JP2005279531A - Method for cleaning lead polluted soil - Google Patents

Method for cleaning lead polluted soil Download PDF

Info

Publication number
JP2005279531A
JP2005279531A JP2004099601A JP2004099601A JP2005279531A JP 2005279531 A JP2005279531 A JP 2005279531A JP 2004099601 A JP2004099601 A JP 2004099601A JP 2004099601 A JP2004099601 A JP 2004099601A JP 2005279531 A JP2005279531 A JP 2005279531A
Authority
JP
Japan
Prior art keywords
soil
lead
acidic solution
washing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099601A
Other languages
Japanese (ja)
Inventor
Hiroyuki Oshida
裕之 押田
Tetsuya Watanabe
哲哉 渡辺
Atsushi Yamaguchi
山口  篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKAN KOGYO KK
Kokan Mining Co Ltd
JFE Engineering Corp
Original Assignee
KOKAN KOGYO KK
Kokan Mining Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKAN KOGYO KK, Kokan Mining Co Ltd, JFE Engineering Corp filed Critical KOKAN KOGYO KK
Priority to JP2004099601A priority Critical patent/JP2005279531A/en
Publication of JP2005279531A publication Critical patent/JP2005279531A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning method of lead polluted soil by washing the same with an acidic solution. <P>SOLUTION: The printing method of lead polluted soil includes the first process (a) for disintegrating lead polluted soil, the second process (b) for classifying the soil disintegrated in the first process at least into two particle groups, the third process (c) for mixing the soils classified in the second process with soil by a classification means selected from magnetic force sorting, specific gravity sorting and floating sorting to remove foreign matter, the fourth process (d) for washing the soils from which the foreign matter is removed in the third process, with the acidic solution at every particle group to separate the same into soil and the acidic solution by a solid-liquid separator and using a part or the whole of the recovered acidic solution in the washing of the soil or recirculation and the fifth process (e) for washing the soil, which is washed with the acidic solution in the fourth process, with a rinsing solution at every particle group. The washing with the acidic solution in the fourth process is performed under an environment with a pH of 0.5 or below and a hydrochloric acid solution is used as the acidic solution of the fourth process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛汚染土壌を酸性溶液により洗浄する浄化方法に関し、特にコストパフォーマンスに優れるものに関する。   The present invention relates to a purification method for washing lead-contaminated soil with an acidic solution, and particularly relates to an excellent cost performance.

鉛に汚染された土壌を浄化する技術として、イ水洗分級法、ロ加熱処理法、ハ電気泳動法が知られている。   Known techniques for purifying soil contaminated with lead include the water washing classification method, the b heat treatment method, and the c electrophoresis method.

水洗分級法は、水洗・分塊,もしくは物理的な土壌研磨等により粗い土壌粒子表面から汚染物質または汚染物質を多量に含む微粒子を分離,濃集,捕捉する方法である。
水洗分級法の場合、土壌研磨が不十分であると、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子が完全に除去されず、汚染物質を土壌指定基準値以下まで低減できない可能性がある。
The water washing classification method is a method for separating, concentrating, and capturing fine particles containing a large amount of contaminants or contaminants from the surface of coarse soil particles by washing, lump or physical soil polishing.
In the case of the water washing classification method, if soil polishing is insufficient, there is a possibility that contaminants from coarse soil particles or fine particles containing a large amount of contaminants may not be completely removed, and the contaminants may not be reduced to the soil specified standard value or less. There is.

また、土壌研磨時間を長くしたり、粗い土壌粒子表面を完全に研磨する高度装置を適用することにより、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子の除去率を向上させることは可能であるが、この場合においても高濃度に汚染された土壌では、汚染物質を土壌指定基準値以下まで確実に低減できるとは限らない。また、前者はランニングコストの増大,後者は装置イニシャルコストの増大となることが指摘されている。さらに、磨砕による微粒子量が増加し浄化土壌の歩留まりを低下させることとなる。   In addition, it is possible to improve the removal rate of contaminants or large amounts of contaminants from coarse soil particles by extending the soil polishing time or applying an advanced device that completely polishes the surface of coarse soil particles. Although it is possible, in this case as well, in soil contaminated at a high concentration, it is not always possible to reliably reduce the pollutant to a soil designated reference value or less. Further, it has been pointed out that the former increases the running cost and the latter increases the initial cost of the apparatus. Furthermore, the amount of fine particles by grinding increases and the yield of the purified soil decreases.

加熱処理法は、土壌をロータリーキルンや電気抵抗炉等で加熱焼結またはガラス固化することにより、汚染物質である鉛を非常に安定な状態として封じ込める方法である。
加熱処理法の場合、鉛により汚染されている土壌の場合、加熱焼結またはガラス固化状態にするために、加熱焼結:800〜1200℃,ガラス固化:1600〜2000℃まで加熱する必要があり、大量の熱源を必要とし、ランニングコストの増大を招く。
The heat treatment method is a method for containing lead, which is a pollutant, in a very stable state by heat-sintering or vitrifying the soil with a rotary kiln or an electric resistance furnace.
In the case of heat treatment method, in the case of soil contaminated with lead, it is necessary to heat up to 800-1200 ° C, vitrification: 1600-2000 ° C in order to heat-sinter or vitrify the soil. A large amount of heat source is required, resulting in an increase in running cost.

さらに、加熱時に発生する排ガスに対しても適切に処理する付加設備等が必要となり、イニシャルコスト増大につながる。また、汚染物質である鉛を揮発除去しきれていない場合、加熱焼結やガラス固化状態が完全に形成されていないと、汚染物質が再溶出する可能性のあることが指摘されている。   Furthermore, additional equipment for appropriately treating exhaust gas generated during heating is required, leading to an increase in initial cost. In addition, it has been pointed out that when lead, which is a contaminant, has not been volatilized and removed, the contaminant may be re-eluted if the heat-sintered or vitrified state is not completely formed.

電気泳動法は、汚染された土壌に対して陽極と陰極を設け、電解液等を加えた後に直流電流を流すことにより、汚染物質を電極近傍に集め、除去する方法である。   Electrophoresis is a method of collecting and removing contaminants in the vicinity of an electrode by providing an anode and a cathode for contaminated soil, and applying a direct current after adding an electrolyte or the like.

電気泳動法の場合、低電圧,低電流で実施した場合、その浄化速度は非常に遅くなり、浄化完了まで非常に長時間を要する。また、高電圧,高電流で実施した場合、浄化速度は速くなると考えられるが、多量の電力を必要とし、ランニングコストが非常に高いものとなる。また、電極表面が汚染物質等で覆われてしまうと、その除去効率が劣化するため、随時、電極近傍に濃集された汚染物質を除去しなければならず、特別な構造をもった電極及び汚染物質回収装置が必要となることが指摘されている。   In the case of electrophoresis, when it is carried out at a low voltage and a low current, the purification speed becomes very slow, and it takes a very long time to complete the purification. In addition, when it is carried out at a high voltage and a high current, the purification speed is considered to be high, but a large amount of power is required and the running cost becomes very high. In addition, if the electrode surface is covered with contaminants and the like, the removal efficiency deteriorates. Therefore, the contaminants concentrated near the electrode must be removed from time to time. It has been pointed out that a pollutant recovery device is required.

上述したように、水洗分級法、加熱処理法、電気泳動法のいずれの方法にも、欠点があるため近年では浄化時間の短縮,鉛汚染物質の除去効率の向上を図ることを目的として、酸性溶液での薬剤抽出,洗浄が提案されている。   As described above, all of the water washing classification method, heat treatment method and electrophoresis method have drawbacks, so in recent years, with the aim of shortening the purification time and improving the removal efficiency of lead contaminants, Drug extraction and cleaning with solutions have been proposed.

例えば、特許文献1には酸性溶液添加時、もしくは添加後、強いアトリッションを加え、重金属汚染物質の除去する方法が記載されている。特許文献2では酸性溶液で重金属汚染物質を抽出後、その抽出液に界面活性剤を加え気泡により重金属を回収する方法が記載されている。特許文献3でも酸性溶液を使用した土壌抽出,洗浄法が記載されている。   For example, Patent Document 1 describes a method of removing heavy metal contaminants by applying strong attrition at the time of addition of an acidic solution or after the addition. Patent Document 2 describes a method in which a heavy metal contaminant is extracted with an acidic solution, a surfactant is added to the extract, and heavy metal is recovered by bubbles. Patent Document 3 also describes a soil extraction and washing method using an acidic solution.

特開平11-197643号公報JP 11-197643 A 特開2002-371324号公報JP 2002-371324 A 特開2001-149913号公報Japanese Patent Laid-Open No. 2001-149913

特許文献1〜3に開示されている浄化方法の場合、土壌性状,薬剤種類,薬剤濃度,洗浄時間,固液重量比等、多くのパラメータが存在するため、これらのパラメータの中から、最適条件を見出すことは非常に困難で、技術を具体化し、現地に適用する場合、種々の不利益が生じている。   In the case of the purification methods disclosed in Patent Documents 1 to 3, since there are many parameters such as soil properties, chemical types, chemical concentrations, cleaning times, solid-liquid weight ratios, etc., the optimum conditions are selected from these parameters. It is very difficult to find and various disadvantages arise when the technology is embodied and applied locally.

例えば、過度の薬剤濃度や洗浄時間,固液重量比で洗浄を行なった場合は、装置が大きくなり、ランニングコストが増大したりするため、浄化コストアップの要因となるばかりか土壌粒子の溶解による浄化土壌の歩留まりも低下する。また、薬剤濃度や洗浄時間,固液重量比(酸容量)が不足した条件下で洗浄を行なった場合、洗浄後の土壌を土壌指定基準値以下まで低減できない危険性がある。   For example, if washing is performed with excessive drug concentration, washing time, and solid-liquid weight ratio, the equipment becomes larger and the running cost increases, which not only increases the purification cost but also due to dissolution of soil particles. The yield of purified soil is also reduced. In addition, when washing is performed under conditions where the chemical concentration, washing time, and solid-liquid weight ratio (acid capacity) are insufficient, there is a risk that the soil after washing cannot be reduced below the designated soil value.

従って、洗浄に必要な酸濃度、洗浄時間や固液重量比(酸容量)は土壌の土質、特に粒径に大きく依存するため、それぞれの粒子径から構成される土粒子群に対して、酸性溶液の薬剤種類,薬剤濃度,洗浄時間等の条件を最適化することにより、酸性薬剤の使用量を最低限に抑え、後工程への負荷の少ないイニシャルコスト,ランニングコストを大幅に低減したコストパフォーマンスに優れた土壌浄化技術の確立が可能となる。   Therefore, since the acid concentration, washing time and solid-liquid weight ratio (acid capacity) required for washing greatly depend on the soil soil, especially the particle size, it is acidic to the soil particle group composed of each particle size. Cost performance by optimizing conditions such as drug type, concentration, and washing time of the solution, minimizing the amount of acidic drug used, and reducing initial costs and running costs with less burden on subsequent processes It is possible to establish an excellent soil purification technology.

本発明は、酸性溶液で洗浄する上で、対象とする土壌の粒径を砂質に限定したコストパフォーマンスに優れた土壌浄化技術を提供することを目的とする。   An object of the present invention is to provide a soil purification technology excellent in cost performance in which the particle size of the target soil is limited to sandy when washing with an acidic solution.

本発明者らは、鉛に汚染された土壌を酸性溶液を用いて浄化する方法について鋭意検討し、鉛による汚染濃度が土壌の粒子径に依存すること及び、粒子径により酸性溶液での洗浄効率に大きな差異があることに着目した。   The present inventors have intensively studied a method for purifying soil contaminated with lead using an acidic solution, and that the concentration of contamination due to lead depends on the particle size of the soil, and the cleaning efficiency with an acidic solution depends on the particle size. We noticed that there is a big difference.

まず浄化する土壌を解砕することによりシルト質、粘土質粒子や砂質粒子等の単体粒子に分離する。その後、分級により0.075mm粒子径以上の砂質のみを酸性溶液で洗浄することでランニングコストを最小限に抑え、洗浄効率の極めて高いコストパフォーマンスに優れた土壌浄化技術を完成させた。   First, the soil to be purified is crushed and separated into single particles such as silty, clayey and sandy particles. After that, only soil with a particle size of 0.075 mm or larger was washed with an acidic solution by classification, thereby minimizing running costs and completing a soil purification technology with extremely high washing efficiency and excellent cost performance.

図2は鉛に汚染された土壌(以下、鉛汚染土壌)について、土壌粒子径毎の鉛含有率を調査した結果を示すもので、土壌粒子径に依存して鉛含有率は変化し、土壌粒子径が大きくなると鉛含有率は低下する。   Fig. 2 shows the results of an investigation of the lead content for each soil particle size for soil contaminated with lead (hereinafter, lead-contaminated soil). The lead content varies depending on the soil particle size. As the particle size increases, the lead content decreases.

また、シルト・粘土などの細粒土壌の場合、土壌微粒子、特に粘土鉱物による永久電荷作用やアロフェンなどの変異電荷作用により重金属などの汚染物質と強固に結合しやすい。   In addition, in the case of fine-grained soil such as silt and clay, it is easy to bind firmly to contaminants such as heavy metals due to permanent charge action by soil fine particles, especially clay minerals, and mutation charge action such as allophane.

また、細粒土壌は粗粒土壌に比べ活性が高く重金属と難溶性の化合物、鉱物を形成しやすい。一方、砂質などの粗粒土壌の場合は、土粒子表面への物理吸着や付着などで比較的緩やかに結合している場合が多い。   Fine-grained soil is more active than coarse-grained soil and tends to form heavy metals, sparingly soluble compounds and minerals. On the other hand, in the case of coarse-grained soil such as sandy material, it is often bonded relatively gently due to physical adsorption or adhesion to the surface of the soil particles.

そこで、本発明では、予め土壌粒子を単体粒子まで解砕し、分級により鉛の結合状態が緩やかな砂質土壌を洗浄することで、洗浄に用いる酸性溶液の酸濃度を低く、酸性溶液量を少なくすることができる。   Therefore, in the present invention, the soil particles are crushed in advance to simple particles, and sandy soil with a loose lead binding state is washed by classification, so that the acid concentration of the acidic solution used for washing is lowered and the amount of acidic solution is reduced. Can be reduced.

また、本発明では入手価格や、鉛を除去する性能の観点より酸性溶液として、塩酸を用いることが好ましい。図8に示すように、鉛汚染土壌に対して各種の1(mol/L)の酸性溶液にて固液重量比1:1の条件下で15分間の洗浄を行なった結果からも塩酸が最も効果的であることが分かる。   Moreover, in this invention, it is preferable to use hydrochloric acid as an acidic solution from a viewpoint of an acquisition price or the performance which removes lead. As shown in FIG. 8, hydrochloric acid is the most apparent from the results of washing for 15 minutes with various 1 (mol / L) acidic solutions on lead-contaminated soil under a solid-liquid weight ratio of 1: 1. It turns out to be effective.

すなわち、本発明は、
1 以下の工程を備えたことを特徴とする、鉛汚染土壌の浄化方法。
a 鉛汚染土壌を解砕する第一の工程。
b 第一の工程により解砕された土壌を特定の粒子径を境に少なくとも2つ以上の粒子群に分級する第二の工程。
c 第二の工程により分級された土壌を磁力選別,比重選別,浮遊選別より選択される分別手段により土壌に混合する異物を除去する第三工程。
d 第三の工程により異物が除去された土壌を前記粒子群毎に酸性溶液により洗浄後、固液分離装置により土壌と酸性溶液に分離し、回収された酸性溶液は前記土壌の洗浄に一部もしくはすべて再循環使用する第四の工程。
e 第四の工程により酸性溶液により洗浄された土壌を粒子径毎に濯ぎ液により洗浄する第五の工程。
2 第四の工程における、酸性溶液による洗浄をpHが0.5以下の環境下で行う請求項1記載の鉛汚染土壌の浄化方法。
3 第四の工程における鉛汚染土壌が0.075mm以上の粒子径の土壌を主体とすることを特徴とする1または2記載の鉛汚染土壌の浄化方法。
4 第二の工程の酸性溶液が塩酸溶液であることを特徴とする1乃至3の何れか一つに記載の鉛汚染土壌の浄化方法。
That is, the present invention
1 A method for purifying lead-contaminated soil, comprising the following steps.
a First step of crushing lead-contaminated soil.
b A second step of classifying the soil crushed in the first step into at least two particle groups with a specific particle diameter as a boundary.
c A third step of removing the foreign matter mixed in the soil by the sorting means selected from magnetic sorting, specific gravity sorting, and floating sorting of the soil classified in the second step.
d After the soil from which foreign matters have been removed in the third step is washed with an acidic solution for each particle group, the solid solution is separated into soil and acidic solution by a solid-liquid separator, and the collected acidic solution is partly used for washing the soil. Or the 4th process that recycles all.
e Fifth step of washing the soil washed with the acidic solution in the fourth step with a rinsing liquid for each particle size.
2. The method for purifying lead-contaminated soil according to claim 1, wherein washing with an acidic solution in the fourth step is performed in an environment having a pH of 0.5 or less.
3. The method for purifying lead-contaminated soil according to 1 or 2, wherein the lead-contaminated soil in the fourth step is mainly soil having a particle diameter of 0.075 mm or more.
4 The method for purifying lead-contaminated soil according to any one of 1 to 3, wherein the acidic solution in the second step is a hydrochloric acid solution.

本発明によれば、鉛汚染土壌を単体粒子に解砕後、分級により鉛の結合状態が緩やかな砂質土壌の洗浄に酸性溶液を適用することで、高濃度の塩酸を用いる必要がないため、設備、後工程、土壌への負荷、負担も少なく、安価な費用で大量の鉛汚染土壌が浄化でき産業上極めて有用である。   According to the present invention, after pulverizing lead-contaminated soil into simple particles, it is not necessary to use high-concentration hydrochloric acid by applying an acidic solution to wash sandy soil in which the lead binding state is mild by classification. It is very useful industrially because it can purify large amounts of lead-contaminated soil at low cost, with little load and burden on equipment, post-process, soil.

本発明は、酸性溶液を用いて、鉛に汚染された土壌(以下、鉛汚染土壌)を浄化する方法において、汚染土壌を解砕により単体粒子にした上で、最も洗浄効率およびコストパフォーマンスが高い砂質土壌を分級し、当該土壌を酸性溶液を用いて洗浄することを特徴とする。   In the method of purifying soil contaminated with lead (hereinafter referred to as lead-contaminated soil) using an acidic solution, the present invention has the highest cleaning efficiency and cost performance after disintegrating the contaminated soil into single particles. Sandy soil is classified, and the soil is washed with an acidic solution.

図1は本発明に係る土壌浄化方法の一実施形態の工程図で、図において、1は鉛汚染土壌を、単体粒子に解砕する工程(以下、第一の工程)、2は第一の工程により解砕された重金属汚染土壌を分級機により土粒子群に分級する工程(以下、第二の工程)、3は、第二の工程により分級された土壌を磁力選別,比重選別,浮遊選別より選択される分別手段により土壌に混合する異物を除去する工程(以下、第三の工程)、4は、第三の工程により異物が除去された鉛汚染土壌の砂質粒子に酸性溶液を用いて洗浄する工程(以下、第四の工程)、5は、第四の工程で洗浄された土壌をリンス(濯ぎ洗い)する工程(以下、第五の工程)を示す。   FIG. 1 is a process diagram of an embodiment of a soil purification method according to the present invention. In the figure, 1 is a process of crushing lead-contaminated soil into single particles (hereinafter referred to as a first process), and 2 is a first process. The step of classifying the heavy metal contaminated soil crushed by the process into a soil particle group using a classifier (hereinafter referred to as the second step), 3 is magnetic sorting, specific gravity sorting, floating sorting of the soil classified by the second step The step of removing foreign matters mixed in the soil by a more selective separation means (hereinafter, third step), 4 uses an acidic solution for the sandy particles of the lead-contaminated soil from which foreign matters have been removed by the third step And a step (hereinafter referred to as a fourth step) and 5 indicate a step (hereinafter referred to as a fifth step) of rinsing (rinsing) the soil washed in the fourth step.

[第一の工程]
掘削された鉛汚染土壌を解砕手段により、土壌粒子が凝集し、塊状となった状態から単体粒子にときほぐすことを目的とする。
第一の工程により、単体粒子にときほぐされた土壌は、土壌粒子の大きさごとに分級が可能となる。土壌解砕機は、ドラムウオッシャー、パドルミキサー、ロットミル、アトライター、ボールミルなど既存の装置を利用する。
[First step]
The purpose is to loosen the excavated lead-contaminated soil from the aggregated and lump-like state to single particles by crushing means.
In the first step, the soil that has been loosened into single particles can be classified according to the size of the soil particles. The soil crusher uses existing equipment such as a drum washer, paddle mixer, lot mill, attritor, and ball mill.

[第二の工程]
第二の工程は、第一の工程で単体粒子にときほぐされた土壌を、シルト、粘土質と砂質に分級することを目的とする。
[Second step]
The purpose of the second step is to classify the soil that has been loosened into single particles in the first step into silt, clay, and sand.

分級は振動スクリーン、クラシファイア、スパイラル分級機、遠心分離機、サイクロン、フィルタプレスなどを単独または組み合わせて行う。   Classification is performed by using a vibrating screen, a classifier, a spiral classifier, a centrifuge, a cyclone, a filter press or the like alone or in combination.

分級する場合、粒子径0.075mm以下はシルト・粘土質、粒子径0.075mmを超える土壌は砂質となる。   When classifying, a particle size of 0.075 mm or less is silt / clay, and a soil having a particle size of more than 0.075 mm is sandy.

[第三の工程]
第三の工程は、鉛を含んだ塗料片,鉛散弾や鉛汚染物質が付着、吸着しやすい炭ガラ、金属片などの異物を比重選別機、磁力選別機,浮遊選別機で取り除くことを目的とする。
これらの異物、特に、金属片や塗料片,鉛散弾が存在すると、後段の酸性溶液による土壌洗浄において、これら異物の溶解反応が並行して発生するため、酸性溶液の消費量が増大する。したがって、これらの異物を酸性溶液による土壌洗浄の前に取り除いた方が好ましい。
[Third step]
The purpose of the third process is to remove foreign matter such as paint pieces containing lead, lead dust and lead pollutants, and carbon particles and metal pieces that are easily adsorbed and adsorbed by specific gravity sorters, magnetic sorters, and floating sorters. And
In the presence of these foreign substances, particularly metal pieces, paint pieces, and lead shots, the dissolution reaction of these foreign substances occurs in parallel in the soil washing with the acidic solution in the subsequent stage, so that the consumption amount of the acidic solution increases. Therefore, it is preferable to remove these foreign substances before soil washing with an acidic solution.

また、本工程は、酸性溶液による土壌洗浄の前であればよく、第一工程の土壌解砕や第二工程の土壌分級の前で実施してもよい。さらに、異物の混入量が少ない場合は、本工程を省略してもよい。   Moreover, this process should just be before soil washing | cleaning by an acidic solution, and may be implemented before the soil crushing of a 1st process and the soil classification of a 2nd process. Furthermore, this step may be omitted when the amount of foreign matter is small.

[第四の工程]
第四の工程は、第三の工程までに分級,異物除去された鉛汚染土壌のうち、砂質土壌を酸性溶液により洗浄し、洗浄後の酸性溶液を固液分離装置により回収することを目的とする。なお、シルト、粘土質土壌は、その汚染状態を考慮して、セメント原料への再利用、管理型施設への搬入処分等、別途処理するものとする。
[Fourth process]
The purpose of the fourth step is to wash the sandy soil with an acidic solution among the lead-contaminated soils classified and removed by the third step, and collect the washed acidic solution with a solid-liquid separator. And In addition, silt and clayey soil shall be treated separately, such as reuse for cement raw materials and delivery to managed facilities in consideration of their contamination.

本発明では、砂質土壌が所定の洗浄能力が得られるように酸性溶液による洗浄条件を規定する。洗浄条件として酸性溶液の濃度、pHおよび洗浄時間等を調整する。   In the present invention, the washing conditions with the acidic solution are defined so that the sandy soil has a predetermined washing ability. The concentration, pH, washing time, etc. of the acidic solution are adjusted as washing conditions.

以下、鉛汚染土壌に対して、最も浄化効果があり、且つ、経済的な塩酸を酸性溶液として用いた場合について述べる。   Hereinafter, a case where hydrochloric acid having the most purification effect and economical economical acid solution is used for the lead-contaminated soil will be described.

洗浄に用いる塩酸の濃度または量は洗浄の効果、洗浄後の土壌歩留まりなどを考慮すると、粒子径0.075mmを超える砂質土壌の場合、塩酸を混合した後の土壌のpHが0.5以下、好ましくは0以上0.5以下に調整すればよい。   The concentration or amount of hydrochloric acid used for washing considers the effect of washing, the soil yield after washing, etc. In the case of sandy soil with a particle diameter exceeding 0.075 mm, the pH of the soil after mixing hydrochloric acid is 0.5 or less Preferably, it may be adjusted to 0 or more and 0.5 or less.

すなわち、図3に示すとおり、pHが0.5以下にて鉛の溶解、抽出効果が優れていることが分かる。しかしながら、pHが0を下回ると鉛を溶解、抽出するほか、土壌を構成する主要鉱物、物質の溶解、抽出比率が増加し、浄化土壌の歩留まりが低下する上、洗浄後の液の処理、濯ぎに使用する水の量が増加するなどコストパフォーマンスが著しく低下する。   That is, as shown in FIG. 3, it can be seen that the lead dissolution and extraction effects are excellent when the pH is 0.5 or less. However, when the pH is lower than 0, lead is dissolved and extracted, the main minerals and substances constituting the soil are dissolved, the extraction ratio is increased, the yield of the purified soil is reduced, and the liquid after washing is rinsed and rinsed. Cost performance decreases significantly, such as an increase in the amount of water used.

また、図4に土壌粒子径0.075mm超え2.0mm以下の砂質の鉛汚染土壌を塩酸の濃度を変えて洗浄した場合におけるコストパフォーマンス(浄化効率=鉛除去率/浄化コスト)を説明する模式図を示す。   FIG. 4 explains cost performance (cleaning efficiency = lead removal rate / cleaning cost) when sandy lead-contaminated soil having a soil particle diameter of 0.075 mm and 2.0 mm or less is washed by changing the concentration of hydrochloric acid. A schematic diagram is shown.

本図において鉛含有量低減率、浄化コスト、浄化効率は従来より行われている浄化方法に相当する塩酸濃度1.0mol/Lを1とした。使用する塩酸の濃度はとくに規定するものではないが、本図および装置の規模や負担、作業性を考慮すると、塩酸濃度を0.4〜1.0 mol/Lの塩酸を使用するのが好ましい。   In this figure, the lead content reduction rate, the purification cost, and the purification efficiency are set to 1 at a hydrochloric acid concentration of 1.0 mol / L corresponding to the conventional purification method. Although the concentration of hydrochloric acid to be used is not particularly specified, it is preferable to use hydrochloric acid having a hydrochloric acid concentration of 0.4 to 1.0 mol / L in consideration of the figure, the scale, burden and workability of the apparatus. .

尚、砂質土壌の洗浄時間は上述の最適pH条件(pH=0.5以下)で洗浄を行なった場合、図5に示すとおり、5〜30分で洗浄後の鉛含有量が一定となるため、洗浄時間としては30分以下、洗浄装置のイニシャルコストを更に抑制する観点から好ましくは15分以下とすればよい。   When the sandy soil is washed under the above-mentioned optimum pH condition (pH = 0.5 or less), the lead content after washing becomes constant in 5 to 30 minutes as shown in FIG. Therefore, the cleaning time may be 30 minutes or less, and preferably 15 minutes or less from the viewpoint of further suppressing the initial cost of the cleaning device.

また、鉛汚染土壌と塩酸溶液の重量比は、洗浄の効率、効果、設備への負荷、規模などを考慮すると1:1〜1:2が好ましい。   The weight ratio between the lead-contaminated soil and the hydrochloric acid solution is preferably 1: 1 to 1: 2 in consideration of cleaning efficiency, effect, load on equipment, scale, and the like.

[第五の工程]
第五の工程は、第四の工程で酸性溶液により洗浄された鉛汚染土壌を、水により濯ぎ洗いし、残留する鉛や塩酸を除去することを目的とする。本発明で水とは水道水、それに準じるものを指す。
[Fifth process]
The purpose of the fifth step is to remove the remaining lead and hydrochloric acid by rinsing the lead-contaminated soil washed with the acidic solution in the fourth step with water. In the present invention, water refers to tap water and the like.

第三の工程を経た土壌はpHが低く、且つ鉛や塩素等の薬剤成分が残留し、埋め戻しての再利用において建物基礎の鉄骨腐食などを発生させるため、水により濯ぎ洗いを行う。   The soil that has undergone the third step has a low pH, and chemical components such as lead and chlorine remain. Rinse with water to cause the steel foundation corrosion of the building foundation when reused by backfilling.

図6に0.5および1(mol/L)塩酸にて鉛汚染土壌を洗浄した後、水と浄化土壌の重量比を1:1で濯ぎ洗いしたときの濯ぎ洗いの回数と残留塩素量との関係を示す。また、図7には1(mol/L)塩酸にて鉛汚染土壌を洗浄した場合の濯ぎ洗いの水と浄化土壌の重量比と残留塩素量の関係を示す。   Fig. 6 shows the relationship between the number of rinses and the amount of residual chlorine when lead-contaminated soil was washed with 0.5 and 1 (mol / L) hydrochloric acid and then rinsed with a weight ratio of water to purified soil of 1: 1. Indicates. FIG. 7 shows the relationship between the weight ratio of rinsing water and purified soil and the amount of residual chlorine when lead-contaminated soil is washed with 1 (mol / L) hydrochloric acid.

図6、7より使用する水の量が同一の場合、水比を少なくし、濯ぎ洗いの回数を増加させた方が残留する塩素量が低くなるため、水の使用量を抑えるためにも濯ぎ洗いの回数は2回以上とすることが好ましい。   6 and 7, when the amount of water used is the same, reducing the water ratio and increasing the number of times of rinsing reduces the amount of residual chlorine. The number of washings is preferably 2 or more.

また、濯ぎ洗い後に、アルカリ性の薬剤、例えば水酸化カルシウム、酸化カルシウムや炭酸カルシウムなどを用い、浄化土壌を中性領域とすることが好ましい。   In addition, after rinsing, it is preferable to use an alkaline agent such as calcium hydroxide, calcium oxide, calcium carbonate, etc. to make the purified soil a neutral region.

汚染経緯、土質の異なる3種類の有姿の鉛汚染土壌各々に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄し、0.075mmの振動篩いで分級した。   15% of water is added to each of the three types of solid lead-contaminated soils with different contamination backgrounds and soils, and after crushing at 100 rpm for 10 minutes with a paddle mixer, the water becomes a solid-liquid weight ratio of 1: 1. Were added. The soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and classified with a 0.075 mm vibrating sieve.

分級後の篩い上土壌に対し、固液重量比1:1で1.0mol/Lの塩酸溶液を添加し、10分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは洗浄開始直後で0、終了前で0.3であった。   A 1.0 mol / L hydrochloric acid solution at a solid-liquid weight ratio of 1: 1 was added to the sieved soil after classification, and the mixture was stirred for 10 minutes (stirring condition: rotation speed of stirring blade 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was 0 immediately after the start of cleaning and 0.3 before the end.

得られた浄化土壌を固液重量比1:1の水で濯ぎ洗いし、その後クラシファイヤで脱水、この濯ぎ洗い操作を2回繰り返した。その後、消石灰を添加、混合して土壌を中和(pH=7〜9)、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。   The obtained purified soil was rinsed with water having a solid / liquid weight ratio of 1: 1, then dehydrated with a classifier, and this rinsing operation was repeated twice. Thereafter, slaked lime was added and mixed to neutralize the soil (pH = 7-9) and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19.

結果を表1に示す。   The results are shown in Table 1.

Figure 2005279531
Figure 2005279531

工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄した後、1500ガウスの湿式ドラム磁選器を用い、着磁物と非着磁物に分けた。   15% of water was added to the lead-contaminated soil collected from the factory site, and after crushing at 100 rpm for 10 minutes with a paddle mixer, water was added at a solid-liquid weight ratio of 1: 1. This soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and then divided into a magnetized material and a non-magnetized material using a 1500 gauss wet drum magnetic separator.

非着磁物は0.075mmの振動篩いで分級し、篩い上土壌に対し、固液重量比1:1で1.0mol/Lの塩酸溶液を添加し、10分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは洗浄開始直後で0.05、終了前で0.25であった。   Non-magnetized material is classified with a 0.075 mm vibrating sieve, and a 1.0 mol / L hydrochloric acid solution at a solid-liquid weight ratio of 1: 1 is added to the soil on the sieve and stirred for 10 minutes (stirring conditions: stirring blades) Of 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was 0.05 immediately after the start of cleaning and 0.25 before the end.

得られた浄化土壌を固液重量比1:1の水で濯ぎ洗いし、その後クラシファイヤで脱水、この濯ぎ洗い操作を2回繰り返した。その後、消石灰を添加、混合して土壌を中和(pH=7〜9)、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。   The obtained purified soil was rinsed with water having a solid / liquid weight ratio of 1: 1, then dehydrated with a classifier, and this rinsing operation was repeated twice. Thereafter, slaked lime was added and mixed to neutralize the soil (pH = 7-9) and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19.

結果を表2に示す。   The results are shown in Table 2.

Figure 2005279531
Figure 2005279531

工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄した後、0.5mm〜4.75mmの粒度土壌を振動篩いで分級した。   15% of water was added to the lead-contaminated soil collected from the factory site, and after crushing at 100 rpm for 10 minutes with a paddle mixer, water was added at a solid-liquid weight ratio of 1: 1. The soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and then the soil having a particle size of 0.5 mm to 4.75 mm was classified with a vibration sieve.

この土壌をジグ比重選別器で上層と下層、2段の比重選別を行った。上層土壌に対し、固液重量比1:1で1.0mol/Lの塩酸溶液を添加し、5分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。   This soil was subjected to a two-stage specific gravity sorting of upper and lower layers using a jig specific gravity sorter. A 1.0 mol / L hydrochloric acid solution at a solid-liquid weight ratio of 1: 1 was added to the upper soil layer, and the mixture was stirred for 5 minutes (stirring conditions: the number of revolutions of a stirring blade was 300 rpm).

この時の塩酸洗浄液のpHは洗浄開始直後で0.02、終了前で0.2であった。得られた浄化土壌を固液重量比1:1の水で濯ぎ洗いし、その後クラシファイヤで脱水、この濯ぎ洗い操作を2回繰り返した。その後、消石灰を添加、混合して土壌を中和(pH=7〜9)、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。   The pH of the hydrochloric acid cleaning solution at this time was 0.02 immediately after the start of cleaning and 0.2 before the end. The obtained purified soil was rinsed with water having a solid / liquid weight ratio of 1: 1, then dehydrated with a classifier, and this rinsing operation was repeated twice. Thereafter, slaked lime was added and mixed to neutralize the soil (pH = 7-9) and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19.

結果を表3に示す。   The results are shown in Table 3.

Figure 2005279531
Figure 2005279531

比較例1として、実施例1で用いた汚染経緯、土質の異なる3種類の有姿の鉛汚染土壌各々に水を15%添加後パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄し、0.075mmの振動篩いで分級した。   As Comparative Example 1, 15% of water was added to each of the three kinds of solid lead-contaminated soils having different contamination backgrounds and soils used in Example 1, and then crushed at 100 rpm for 10 minutes using a paddle mixer. Was added at a solid-liquid weight ratio of 1: 1. The soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and classified with a 0.075 mm vibrating sieve.

分級後の篩い上土壌に対し、固液重量費比1:1で水を添加し、10分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。その後、クラシファイヤで脱水し、風乾後、環境省告示第19号の方法に準拠し、鉛含有量を測定した。結果を表4に示す。   Water was added to the sieved soil after classification at a solid-liquid weight cost ratio of 1: 1, and the mixture was stirred for 10 minutes (stirring conditions: rotation speed of stirring blade 300 rpm). Then, after dehydrating with a classifier and air-drying, the lead content was measured in accordance with the method of Ministry of the Environment Notification No. 19. The results are shown in Table 4.

Figure 2005279531
Figure 2005279531

比較例2として、実施例2で用いた工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。   As Comparative Example 2, 15% of water was added to the lead-contaminated soil collected from the factory site used in Example 2, and after crushing at 100 rpm for 10 minutes with a paddle mixer, the water was in a liquid-solid weight ratio of 1: 1 was added.

この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄した後、1500ガウスの湿式ドラム磁選器を用い、着磁物と非着磁物に分けた。着磁物、非着磁物それぞれを0.075mmの振動篩いで分級し、篩い上土壌を風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。
結果を表5に示す。
This soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and then divided into a magnetized material and a non-magnetized material using a 1500 gauss wet drum magnetic separator. Each of the magnetized material and the non-magnetized material was classified with a vibration sieve of 0.075 mm, and the soil on the sieve was air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19.
The results are shown in Table 5.

Figure 2005279531
Figure 2005279531

比較例3として、実施例3で用いた工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。   As Comparative Example 3, 15% of water was added to the lead-contaminated soil collected from the factory site used in Example 3, and after crushing at 100 rpm for 10 minutes with a paddle mixer, the water was in a solid-liquid weight ratio of 1: 1 was added.

この土壌スラリーを攪拌翼の回転数300rpmで10分間水洗浄した後、0.5mm〜4.75mmの粒度土壌を振動篩いで分級した。この土壌をジグ比重選別器で上層と下層、2段の比重選別を行った。   The soil slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and then the soil having a particle size of 0.5 mm to 4.75 mm was classified with a vibration sieve. This soil was subjected to a two-stage specific gravity sorting of upper and lower layers using a jig specific gravity sorter.

上層、下層土壌を0.5mmの振動篩いで分級、篩い上土壌を風乾し、この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。結果を表6に示す。   The upper and lower soils were classified with a 0.5 mm vibrating sieve, the sieved soil was air-dried, and the purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19. The results are shown in Table 6.

Figure 2005279531
Figure 2005279531

本発明の一実施形態に係る鉛汚染土壌浄化方法の工程図。The process drawing of the lead pollution soil purification method concerning one embodiment of the present invention. 鉛汚染濃度と土壌粒子径の関係を示す図。The figure which shows the relationship between a lead contamination density | concentration and a soil particle diameter. 浄化後の土壌中の鉛含有量に及ぼす土壌/塩酸溶液混合後のpHの影響を示す図。The figure which shows the influence of pH after soil / hydrochloric acid solution mixing on the lead content in the soil after purification | cleaning. 鉛の浄化特性に及ぼす塩酸濃度の影響を示す特性図。The characteristic view which shows the influence of the hydrochloric acid concentration on the purification characteristic of lead. 浄化後の鉛含有量に及ぼす酸性溶液での土壌洗浄時間の影響を示す図。The figure which shows the influence of the soil washing | cleaning time in an acidic solution on the lead content after purification | cleaning. 浄化後の土壌中の残留物の量に及ぼす濯ぎ洗い回数の影響を示す図。The figure which shows the influence of the number of times of rinsing on the quantity of the residue in the soil after purification | cleaning. 浄化後の土壌中の残留物の量に及ぼす濯ぎ洗いの水量比の影響を示す図。The figure which shows the influence of the water quantity ratio of the rinse washing on the quantity of the residue in the soil after purification | cleaning. 酸性溶液の種類と土壌粒子:0.075〜2mmの砂質土の浄化後の鉛含有量の関係を示す図。The figure which shows the relationship between the kind of acidic solution and soil content: Lead content after purification | cleaning of 0.075-2mm sandy soil.

Claims (4)

以下の工程を備えたことを特徴とする、鉛汚染土壌の浄化方法。
a 鉛汚染土壌を解砕する第一の工程。
b 第一の工程により解砕された土壌を特定の粒子径を境に少なくとも2つ以上の粒子群に分級する第二の工程。
c 第二の工程により分級された土壌を磁力選別,比重選別,浮遊選別より選択される分別手段により土壌に混合する異物を除去する第三工程。
d 第三の工程により異物が除去された土壌を前記粒子群毎に酸性溶液により洗浄後、固液分離装置により土壌と酸性溶液に分離し、回収された酸性溶液は前記土壌の洗浄に一部もしくはすべて再循環使用する第四の工程。
e 第四の工程により酸性溶液により洗浄された土壌を粒子群毎に濯ぎ液により洗浄する第五の工程。
A method for purifying lead-contaminated soil, comprising the following steps.
a First step of crushing lead-contaminated soil.
b A second step of classifying the soil crushed in the first step into at least two particle groups with a specific particle diameter as a boundary.
c A third step of removing the foreign matter mixed in the soil by the sorting means selected from magnetic sorting, specific gravity sorting, and floating sorting of the soil classified in the second step.
d After the soil from which foreign matters have been removed in the third step is washed with an acidic solution for each particle group, the solid solution is separated into soil and acidic solution by a solid-liquid separator, and the collected acidic solution is partly used for washing the soil. Or the 4th process that recycles all.
e Fifth step of washing the soil washed with the acidic solution in the fourth step with a rinsing liquid for each particle group.
第四の工程における、酸性溶液による洗浄をpHが0.5以下の環境下で行う請求項1記載の鉛汚染土壌の浄化方法。   The method for purifying lead-contaminated soil according to claim 1, wherein washing with an acidic solution in the fourth step is performed in an environment having a pH of 0.5 or less. 第四の工程における鉛汚染土壌が0.075mm以上の粒子径の土壌を主体とすることを特徴とする請求項1または2記載の鉛汚染土壌の浄化方法。   The lead-contaminated soil purification method according to claim 1 or 2, wherein the lead-contaminated soil in the fourth step is mainly soil having a particle diameter of 0.075 mm or more. 第二の工程の酸性溶液が塩酸溶液であることを特徴とする請求項1乃至3の何れか一つに記載の鉛汚染土壌の浄化方法。   The method for purifying lead-contaminated soil according to any one of claims 1 to 3, wherein the acidic solution in the second step is a hydrochloric acid solution.
JP2004099601A 2004-03-30 2004-03-30 Method for cleaning lead polluted soil Pending JP2005279531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099601A JP2005279531A (en) 2004-03-30 2004-03-30 Method for cleaning lead polluted soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099601A JP2005279531A (en) 2004-03-30 2004-03-30 Method for cleaning lead polluted soil

Publications (1)

Publication Number Publication Date
JP2005279531A true JP2005279531A (en) 2005-10-13

Family

ID=35178484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099601A Pending JP2005279531A (en) 2004-03-30 2004-03-30 Method for cleaning lead polluted soil

Country Status (1)

Country Link
JP (1) JP2005279531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093509A (en) * 2006-10-06 2008-04-24 Mitsubishi Materials Corp Treatment method of display panel waste
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil
JP2012061374A (en) * 2010-09-14 2012-03-29 Dowa Eco-System Co Ltd Method and device of remediating contaminated soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093509A (en) * 2006-10-06 2008-04-24 Mitsubishi Materials Corp Treatment method of display panel waste
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil
JP2012061374A (en) * 2010-09-14 2012-03-29 Dowa Eco-System Co Ltd Method and device of remediating contaminated soil

Similar Documents

Publication Publication Date Title
JP5923039B2 (en) Soil purification method
US10118182B2 (en) Incineration byproduct processing and methods
JP4823387B1 (en) Material recycling system for producing sand products from mineral mixtures
JP6334263B2 (en) Purification method for heavy metal contaminated soil
CN104889149A (en) Ectopic classification leaching repair complete process of arsenic and heavy metal contaminated soil
JP2013173085A (en) Treatment system of aqueous muddy material containing ferrous metals particle and heavy metals
US20120298562A1 (en) Ash processing and metals recovery systems and methods
WO2004037453A1 (en) Method for clarifying soil
JP7084883B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
JP4568893B2 (en) Purification method of contaminated soil
CN102275930B (en) Recycling method for silicon powder
JP2006051440A (en) Purification method of heavy metal contaminated soil
JP6363969B2 (en) Method and apparatus for treating heavy metal contaminated soil
JP2005279530A (en) Method for cleaning lead polluted soil
JP3968752B2 (en) Purification method for heavy metal contaminated soil
JP2005028290A (en) Treatment method for soil polluted with heavy metal
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
JP2005279531A (en) Method for cleaning lead polluted soil
JP2005279529A (en) Method for cleaning heavy metal polluted soil
JP3233907B2 (en) How to treat shredder dust dry matter
JP3178252B2 (en) Metal recovery from fly ash
JP6640028B2 (en) How to clean cesium-contaminated soil
JP3891372B2 (en) How to clean contaminated soil
JP2005279500A (en) Method for cleaning heavy metal polluted soil
JP4097562B2 (en) Purification method for heavy metal contaminated soil