JP2005283433A - 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置 - Google Patents

試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置 Download PDF

Info

Publication number
JP2005283433A
JP2005283433A JP2004099903A JP2004099903A JP2005283433A JP 2005283433 A JP2005283433 A JP 2005283433A JP 2004099903 A JP2004099903 A JP 2004099903A JP 2004099903 A JP2004099903 A JP 2004099903A JP 2005283433 A JP2005283433 A JP 2005283433A
Authority
JP
Japan
Prior art keywords
probe
measuring
interaction
molecules
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099903A
Other languages
English (en)
Inventor
Kazuhiro Takada
一広 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004099903A priority Critical patent/JP2005283433A/ja
Publication of JP2005283433A publication Critical patent/JP2005283433A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】簡便な構成で、安定で再現性が高く、有機物質との相互作用の測定が可能なプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置を提供する。
【解決手段】試料と相互作用する探針3とカンチレバー2を有する原子間力顕微鏡に用いるプローブであって、前記探針3が硫黄原子を介した化学結合によって固定された有機分子5を備えた構成とし、例えば該プローブを用いて基板上に固定された有機分子との相互作用を測定する測定方法あるいは測定装置等を構成し、とりわけ近年注目されているバイオチップ等の測定においてきわめて有用な手段を提供する。
【選択図】 図1

Description

本発明は、試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置に関し、特に有機物質との相互作用の測定を可能としたプローブ、該プローブの製造方法、測定方法及び装置に関する。
近年の材料微細化に伴いnmレベルの分析、評価手法の重要性が増加している。走査型トンネル顕微鏡(STM)や原子間力顕微鏡(AFM)に代表される走査型プローブ顕微鏡(SPM)は、その測定の簡易性及び試料の自由度が高い等の点からそのようなnmレベルの代表的な評価手法として多くの注目を集めている。とりわけ非導電性試料に対しても適用が可能なAFMは、有機分子や生体試料を大気中及び液体中で観察することができ、その方面での応用例は多数報告されている。このようなナノレベルの分子集合体の評価では、その表面形態のみならず、表面物性あるいは他の物質との相互作用について調べることも重要である。AFMでは高分解能の表面観察が行えるのみならず、原子間力探針とサンプル表面の相互作用を直接観測することができる。
AFMのプローブとサンプルの間に働く力を測定する手法として、AFMのプローブと試料表面との距離を相対的に近づけたり、遠ざけたりした際にプローブにかかる力を測定する、フォースカーブ測定の手法が知られている。図2に一般的なフォースカーブ測定の模式図を示す。図2(a)において、図中の(1)はAFMのプローブにおけるカンチレバーと試料が相対的に離れている状態を表す。この位置からカンチレバーと試料を近づけていくと、試料にカンチレバーが触れた状態((2)の状態)から、プローブの探針部に力が加わりはじめ、カンチレバーは反ってくる。
ある一定距離近づいた後、カンチレバーと試料を相対的に離していくと、今度はカンチレバーが撓んできて((5)の状態)、ある一定距離以上に離れると最終的にはカンチレバーと試料は完全に離れてしまう。この一連の動作におけるピエゾの印加電圧とプローブの探針部に働く力の関係を示したのが、図2(b)に示すフォースカーブである。
例えばこのフォースカーブの(4)の領域の傾きや(5)から(6)の状態への力を見積ることで、プローブとサンプル間の力を評価したり、サンプル表面の状態を調べたりすることが可能となる。
このフォースカーブ測定の応用として、試料と相互作用する物質をプローブに化学修飾することで、分子間の相互作用を測定することが可能になる。またその状態で、領域を走査することで相互作用を画像化する化学力顕微鏡の実現も可能である。
従来、このように試料と相互作用する物質をプローブに化学修飾する方法としては、特許文献1において表面にプラズマ処理を施す方法が提案されている。また、これ以外にも特許文献2に開示されているようなプローブ自体をアルカリ性溶液に長時間浸けることで、表面に水酸基を導入する方法などが知られている。
特開平6−273156号公報 特開平10−082793号公報
前述したプローブを化学修飾し、サンプルとの相互作用を測定する手法はナノ領域の物性を調べることを可能とし、今後さらに需要が増し非常に有用な技術であると考えられている。しかしながら、このようにプローブを化学修飾することで、特定の分子等の相互作用を測定する方法においては、安定して再現性よく化学修飾されたプローブを作成することが必要であるが、上記した従来例の表面をプラズマ処理する方法やアルカリ性溶液中に浸す方法では、プローブの表面を改質処理することで水酸基等を導入する方法であり、実際にプローブに固定したい化学種を導入するために、更にもう一段の工程が必要となり、煩雑であると共に時間を要するものであった。
そこで、本発明はこのような問題点を克服し、簡便な構成で、安定で再現性が高く、有機物質との相互作用の測定が可能なプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置を提供することを目的としている。
本発明は、以下のように構成したプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置を提供するものである。
すなわち、本発明のプローブは、試料と相互作用する探針を有する原子間力顕微鏡に用いるプローブであって、前記探針が硫黄原子を介した化学結合によって固定された有機分子を備えていることを特徴としている。
また、本発明のプローブは、前記探針が導電性を有する探針で構成されていることを特徴としている。
また、本発明のプローブは、前記探針の導電性を構成する部材が金であり、前記有機分子の化学結合部位がテオール基であることを特徴としている。
また、本発明のプローブの製造方法は、上記したいずれかに記載のプローブの製造方法であって、基板上にパターニングしたマスクを用いて凸状の探針となるべき部分を形成する工程と、前記凸状の探針となるべき部分を含む基板の表面の全面に、マスク層を形成する工程と、前記基板の裏面側からエッチングし、断面が台形状となる部分を形成する工程と、前記基板の表面の全面に形成したマスク層の表面に、金属膜を被着する工程と、前記金属膜が被着された凸状の探針部表面に、有機膜の修飾を行う工程と、を有することを特徴としている。
また、本発明の分子間の相互作用の測定方法は、上記したいずれかに記載のプローブを用い、基板上に固定された有機分子との相互作用を測定することを特徴としている。この測定方法によれば、探針側の有機分子と試料上との有機分子の組み合わせを変えることで各種の有機分子間の小さな相互作用を簡易に測定することが可能となる。
また、本発明の分子間の相互作用の測定方法は、上記したプローブとして探針にDNAが化学結合されたプローブを用い、基板上に固定されたDNAとの相互作用を測定することを特徴としている。その際、本発明においてはこの分子間の相互作用の測定として、ハイブリダイゼーション反応を測定する構成を採ることができる。
これらの測定方法によれば、簡便な構成で基板上に固定されたバイオチップを調べることができ、また溶液中のバイオチップの環境を変化させること等の外部環境による相互作用の変化の様子を対応させて調べることが可能となる。
また、本発明の上記したいずれかに記載の分子間の相互作用の測定方法には、前記探針と前記基板上に固定された有機分子またはDNA等の試料との距離を相対的に変化させながら、該探針に作用する力を測定する測定方法を用いることができる。
また、本発明の上記したいずれかに記載の分子間の相互作用の測定方法には、前記探針と前記基板間に電圧を印加して、前記探針と基板間に流れる電流量を用いて、分子間の相互作用を測定する測定方法を用いることができる。
また、本発明の分子間の相互作用を測定する測定装置は、上記したいずれかに記載のプローブと、上記した測定方法が実施可能な探針と基板上に固定された有機分子またはDNA等の試料との距離を相対的に変化させながら、該探針に作用する力を測定する手段及び/または、上記した測定方法が実施可能な探針と基板間に電圧を印加して、原子間力探針と基板間に流れる電流量を用いて、分子間の相互作用を測定する手段と、を有することを特徴としている。
以上の構成によれば、有機物質との相互作用をより高い精度で測定することが可能となり、とりわけ近年注目されている固体基板上に複数の生体関連物質がマトリクス状に配置されたバイオチップ等の測定においてきわめて有用であり、これらに対する期待に大きく応えることができる。
本発明によれば、簡便な構成で、安定で再現性が高く、有機物質との相互作用の測定が可能なプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置を実現することができる。
本発明の実施形態の説明として、まず有機分子の相互作用を測定するためのAFMプローブ(以下、原子間力探針と記す)について説明する。
図1は本発明の有機分子の相互作用を測定するための原子間力探針の模式図である。図1において、1は支持体であり、通常シリコン(Si)や窒化シリコン(Si)等の材料で構成されている。
2はカンチレバーアーム、3は探針部であり、カンチレバーアーム2によって支持体1と探針部3とが接続されている。カンチレバーアーム2及び探針部3の材料は、支持体1と同様にシリコンや窒化シリコン等が用いられている。
カンチレバーアーム2の形状は短冊型形状のものやV字型形状のものがあるが、特に規定されるものではなく、測定対象に応じて適宜選択が可能である。
探針部3は、通常は四角錘形状を有しており、後述されるプロセス等で作成されている。4は導電性の薄膜である。材質としては金、白金、銀、銅などの金属材料を選択することが可能である。
5の有機膜は一般的には(化1)に示される構造を有する。
X−Y (化1)
(化1)中でXは機能性部位であり、相互作用の測定対象に応じて最適なものを選択することが可能である。Yは結合性部位を意味し、導電性膜4と化学結合によって結合している。具体的には官能基としてのチオール基(−SH)やスルフィド基(−S−)、あるいはジスルフィド基(−S−S−)などを含有するように選択することができる。導電性膜4と結合性部位Yは硫黄原子を介して結合することが本発明の一つの特徴である。
有機膜5の結合性部位Yとしてチオール基を、導電性膜4として金を選択するのが、本発明を実施する際には最も安定で望ましい。理由としてはチオール基と金の間では以下に示される反応が起こり安定な化学結合が形成されるからである。下式中Rは結合性部位Yのチオール基以外の部分を表す。
−Au+X−R−SH → −Au−S−R−X+1/2H
次に上記の構成からなる原子間力探針の製造方法について簡単に説明する。
まず図3(a)に示すように、シリコン基板32の両面にマスク層31を形成する。そして表面側に設けたマスク層31について、探針となるべき部分以外を除去し、シリコン基板32の結晶異方性エッチングを行う。このとき探針となるべき位置ではマスク層31を円形もしくは正方形状にパターニングしておく。その結果、シリコン基板32は、探針となるべき部分が凸状に突出するようになる(図3(b))。
続いて、シリコン基板32の表面の全面にマスク層31aを形成する(図3(c))。このマスク層31aは探針となるべき部分を除いて平面であり、探針となるべき位置だけ突出している。
次に、シリコン基板32の裏面側のマスク層31をパターニングして開口部を形成し(図3(d))、裏面側からシリコン基板32に対して結晶異方性エッチングを行い、断面が台形状である貫通孔33を形成する(図3(e))。
次に、シリコン基板32の表面側のマスク31aの表面に真空蒸着やスパッタリングなどによって金属膜34を被着する(図3(f))。
最後に有機膜5の探針上への修飾を行う。有機膜の選択は、試料に応じて相互作用が測定できる部位を有するものが選択され、その成膜は例えばプローブ自体を液体中につけて成長させる方法、真空蒸着法等が用いられるが材料に応じて適宜選択すればよい。
次に図4を用いて、上記した原子間力探針を用いて有機分子の相互作用を測定するための方法について説明する。
図4において、41は上で説明した原子間力探針(プローブ)であり、探針部には有機膜が形成されている。42はサンプルである。また、47はプローブバイアス印加手段であり、48は試料バイアス印加手段である。
図中ではサンプルが液体44中に固定されている例を図示してあるが、試料は必ずしも液体中である必要はない。しかしながら液体中での測定は後述する生体材料の相互作用の測定では、温度、pH等を自由に制御することが可能であるため非常に有用である。43は電圧を印加することで伸縮するピエゾ素子を内蔵したZ軸ステージである。ここではサンプル側にピエゾ素子を用いた例で説明しているが、サンプルとプローブ間の距離を制御できればピエゾ素子はサンプル側、プローブ側いずれに設置しても構わない。
相互作用の測定に際しては、あらかじめプローブ41の背面にレーザー45を照射し、その反射光をフォトダイオード等の光検出器46で検出できるように調整をしておく。光検出器46は通常分割(通常は上下2分割)したフォトダイオードの光入射位置によってカンチレバーの変位を検出している。
測定試料42内の測定対象部位とプローブ41の位置合わせ(プローブと試料間の距離を近づけたときにプローブの接触位置に試料があるようにすること)をした後で、ピエゾ素子43に電圧を印加し光検出器46で探針に働く力をモニターしながら、制御コンピューター49でピエゾ素子43にフィードバックを行いながら試料とプローブの相対的な距離を近づけていく。図2中(2)の状態でプローブと試料とが接触した後、ピエゾは伸び続け、ある力を検知した時点から今度はピエゾ素子43に逆電圧が印加され今度は縮んで行き、最終的には図2の(6)の状態で完全にプローブが試料から離れた状態で終了となる。尚測定は上記動作を複数回動作させることも可能である。
本装置を用いて測定される対象サンプルであるが、代表的なものとして前述したバイオチップが挙げられる。上記バイオチップに搭載される生体関連物質は、核酸、蛋白質等が選択されている。核酸の例としてはオリゴデオキシヌクレオチド、ポリデオキシヌクレオチド、cDNA(コンプリメンタリーDNA)等のDNA、または、mRNA、tRNA、rRNA等のRNA、または骨格がペプチドで構成されるPNA(ペプチド核酸)で代表される核酸アナログが挙げられる。蛋白質の例としてはオリゴペプチド、ポリペプチド、酵素、抗体等を例として挙げることができる。
以下、本発明の実施例について説明するが、本発明はこれら実施例によって何ら限定されるものではなく、本発明の目的が達成される範囲内での各要素の置換や設計変更がなされたものをも包含する。また、実施例内で用いている符号は、図1、図4で用いた符号と同一である。
[実施例1]
実施例1においては、本発明の測定装置を用いて、基板上に固定されたDNAプローブアレイの評価を行った例を示す。
原子間力探針の作成は、市販の窒化シリコン製V字形状のカンチレバー(型名:DNPS)にスパッタリング装置を用いて金の薄膜をおよそ10nm程度蒸着したものを用いた。ばね定数は0.06N/mであった。
有機膜5として、DNA合成業者(ベックス)に依頼して、以下の(式1)で示される一本鎖核酸(Tの40量体)を合成した。なお(式1)の一本鎖DNAの5’末端には合成時にチオールモディファイア(グレンリサーチ)を用いる事によってチオール(SH)基を導入した。なお、脱保護、DNAの回収は定法により行い、また、精製にはHPLCを用いた。合成から精製までの一連の工程はすべて合成業者に依頼して行った。
Figure 2005283433
上記配列番号1の一本鎖DNAを1μM含有する溶液中に前述の工程で作成されたプローブ探針を20分間浸けておくことで最終的な修飾プローブ41を作成した。
測定試料42としては25.4mm×25.4mm×1mmの合成石英基板上にスポッテイング形成されたDNAプローブアレイを用いた。スポッティングの範囲は基板の中央部に10mm×10mmの範囲に200dpiすなわち127μmのピッチで形成されており、スポッティングされたドットの直径は約50μmであった。
図5に測定試料42の一部分を示す。スポッテイングに用いたDNAは(式2)〜(式5)で示される一本鎖核酸であり、領域Aには(式2)で示される一本鎖核酸を、領域Bには(式3)で示される一本鎖核酸を、領域Cには(式4)で示される一本鎖核酸を、領域Dには(式5)で示される一本鎖核酸を用いた。
Figure 2005283433
上述の修飾プローブ41を用いて、領域A〜領域Dに対して無作為に複数回連続で相互作用の測定を行った。
その結果領域Bと領域Cからは、図6(a)に示すような相互作用の曲線が得られたが、領域Aと領域Dからは図6(b)に示すような相互作用の曲線が得られた。領域AのFxと領域DのFxの値は領域Aの方が大きかった。
[実施例2]
実施例2においては、実施例1で用いたのと同一の修飾プローブ41と、同一構成の試料42を用いた。本実施例では試料42をリン酸溶液44中に固定した。
この状態で溶液44の温度を25℃から+5℃ずつ変化させながら60℃まで上昇させて領域Aと領域Dに対して相互作用の測定を行った。
初めの25℃の状態ではFxの値は異なるものの、両領域ともに図6(b)に示されるような相互作用曲線を示したが、温度の上昇とともにFx値が徐々に小さくなる傾向が観測された。
[実施例3]
実施例3においては、修飾プローブ41は実施例1で用いたのと同一のプローブを用意した。試料42としては、シリコン単結晶基板上に真空蒸着によって約200nmの金を蒸着した基板を用い、その上に実施例1と同様にプローブアレイをスポッティングし、試料42とした。
修飾プローブ41にプローブバイアス印加手段47より7V印加することで、領域A〜領域Dの電流量を測定したところ、領域Aのみに数pAの電流を検出した。
[実施例4]
実施例4においては、修飾プローブ41として、複数個のプローブを備えたプローブを作成し、その後に探針上に真空蒸着により金を蒸着した。プローブ間の間隔はDNAをスポッティングした間隔と同程度とした。試料は実施例1で用いたものと同一のものを用いた。
相互作用の測定は、試料は図5中Sの地点から横ラインを複数個一度に相互作用を調べながら、図5中の矢印方向に調べるように試料を不図示のXY移動機構を用いながら行った。
測定結果は実施例1とほぼ同一であったが、測定時間が実施例1より大幅に短縮された。
本発明の実施の形態における有機分子の相互作用を測定するための原子間力探針の模式図である。 原子間力探針によるフォースカーブの測定動作を示す模式図である。 本発明の実施の形態における原子間力探針の製造方法の一例を説明する図である。 本発明の実施の形態における原子間力探針を用いて有機分子の相互作用を測定する方法を説明する模式図である。 実施例1のサンプルとして用いたバイオチップの模式図である。 本発明の実施例において原子間力探針を用いてバイオチップ試料との相互作用を測定した際に得られたデータの模式図である。
符号の説明
1:支持体
2:カンチレバーアーム
3:探針部
4:導電性膜
5:有機膜
31:マスク層
32:シリコン基板
33:貫通孔
34:導電性膜(金属膜)
41:修飾プローブ
42:試料(サンプル)
43:ピエゾ素子
44:液体
45:レーザー
46:光検出器
47:プローブバイアス印加手段
48:試料バイアス印加手段
49:制御コンピューター

Claims (10)

  1. 試料と相互作用する探針を有する原子間力顕微鏡に用いるプローブであって、前記探針が硫黄原子を介した化学結合によって固定された有機分子を備えていることを特徴とするプローブ。
  2. 前記探針が導電性を有する探針で構成されていることを特徴とする請求項1に記載のプローブ。
  3. 前記探針の導電性を構成する部材が金であり、前記有機分子の化学結合部位がテオール基であることを特徴とする請求項2に記載のプローブ。
  4. 請求項1〜3のいずれか1項に記載のプローブの製造方法であって、
    基板上にパターニングしたマスクを用いて凸状の探針となるべき部分を形成する工程と、
    前記凸状の探針となるべき部分を含む基板の表面の全面に、マスク層を形成する工程と、
    前記基板の裏面側からエッチングし、断面が台形状となる部分を形成する工程と、
    前記基板の表面の全面に形成したマスク層の表面に、金属膜を被着する工程と、
    前記金属膜が被着された凸状の探針部表面に、有機膜の修飾を行う工程と、
    を有することを特徴とするプローブの製造方法。
  5. プローブを用いた分子間の相互作用の測定方法において、請求項1〜3のいずれか1項に記載のプローブを用い、基板上に固定された有機分子との相互作用を測定することを特徴とする分子間の相互作用の測定方法。
  6. プローブを用いた分子間の相互作用の測定方法において、請求項1に記載のプローブとして探針にDNAが化学結合されたプローブを用い、基板上に固定されたDNAとの相互作用を測定することを特徴とする分子間の相互作用の測定方法。
  7. 請求項6に記載の分子間の相互作用の測定が、ハイブリダイゼーション反応の測定であることを特徴とする分子間の相互作用の測定方法。
  8. 請求項5〜請求項7のいずれか1項に記載の分子間の相互作用の測定方法が、前記探針と前記基板上に固定された有機分子またはDNA等の試料との距離を相対的に変化させながら、該探針に作用する力を測定する測定方法であることを特徴とする分子間の相互作用の測定方法。
  9. 請求項5〜請求項7のいずれか1項に記載の分子間の相互作用の測定方法が、前記探針と前記基板間に電圧を印加して、前記探針と基板間に流れる電流量を用いて、分子間の相互作用を測定する測定方法であることを特徴とする分子間の相互作用の測定方法。
  10. 分子間の相互作用を測定する測定装置において、請求項1〜3のいずれか1項に記載のプローブと、
    請求項8に記載の測定方法が実施可能な探針と基板上に固定された有機分子またはDNA等の試料との距離を相対的に変化させながら、該探針に作用する力を測定する手段及び/または、請求項9に記載の測定方法が実施可能な探針と基板間に電圧を印加して、原子間力探針と基板間に流れる電流量を用いて、分子間の相互作用を測定する手段と、
    を有することを特徴とする分子間の相互作用を測定する測定装置。
JP2004099903A 2004-03-30 2004-03-30 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置 Pending JP2005283433A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099903A JP2005283433A (ja) 2004-03-30 2004-03-30 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099903A JP2005283433A (ja) 2004-03-30 2004-03-30 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置

Publications (1)

Publication Number Publication Date
JP2005283433A true JP2005283433A (ja) 2005-10-13

Family

ID=35181973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099903A Pending JP2005283433A (ja) 2004-03-30 2004-03-30 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置

Country Status (1)

Country Link
JP (1) JP2005283433A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079608A (ja) * 2006-08-31 2008-04-10 Toyohashi Univ Of Technology マイクロニードル搭載型バイオプローブ、およびマイクロニードル搭載型バイオプローブの作製方法
CN104360107A (zh) * 2014-11-12 2015-02-18 苏州大学 一种石墨烯包覆原子力显微镜探针及其制备方法、用途
KR20150114177A (ko) * 2014-04-01 2015-10-12 연세대학교 원주산학협력단 측면 유전영동기술 기반의 힘 분광기법을 이용하여 생체분자 간 화학결합력을 측정하는 방법
US10802044B2 (en) 2017-04-17 2020-10-13 Shimadzu Corporation Scanning probe microscope
US10871505B2 (en) 2016-06-24 2020-12-22 Shimadzij Corporation Data processing device for scanning probe microscope
US10955436B2 (en) 2017-02-22 2021-03-23 Shimadzu Corporation Scanning probe microscope
WO2021117203A1 (ja) * 2019-12-12 2021-06-17 昭和電工マテリアルズ株式会社 表面分析方法、表面分析システム、および表面分析プログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079608A (ja) * 2006-08-31 2008-04-10 Toyohashi Univ Of Technology マイクロニードル搭載型バイオプローブ、およびマイクロニードル搭載型バイオプローブの作製方法
KR20150114177A (ko) * 2014-04-01 2015-10-12 연세대학교 원주산학협력단 측면 유전영동기술 기반의 힘 분광기법을 이용하여 생체분자 간 화학결합력을 측정하는 방법
KR101599606B1 (ko) 2014-04-01 2016-03-03 연세대학교 원주산학협력단 측면 유전영동기술 기반의 힘 분광기법을 이용하여 생체분자 간 화학결합력을 측정하는 방법
CN104360107A (zh) * 2014-11-12 2015-02-18 苏州大学 一种石墨烯包覆原子力显微镜探针及其制备方法、用途
US10871505B2 (en) 2016-06-24 2020-12-22 Shimadzij Corporation Data processing device for scanning probe microscope
US10955436B2 (en) 2017-02-22 2021-03-23 Shimadzu Corporation Scanning probe microscope
US10802044B2 (en) 2017-04-17 2020-10-13 Shimadzu Corporation Scanning probe microscope
WO2021117203A1 (ja) * 2019-12-12 2021-06-17 昭和電工マテリアルズ株式会社 表面分析方法、表面分析システム、および表面分析プログラム
JPWO2021117203A1 (ja) * 2019-12-12 2021-06-17
JP7070809B2 (ja) 2019-12-12 2022-05-18 昭和電工マテリアルズ株式会社 表面分析方法、表面分析システム、および表面分析プログラム

Similar Documents

Publication Publication Date Title
JP3951141B2 (ja) 有機超分子の自己集合及び金属化合物のステイニングを用いたカーボンナノチューブアレイ及びバイオチップの製作方法
US8393011B2 (en) Piezoresistor height sensing cantilever
Ginger et al. The evolution of dip‐pen nanolithography
TWI272386B (en) Protein and peptide nanoarrays
AU2001261145B2 (en) Biological identification system with integrated sensor chip
AU2002245009B2 (en) Nanoscale molecular arrayer
JP3953473B2 (ja) 有機超分子の自己集合及びuvエッチングを用いたナノパターン及びカーボンナノチューブ−バイオナノアレイの製作方法
US8492160B1 (en) Biomarker sensors and method for multi-color imaging and processing of single-molecule life signatures
AU2001261145A1 (en) Biological identification system with integrated sensor chip
JP2009521332A (ja) ナノギャップおよびナノギャップセンサの製造方法
JP2005283433A (ja) 試料と相互作用する探針を有するプローブ、該プローブの製造方法、該プローブを用いた分子間の相互作用の測定方法及び測定装置
US8205268B2 (en) Cantilever with pivoting actuation
WO2008021614A2 (en) Coded particle arrays for high throughput analyte analysis
KR100532812B1 (ko) 블록 공중합체의 나노패턴을 이용한 나노-바이오칩의제조방법
Castronovo et al. The atomic force microscopy as a lithographic tool: nanografting of DNA nanostructures for biosensing applications
KR100549104B1 (ko) 10나노 이하 사이즈의 바이오 나노어레이 제조방법
Murakami et al. Application of micromachine techniques to biotechnological research
JP4247554B2 (ja) メカノケミカル式センサー
US20040235199A1 (en) Method for fabricating a nanoarray using the self-assembly of supramolecules and staining of metals
JP4168137B2 (ja) 分子加工用部材
KR200370865Y1 (ko) 정밀 나노 몰드를 이용한 나노 바이오 측정 시스템
Henderson et al. Nanoscale molecular arrayer
Lee Atomic force microscopy applications in sensing and actuation
KR20040060356A (ko) 나노 바이오어레이의 제조방법