段は、前記真空度の異なる処理室の間を、前記差動排気部を介して、前記保持手段、前記第1保持手段又は前記第2保持手段を用いて、前記基板を連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to claim 5,
A cooling member that suppresses the temperature rise of the substrate is provided in the holding means, the first holding means, or the second holding means,
The transfer means continuously moves the substrate between the processing chambers having different degrees of vacuum using the holding means, the first holding means, or the second holding means via the differential exhaust section. An in-line type organic electroluminescence manufacturing apparatus characterized by transporting.
請求項1、請求項2、請求項5、請求項6又は請求項7のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記保持手段、前記第1保持手段又は前記第2保持手段を洗浄する洗浄手段を設け、
前記保持手段、前記第1保持手段又は前記第2保持手段を再利用可能としたことを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to claim 1, claim 2, claim 5, claim 6, or claim 7,
A cleaning means for cleaning the holding means, the first holding means or the second holding means;
The in-line type organic electroluminescence manufacturing apparatus, wherein the holding means, the first holding means, or the second holding means can be reused.
請求項1、請求項2、請求項5、請求項6、請求項7又は請求項8のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記搬送手段は、前記保持手段、前記第1保持手段又は前記第2保持手段の位置決めを行う位置決め部材を有することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 1, 2, 5, 6, 7, or 8,
The in-line type organic electroluminescence manufacturing apparatus, wherein the transport unit includes a positioning member that positions the holding unit, the first holding unit, or the second holding unit.
請求項1、請求項2、請求項5、請求項6、請求項7、請求項8又は請求項9のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記保持手段、前記第1保持手段又は前記第2保持手段を複数収容可能なカセットを有し、
前記カセットを用いて、所定の処理室にて真空度の大きな変更を行うと共に、
前記搬送手段は、真空度の変更後に、前記保持手段、前記第1保持手段又は前記第2保持手段を、前記カセットから連続的に搬送することを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to claim 1, claim 2, claim 5, claim 6, claim 7, claim 8 or claim 9,
A cassette capable of accommodating a plurality of the holding means, the first holding means or the second holding means;
Using the cassette, a large change in the degree of vacuum in a predetermined processing chamber,
The in-line type organic electroluminescence manufacturing apparatus according to claim 1, wherein the transport unit continuously transports the holding unit, the first holding unit, or the second holding unit from the cassette after changing the degree of vacuum.
請求項3、請求項5又は請求項7のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記差動排気部は、更に真空度の高い他の差動排気部を備えることを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 3, 5 and 7,
The differential exhaust unit further includes another differential exhaust unit having a higher degree of vacuum.
請求項4、請求項6又は請求項7のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記基板と前記冷却部材との間に、前記基板からの熱を前記冷却部材へ伝導して拡散する熱伝導部材を設けたことを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 4, 6, and 7,
An in-line type organic electroluminescence manufacturing apparatus, wherein a heat conduction member that conducts and diffuses heat from the substrate to the cooling member is provided between the substrate and the cooling member.
請求項4、請求項6、請求項7又は請求項12のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記冷却部材は、再利用可能であることを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 4, 6, 7, and 12,
The in-line type organic electroluminescence manufacturing apparatus, wherein the cooling member is reusable.
請求項1乃至請求項13のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記基板及び前記冷却部材、又は、前記基板若しくは前記冷却部材からの輻射熱を吸収する輻射熱吸収手段を設けたことを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 1 to 13,
An in-line type organic electroluminescence manufacturing apparatus, comprising: the substrate and the cooling member; or radiant heat absorption means for absorbing radiant heat from the substrate or the cooling member.
請求項1乃至請求項14のいずれかに記載のインライン式有機エレクトロルミネセンス製造装置において、
前記搬送手段は、搬送速度を一定としたものであると共に、
複数の処理室における薄膜の成膜速度を各々制御するようにしたことを特徴とするインライン式有機エレクトロルミネセンス製造装置。
In the in-line type organic electroluminescence manufacturing apparatus according to any one of claims 1 to 14,
The transport means has a constant transport speed,
An in-line type organic electroluminescence manufacturing apparatus, wherein the film forming speeds of thin films in a plurality of processing chambers are respectively controlled.
JP2004098403A 2004-03-30 2004-03-30 Manufacturing device of in-line type organic electroluminescent element Pending JP2005285576A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004098403A JP2005285576A (en) 2004-03-30 2004-03-30 Manufacturing device of in-line type organic electroluminescent element
TW094106283A TW200539740A (en) 2004-03-30 2005-03-02 Manufacturing device of in-line type organic electroluminescent element
KR1020050020364A KR100692170B1 (en) 2004-03-30 2005-03-11 In-line type organic electroluminescence manufacturing device
CNB2005100547673A CN100482850C (en) 2004-03-30 2005-03-11 Straight-line organic electroluminescence mfg. device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098403A JP2005285576A (en) 2004-03-30 2004-03-30 Manufacturing device of in-line type organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2005285576A true JP2005285576A (en) 2005-10-13

Family

ID=35049405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098403A Pending JP2005285576A (en) 2004-03-30 2004-03-30 Manufacturing device of in-line type organic electroluminescent element

Country Status (4)

Country Link
JP (1) JP2005285576A (en)
KR (1) KR100692170B1 (en)
CN (1) CN100482850C (en)
TW (1) TW200539740A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149482A (en) * 2005-11-28 2007-06-14 Konica Minolta Holdings Inc Manufacturing method of organic el element
WO2007142315A1 (en) * 2006-06-07 2007-12-13 Tokyo Electron Limited Light emitting element manufacturing apparatus and light emitting element manufacturing method
WO2007145256A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Apparatus for manufacturing light-emitting device and method for manufacturing light-emitting device
WO2007145255A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Light-emitting device and method for manufacturing light-emitting device
JP2009117231A (en) * 2007-11-08 2009-05-28 Hitachi Displays Ltd Manufacturing method of organic el display device
JP2009242901A (en) * 2008-03-31 2009-10-22 Shibaura Mechatronics Corp Sputtering apparatus and sputtering method
WO2011062213A1 (en) * 2009-11-19 2011-05-26 株式会社ニコン Leader member, substrate, substrate cartridge, substrate process device, leader connection method, display element manufacturing method, and display element manufacturing device
JP2011233601A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Light emitting module and lighting equipment using the same
KR101200593B1 (en) * 2006-02-17 2012-11-12 황창훈 Roller system for substrate moving in OLED manufacturing
WO2013118397A1 (en) * 2012-02-08 2013-08-15 東京エレクトロン株式会社 Film forming apparatus
JP2014098205A (en) * 2012-10-18 2014-05-29 Ulvac Japan Ltd Film forming device
JP2014109054A (en) * 2012-11-30 2014-06-12 Panasonic Corp Vacuum film deposition apparatus
JP2015511989A (en) * 2011-12-23 2015-04-23 ソレクセル、インコーポレイテッド Productive semiconductor metallization and interconnect spraying
JP2021102800A (en) * 2019-12-25 2021-07-15 株式会社プラズマイオンアシスト Plasma treatment apparatus
JP2021106260A (en) * 2019-12-26 2021-07-26 キヤノントッキ株式会社 Deposition apparatus, deposition method, and method for manufacturing electronic device
WO2022137022A1 (en) * 2020-12-25 2022-06-30 株式会社半導体エネルギー研究所 Manufacturing device for display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127190A (en) * 2009-12-18 2011-06-30 Showa Denko Kk In-line film forming apparatus, method for producing magnetic recording medium, and gate valve
TWI398533B (en) * 2009-12-29 2013-06-11 Au Optronics Corp Shadow mask and method of making the same
KR101341850B1 (en) * 2012-10-24 2013-12-16 주식회사 선익시스템 System for plasma dry cleaning of organic deposition mask

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173002A (en) * 1992-02-26 1994-06-21 Nkk Corp Ion plaing device
JP2001007507A (en) * 1999-06-25 2001-01-12 Fujitsu Ltd Reflow equipment
JP2001118789A (en) * 1999-08-11 2001-04-27 Tokyo Electron Ltd Method of cooling heat treatment device, and heat treatment device
JP2002317262A (en) * 2001-02-08 2002-10-31 Semiconductor Energy Lab Co Ltd Film deposition system and film deposition method
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003171763A (en) * 2001-12-07 2003-06-20 Sony Corp In-line vacuum film deposition apparatus, and cooling control method thereof
JP2003309167A (en) * 2002-04-16 2003-10-31 Canon Inc Substrate holder
JP2004063454A (en) * 2002-06-03 2004-02-26 Semiconductor Energy Lab Co Ltd Vapor deposition device
JP2005281784A (en) * 2004-03-30 2005-10-13 Mitsubishi-Hitachi Metals Machinery Inc Cooling structure for substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173002A (en) * 1992-02-26 1994-06-21 Nkk Corp Ion plaing device
JP2001007507A (en) * 1999-06-25 2001-01-12 Fujitsu Ltd Reflow equipment
JP2001118789A (en) * 1999-08-11 2001-04-27 Tokyo Electron Ltd Method of cooling heat treatment device, and heat treatment device
JP2002317262A (en) * 2001-02-08 2002-10-31 Semiconductor Energy Lab Co Ltd Film deposition system and film deposition method
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003171763A (en) * 2001-12-07 2003-06-20 Sony Corp In-line vacuum film deposition apparatus, and cooling control method thereof
JP2003309167A (en) * 2002-04-16 2003-10-31 Canon Inc Substrate holder
JP2004063454A (en) * 2002-06-03 2004-02-26 Semiconductor Energy Lab Co Ltd Vapor deposition device
JP2005281784A (en) * 2004-03-30 2005-10-13 Mitsubishi-Hitachi Metals Machinery Inc Cooling structure for substrate

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149482A (en) * 2005-11-28 2007-06-14 Konica Minolta Holdings Inc Manufacturing method of organic el element
KR101200593B1 (en) * 2006-02-17 2012-11-12 황창훈 Roller system for substrate moving in OLED manufacturing
WO2007142315A1 (en) * 2006-06-07 2007-12-13 Tokyo Electron Limited Light emitting element manufacturing apparatus and light emitting element manufacturing method
KR101121446B1 (en) * 2006-06-14 2012-03-16 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 Apparatus for manufacturing light-emitting device and method for manufacturing light-emitting device
WO2007145256A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Apparatus for manufacturing light-emitting device and method for manufacturing light-emitting device
WO2007145255A1 (en) * 2006-06-14 2007-12-21 Tokyo Electron Limited Light-emitting device and method for manufacturing light-emitting device
JP2007335203A (en) * 2006-06-14 2007-12-27 Tokyo Electron Ltd Light-emitting element and manufacturing method of light-emitting element
JP2007335204A (en) * 2006-06-14 2007-12-27 Tokyo Electron Ltd Manufacturing device of light-emitting element, and manufacturing method of light-emitting element
KR101038457B1 (en) * 2006-06-14 2011-06-01 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 Method and apparatus for manufacturing light emitting device
US8263174B2 (en) 2006-06-14 2012-09-11 Tokyo Electron Limited Light emitting device and method for manufacturing light emitting device
JP2009117231A (en) * 2007-11-08 2009-05-28 Hitachi Displays Ltd Manufacturing method of organic el display device
JP2009242901A (en) * 2008-03-31 2009-10-22 Shibaura Mechatronics Corp Sputtering apparatus and sputtering method
JP5751170B2 (en) * 2009-11-19 2015-07-22 株式会社ニコン Sheet substrate, substrate cartridge, substrate processing apparatus, reader connection method, display element manufacturing method, and display device manufacturing method
WO2011062213A1 (en) * 2009-11-19 2011-05-26 株式会社ニコン Leader member, substrate, substrate cartridge, substrate process device, leader connection method, display element manufacturing method, and display element manufacturing device
JPWO2011062213A1 (en) * 2009-11-19 2013-04-11 株式会社ニコン Leader member, substrate, substrate cartridge, substrate processing apparatus, reader connection method, display element manufacturing method, and display element manufacturing apparatus
KR20120093170A (en) * 2009-11-19 2012-08-22 가부시키가이샤 니콘 Leader member, substrate, substrate cartridge, substrate process device, leader connection method, display element manufacturing method, and display element manufacturing device
KR101678717B1 (en) 2009-11-19 2016-11-23 가부시키가이샤 니콘 Sheet substrate, substrate cartridge, substrate process device, substrate process method, electric circuit manufacturing method, leader connection method
US9193560B2 (en) 2009-11-19 2015-11-24 Nikon Corporation Leader member, substrate, substrate cartridge, substrate-processing apparatus, leader-connecting method, method of manufacturing display element, and apparatus for manufacturing display element
JP2011233601A (en) * 2010-04-23 2011-11-17 Panasonic Electric Works Co Ltd Light emitting module and lighting equipment using the same
JP2017133108A (en) * 2011-12-23 2017-08-03 ソレクセル、インコーポレイテッド Highly productive semiconductor metal coating, and spray processing of interconnection
JP2015511989A (en) * 2011-12-23 2015-04-23 ソレクセル、インコーポレイテッド Productive semiconductor metallization and interconnect spraying
WO2013118397A1 (en) * 2012-02-08 2013-08-15 東京エレクトロン株式会社 Film forming apparatus
JP2014098205A (en) * 2012-10-18 2014-05-29 Ulvac Japan Ltd Film forming device
JP2017082342A (en) * 2012-10-18 2017-05-18 株式会社アルバック Film deposition apparatus
JP2014109054A (en) * 2012-11-30 2014-06-12 Panasonic Corp Vacuum film deposition apparatus
JP2021102800A (en) * 2019-12-25 2021-07-15 株式会社プラズマイオンアシスト Plasma treatment apparatus
JP2021106260A (en) * 2019-12-26 2021-07-26 キヤノントッキ株式会社 Deposition apparatus, deposition method, and method for manufacturing electronic device
WO2022137022A1 (en) * 2020-12-25 2022-06-30 株式会社半導体エネルギー研究所 Manufacturing device for display device

Also Published As

Publication number Publication date
KR100692170B1 (en) 2007-03-12
KR20060043861A (en) 2006-05-15
TWI311895B (en) 2009-07-01
CN1676659A (en) 2005-10-05
CN100482850C (en) 2009-04-29
TW200539740A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
KR100692170B1 (en) In-line type organic electroluminescence manufacturing device
US9899635B2 (en) System for depositing one or more layers on a substrate supported by a carrier and method using the same
US8574366B2 (en) Vacuum processing apparatus
TWI232242B (en) Substrate processing apparatus and processing method
KR101225312B1 (en) Process apparatus
JP2009200518A (en) Large area substrate transferring method
JP2002203885A (en) Inter-back type apparatus for processing substrate
KR20080001784A (en) Thin film deposition device
TW201346050A (en) Film-forming apparatus and film-forming method
US20070138009A1 (en) Sputtering apparatus
JP2013131542A (en) In-line film forming device
JP2008266737A (en) Tray conveyance type inline film deposition apparatus
JP5463602B2 (en) Mask placement and substrate transfer chamber, and mask placement and substrate transfer chamber operation method
KR101449769B1 (en) Substrate c0nvey processing device
JP2021529438A (en) Substrate processing equipment and substrate processing method
KR20190002415A (en) Apparatus for processing a substrate, a processing system for processing a substrate, and a method for servicing an apparatus for processing a substrate
JP3753896B2 (en) Magnetron sputtering equipment
WO2024070473A1 (en) Film formation device and film formation method
JPWO2019070031A1 (en) Sputtering equipment
KR102654241B1 (en) Substrate processing system, substrate chamber for vacuum processing system, and method for cooling a substrate
JP6336146B2 (en) In-line type film forming apparatus and film forming method
KR102595812B1 (en) Holder, carrier comprising at least two holders, devices and methods
JP2017214654A (en) Vapor deposition source for organic material, device having vapor deposition source for organic material, system having evaporation deposition device including vapor deposition source for organic material, and method for operating vapor deposition source for organic material
US20170047867A1 (en) Electrostatic chuck with electrostatic fluid seal for containing backside gas
KR20210104920A (en) A substrate processing system, a substrate chamber for a vacuum processing system, and a method of cooling a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214