JP2006051440A - Purification method of heavy metal contaminated soil - Google Patents

Purification method of heavy metal contaminated soil Download PDF

Info

Publication number
JP2006051440A
JP2006051440A JP2004234832A JP2004234832A JP2006051440A JP 2006051440 A JP2006051440 A JP 2006051440A JP 2004234832 A JP2004234832 A JP 2004234832A JP 2004234832 A JP2004234832 A JP 2004234832A JP 2006051440 A JP2006051440 A JP 2006051440A
Authority
JP
Japan
Prior art keywords
soil
heavy metal
contaminated soil
acidic solution
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234832A
Other languages
Japanese (ja)
Inventor
Tetsuya Watanabe
哲哉 渡辺
Hiroyuki Oshida
裕之 押田
Atsushi Yamaguchi
山口  篤
Atsushi Matsuo
淳 松尾
Takashi Kosugi
剛史 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
JFE Koken Co Ltd
Original Assignee
JFE Mineral Co Ltd
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd, JFE Koken Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2004234832A priority Critical patent/JP2006051440A/en
Publication of JP2006051440A publication Critical patent/JP2006051440A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification method of heavy metal contaminated soil that purifies heavy metal contaminated soil inexpensively. <P>SOLUTION: The purification method of the heavy metal contaminated soil comprises cracking the heavy metal contaminated soil to form a plurality of particle groups classified by particle size, then firstly conducting the pickling of the heavy metal contaminated soil of the smallest particle size group, adding the residual classified heavy metal contaminated soil to a slurry comprised of the heavy metal contaminated soil of the smallest particle size group and the acid solution after the pickling and conducting the mixed washing upon every addition when adding and washing the heavy metal contaminated soil of the smallest particle size group to the largest particle size group in order, lastly adding the heavy metal contaminated soil of the largest particle size and subjecting the slurry obtained from the mixed washing to a solid-liquid separator to separate the soil and the acid solution, wherein the rinsing of the soil is conducted preferably at an area of pH 2 or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛などの重金属に汚染された土壌を酸性溶液により洗浄する浄化方法に関し、安価な費用で浄化が可能なものに関する。   The present invention relates to a purification method for washing soil contaminated with heavy metals such as lead with an acidic solution, and relates to a method capable of purification at a low cost.

鉛などの重金属に汚染された土壌を浄化する技術として、a水洗分級法、b加熱処理法、c電気泳動法が知られている。   As techniques for purifying soil contaminated with heavy metals such as lead, a washing classification method, b heat treatment method, and c electrophoresis method are known.

水洗分級法は、水洗・分塊,もしくは物理的な土壌研磨等により粗い土壌粒子表面から汚染物質または汚染物質を多量に含む微粒子を分離,濃集,捕捉する方法である。   The water washing classification method is a method for separating, concentrating, and capturing fine particles containing a large amount of contaminants or contaminants from the surface of coarse soil particles by washing, lump or physical soil polishing.

水洗分級法の場合、土壌磨砕が不十分であると、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子が完全に除去されず、汚染物質を土壌指定基準値以下まで低減できない可能性がある。   In the case of the water washing classification method, if the soil grinding is insufficient, contaminants from coarse soil particles or fine particles containing a large amount of contaminants may not be completely removed, and it may not be possible to reduce the contaminants to below the specified soil standard value. There is sex.

また、土壌磨砕時間を長くしたり、粗い土壌粒子表面を完全に研磨する高度磨砕装置を適用することにより、粗い土壌粒子からの汚染物質または汚染物質を多量に含む微粒子の除去率を向上させることは可能であるが、この場合においても高濃度に汚染された土壌では、汚染物質を土壌指定基準値以下まで確実に低減できるとは限らない。さらに、この場合、前者はランニングコストの増大,後者は装置イニシャルコストの増大となることが指摘されている。また、磨砕による微粒子量が増加し浄化土壌の歩留まりが低下させることとなる。   In addition, the removal rate of fine particles containing a large amount of contaminants or contaminants from coarse soil particles is improved by extending the soil grinding time or applying an advanced grinding device that completely polishes the surface of coarse soil particles. However, even in this case, in soil contaminated at a high concentration, it is not always possible to reliably reduce the pollutant to a soil designated reference value or less. Furthermore, in this case, it is pointed out that the former increases the running cost and the latter increases the initial cost of the apparatus. In addition, the amount of fine particles by grinding increases and the yield of the purified soil decreases.

加熱処理法は、土壌をロータリーキルンや電気抵抗炉等で加熱焼結またはガラス固化することにより、汚染物質である鉛等の重金属などを非常に安定な状態として封じ込める方法である。   The heat treatment method is a method of containing heavy metals such as lead as a pollutant in a very stable state by heating and sintering or vitrifying the soil with a rotary kiln or an electric resistance furnace.

加熱処理法の場合、鉛などの重金属により汚染されている土壌の場合、加熱焼結またはガラス固化状態にするために、加熱焼結:800〜1200℃,ガラス固化:1600〜2000℃まで加熱する必要があり、大量の熱源を必要とし、ランニングコストの増大を招く。   In the case of the heat treatment method, in the case of soil contaminated with heavy metals such as lead, heat sintering: 800 to 1200 ° C., vitrification: 1600 to 2000 ° C. are carried out in order to obtain heat sintering or vitrification. This requires a large amount of heat source, which increases running costs.

さらに、加熱時に発生する排ガスに対しても適切に処理する付加設備等が必要となり、イニシャルコスト増大につながる。また、汚染物質である鉛などの重金属を揮発除去していない場合、加熱焼結やガラス固化状態が完全に形成されていないと、汚染物質が再溶出する可能性のあることが指摘されている。   Furthermore, additional equipment for appropriately treating exhaust gas generated during heating is required, leading to an increase in initial cost. In addition, it is pointed out that if heavy metals such as lead, which is a contaminant, are not volatilized and removed, the contaminant may re-elute if the heat-sintered or vitrified state is not completely formed. .

電気泳動法は、汚染された土壌に対して陽極と陰極を設け、電解液等を加えた後に直流電流を流すことにより、汚染物質を電極近傍に集め、除去する方法である。   Electrophoresis is a method of collecting and removing contaminants in the vicinity of an electrode by providing an anode and a cathode for contaminated soil, and applying a direct current after adding an electrolyte or the like.

電気泳動法の場合、低電圧,低電流で実施した場合、その浄化速度は非常に遅くなり、浄化完了まで非常に長時間を要する。また、高電圧,高電流で実施した場合、浄化速度は速くなると考えられるが、多量の電力を必要とし、ランニングコストが非常に高いものとなる。また、電極表面が汚染物質等で覆われてしまうと、その除去効率が劣化するため、随時、電極近傍に濃集された汚染物質を除去しなければならず、特別な構造をもった電極及び汚染物質回収装置が必要となることが指摘されている。   In the case of electrophoresis, when it is carried out at a low voltage and a low current, the purification speed becomes very slow, and it takes a very long time to complete the purification. In addition, when it is carried out at a high voltage and a high current, the purification speed is considered to be high, but a large amount of power is required and the running cost becomes very high. In addition, if the electrode surface is covered with contaminants and the like, the removal efficiency deteriorates. Therefore, the contaminants concentrated near the electrode must be removed from time to time. It has been pointed out that a pollutant recovery device is required.

上述したように、水洗分級法、加熱処理法、電気泳動法のいずれの方法にも、欠点があるため近年では浄化時間の短縮,鉛汚染物質の除去効率の向上を図ることを目的として、酸性溶液での薬剤抽出,洗浄が提案されている。   As described above, all of the water washing classification method, heat treatment method and electrophoresis method have drawbacks, so in recent years, with the aim of shortening the purification time and improving the removal efficiency of lead contaminants, Drug extraction and cleaning with solutions have been proposed.

例えば、特許文献1には酸性溶液添加時、もしくは添加後、強いアトリッションを加え、重金属汚染物質の除去する方法が記載されている。特許文献2では酸性溶液で重金属汚染物質を抽出後、その抽出液に界面活性剤を加え気泡により重金属を回収する方法が記載されている。特許文献3でも酸性溶液を使用した土壌抽出,洗浄法が記載されている。   For example, Patent Document 1 describes a method of removing heavy metal contaminants by applying strong attrition at the time of addition of an acidic solution or after the addition. Patent Document 2 describes a method in which a heavy metal contaminant is extracted with an acidic solution, a surfactant is added to the extract, and heavy metal is recovered by bubbles. Patent Document 3 also describes a soil extraction and washing method using an acidic solution.

特許文献1〜3に開示されている浄化方法の場合、土壌性状,薬剤種類,薬剤濃度,洗浄時間,固液重量比等、多くのパラメータが存在するため、これらのパラメータの中から、最適条件を見出すことは非常に困難で、技術を具体化し、現地に適用する場合、種々の不利益が生じている。   In the case of the purification methods disclosed in Patent Documents 1 to 3, since there are many parameters such as soil properties, chemical types, chemical concentrations, cleaning times, solid-liquid weight ratios, etc., the optimum conditions are selected from these parameters. It is very difficult to find and various disadvantages arise when the technology is embodied and applied locally.

例えば、過度の薬剤濃度や洗浄時間,固液重量比で洗浄を行なった場合は、装置が大きくなり、ランニングコストが増大するため、浄化コストアップの要因となるばかりか土壌粒子の溶解による浄化土壌の歩留まりも低下する。また、薬剤濃度や洗浄時間,固液重量比が不足した条件下で洗浄を行なった場合、洗浄後の土壌を土壌指定基準値以下まで低減できない危険性がある。   For example, when cleaning is performed with excessive chemical concentration, cleaning time, and solid-liquid weight ratio, the equipment becomes large and the running cost increases. Yield is also reduced. In addition, when washing is performed under conditions where the chemical concentration, washing time, and solid-liquid weight ratio are insufficient, there is a risk that the soil after washing cannot be reduced below the soil specification standard value.

これらの問題を解決すべく、本発明者らは特願2004−099599号でコストパフォーマンスに優れた土壌浄化技術を開発した。   In order to solve these problems, the present inventors have developed a soil purification technology with excellent cost performance in Japanese Patent Application No. 2004-099599.

特開平11−197643号公報JP-A-11-197643 特開2002−371324号公報JP 2002-371324 A 特開2001−149913号公報JP 2001-149913 A

特願2004−099599号は、シルト・粘土質からなる細粒土壌等の高濃度に汚染された土壌を洗浄した酸性溶液を固液分離し、回収された酸性溶液を砂質からなる粗粒土壌等の低濃度に汚染された土壌の洗浄に使用するものである。   In Japanese Patent Application No. 2004-099599, an acidic solution obtained by washing highly contaminated soil such as fine soil made of silt or clay is solid-liquid separated, and the recovered acidic solution is used for coarse soil made of sand. It is used to wash soil contaminated with low concentrations such as.

しかしながら特願2004−099599号記載の方法では固液分離後の土壌への酸性溶液の付着が少なからず発生するため、固液分離装置によって酸性溶液を完全に回収することができず、再利用できる量が減少する。   However, in the method described in Japanese Patent Application No. 2004-099599, the acidic solution adheres to the soil after the solid-liquid separation, so that the acidic solution cannot be completely recovered by the solid-liquid separation device and can be reused. The amount decreases.

また、酸性溶液で洗浄された土壌を各粒子群毎に濯ぎ洗いを行う場合には、多くのリンス槽を必要とし、更に、それらリンス槽を設置するためのスペースも大きくなる。   In addition, when rinsing the soil washed with an acidic solution for each particle group, a large number of rinse tanks are required, and the space for installing these rinse tanks also increases.

本発明は、これらの問題点を解決した、更にコストパフォーマンスに優れた土壌浄化技術を提供することを目的とする。   An object of the present invention is to provide a soil purification technology that solves these problems and is further excellent in cost performance.

本発明者らは、重金属に汚染された土壌(以下、重金属汚染土壌)を酸性溶液を用いて浄化する方法について鋭意検討し、シルト・粘土などの細粒汚染土壌(以下、細粒汚染土壌)や高濃度に汚染された汚染土壌(以下、高濃度汚染土壌)を洗浄して得られるスラリ中に、砂質などの粗粒汚染土壌(以下、粗粒汚染土壌)やより低濃度に汚染された土壌(以下、低濃度汚染土壌)を混合して洗浄を行うコストパフォーマンスに優れた土壌浄化技術を完成させた。本発明においてスラリは酸性溶液により浄化された汚染土壌と、汚染土壌を洗浄した後の酸性溶液を含む。   The present inventors have intensively studied a method for purifying soil contaminated with heavy metals (hereinafter, heavy metal-contaminated soil) using an acidic solution, and finely contaminated soil such as silt and clay (hereinafter, finely contaminated soil). In a slurry obtained by washing contaminated soil contaminated with high concentration (hereinafter referred to as “highly contaminated soil”), it is contaminated with coarsely contaminated soil such as sand (hereinafter referred to as “polluted contaminated soil”) or at a lower concentration. We have completed a soil purification technology with excellent cost performance that mixes and cleans fresh soil (hereinafter, low-contaminated soil). In the present invention, the slurry includes contaminated soil purified by an acidic solution and an acidic solution after washing the contaminated soil.

図9は重金属の一つである鉛に汚染された土壌(以下、鉛汚染土壌)について、土壌粒子径毎の鉛含有率を調査した結果を示すもので、土壌粒子径に依存して鉛含有率は変化し、土壌粒子径が大きくなると鉛含有率は低下する。   Fig. 9 shows the results of an investigation of the lead content for each soil particle size for soil contaminated with lead, one of the heavy metals (hereinafter lead-contaminated soil), and contains lead depending on the soil particle size. The rate changes, and the lead content decreases as the soil particle size increases.

また、シルト・粘土などの細粒土壌の場合、土壌微粒子、特に粘土鉱物による永久電荷作用やアロフェンなどの変異電荷作用により重金属などの汚染物質と強固に結合しやすい。また、細粒土壌は粗粒土壌に比べ活性が高く重金属と難溶性の化合物、鉱物を形成しやすい。一方、砂質などの粗粒土壌の場合は、土粒子表面への物理吸着や付着などで比較的緩やかに結合している場合が多い。   In addition, in the case of fine-grained soil such as silt and clay, it is easy to bind firmly to contaminants such as heavy metals due to permanent charge action by soil fine particles, especially clay minerals, and mutation charge action such as allophane. Fine-grained soil is more active than coarse-grained soil and tends to form heavy metals, sparingly soluble compounds and minerals. On the other hand, in the case of coarse-grained soil such as sandy material, it is often bonded relatively gently due to physical adsorption or adhesion to the surface of the soil particles.

そこで、本発明は、重金属汚染土壌を土壌粒子径毎に分級し、土壌粒子径が小さい土壌を浄化する場合は低いpH領域すなわち高い酸容量(高い酸濃度および/または少ない酸性溶液量)とし、土壌粒子径が大きい場合は土壌粒子径が小さい場合に比べて高いpH領域、すなわち低い酸容量(低い酸濃度および/または多い酸性溶液量)とする。   Therefore, the present invention classifies heavy metal-contaminated soil for each soil particle size, and when purifying soil with a small soil particle size, a low pH region, that is, a high acid capacity (high acid concentration and / or a small amount of acidic solution), When the soil particle size is large, the pH is higher than that when the soil particle size is small, that is, a low acid capacity (low acid concentration and / or a large amount of acidic solution).

鉛汚染土壌は塩酸で洗浄すると最も除去効率が高い。図10、11は鉛汚染土壌を種々の酸性溶液で洗浄した場合の、洗浄後の鉛含有量を示し(攪拌翼の回転数300rpmの攪拌洗浄装置を用い15分間洗浄、塩酸濃度:図11は1mol/L、図10は3mol/L、塩酸量:図10は固液重量比1:1、図11は1:2での試験結果。)、図10は土壌粒子が粗粒(砂質)の場合、図11は土壌粒子が細粒(シルト・粘土)の場合を示す。   Lead-contaminated soil has the highest removal efficiency when washed with hydrochloric acid. FIGS. 10 and 11 show the lead content after washing when the lead-contaminated soil is washed with various acidic solutions (washing using a stirring washing device with a stirring blade rotating at 300 rpm for 15 minutes, hydrochloric acid concentration: FIG. 11 1 mol / L, FIG. 10 is 3 mol / L, hydrochloric acid amount: FIG. 10 is a solid-liquid weight ratio of 1: 1, FIG. 11 is a test result at 1: 2, and FIG. 10 is a coarse soil particle (sandy) FIG. 11 shows a case where the soil particles are fine (silt / clay).

本発明では入手価格や、鉛を除去する性能の観点より酸性溶液として、塩酸を用いることが好ましい。  In the present invention, it is preferable to use hydrochloric acid as the acidic solution from the viewpoint of availability and the ability to remove lead.

本発明は、
1 重金属汚染土壌を酸性溶液で酸洗して浄化する方法において、
重金属汚染土壌を解砕し、粒子径毎に分級された複数の粒子群とした後、最初に最も粒子径の小さい粒子群の重金属汚染土壌を酸洗し、酸洗後の前記最も粒子径の小さい粒子群の重金属汚染土壌と酸性溶液からなるスラリに、
残余の、分級された粒子群の重金属汚染土壌を、小さい粒子径の粒子群の重金属汚染土壌から大きい粒子径の粒子群の重金属汚染土壌を順次、添加して洗浄する際、添加する都度混合洗浄を行い、
最後に最も粒子径の大きい粒子群の重金属汚染土壌を添加し、混合洗浄して得られるスラリについて固液分離装置で土壌と酸性溶液を分離し、前記土壌の濯ぎ洗いを行うことを特徴とする重金属汚染土壌の浄化方法。
2 最も粒子径の大きい粒子群を添加し、混合洗浄して得られたスラリを固液分離装置で土壌と酸性溶液に分離し、前記土壌の濯ぎ液による洗浄をpH2以下の領域で行うことを特徴とする1記載の重金属汚染土壌の浄化方法。
3 濯ぎ洗い後に得られる土壌を解砕前の重金属汚染土壌と同じpHに調整することを特徴とする1または2記載の重金属汚染土壌の浄化方法。
4 濯ぎ洗い後に得られる土壌を解砕前の重金属汚染土壌と同じpHに調整後、重金属汚染土壌を採取した地点もしくは近傍の非汚染土壌および/または腐葉土を混合することを特徴とする3記載の重金属汚染土壌の浄化方法。
5 固液分離装置で分離された土壌の濯ぎ洗いにおいて、濯ぎ回数Nが下記の式を満たすことを特徴とする1乃至4のいずれか一つに記載の重金属汚染土壌の浄化方法。
但し、土壌と濯ぎ液との固液重量比:A、固液分離後の土壌の含水率:B、酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0、土壌含有量指定基準:αとする。
N≧2.2×ln[1.3×(α/C0)]/ln[B/{A×(1−B)}]−1
6 重金属汚染土壌を解砕し、最も粒子径の小さい粒子群を粒子径0.075mm未満とし、最も粒子径の大きい粒子群を粒子径0.075mm以上2.0mm以下とし、前記粒子径0.075mm未満の粒子群を、前記粒子径0.075mm未満の粒子群と混合後においてpH−0.3以下となる酸性溶液で洗浄しスラリとした後、次に、粒子径0.075mm以上2.0mm以下に分級された粒子群の土壌を前記スラリに添加し、混合後においてpH0.5以下となる酸性溶液で洗浄することを特徴とする5記載の重金属汚染土壌の浄化方法。
7 重金属汚染土壌を酸性溶液で酸洗して浄化する方法において、
重金属汚染土壌を汚染濃度毎に分別された複数の群とした後、最初に最も汚染濃度の高い群の重金属汚染土壌を酸洗し、酸洗後の、前記最も汚染濃度の高い群の重金属汚染土壌と酸性溶液からなるスラリに、
残余の群の重金属汚染土壌を、汚染濃度の高い重金属汚染土壌の群から汚染濃度の低い重金属汚染土壌の群を順次、添加して洗浄する際、添加する都度混合洗浄を行い、
最後に最も汚染濃度の低い重金属汚染土壌を添加し、混合洗浄して得られるスラリについて固液分離装置で土壌と酸性溶液を分離し、前記土壌の濯ぎ洗いを行うことを特徴とする重金属汚染土壌の浄化方法。
8 重金属が鉛で、酸性溶液が塩酸であることを特徴とする1乃至7のいずれか一つに記載の重金属汚染土壌の浄化方法。
9 重金属汚染土壌を酸性溶液で洗浄する際、酸性溶液で洗浄した後の濯ぎ液による土壌の濯ぎ洗いにおいて、濯ぎ液による洗浄をpH2以下の領域で行うことを特徴とする重金属汚染土壌の浄化方法。
10 重金属汚染土壌を酸性溶液で洗浄する際、酸性溶液で洗浄した後の濯ぎ液による土壌の濯ぎ洗いにおいて、濯ぎ回数Nが下記の式を満たすことを特徴とする重金属汚染土壌の浄化方法。
但し、土壌と濯ぎ液との固液重量比:A、固液分離後の土壌の含水率:B、酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0、土壌含有量指定基準:αとする。
N≧2.2×ln[1.3×(α/C0)]/ln[B/{A×(1−B)}]−1
The present invention
1 In a method of pickling and cleaning heavy metal contaminated soil with an acid solution,
After pulverizing the heavy metal contaminated soil into a plurality of particle groups classified according to particle size, first pickle the heavy metal contaminated soil of the particle group having the smallest particle size, In slurry consisting of heavy metal contaminated soil and acidic solution of small particles,
When the remaining heavy metal contaminated soil of classified particles is washed by sequentially adding heavy metal contaminated soil of large particle size to heavy metal contaminated soil of small particle size, mixed washing each time it is added And
Finally, the heavy metal-contaminated soil of the particle group having the largest particle size is added, and the slurry obtained by mixing and washing is separated from the soil and the acidic solution with a solid-liquid separator, and the soil is rinsed. Purification method for heavy metal contaminated soil.
2. Adding a particle group having the largest particle diameter, separating the slurry obtained by mixing and washing into soil and acidic solution using a solid-liquid separator, and washing the soil with a rinse solution in a pH of 2 or less. 2. The method for purifying heavy metal-contaminated soil according to 1.
3. The method for purifying heavy metal-contaminated soil according to 1 or 2, wherein the soil obtained after rinsing is adjusted to the same pH as the heavy metal-contaminated soil before pulverization.
4. The soil obtained after rinsing is adjusted to the same pH as the heavy metal-contaminated soil before crushing, and then mixed with non-contaminated soil and / or humus soil at or near the site where the heavy metal-contaminated soil is collected. Purification method for heavy metal contaminated soil.
5. The method for purifying heavy metal-contaminated soil according to any one of 1 to 4, wherein in rinsing the soil separated by the solid-liquid separator, the number of times of rinsing N satisfies the following formula.
However, solid-liquid weight ratio between soil and rinsing liquid: A, moisture content of soil after solid-liquid separation: B, soil content of target pollutant before washing with acidic solution: C0, soil content designation Standard: α.
N ≧ 2.2 × ln [1.3 × (α / C0)] / ln [B / {A × (1−B)}] − 1
6 The heavy metal-contaminated soil is crushed, the particle group having the smallest particle size is made less than 0.075 mm, the particle group having the largest particle size is made 0.075 mm to 2.0 mm, A particle group having a particle diameter of less than 075 mm was washed with an acidic solution having a pH of -0.3 or less after mixing with the particle group having a particle diameter of less than 0.075 mm, and then a slurry was obtained. 6. The method for purifying heavy metal-contaminated soil according to 5, wherein soil of a particle group classified to 0 mm or less is added to the slurry and washed with an acidic solution having a pH of 0.5 or less after mixing.
7 In the method of pickling and cleaning heavy metal contaminated soil with an acid solution,
After the heavy metal contaminated soil is divided into a plurality of groups sorted according to the contamination concentration, the heavy metal contaminated soil of the group with the highest contamination concentration is first pickled, and after pickling, the heavy metal contamination of the group with the highest contamination concentration To slurry consisting of soil and acidic solution,
When the remaining heavy metal-contaminated soils are added and washed sequentially from the group of heavy metal-contaminated soils with high contamination concentration to the group of heavy metal-contaminated soils with low contamination concentration, mixed washing is performed each time they are added,
Finally, the heavy metal-contaminated soil having the lowest contamination concentration is added, and the slurry obtained by mixing and washing is separated from the soil and the acidic solution by a solid-liquid separator, and the soil is rinsed, and the soil is rinsed with heavy metal Purification method.
8. The method for purifying heavy metal-contaminated soil according to any one of 1 to 7, wherein the heavy metal is lead and the acidic solution is hydrochloric acid.
9. Washing heavy metal contaminated soil with an acidic solution, and rinsing the soil with a rinsing liquid after washing with an acidic solution, wherein the washing with the rinsing liquid is performed in a region having a pH of 2 or less. .
10. A method for purifying heavy metal-contaminated soil, characterized in that when rinsing heavy metal contaminated soil with an acidic solution, the number of times of rinsing N satisfies the following formula in rinsing the soil with a rinsing liquid after washing with an acidic solution.
However, solid-liquid weight ratio between soil and rinsing liquid: A, moisture content of soil after solid-liquid separation: B, soil content of target pollutant before washing with acidic solution: C0, soil content designation Standard: α.
N ≧ 2.2 × ln [1.3 × (α / C0)] / ln [B / {A × (1−B)}] − 1

本発明によれば、酸性溶液を用いた重金属汚染土壌の洗浄において、細粒汚染土壌や高濃度汚染土壌を洗浄した酸性溶液を余すことなく粗粒汚染土壌や低濃度汚染土壌の洗浄に再利用するため、安価な費用で大量の重金属汚染土壌が浄化でき産業上極めて有用である。   According to the present invention, in washing heavy metal-contaminated soil using an acidic solution, the acidic solution obtained by washing fine-grained contaminated soil and highly-concentrated contaminated soil can be reused for washing coarse-grained contaminated soil and low-concentrated contaminated soil. Therefore, a large amount of heavy metal-contaminated soil can be purified at a low cost, which is extremely useful in the industry.

本発明は、酸性溶液を用いて、重金属に汚染された土壌を浄化する方法において、特定の粒子径を境に分級された汚染土壌の複数の粒子群に対し、粒子径の小なるものからなる粒子群を酸性溶液で洗浄し、洗浄後の土壌と酸性溶液が混合してなるスラリへ、より粒子径の大なるものからなる粒子群を逐次添加し、混合洗浄することにより、粒子径毎に新たな酸性溶液を使用する場合に比べて酸性溶液の使用量を大幅に低減させたことを特徴とする。以下、本発明を具体的な工程を用いて詳細に説明する。   The present invention is a method for purifying soil contaminated with heavy metals using an acidic solution, and comprises a particle group having a small particle size with respect to a plurality of particle groups of contaminated soil classified with a specific particle size as a boundary. The particle group is washed with an acidic solution, and a particle group having a larger particle diameter is sequentially added to a slurry formed by mixing the soil after washing with an acidic solution, and mixed and washed. Compared to the case of using a new acidic solution, the amount of the acidic solution used is greatly reduced. Hereinafter, the present invention will be described in detail using specific steps.

図1は本発明に係る土壌浄化方法の一実施形態を示す工程図で、重金属汚染土壌を大小二つの粒子径群に分級した場合を示す。図において、1は重金属汚染土壌を、単体粒子に解砕する工程(以下、第一の工程)、2は第一の工程により解砕された、重金属汚染土壌を分級機により特定の粒子径を境に分級する工程(以下、第二の工程)、3は、第二の工程で分級された粒子径の小なるものからなる粒子群を酸性溶液にて洗浄する工程(以下、第三の工程)、4は、第三の工程で生成される粒子径の小なるものからなる粒子群と酸性溶液が混合されたスラリに、粒子径の大なるものからなる粒子群を添加し混合洗浄する工程(以下、第四の工程)、5は、第四の工程により洗浄された土壌を固液分離装置により酸性溶液を分離する工程(以下、第五の工程)、6は、第五の工程により酸性溶液により洗浄された土壌を濯ぎ液により洗浄する工程(以下、第六の工程)を示す。   FIG. 1 is a process diagram showing an embodiment of a soil purification method according to the present invention, and shows a case where heavy metal contaminated soil is classified into two large and small particle size groups. In the figure, 1 is a step of crushing heavy metal-contaminated soil into single particles (hereinafter referred to as the first step), 2 is a heavy metal-contaminated soil crushed in the first step, and a specific particle size is determined by a classifier. The step of classifying the boundary (hereinafter referred to as the second step), 3 is a step of washing the particle group consisting of particles having a small particle diameter classified in the second step with an acidic solution (hereinafter referred to as the third step) ) 4 is a step of adding a particle group consisting of a particle having a large particle size to a slurry in which an acid solution is mixed with a particle group consisting of a particle having a small particle size generated in the third step and washing the mixture. (Hereinafter referred to as the fourth step) 5 is a step (hereinafter referred to as the fifth step) of separating the acidic solution from the soil washed in the fourth step using a solid-liquid separation device, and 6 is according to the fifth step. A step of washing soil washed with an acidic solution with a rinsing solution (hereinafter referred to as sixth step) It is.

[第一の工程]
第一の工程は,掘削された重金属汚染土壌を解砕手段により、土壌粒子が凝集し、塊状となった状態から単粒子にときほぐすことを目的とする。
[First step]
The first step aims to loosen the excavated heavy metal-contaminated soil from a state in which the soil particles are aggregated into a single particle by crushing means.

第一の工程により、単体粒子にときほぐされた土壌は、土壌粒子の大きさごとに分級が可能となる。また、酸性溶液による洗浄において、土壌粒子と酸性溶液の接触面積が増大し、洗浄時間が短縮し、汚染物質を除去する効率も向上する。土壌解砕機は、ドラムウオッシャー、パドルミキサー、ロットミル、アトライター、ボールミルなど既存の装置を利用する。   In the first step, the soil that has been loosened into single particles can be classified according to the size of the soil particles. Further, in the cleaning with the acidic solution, the contact area between the soil particles and the acidic solution is increased, the cleaning time is shortened, and the efficiency of removing contaminants is improved. The soil crusher uses existing equipment such as a drum washer, paddle mixer, lot mill, attritor, and ball mill.

尚、解砕する前、又は解砕後の土壌から、重金属汚染物質が付着しやすい炭ガラ、金属片などの異物を比重選別機、磁力選別機、浮遊選別機で取り除いたり、大きな土粒子を振動スクリーンで取り除くことが望ましい。   In addition, foreign matter such as charcoal dust, metal fragments, etc., to which heavy metal contaminants are likely to adhere, are removed from the soil before pulverization or after pulverization with a specific gravity sorter, magnetic sorter, floating sorter, or large soil particles. It is desirable to remove with a vibrating screen.

[第二の工程]
第二の工程は、第一の工程で単体粒子にときほぐされた土壌を、特定の粒子径を境に粒子群毎に分級することを目的とする。
[Second step]
The purpose of the second step is to classify the soil loosened into single particles in the first step for each particle group with a specific particle diameter as a boundary.

分級は振動スクリーン、クラシファイア、スパイラル分級機、遠心分離機、サイクロン、フィルタプレスなどを単独または組み合わせて行う。   Classification is performed by using a vibrating screen, a classifier, a spiral classifier, a centrifuge, a cyclone, a filter press or the like alone or in combination.

分級する場合、粒子径0.075mm以下はシルト・粘土質、粒子径0.075mm超え2.0mm以下は砂質で土壌の性質が異なり、酸性溶液による洗浄条件が大きく相違するため、粒子径0.075mm以下と粒子径0.075mm超え2.0mm以下の少なくとも2種類の粒子群に分級することが好ましい。粒子径0.075mm以下と粒子径0.075mm超え2.0mm以下のそれぞれを更に分級しても良い。   When classifying, the particle size of 0.075 mm or less is silt / clayy, the particle size of 0.075 mm to 2.0 mm or less is sandy, soil properties are different, and the washing conditions with the acidic solution are greatly different. It is preferable to classify the particles into at least two kinds of particles having a particle diameter of 0.075 mm or less and a particle diameter of 0.075 mm to 2.0 mm. You may further classify each with a particle diameter of 0.075 mm or less and a particle diameter of 0.075 mm to 2.0 mm.

図2は鉛汚染土壌において、土壌と塩酸溶液の固液重量比を1:1〜1:2とした場合の塩酸洗浄後の鉛含有量に及ぼすpHの影響を示すもので、粒子径0.075mm未満のシルト・粘土質の場合は、pH=−0.3以下、好ましくは−0.5以上、−0.3以下とし、粒子径0.075mm以上2.0mm以下の砂質の場合は、pH=0.5以下、好ましくは0以上、0.5以下とすると優れた洗浄効果が得られる。   FIG. 2 shows the influence of pH on the lead content after hydrochloric acid cleaning when the solid-liquid weight ratio of the soil and hydrochloric acid solution is 1: 1 to 1: 2 in a lead-contaminated soil. In the case of silt or clay less than 075 mm, pH = −0.3 or less, preferably −0.5 or more and −0.3 or less, and in the case of sandy particles having a particle diameter of 0.075 mm or more and 2.0 mm or less. When the pH is 0.5 or less, preferably 0 or more and 0.5 or less, an excellent cleaning effect can be obtained.

すなわち、図2に示すとおり、粒子径0.075mm未満のシルト・粘土質の場合は、pH=−0.3以下、粒子径0.075mm以上2.0mm以下の砂質の場合は、pHが0.5以下にて鉛の溶解、抽出効果が優れていることが分かる。   That is, as shown in FIG. 2, in the case of silt / clay having a particle diameter of less than 0.075 mm, pH = −0.3 or less, and in the case of sand having a particle diameter of 0.075 mm or more and 2.0 mm or less, the pH is It can be seen that the lead dissolution and extraction effects are excellent at 0.5 or less.

しかしながら、pHが低くなるほど鉛を溶解、抽出するほか、土壌を構成する主要鉱物、物質の溶解、抽出比率が増加し、浄化土壌の歩留まりが低下する上、洗浄後の液の処理、濯ぎに使用する水の量が増加するなどコストパフォーマンスが著しく低下するため、シルト・粘土質の場合はpH−0.5以上、砂質の場合はpH0以上が好ましい。  However, the lower the pH, the more the lead is dissolved and extracted, as well as the dissolution of the main minerals and substances that make up the soil, the extraction ratio increases, the yield of purified soil decreases, and it is used to treat and rinse the liquid after washing. Since the cost performance is remarkably lowered, for example, the amount of water to be increased, the pH is preferably -0.5 or more for silt and clay, and the pH is preferably 0 or more for sand.

尚、図2は攪拌洗浄装置(攪拌翼の回転数:300rpm)を用いて洗浄条件:1回×15分間での試験結果であり、pHは土壌に塩酸を添加混合した状態で測定したものである。   In addition, FIG. 2 is a test result in a washing condition: once × 15 minutes using a stirring washing device (rotation speed of stirring blade: 300 rpm), and pH is measured in a state where hydrochloric acid is added to and mixed with soil. is there.

[第三の工程]
第三の工程は、第二の工程で分級された二つの粒子群から粒子径のより小なるものからなる粒子群を酸性溶液にて洗浄することを目的とする。この洗浄においては、攪拌翼による混合洗浄等の土壌と酸性溶液を十分に混合できる装置であればよい。
[Third step]
The third step is intended to wash a particle group consisting of particles having a smaller particle diameter from the two particle groups classified in the second step with an acidic solution. In this washing | cleaning, what is necessary is just an apparatus which can fully mix soil and acidic solution, such as mixing washing | cleaning by a stirring blade.

[第四の工程]
第四の工程は、第三の工程で生成される酸洗後の粒子径の小なるものからなる粒子群と酸性溶液が混合されたスラリに、更により粒子径の大なるものからなる粒子群を添加し混合洗浄することを目的とする。
[Fourth process]
The fourth step is a particle group consisting of particles having a larger particle size and a slurry in which an acid solution is mixed with a particle group consisting of particles having a small particle size after pickling produced in the third step. Is added and mixed and washed.

すなわち、前記のように、鉛に汚染された土壌を塩酸で洗浄する場合、粒子径の小さい土壌を洗浄する場合は土壌に塩酸を添加混合後のpHを低くするため高濃度の塩酸が必要であるが、粒子径が大きくなるに従い、低濃度の塩酸が利用できるので、粒子径の小さい土壌洗浄後の塩酸溶液をより粒子径の大きい土壌の洗浄に利用し、浄化コストを低減することが可能である。   That is, as described above, when washing soil contaminated with lead with hydrochloric acid, when washing soil with a small particle size, high concentration hydrochloric acid is required to lower the pH after adding hydrochloric acid to the soil and mixing it. However, as the particle size increases, low-concentration hydrochloric acid can be used, so the hydrochloric acid solution after washing the soil with a small particle size can be used for washing soil with a larger particle size, thereby reducing purification costs. It is.

したがって、粒子径の小さい土壌を高濃度の酸性溶液で洗浄し、さらに、このスラリに粒子径の大きい土壌を加え、このスラリに含まれる残酸により洗浄することにより、大幅に浄化コストを低減することができる。   Therefore, by cleaning soil with a small particle size with a high-concentration acidic solution, and further adding soil with a large particle size to this slurry and cleaning with residual acid contained in this slurry, the purification cost is greatly reduced. be able to.

また、鉛に汚染された土壌を分級し第三工程でシルト・粘土質,第四工程で砂質を塩酸で洗浄する場合、前記のように、第三工程のシルト・粘土質の場合、塩酸を混合した後の土壌のpHを−0.3以下とし、第四工程の砂質の場合、砂質を追加混合した後の土壌のpHを0.5以下とすることが好ましい。   In addition, when soil contaminated with lead is classified and washed with silt and clay in the third step, and sand is washed with hydrochloric acid in the fourth step, as described above, in the case of silt and clay in the third step, hydrochloric acid It is preferable that the pH of the soil after mixing is set to -0.3 or less, and in the case of the sand in the fourth step, the pH of the soil after additional mixing of the sand is set to 0.5 or less.

もし、第四工程での混合後のpHが0.5を超過している場合は、別途、新たな塩酸を追加投入すればよい。また、重金属汚染土壌と酸性溶液の固液重量比は、洗浄の効率、効果、設備への負荷、規模などを考慮すると1:1〜1:2が好ましい。   If the pH after mixing in the fourth step exceeds 0.5, new hydrochloric acid may be added separately. In addition, the solid-liquid weight ratio between the heavy metal-contaminated soil and the acidic solution is preferably 1: 1 to 1: 2 in consideration of washing efficiency, effect, load on equipment, scale, and the like.

この洗浄においても、攪拌翼による混合洗浄等の土壌と酸性溶液を十分に混合できる装置であればよい。   Also in this washing | cleaning, what is necessary is just an apparatus which can fully mix soil and acidic solutions, such as mixing washing | cleaning by a stirring blade.

尚、図3に示すように、上述の最適pH条件(シルト・粘土質の場合はpH=−0.3以下、砂質の場合は、pH=0.5以下)で洗浄を行なった場合、洗浄時間は土壌の粒子径によらず、5〜30分で洗浄後の鉛含有量が一定となるため、第三工程および第四工程の洗浄時間としては30分以下、洗浄装置のイニシャルコストを更に抑制する観点から好ましくは15分以下とすればよい。   As shown in FIG. 3, when washing is performed under the above-mentioned optimum pH conditions (pH = -0.3 or less in the case of silt or clay, pH = 0.5 or less in the case of sand), The cleaning time does not depend on the particle size of the soil, and the lead content after cleaning becomes constant in 5 to 30 minutes. Therefore, the cleaning time for the third and fourth steps is 30 minutes or less, and the initial cost of the cleaning device is reduced. Further, from the viewpoint of suppression, it may be preferably 15 minutes or less.

[第五の工程]
第五の工程は、第四の工程を経て洗浄された重金属汚染土壌から洗浄後の酸性溶液を固液分離装置により回収することを目的とする。固液分離装置は振動スクリーン、クラシファイア、スパイラル分級機、遠心分離機、サイクロン、フィルタプレス、膜/中空糸膜装置などの既存の装置を単独または組み合わせて行う。
[Fifth process]
The purpose of the fifth step is to collect the washed acidic solution from the heavy metal contaminated soil washed through the fourth step by a solid-liquid separator. The solid-liquid separator is an existing apparatus such as a vibrating screen, a classifier, a spiral classifier, a centrifuge, a cyclone, a filter press, a membrane / hollow fiber membrane apparatus or the like.

尚、固液分離装置で回収された酸性溶液を当該土壌の洗浄に再循環させる場合は、土壌を酸洗する酸性溶液が所定の洗浄能力を確保できるように新液との混合比率を適宜調整する。   In addition, when recirculating the acidic solution collected by the solid-liquid separator for washing the soil, the mixing ratio with the new solution is adjusted appropriately so that the acidic solution for pickling the soil can secure the predetermined washing ability. To do.

図4は第五の工程を具体化する設備の一例を示し、図において7は酸性溶液の濃度および/またはpHを検出する検出器、8は7の検出器で検出した酸性溶液の濃度および/またはpHに従い酸洗浄槽に使用する新液の量を調整する制御装置、9は新たな酸性溶液である新液の量を調整する流量調整弁、10は固液分離装置から回収した酸性溶液を当該土壌に使用する酸性溶液を供給する配管系に接合させる配管(再循環路)を示す。なお、図4は土壌を酸洗する酸性溶液が所定の洗浄能力を確保できるように新液との混合比率を適宜調整する一例である。   FIG. 4 shows an example of equipment embodying the fifth step. In the figure, 7 is a detector for detecting the concentration and / or pH of the acidic solution, 8 is the concentration of the acidic solution detected by the detector 7 and / or Or a control device that adjusts the amount of new liquid used in the acid cleaning tank according to pH, 9 is a flow control valve that adjusts the amount of new liquid that is a new acidic solution, and 10 is an acidic solution recovered from the solid-liquid separation device. The piping (recirculation path) joined to the piping system which supplies the acidic solution used for the said soil is shown. FIG. 4 is an example in which the mixing ratio with the new solution is adjusted as appropriate so that the acidic solution for pickling the soil can ensure a predetermined cleaning ability.

[第六の工程]
第六の工程は、第五の工程で固液分離装置により酸性溶液を除去した土壌を、濯ぎ洗いをすることを目的とする。酸性溶液により洗浄された土壌を浄化土壌として再利用するために、土壌中に残留する汚染物質と薬剤成分を除去する。
[Sixth step]
The purpose of the sixth step is to rinse the soil from which the acidic solution has been removed by the solid-liquid separator in the fifth step. In order to reuse soil washed with an acidic solution as purified soil, contaminants and chemical components remaining in the soil are removed.

図6は、鉛汚染土壌において、シルト・粘土質を土壌と塩酸混合後のpHが−0.3以下,砂質を土壌と塩酸混合後のpHが0.5以下の条件下で洗浄を行い固液分離した後のそれぞれの土壌に対する、濯ぎ効果(濯ぎ洗い後の土壌中の鉛含有量)に及ぼす濯ぎ洗いにおけるpHの影響を示すもので、pH=2以下とするといずれの土壌も優れた濯ぎ効果が得られる。   Figure 6 shows that in lead-contaminated soil, the silt / clay is washed under a condition where the pH after mixing the soil and hydrochloric acid is -0.3 or less, and the sand is washed under a condition where the pH after mixing the soil and hydrochloric acid is 0.5 or less. This indicates the effect of pH in rinsing on the rinsing effect (lead content in the soil after rinsing) for each soil after solid-liquid separation. A rinsing effect is obtained.

土壌を酸性溶液で洗浄すると、鉛を溶解、抽出するほか、土壌の構成成分である鉄、アルミニウム等も溶解する。一般に鉄、アルミニウムは、ある一定のpH以上(Fe2+:pH5.2以上,Fe3+:pH2.8以上,Al3+:pH4.3で沈殿開始)となると鉛などの重金属イオンを静電的に吸着する共沈現象を生じるが、図6に示すように、土壌/濯ぎ液混合後のpHが2以上で再付着の現象が生じて土壌中の鉛含有量が多い。 When soil is washed with an acidic solution, it dissolves and extracts lead, as well as iron, aluminum, and other components of the soil. In general, when iron and aluminum reach a certain pH or higher (Fe 2+ : pH 5.2 or higher, Fe 3+ : pH 2.8 or higher, Al 3+ : precipitation starts at pH 4.3), heavy metal ions such as lead are statically removed. Although the coprecipitation phenomenon which adsorb | sucks electrically is produced, as shown in FIG. 6, when the pH after soil / rinsing liquid mixing is 2 or more, the phenomenon of redeposition occurs and the lead content in the soil is large.

土壌の溶解により発生する有機分やカルシウム等の存在および土壌の吸着性が相俟って、共沈現象が発生するpHよりも低いpH領域(鉄:pH2〜2.8、アルミニウム:pH2〜4.8)で抽出された土壌への再付着が発生し、土壌に残留すると考えられる。   The pH ranges lower than the pH at which coprecipitation occurs, due to the presence of organic components, calcium, etc. generated by dissolution of the soil and the adsorptivity of the soil (iron: pH 2 to 2.8, aluminum: pH 2 to 4) It is considered that reattachment to the soil extracted in .8) occurs and remains in the soil.

従って、シルト・粘土質、砂質ともに土壌と濯ぎ液の混合後のpHを2以下とすることにより、土壌の汚染物の再付着を防止することができ、優れた濯ぎ効果を得ることができる。なお、本効果は、濯ぎ洗いする土壌が、重金属汚染土壌を酸性溶液で洗浄後、固液分離装置により得られるものであればよく、洗浄方法を限定するものではない。濯ぎ液として水もしくは弱酸が好ましい。   Therefore, by adjusting the pH after mixing the soil and the rinsing liquid to 2 or less for both silt, clay, and sand, reattachment of soil contaminants can be prevented and an excellent rinsing effect can be obtained. . Note that this effect is not limited as long as the soil to be rinsed can be obtained by a solid-liquid separator after washing heavy metal-contaminated soil with an acidic solution. Water or a weak acid is preferred as the rinsing liquid.

また、土壌の濯ぎ回数が不十分であると、汚染物質を大量に含んだ濯ぎ液が土壌に再度残留,付着するので、酸性溶液による洗浄効果が損なわれる。   In addition, if the number of times of rinsing the soil is insufficient, the rinsing liquid containing a large amount of contaminants remains and adheres to the soil again, so that the cleaning effect by the acidic solution is impaired.

濯ぎ液の残留によりもたらされる汚染物質の土壌への再付着を防止するためには、濯ぎ液を土壌から完全に分離できればよいのであるが、現在の既存の固液分離装置では限界があり、ある一定の濯ぎ液が土壌に残留する。   In order to prevent the re-deposition of the contaminants caused by the remaining of the rinsing liquid to the soil, it is sufficient that the rinsing liquid can be completely separated from the soil. However, there are limitations in the existing solid-liquid separator. A certain amount of rinsing liquid remains in the soil.

したがって、複数回、固液分離と土壌濯ぎを実施することにより、浄化後の土壌に対するこれらの影響を非常に小さいものとすることができるが、この場合、最適な濯ぎ回数,固液比等の条件で実施しなければ、濯ぎ液使用量,固液分離装置や濯ぎ洗い槽等の装置費が増大してしまう。   Therefore, by performing solid-liquid separation and soil rinsing multiple times, these effects on the soil after purification can be made extremely small. In this case, the optimal number of rinsing, solid-liquid ratio, etc. If it is not carried out under conditions, the amount of rinsing liquid used and the cost of equipment such as solid-liquid separators and rinsing tanks will increase.

そこで、本発明者らは、種々の濯ぎ洗い試験より、土壌と濯ぎ液との固液重量比:A,固液分離後の土壌の含水率:B,酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0,土壌含有量指定基準:αと濯ぎ回数:N(0以上の整数)の間に下記(1)式の関係を見出した。   Therefore, the present inventors set the solid-liquid weight ratio between the soil and the rinsing liquid: A, the moisture content of the soil after solid-liquid separation: B, and the object before washing with an acidic solution, based on various rinsing tests. The relationship of the following formula (1) was found between the soil content of the pollutant: C0, the soil content designation standard: α and the number of times of rinsing: N (an integer of 0 or more).

なお、濯ぎ回数とは、酸性溶液洗浄後の固液分離された土壌を濯ぎ洗い後に再度、固液分離する工程を1工程とし、その繰り返し回数とする。   The number of times of rinsing is defined as the number of repetitions of the step of solid-liquid separation again after rinsing the soil after solid-liquid separation after washing with an acidic solution.

N≧2.2×ln[1.3×(α/C0)]/ln[B/{A×(1−B)}]−1―――――(1)       N ≧ 2.2 × ln [1.3 × (α / C0)] / ln [B / {A × (1−B)}] − 1 −−−−− (1)

図7に、種々の鉛汚染土壌サンプルに対する土壌と濯ぎ液の混合後のpHを2以下の条件下とした濯ぎ洗い試験の結果を示す。   FIG. 7 shows the results of a rinsing test for various lead-contaminated soil samples with the pH after mixing the soil and the rinsing liquid being 2 or less.

土壌の粒度に関わらず、上記(1)式の関係を満たす場合、浄化後の土壌の鉛含有量は環境省の定める含有量指定基準を下回るが(中抜きの記号)、満たさない場合は、浄化後の土壌の鉛含有量が環境省の定める含有量指定基準より上回った(中実の記号)。   Regardless of the grain size of the soil, if the relationship of the above formula (1) is satisfied, the lead content of the soil after purification is below the content specification standard set by the Ministry of the Environment (open symbol), but if not, The lead content of the soil after purification exceeded the content specification standard set by the Ministry of the Environment (solid symbol).

尚、土壌サンプルは、濯ぎ洗い前に、酸性溶液として塩酸溶液を用い、0.075mm以下のシルト・粘土質から成る細粒土壌の場合は塩酸溶液の混合後のpHを−0.5〜−0.3、0.075〜2.0mmの砂質からなる粗粒土壌の場合は塩酸溶液の混合後のpHを0〜0.5として15分間洗浄した。   In addition, the soil sample uses a hydrochloric acid solution as an acidic solution before rinsing, and in the case of fine-grained soil composed of silt / clay of 0.075 mm or less, the pH after mixing the hydrochloric acid solution is -0.5 to- In the case of coarse-grained soil made of sand having a size of 0.3, 0.075 to 2.0 mm, the pH after mixing with the hydrochloric acid solution was set to 0 to 0.5 and washed for 15 minutes.

濯ぎ洗いを複数回おこなう場合において、各濯ぎ洗いでの固液比:A,含水率:B等の条件が異なる場合は、上記(1)式により、それぞれの条件下のNを算出しそれらの数値の算術平均または調和平均を用いればよい。濯ぎ洗いにおける上記(1)式の効果は、濯ぎ洗いする土壌が、重金属汚染土壌を酸性溶液で洗浄後、固液分離装置により得られるものであればよく、洗浄方法を限定するものではない。   When rinsing is performed a plurality of times and the conditions such as solid-liquid ratio: A, water content: B, etc. are different in each rinsing, N under each condition is calculated by the above equation (1) An arithmetic average or harmonic average of numerical values may be used. The effect of the above formula (1) in rinsing is not limited as long as the soil to be rinsed can be obtained by a solid-liquid separator after washing heavy metal contaminated soil with an acidic solution.

本発明は以上に述べた第一の工程〜第六の工程により、重金属汚染土壌を安価な費用で浄化することが可能である。尚、各工程の説明に用いた図1では各工程を一回実施する場合を示したが、本発明は所望の洗浄効果が得られるまで必要に応じて、いずれかの工程を複数回実施することが可能である。   The present invention can purify heavy metal contaminated soil at a low cost by the first to sixth steps described above. In addition, although FIG. 1 used for description of each process showed the case where each process was implemented once, this invention implements any process in multiple times as needed until the desired cleaning effect is acquired. It is possible.

[土壌回復工程]
第六の工程後、浄化された土壌を埋め戻しする場合、掘削前の土壌と同じ値のpHに再調整し埋め戻しを行えばよい。尚、ここで同じ値とは、周辺環境の生態系が速やかに回復可能な程度であれば良く、同一であることを意味しない。
[Soil restoration process]
When the purified soil is backfilled after the sixth step, the pH may be readjusted to the same value as the soil before excavation. In addition, the same value here should just be a grade which the ecosystem of a surrounding environment can recover rapidly, and does not mean that it is the same.

pHを再調整する手段として、1 水による土壌洗浄を数回実施する。2 水酸化カルシウム、酸化カルシウム、炭酸カルシウムなどのアルカリ性薬剤を添加する。3 非汚染が確認されている、アルカリ性の土壌および/または石炭灰を添加する。の一つもしくは複数を実施すればよい。   As a means of readjusting the pH, soil washing with 1 water is performed several times. 2 Add alkaline chemicals such as calcium hydroxide, calcium oxide, calcium carbonate. 3 Add alkaline soil and / or coal ash that is confirmed to be non-polluted. One or more of the above may be implemented.

また、早期に、埋め戻しを行った地点の土壌を周辺環境になじませる場合は、土壌pHの再調整が完了後、汚染土壌を採取した地点もしくは近傍の非汚染土壌および/または腐葉土を混合すればよい。   In addition, if the soil at the site where backfilling has been performed is adapted to the surrounding environment at an early stage, after the readjustment of the soil pH is completed, uncontaminated soil and / or humus soil near the site where the contaminated soil was collected or mixed. That's fine.

以上の説明は、解砕後に土壌を大小二つの粒子径に分級する場合について述べたが、本発明は、解砕後の分級する粒子群の数を限定するものでなく、図5に示すように、解砕後、土壌を3つ以上の粒子径群に分級し、粒子径の小さいものから順次、酸性溶液で洗浄を行ってもよい。   Although the above description has described the case where the soil is classified into two large and small particle sizes after crushing, the present invention does not limit the number of particle groups to be classified after crushing, as shown in FIG. In addition, after pulverization, the soil may be classified into three or more particle size groups, and washed with an acidic solution in order from the smallest particle size.

また、酸性溶液で洗浄する際に必要とする酸性溶液濃度は粒子径の他に土壌汚染濃度にも依存し、粒度構成が一定の場合、土壌汚染濃度が低くなると低い酸性溶液濃度で洗浄が可能となる。汚染濃度が異なる重金属汚染土壌を洗浄する場合について以下に述べる。   In addition, the acidic solution concentration required for washing with an acidic solution depends on the soil contamination concentration in addition to the particle size. When the particle size composition is constant, washing with a low acidic solution concentration is possible when the soil contamination concentration is low. It becomes. The following describes the case of washing heavy metal contaminated soil with different contamination concentrations.

図8は工程図で、図において、1は予め既知である重金属高汚染土壌(H)(重金属汚染土壌の高濃度汚染土壌)を酸性溶液にて洗浄する工程(以下、Aの工程)、2はAの工程により生成される高濃度汚染土壌と酸性溶液が混合されたスラリに、重金属低汚染土壌(L)(重金属汚染土壌の低濃度汚染土壌)を添加し混合洗浄する工程(以下、Bの工程)、3は、Bの工程により洗浄された土壌を固液分離装置により酸性溶液を分離する工程(以下、Cの工程)、4は、Cの工程により酸性溶液により洗浄された土壌を濯ぎ液により洗浄する工程(以下、Dの工程)を示す。洗浄,固液分離後の濯ぎ工程や土壌回復工程は粒子径毎に分級した場合に準じる。   FIG. 8 is a process diagram. In the figure, 1 is a process for washing heavy metal highly contaminated soil (H) (high concentration contaminated soil of heavy metal contaminated soil), which is known in advance, with an acidic solution (hereinafter referred to as process A), 2 Is a process in which heavy metal low-contaminated soil (L) (low-contaminated soil of heavy metal-contaminated soil) is added to the slurry in which the high-concentrated contaminated soil and acidic solution produced in step A are mixed and washed (hereinafter referred to as B). 3), 3 is a step of separating the acidic solution from the soil washed by the step B using a solid-liquid separator (hereinafter referred to as step C), and 4 is a soil washed by the acidic solution by the step C. A step of washing with a rinsing liquid (hereinafter, step D) is shown. The rinsing process and the soil recovery process after washing and solid-liquid separation are based on the classification for each particle size.

土壌粒度分布がほぼ同じの土地において、汚染物質種類,汚染物質流出過程,拡散状況等の影響により、平面および/あるいは深度方向に汚染濃度の高低が存在する場合に有効である。   This is effective when there is a high or low pollution concentration in the plane and / or depth direction due to the influence of the type of pollutant, pollutant runoff process, diffusion situation, etc. in the land with the same soil particle size distribution.

同じ工場跡地より砂質土である高濃度鉛汚染土壌(A)および低濃度鉛汚染土壌(B)を採取した。   High-concentration lead-contaminated soil (A) and low-concentration lead-contaminated soil (B) as sandy soil were collected from the same factory site.

高濃度鉛汚染土壌(A)に対し、固液重量比1:2で3.0mol/lの塩酸溶液を添加し、15分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは洗浄開始直後で−0.3以下 、終了前で0であった。   A 3.0 mol / l hydrochloric acid solution at a solid-liquid weight ratio of 1: 2 was added to the high-concentration lead-contaminated soil (A), and the mixture was stirred for 15 minutes (stirring conditions: rotation speed of stirring blade 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was −0.3 or less immediately after the start of cleaning, and 0 before the end.

次に、高濃度鉛汚染土壌(A)と塩酸洗浄液のスラリに対し、低濃度鉛汚染土壌(B)を高濃度鉛汚染土壌(A)と同等の重量で添加し、15分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは終了前で0.2であった。   Next, to the slurry of high-concentration lead-contaminated soil (A) and hydrochloric acid cleaning solution, add low-concentration lead-contaminated soil (B) at the same weight as the high-concentration lead-contaminated soil (A) and stir for 15 minutes (stirring conditions) : Stirring blade rotation speed 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was 0.2 before the completion.

このスラリ土壌を遠心分離器(3000rpm、10分間)で脱水し、得られた浄化土壌を固液重量比1:2の水で濯ぎ洗いし、遠心分離器(3000rpm、10分間)で脱水、この濯ぎ洗い操作を3回繰り返し繰り返した。   This slurry soil is dewatered with a centrifuge (3000 rpm, 10 minutes), and the resulting purified soil is rinsed with water having a solid-liquid weight ratio of 1: 2, and dewatered with a centrifuge (3000 rpm, 10 minutes). The rinsing operation was repeated three times.

この時のすすぎ液におけるpHは0.6、1.2、1.7であった。さらに、消石灰を添加、混合して土壌を元の土壌と同じpH8.5とし、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。結果を表1に示す。   At this time, the pH of the rinse liquid was 0.6, 1.2, and 1.7. Furthermore, slaked lime was added and mixed to bring the soil to the same pH 8.5 as the original soil and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19. The results are shown in Table 1.

Figure 2006051440
Figure 2006051440

工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。このスラリを攪拌翼の回転数300rpmで10分間水洗浄し、0.075mmの振動篩いで分級した。   15% of water was added to the lead-contaminated soil collected from the factory site, and after crushing at 100 rpm for 10 minutes with a paddle mixer, water was added at a solid-liquid weight ratio of 1: 1. This slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and classified with a vibration sieve of 0.075 mm.

分級後の篩い下土壌に対し、固液重量比1:2で3.0mol/lの塩酸溶液を添加し、15分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは洗浄開始直後、終了前ともに−0.3 以下であった。   A 3.0 mol / l hydrochloric acid solution with a solid-liquid weight ratio of 1: 2 was added to the sieved soil after classification, and the mixture was stirred for 15 minutes (stirring conditions: rotation speed of stirring blade 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was −0.3 or less both immediately after the start of cleaning and before the end.

次に、洗浄後の篩い下土壌と塩酸洗浄液のスラリに対し、分級後の篩い上土壌を篩い下土壌の1.5倍の重量で添加し、10分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは終了前で0であった。このスラリを遠心分離器(3000rpm、10分間、脱水後の土壌含水率:40%)で脱水し、得られた浄化土壌を固液重量比1:2の水で濯ぎ洗いし、遠心分離器(3000rpm、10分間、脱水後の土壌含水率:40%)で脱水、この濯ぎ洗い操作を2回繰り返し繰り返した。さらに、消石灰を添加、混合して土壌を元の土壌と同じpH6.8とし、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。結果を表2に示す。   Next, after sieving soil and hydrochloric acid cleaning liquid slurry, the sieving soil after classification is added in 1.5 times the weight of the sieving soil, and stirred for 10 minutes (stirring condition: rotation speed of stirring blade) 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was 0 before the completion. The slurry was dehydrated with a centrifuge (3000 rpm, 10 minutes, soil moisture content after dehydration: 40%), and the resulting purified soil was rinsed with water having a solid-liquid weight ratio of 1: 2, and the centrifuge ( The dehydration and rinsing operations were repeated twice at 3000 rpm for 10 minutes and the soil water content after dehydration: 40%. Furthermore, slaked lime was added and mixed to bring the soil to the same pH 6.8 as the original soil and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19. The results are shown in Table 2.

Figure 2006051440
Figure 2006051440

比較例1として、実施例2で用いた工場跡地より採取した鉛汚染土壌に水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。このスラリを攪拌翼の回転数300rpmで10分間水洗浄し、0.075mmの振動篩いで分級した。   As Comparative Example 1, 15% of water was added to the lead-contaminated soil collected from the factory site used in Example 2, and after crushing at 100 rpm for 10 minutes with a paddle mixer, the water was in a solid-liquid weight ratio of 1: 1 was added. This slurry was washed with water for 10 minutes at a rotation speed of a stirring blade of 300 rpm, and classified with a 0.075 mm vibrating sieve.

分級後の篩い下土壌に対し、固液重量比1:2で3.0mol/lの塩酸溶液を添加し、15分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは洗浄開始直後、終了前ともに−0.3以下であった。   A 3.0 mol / l hydrochloric acid solution with a solid-liquid weight ratio of 1: 2 was added to the sieved soil after classification, and the mixture was stirred for 15 minutes (stirring conditions: rotation speed of stirring blade 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was −0.3 or less both immediately after the start of cleaning and before the end.

次に、洗浄後の篩い下土壌と塩酸洗浄液のスラリに対し、分級後の篩い上土壌を篩い下土壌の1.5倍の重量で添加し、10分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の塩酸洗浄液のpHは終了前で0であった。このスラリを遠心分離器(3000rpm、10分間)で脱水し、得られた浄化土壌を固液重量比1:2の水を加えた後、消石灰を添加しpH3.0に調整し、濯ぎ洗いを行い、遠心分離器(3000rpm、10分間)で脱水した。   Next, after sieving soil and hydrochloric acid cleaning liquid slurry, the sieving soil after classification is added in 1.5 times the weight of the sieving soil, and stirred for 10 minutes (stirring condition: rotation speed of stirring blade) 300 rpm). The pH of the hydrochloric acid cleaning solution at this time was 0 before the completion. This slurry is dehydrated with a centrifuge (3000 rpm, 10 minutes), and the resulting purified soil is added with water at a solid-liquid weight ratio of 1: 2, and then adjusted to pH 3.0 by adding slaked lime, and rinsed. And dehydrated in a centrifuge (3000 rpm, 10 minutes).

その後、再度、固液重量比1:2の水を加え濯ぎ洗し、遠心分離器(3000rpm、10分間)で脱水した。さらに、消石灰を添加、混合して土壌を元の土壌と同じpH6.8とし、風乾した。この浄化土壌を環境省告示第19号の方法に準拠し、鉛含有量を測定した。結果を上述した表2に比較例1として合わせて示す。   Thereafter, water having a solid / liquid weight ratio of 1: 2 was added and rinsed again, followed by dehydration with a centrifugal separator (3000 rpm, 10 minutes). Furthermore, slaked lime was added and mixed to bring the soil to the same pH 6.8 as the original soil and air-dried. This purified soil was measured for lead content according to the method of Ministry of the Environment Notification No. 19. The results are shown in Table 2 above as Comparative Example 1.

また、他の比較例として、実施例2での濯ぎ洗い操作を1回とし、それ以外の条件は実施例2と同じとした結果を上述した表2に比較例2として合わせて示す。   Further, as another comparative example, the result of assuming that the rinsing operation in Example 2 is performed once and the other conditions are the same as those in Example 2 is also shown as Comparative Example 2 in Table 2 described above.

表1、2の結果のように、本発明によれば、重金属汚染土壌に対し優れた浄化効果を確認することができた。さらに、表2の結果のように、酸性溶液での洗浄後にpH2以下の条件下で濯ぎ洗いを行なうことにより、優れた濯ぎ効果が得られた。また、最適な土壌の濯ぎ洗い回数を定義することにより、濯ぎ洗いにおける濯ぎ液(水)の使用量を低減することができた。   As shown in Tables 1 and 2, according to the present invention, it was possible to confirm an excellent purification effect on heavy metal contaminated soil. Further, as shown in the results of Table 2, an excellent rinsing effect was obtained by rinsing under conditions of pH 2 or lower after washing with an acidic solution. In addition, by defining the optimal number of times of soil rinsing, the amount of rinsing liquid (water) used in rinsing could be reduced.

本発明の一実施形態に係る重金属汚染土壌の浄化工程を示す図。The figure which shows the purification process of the heavy metal contamination soil which concerns on one Embodiment of this invention. 浄化後の土壌中の重金属(鉛)含有量に及ぼす土壌/酸性溶液(塩酸溶液)混合後のpHの影響を示す図。The figure which shows the influence of pH after soil / acid solution (hydrochloric acid solution) mixing on the heavy metal (lead) content in the soil after purification | cleaning. 浄化後の重金属(鉛)含有量に及ぼす酸性溶液(塩酸溶液)での土壌洗浄時間の影響を示す図。The figure which shows the influence of the soil washing | cleaning time by the acidic solution (hydrochloric acid solution) on the heavy metal (lead) content after purification | cleaning. 固液分離装置から回収した酸性溶液の処理工程を示す図。The figure which shows the process of the acidic solution collect | recovered from the solid-liquid separator. 本発明の一実施形態の他の実施形態に係る重金属汚染土壌の浄化工程を示す図。The figure which shows the purification process of the heavy metal contaminated soil which concerns on other embodiment of one Embodiment of this invention. 浄化後の土壌中の重金属(鉛)含有量に及ぼす土壌/濯ぎ液混合後のpHの影響を示す図。The figure which shows the influence of pH after soil / rinsing liquid mixing on the heavy metal (lead) content in the soil after purification | cleaning. 酸性溶液で洗浄後の土壌に対する重金属(鉛)含有量に及ぼす濯ぎ洗い回数の関係を示す図The figure which shows the relation of the number of times of rinsing which influences the heavy metal (lead) content to the soil after washing with the acidic solution 本発明の他の実施形態に係る汚染濃度の異なる重金属汚染土壌を浄化する工程を示す図。The figure which shows the process of purifying the heavy metal pollution soil from which the pollution density | concentration which concerns on other embodiment of this invention differs. 重金属(鉛)汚染濃度と土壌粒子径の関係を示す図。The figure which shows the relationship between a heavy metal (lead) contamination density | concentration and a soil particle diameter. 酸性溶液の種類と土壌(土壌粒子:0.075〜2.0mm)の浄化後の重金属(鉛)含有量の関係を示す図。The figure which shows the relationship between the kind of acidic solution, and heavy metal (lead) content after purification | cleaning of soil (soil particle: 0.075-2.0 mm). 酸性溶液の種類と土壌(土壌粒子:0.075mm未満)の浄化後の重金属(鉛)含有量の関係を示す図。The figure which shows the relationship between the kind of acidic solution, and heavy metal (lead) content after purification | cleaning of soil (soil particle: less than 0.075 mm).

符号の説明Explanation of symbols

1 第一の工程
2 第二の工程
3 第三の工程
4 第四の工程
5 第五の工程
6 第六の工程
7 酸性溶液の濃度および/またはpHを検出する検出器
8 制御装置
9 新液の量を調整する流量調整弁
10 再循環流路
DESCRIPTION OF SYMBOLS 1 1st process 2 2nd process 3 3rd process 4 4th process 5 5th process 6 6th process 7 Detector 8 which detects the density | concentration and / or pH of an acidic solution 8 Control apparatus 9 New liquid Flow control valve to adjust the amount of recirculation 10 Recirculation flow path

Claims (10)

重金属汚染土壌を酸性溶液で酸洗して浄化する方法において、
重金属汚染土壌を解砕し、粒子径毎に分級された複数の粒子群とした後、最初に最も粒子径の小さい粒子群の重金属汚染土壌を酸洗し、酸洗後の前記最も粒子径の小さい粒子群の重金属汚染土壌と酸性溶液からなるスラリに、
残余の、分級された粒子群の重金属汚染土壌を、小さい粒子径の粒子群の重金属汚染土壌から大きい粒子径の粒子群の重金属汚染土壌を順次、添加して洗浄する際、添加する都度混合洗浄を行い、
最後に最も粒子径の大きい粒子群の重金属汚染土壌を添加し、混合洗浄して得られるスラリについて固液分離装置で土壌と酸性溶液を分離し、前記土壌の濯ぎ洗いを行うことを特徴とする重金属汚染土壌の浄化方法。
In a method of pickling and cleaning heavy metal contaminated soil with an acid solution,
After pulverizing the heavy metal contaminated soil into a plurality of particle groups classified according to particle size, first pickle the heavy metal contaminated soil of the particle group having the smallest particle size, In slurry consisting of heavy metal contaminated soil and acidic solution of small particles,
When the remaining heavy metal contaminated soil of classified particles is washed by sequentially adding heavy metal contaminated soil of large particle size to heavy metal contaminated soil of small particle size, mixed washing each time it is added And
Finally, the heavy metal-contaminated soil of the particle group having the largest particle size is added, and the slurry obtained by mixing and washing is separated from the soil and the acidic solution with a solid-liquid separator, and the soil is rinsed. Purification method for heavy metal contaminated soil.
最も粒子径の大きい粒子群を添加し、混合洗浄して得られたスラリを固液分離装置で土壌と酸性溶液に分離し、前記土壌の濯ぎ液による洗浄をpH2以下の領域で行うことを特徴とする請求項1記載の重金属汚染土壌の浄化方法。   A slurry obtained by adding a particle group having the largest particle diameter, mixing and washing is separated into soil and an acidic solution by a solid-liquid separator, and washing with the soil rinsing liquid is performed in a pH 2 or lower region. The method for purifying heavy metal-contaminated soil according to claim 1. 濯ぎ洗い後に得られる土壌を解砕前の重金属汚染土壌と同じpHに調整することを特徴とする請求項1または2記載の重金属汚染土壌の浄化方法。   The method for purifying heavy metal-contaminated soil according to claim 1 or 2, wherein the soil obtained after rinsing is adjusted to the same pH as that of the heavy metal-contaminated soil before pulverization. 濯ぎ洗い後に得られる土壌を解砕前の重金属汚染土壌と同じpHに調整後、重金属汚染土壌を採取した地点もしくは近傍の非汚染土壌および/または腐葉土を混合することを特徴とする請求項3記載の重金属汚染土壌の浄化方法。   4. The soil obtained after rinsing is adjusted to the same pH as the heavy metal-contaminated soil before crushing, and then the uncontaminated soil and / or humus soil at or near the point where the heavy metal-contaminated soil is collected is mixed. To remediate heavy metal contaminated soil. 固液分離装置で分離された土壌の濯ぎ洗いにおいて、濯ぎ回数Nが下記の式を満たすことを特徴とする請求項1乃至4のいずれか一つに記載の重金属汚染土壌の浄化方法。
但し、土壌と濯ぎ液との固液重量比:A、固液分離後の土壌の含水率:B、酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0、土壌含有量指定基準:αとする。
N≧2.2×ln[1.3×(α/C0)]/ln[B/{A×(1−B)}]−1
The method for purifying heavy metal-contaminated soil according to any one of claims 1 to 4, wherein in rinsing the soil separated by the solid-liquid separator, the number of times of rinsing N satisfies the following formula.
However, solid-liquid weight ratio between soil and rinsing liquid: A, moisture content of soil after solid-liquid separation: B, soil content of target pollutant before washing with acidic solution: C0, soil content designation Standard: α.
N ≧ 2.2 × ln [1.3 × (α / C0)] / ln [B / {A × (1−B)}] − 1
重金属汚染土壌を解砕し、最も粒子径の小さい粒子群を粒子径0.075mm未満とし、最も粒子径の大きい粒子群を粒子径0.075mm以上2.0mm以下とし、前記粒子径0.075mm未満の粒子群を、前記粒子径0.075mm未満の粒子群と混合後においてpH−0.3以下となる酸性溶液で洗浄しスラリとした後、次に、粒子径0.075mm以上2.0mm以下に分級された粒子群の土壌を前記スラリに添加し、混合後においてpH0.5以下となる酸性溶液で洗浄することを特徴とする請求項5記載の重金属汚染土壌の浄化方法。   The heavy metal contaminated soil is crushed, the particle group having the smallest particle diameter is made less than 0.075 mm, the particle group having the largest particle diameter is made 0.075 mm or more and 2.0 mm or less, and the particle diameter is 0.075 mm. After the particle group having a particle size of less than 0.075 mm was mixed with the particle group having a particle size of less than 0.075 mm and washed with an acidic solution having a pH of -0.3 or less to obtain a slurry, the particle size was 0.075 mm to 2.0 mm. 6. The method for purifying heavy metal-contaminated soil according to claim 5, wherein the soil of the particle group classified below is added to the slurry and washed with an acidic solution having a pH of 0.5 or less after mixing. 重金属汚染土壌を酸性溶液で酸洗して浄化する方法において、
重金属汚染土壌を汚染濃度毎に分別された複数の群とした後、最初に最も汚染濃度の高い群の重金属汚染土壌を酸洗し、酸洗後の、前記最も汚染濃度の高い群の重金属汚染土壌と酸性溶液からなるスラリに、
残余の群の重金属汚染土壌を、汚染濃度の高い重金属汚染土壌の群から汚染濃度の低い重金属汚染土壌の群を順次、添加して洗浄する際、添加する都度混合洗浄を行い、
最後に最も汚染濃度の低い重金属汚染土壌を添加し、混合洗浄して得られるスラリについて固液分離装置で土壌と酸性溶液を分離し、前記土壌の濯ぎ洗いを行うことを特徴とする重金属汚染土壌の浄化方法。
In a method of pickling and cleaning heavy metal contaminated soil with an acid solution,
After the heavy metal contaminated soil is divided into a plurality of groups sorted according to the contamination concentration, the heavy metal contaminated soil of the group with the highest contamination concentration is first pickled, and after pickling, the heavy metal contamination of the group with the highest contamination concentration To slurry consisting of soil and acidic solution,
When the remaining heavy metal-contaminated soils are added and washed sequentially from the group of heavy metal-contaminated soils with high contamination concentration to the group of heavy metal-contaminated soils with low contamination concentration, mixed washing is performed each time they are added,
Finally, the heavy metal-contaminated soil having the lowest contamination concentration is added, and the slurry obtained by mixing and washing is separated from the soil and the acidic solution by a solid-liquid separator, and the soil is rinsed, and the soil is rinsed with heavy metal Purification method.
重金属が鉛で、酸性溶液が塩酸であることを特徴とする請求項1乃至7のいずれか一つに記載の重金属汚染土壌の浄化方法。   The method for purifying heavy metal-contaminated soil according to any one of claims 1 to 7, wherein the heavy metal is lead and the acidic solution is hydrochloric acid. 重金属汚染土壌を酸性溶液で洗浄する際、酸性溶液で洗浄した後の濯ぎ液による土壌の濯ぎ洗いにおいて、濯ぎ液による洗浄をpH2以下の領域で行うことを特徴とする重金属汚染土壌の浄化方法。   A method for purifying heavy metal-contaminated soil, characterized in that, when washing heavy metal contaminated soil with an acidic solution, the soil is rinsed with a rinsing solution after being washed with an acidic solution, and the washing with the rinsing solution is performed in an area of pH 2 or lower. 重金属汚染土壌を酸性溶液で洗浄する際、酸性溶液で洗浄した後の濯ぎ液による土壌の濯ぎ洗いにおいて、濯ぎ回数Nが下記の式を満たすことを特徴とする重金属汚染土壌の浄化方法。
但し、土壌と濯ぎ液との固液重量比:A、固液分離後の土壌の含水率:B、酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0、土壌含有量指定基準:αとする。
N≧2.2×ln[1.3×(α/C0)]/ln[B/{A×(1−B)}]−1
A method for purifying heavy metal-contaminated soil, characterized in that, when washing heavy metal-contaminated soil with an acidic solution, the number of times of rinsing N satisfies the following formula in rinsing the soil with a rinsing liquid after washing with an acidic solution.
However, solid-liquid weight ratio between soil and rinsing liquid: A, moisture content of soil after solid-liquid separation: B, soil content of target pollutant before washing with acidic solution: C0, soil content designation Standard: α.
N ≧ 2.2 × ln [1.3 × (α / C0)] / ln [B / {A × (1−B)}] − 1
JP2004234832A 2004-08-11 2004-08-11 Purification method of heavy metal contaminated soil Pending JP2006051440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234832A JP2006051440A (en) 2004-08-11 2004-08-11 Purification method of heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234832A JP2006051440A (en) 2004-08-11 2004-08-11 Purification method of heavy metal contaminated soil

Publications (1)

Publication Number Publication Date
JP2006051440A true JP2006051440A (en) 2006-02-23

Family

ID=36029236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234832A Pending JP2006051440A (en) 2004-08-11 2004-08-11 Purification method of heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP2006051440A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil
JP2013043148A (en) * 2011-08-25 2013-03-04 Toa Harbor Works Co Ltd Classifier
KR101276400B1 (en) 2011-03-31 2013-06-19 코오롱글로벌 주식회사 Method and System for Treating Contaminated Soil, Trommel for Sorting Contaminated Soil
JP2014069157A (en) * 2012-09-29 2014-04-21 Maeda Corp Volume reduction based processing method of contaminated soil
CN104014583A (en) * 2014-06-10 2014-09-03 苏州同和环保工程有限公司 Heavy metal polluted soil eluting and heavy metal concentrating method and equipment
JP2014171955A (en) * 2013-03-08 2014-09-22 Jfe Mineral Co Ltd Purification method
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil
JP2017215269A (en) * 2016-06-02 2017-12-07 Jfeミネラル株式会社 Method for purifying cesium contamination soil
JP2018058071A (en) * 2017-11-02 2018-04-12 株式会社オメガ Method for purifying contaminated soil
CN114062071A (en) * 2021-10-14 2022-02-18 中国农业科学院农业环境与可持续发展研究所 Method for quickly separating and detecting plastic from soil
CN114276198A (en) * 2022-01-01 2022-04-05 李亮佳 Fertilizer for improving heavy metal contaminated soil and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039664A (en) * 2007-08-09 2009-02-26 Dowa Eco-System Co Ltd Acid treatment method for heavy metal contaminated soil
KR101276400B1 (en) 2011-03-31 2013-06-19 코오롱글로벌 주식회사 Method and System for Treating Contaminated Soil, Trommel for Sorting Contaminated Soil
JP2013043148A (en) * 2011-08-25 2013-03-04 Toa Harbor Works Co Ltd Classifier
JP2014069157A (en) * 2012-09-29 2014-04-21 Maeda Corp Volume reduction based processing method of contaminated soil
JP2014171955A (en) * 2013-03-08 2014-09-22 Jfe Mineral Co Ltd Purification method
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil
CN104014583A (en) * 2014-06-10 2014-09-03 苏州同和环保工程有限公司 Heavy metal polluted soil eluting and heavy metal concentrating method and equipment
JP2017215269A (en) * 2016-06-02 2017-12-07 Jfeミネラル株式会社 Method for purifying cesium contamination soil
JP2018058071A (en) * 2017-11-02 2018-04-12 株式会社オメガ Method for purifying contaminated soil
CN114062071A (en) * 2021-10-14 2022-02-18 中国农业科学院农业环境与可持续发展研究所 Method for quickly separating and detecting plastic from soil
CN114062071B (en) * 2021-10-14 2023-04-07 中国农业科学院农业环境与可持续发展研究所 Method for quickly separating and detecting plastic from soil
CN114276198A (en) * 2022-01-01 2022-04-05 李亮佳 Fertilizer for improving heavy metal contaminated soil and preparation method thereof

Similar Documents

Publication Publication Date Title
US5316223A (en) Method and apparatus for cleaning contaminated particulate material
JP5923039B2 (en) Soil purification method
CN104889150B (en) The chemical leaching renovation technique of heavy-metal contaminated soil
JPWO2004037453A1 (en) Soil purification method
JP6334263B2 (en) Purification method for heavy metal contaminated soil
JP2006051440A (en) Purification method of heavy metal contaminated soil
JP4568893B2 (en) Purification method of contaminated soil
CN107639108A (en) A kind of Ex-situ washing remediation of heavy-metal contaminated soil
CN110947746A (en) Ectopic cleaning method for repairing petroleum-polluted soil
JP2020110739A (en) Method for converting refuse incineration ashes to resources and apparatus for converting to resources thereof
JP6363969B2 (en) Method and apparatus for treating heavy metal contaminated soil
JPH1110131A (en) Method for recovery of heavy metals from soil
JP4350987B2 (en) Treatment method for heavy metal contaminated soil
JP5417933B2 (en) Method for processing oil-containing granular materials
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
JP2005279530A (en) Method for cleaning lead polluted soil
JP3968752B2 (en) Purification method for heavy metal contaminated soil
JP2005279529A (en) Method for cleaning heavy metal polluted soil
JP4351930B2 (en) How to clean contaminated soil
JP4583771B2 (en) Method for removing non-volatile pollutants in soil
JP2005279531A (en) Method for cleaning lead polluted soil
JP6497650B2 (en) Cleaning method for arsenic contaminated soil
JP6640028B2 (en) How to clean cesium-contaminated soil
JP4097562B2 (en) Purification method for heavy metal contaminated soil
JP2015171708A (en) Contaminated soil washing method and arsenic-contaminated soil washing method