JP6640028B2 - How to clean cesium-contaminated soil - Google Patents
How to clean cesium-contaminated soil Download PDFInfo
- Publication number
- JP6640028B2 JP6640028B2 JP2016110555A JP2016110555A JP6640028B2 JP 6640028 B2 JP6640028 B2 JP 6640028B2 JP 2016110555 A JP2016110555 A JP 2016110555A JP 2016110555 A JP2016110555 A JP 2016110555A JP 6640028 B2 JP6640028 B2 JP 6640028B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- cesium
- washing
- rinsing
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002689 soil Substances 0.000 title claims description 227
- 239000002245 particle Substances 0.000 claims description 93
- 239000007788 liquid Substances 0.000 claims description 80
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 77
- 229910052792 caesium Inorganic materials 0.000 claims description 76
- 238000005406 washing Methods 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 50
- 238000000926 separation method Methods 0.000 claims description 19
- 238000004140 cleaning Methods 0.000 claims description 11
- 239000004927 clay Substances 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 9
- 159000000003 magnesium salts Chemical class 0.000 claims description 7
- 238000011109 contamination Methods 0.000 claims description 4
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical class [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 4
- 150000001447 alkali salts Chemical class 0.000 claims description 3
- 239000003864 humus Substances 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 239000000941 radioactive substance Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 159000000000 sodium salts Chemical class 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 28
- 239000000356 contaminant Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 230000000694 effects Effects 0.000 description 10
- 238000000746 purification Methods 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- 239000004576 sand Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- -1 cesium ions Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003929 acidic solution Substances 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000001913 cellulose Chemical class 0.000 description 2
- 229920002678 cellulose Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910001583 allophane Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明はセシウムに汚染された土壌を、セシウム抽出剤を用いて洗浄するセシウム汚染土壌の浄化方法に関する。 The present invention relates to a method for cleaning cesium-contaminated soil by washing cesium-contaminated soil with a cesium extractant.
セシウムに汚染された土壌を浄化する技術として、a分級洗浄法、b化学処理法、c熱処理法が知られている。
水洗分級法は、水洗・分塊、もしくは物理的な土壌研磨等により粗い土壌粒子表面から汚染物質または汚染物質を多量に含む微粒子を分離、濃集、捕捉する方法である。
分級洗浄法の場合、土壌磨砕が不十分であると、粗い土壌粒子からの汚染物質であるセシウムまたはセシウムを多量に含む微粒子が完全に除去されず、セシウム濃度を目標値以下まで低減できない可能性がある。
As a technique for purifying soil contaminated with cesium, a classification cleaning method, b chemical treatment method, and c heat treatment method are known.
The washing classification method is a method of separating, concentrating, and capturing contaminants or fine particles containing a large amount of contaminants from coarse soil particle surfaces by washing / lumping or physical soil polishing.
In the case of the classification washing method, if soil grinding is insufficient, cesium or fine particles containing a large amount of cesium, which is a contaminant from coarse soil particles, cannot be completely removed, and the cesium concentration cannot be reduced below the target value. There is.
また、土壌磨砕時間を長くしたり、粗い土壌粒子表面を完全に研磨する高度磨砕装置を適用したりすることにより、粗い土壌粒子からのセシウムまたはセシウムを多量に含む微粒子の除去率を向上させることは可能である。
しかし、セシウムの場合は重金属と異なり土粒子表面に強固に固着しているため、セシウム濃度を目標値以下まで確実に低減できるとは限らない。さらに、この場合、前者はランニングコストの増大、後者は装置イニシャルコストの増大となることが指摘されている。
また、磨砕による微細粒子が大量に発生し浄化土壌の歩留まりが低下させることとなる。
In addition, the removal rate of cesium or fine particles containing a large amount of cesium from coarse soil particles is improved by lengthening the soil grinding time or applying an advanced grinding device that completely polishes the surface of coarse soil particles. It is possible.
However, in the case of cesium, unlike heavy metal, it is firmly fixed to the surface of the soil particles, so that the cesium concentration cannot always be reduced to a target value or less. Further, in this case, it is pointed out that the former increases the running cost, and the latter increases the initial cost of the apparatus.
In addition, a large amount of fine particles are generated by the grinding, and the yield of the purified soil is reduced.
化学処理法は、薬剤添加により土壌からセシウムを抽出し、抽出されたセシウムを吸着剤等に吸着させることにより浄化する方法である。セシウムを効果的に土壌から抽出するためには、一定の熱と酸が必要とされており、特にシルト・粘土分において顕著となり、コスト増加の要因となる。また、処理後の土壌、特に、シルト・粘土分においては酸にさらされることにより、土壌成分の一部が溶解し、大量の溶解物残渣が発生する可能性があり、吸着剤等によるセシウム吸着の阻害因子となる場合がある。 The chemical treatment method is a method of extracting cesium from soil by adding a chemical, and purifying the cesium by adsorbing the extracted cesium on an adsorbent or the like. In order to extract cesium from soil effectively, a certain amount of heat and acid are required, particularly in the case of silt and clay, which causes an increase in cost. In addition, exposed to acid in the treated soil, especially silt and clay, may cause some of the soil components to dissolve, resulting in the generation of a large amount of dissolved material residue. May be an inhibitor.
熱処理法は、土壌に対して反応促進剤を添加した後にロータリーキルンや溶融炉等でセシウムを揮発させて土壌を焼結または固化する方法である。これら焼結または固化状態にするためには、焼結状態にする場合には:1000〜1200℃、固化状態にする場合には:1600〜2000℃まで加熱する必要があり、大量の熱源を必要とし、ランニングコストの増大を招く。 The heat treatment method is a method in which a reaction accelerator is added to soil, and then cesium is volatilized in a rotary kiln or a melting furnace to sinter or solidify the soil. In order to make these sintering or solidification, it is necessary to heat up to 1000-1200 ° C in case of sintering, and to 1600-2000 ° C in case of solidifying, and a large amount of heat source is required This leads to an increase in running cost.
さらに、加熱気化したセシウムやその他発生する排ガス成分に対しても適切に処理する付加設備等が必要となり、イニシャルコスト増大につながる。また、汚染物質であるセシウムが完全に揮発除去されていない場合、焼結や固化状態が完全に形成されていないと、セシウムが再溶出する可能性があることが指摘されている。 Further, additional equipment or the like for appropriately treating cesium heated and vaporized and other generated exhaust gas components is required, leading to an increase in initial cost. In addition, it has been pointed out that when cesium as a contaminant is not completely removed by volatilization, cesium may be re-eluted if the sintering or solidification state is not completely formed.
上述したように、水洗分級法、化学処理法、熱処理法のいずれの方法にも欠点があるため、セシウムの除去効率の向上、コスト低減を目的として分級洗浄,化学処理を組み合わせた方法が提案されている。
例えば、特許文献1には分級後の砂分に対して酸処理を行って土壌粒子表面を脆化させた後にスクラビング処理を行ってセシウムを除去する方法が記載されている。
また、特許文献2においては5〜25mmの粗粒土壌と5mm以下の細粒土壌に分離した後に細粒土壌に対して高速せん断ミキサによって浮選性を向上させてセシウムを吸着している0.5mm以下の粘性質土壌を分離回収する方法が記載されている。
As described above, there are drawbacks in any of the washing classification method, the chemical treatment method, and the heat treatment method. Therefore, a method combining classification washing and chemical treatment has been proposed for the purpose of improving cesium removal efficiency and reducing costs. ing.
For example, Patent Literature 1 describes a method in which sand is subjected to an acid treatment on classified sand to embrittle the surface of soil particles, and then scrubbing is performed to remove cesium.
Further, in Patent Document 2, after separating into coarse-grained soil of 5 to 25 mm and fine-grained soil of 5 mm or less, cesium is adsorbed on fine-grained soil by improving flotation by a high-speed shear mixer. The following method for separating and recovering viscous soil is described.
特許文献1に開示されている浄化方法の場合、酸処理による砂分表面の脆化によって砂分表面に強固に付着しているセシウムを過度の研磨負荷をかけずに除去することが可能であるが、脆化に伴い土壌成分の溶解、粒子欠損が発生し、微細粒子や残渣が大量に発生する恐れがある。 In the case of the purification method disclosed in Patent Document 1, it is possible to remove cesium firmly adhering to the sand surface due to embrittlement of the sand surface due to acid treatment without applying an excessive polishing load. However, embrittlement may cause dissolution of soil components and particle deficiency, resulting in a large amount of fine particles and residues.
また、特許文献2に開示されている浄化方法の場合、シルト・粘土分、および、大半の砂分が汚染土壌扱いとなり、未処理のままで埋立処理管理する場合と比較して非常に不経済となる。
さらに、特許文献1、2に開示されている浄化方法の場合、抽出剤等の薬剤種類、薬剤濃度、洗浄時間、固液重量比等、多くのパラメータが存在するため、これらのパラメータの中から、最適条件を見出すことは非常に困難で、技術を具体化し、現地に適用する場合、種々の不利益が生じている。
Further, in the case of the purification method disclosed in Patent Document 2, silt / clay and most of the sand are treated as contaminated soil, which is extremely uneconomical as compared with a case where landfill treatment is performed without treatment. Becomes
Further, in the case of the purification methods disclosed in Patent Literatures 1 and 2, since there are many parameters such as a type of a drug such as an extractant, a drug concentration, a washing time, and a solid-liquid weight ratio, the parameters are selected from these parameters. It is very difficult to find the optimum conditions, and there are various disadvantages when implementing the technology and applying it locally.
例えば、過度の薬剤濃度や洗浄時間、固液重量比で洗浄を行なった場合は、装置が大きくなり、ランニングコストが増大するため、浄化コストアップの要因となるばかりか土壌粒子の溶解による浄化土壌の歩留まりも低下する。また、薬剤濃度や洗浄時間、固液重量比が不足した条件下で洗浄を行なった場合、洗浄後の土壌を目標値以下まで低減できない危険性がある。 For example, when washing is performed at an excessive drug concentration, washing time, and solid-liquid weight ratio, the size of the apparatus is increased and the running cost is increased. Yield also decreases. Further, when washing is performed under conditions where the drug concentration, the washing time, and the solid-liquid weight ratio are insufficient, there is a risk that the soil after washing cannot be reduced to a target value or less.
本発明は、かかる課題を解決するためになされたものであり、コストパフォーマンスに優れたセシウム汚染土壌の浄化方法を提供することを目的とする。 The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a method for purifying cesium-contaminated soil which is excellent in cost performance.
本発明者らは、セシウムに汚染された土壌(以下、「セシウム汚染土壌」という)をセシウム抽出剤を併用して分級洗浄する方法について鋭意検討し、セシウムによる汚染濃度やセシウムの土壌に対する結合状態が土壌の粒子径に依存することに着目して、浄化する土壌の粒子径ごとに浄化に用いる抽出条件、濯ぎ洗い条件を調整し最適化する土壌浄化方法を完成させた。 The present inventors have intensively studied a method of classifying and washing cesium-contaminated soil (hereinafter referred to as “cesium-contaminated soil”) in combination with a cesium extractant, and have examined the cesium-contaminated concentration and the binding state of cesium to soil. Paying attention to the fact that depends on the particle size of the soil, we have completed a soil purification method that adjusts and optimizes the extraction conditions and rinsing conditions used for purification for each particle size of the soil to be purified.
図4はセシウムに汚染された土壌について、土壌粒子径毎のセシウム濃度を調査した結果を示すグラフであり、横軸が通過粒子径(μm)、縦軸が初期濃度に対するセシウム濃度比を示している。なお、「初期濃度に対するセシウム濃度比」とは、本土壌(全粒度のバルク試料)のセシウム濃度を1としたとき、各粒径のセシウム濃度の比率である。
図4のグラフに示すように、土壌粒子径に依存してセシウム濃度は変化し、粒子径0.01mm以下の土壌粒子径にてセシウム濃度が著しく上昇する。
FIG. 4 is a graph showing the results of investigating the cesium concentration for each soil particle diameter for soil contaminated with cesium, wherein the horizontal axis represents the passing particle diameter (μm), and the vertical axis represents the cesium concentration ratio to the initial concentration. I have. The “ratio of cesium concentration to the initial concentration” is a ratio of the cesium concentration of each particle size when the cesium concentration of the present soil (bulk sample of all particle sizes) is set to 1.
As shown in the graph of FIG. 4, the cesium concentration changes depending on the soil particle diameter, and the cesium concentration significantly increases at a soil particle diameter of 0.01 mm or less.
また、シルト・粘土などの細粒土壌の場合、土壌微粒子、特に粘土鉱物による永久電荷作用やアロフェンなどの変異電荷作用により重金属などの汚染物質と強固に結合しやすい。また、細粒土壌は粗粒土壌に比べ活性が高く重金属と難溶性の化合物、鉱物を形成しやすい。
一方、砂質などの粗粒土壌の場合は、土粒子表面への物理吸着や付着などで比較的緩やかに結合している場合が多い。
Further, in the case of fine-grained soil such as silt / clay, soil particles, particularly clay minerals, tend to be strongly bound to contaminants such as heavy metals due to permanent charge action and mutation charge action such as allophane. Further, fine-grained soil has higher activity than coarse-grained soil and easily forms compounds and minerals which are hardly soluble with heavy metals.
On the other hand, in the case of coarse-grained soil such as sandy material, it is often relatively loosely bound by physical adsorption or adhesion to the surface of soil particles.
そこで、本発明者は細粒土壌からのセシウム除去が非常に高コストになることを鑑みて、セシウム汚染土壌を土壌粒子径毎に分級し、一の土壌粒子径以上のセシウム汚染土壌に対して抽出剤を用いた洗浄を行い、洗浄後の土壌に対して固液分離を行った後に、一定の条件下で濯ぎ洗いを実施することによってセシウムの土壌への再付着を防止でき、コストパフォーマンスに優れた洗浄を実現できると考えた。
本発明はかかる考えに基づくものであり、具体的には以下の構成を備えてなるものである。
In view of the fact that cesium removal from fine-grained soil is extremely expensive, the present inventor classifies cesium-contaminated soil for each soil particle diameter and removes cesium-contaminated soil having a diameter of one or more soil particles. After washing with the extractant, solid-liquid separation is performed on the washed soil, and then rinsing is performed under certain conditions to prevent cesium from re-adhering to the soil, resulting in cost performance. We thought that excellent cleaning could be realized.
The present invention is based on such a concept, and specifically has the following configuration.
(1)本発明に係るセシウム汚染土壌の浄化方法は、セシウムによって汚染された土壌を浄化するセシウム汚染土壌の浄化方法であって、
前記セシウム汚染土壌を解砕する解砕工程と、解砕されたセシウム汚染土壌を分級して所定の粒子径の範囲にある粒子群からなる複数のグループに分ける分級工程と、所定の粒子径以上の粒子群からなるグループの汚染土壌に対して放射性物質を土壌から抽出する抽出剤を添加して洗浄する洗浄工程と、固液分離装置で土壌と洗浄溶液を分離する固液分離工程と、前記土壌の濯ぎ洗いを行う濯ぎ洗い工程とを備え、
前記洗浄工程は、カリウム塩、マグネシウム塩、リチウム塩、ナトリウム塩、セシウム塩の1種類以上のアルカリ塩からなる抽出剤を用いて、pH0以上、pH3以下の領域で行うことを特徴とするものである。
(1) A method for purifying cesium-contaminated soil according to the present invention is a method for purifying cesium-contaminated soil for purifying soil contaminated by cesium,
A crushing step of crushing the cesium-contaminated soil, a classifying step of classifying the crushed cesium-contaminated soil and dividing the cesium-contaminated soil into a plurality of groups of particles in a predetermined particle diameter range, and a predetermined particle diameter or more A washing step of adding and extracting an extractant for extracting radioactive substances from soil to contaminated soil of a group consisting of particles, and a solid-liquid separation step of separating soil and a washing solution with a solid-liquid separation device, Comprising a rinsing step of rinsing the soil,
The washing step is performed in an area of pH 0 or more and pH 3 or less using an extractant comprising at least one alkali salt of a potassium salt, a magnesium salt, a lithium salt, a sodium salt, and a cesium salt. is there.
(2)また、上記(1)に記載のものにおいて、前記洗浄工程は、前記固液分離工程で分離された洗浄溶液を抽出剤の一部として用いることを特徴とするものである。 (2) In the cleaning method according to the above (1), the washing step uses the washing solution separated in the solid-liquid separation step as a part of the extractant.
(3)また、上記(1)又は(2)に記載のものにおいて、濯ぎ洗い後に得られる土壌を解砕前のセシウム汚染土壌と同じpHに調整後、汚染土壌を採取した地点もしくは近傍のシルト・粘土成分および/または腐葉土を混合する土壌回復工程を有することを特徴とするものである。 (3) In the above (1) or (2), the soil obtained after rinsing is adjusted to the same pH as the cesium-contaminated soil before crushing, and then the silt at or near the point where the contaminated soil is collected -It has a soil recovery step of mixing a clay component and / or humus.
(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、固液分離装置で分離された土壌の濯ぎ洗いにおいて、濯ぎ回数Nが下記の式を満たすことを特徴とするものである。
N≧1.9×ln(α/C0)/ln[B/{A×(1−B)}]−1
但し、A:土壌と濯ぎ液との固液重量比
B:固液分離後の土壌の含水率
C0:洗浄前の対象とするセシウム濃度(土壌に対する含有量)
α:洗浄後の目標とするセシウム濃度
(4) Further, in any one of the above (1) to (3), in the rinsing of the soil separated by the solid-liquid separator, the number of rinsings N satisfies the following equation. Things.
N ≧ 1.9 × ln (α / C0) / ln [B / {A × (1-B)}] − 1
However, A: solid-liquid weight ratio of soil and rinse liquid
B: Moisture content of soil after solid-liquid separation
C0: Target cesium concentration before washing (content in soil)
α: target cesium concentration after cleaning
(5)また、上記(1)乃至(4)のいずれかに記載のものにおいて、前記分級工程は、前記セシウム汚染土壌を粒子径0.075mm未満と粒子径0.075mm以上の少なくとも2種類の粒子群のグループに分級することを特徴とするものである。 (5) In the method according to any one of the above (1) to (4), the classifying step includes the step of separating the cesium-contaminated soil into at least two types of particle groups having a particle diameter of less than 0.075 mm and a particle diameter of 0.075 mm or more. Classification into groups.
本発明のセシウム汚染土壌の浄化方法は、セシウム汚染土壌を解砕する解砕工程と、解砕されたセシウム汚染土壌を分級して所定の粒子径の範囲にある粒子群からなる複数のグループに分ける分級工程と、所定の粒子径以上の粒子群からなるグループの汚染土壌に対して放射性物質を土壌から抽出する抽出剤を添加して洗浄する洗浄工程と、固液分離装置で土壌と洗浄溶液を分離する固液分離工程と、前記土壌の濯ぎ洗いを行う濯ぎ洗い工程とを備え、
前記洗浄工程は、カリウム塩、マグネシウム塩、リチウム塩、ナトリウム塩、セシウム塩の1種類以上のアルカリ塩からなる抽出剤を用いて、pH0以上、pH3以下の領域で行うことにより、セシウム汚染土壌を解砕後、分級した土壌毎に最適な抽出洗浄条件を適用するので、安価な費用で大量のセシウム汚染土壌の浄化を行うことができる。
The method for purifying cesium-contaminated soil according to the present invention includes a crushing step of crushing cesium-contaminated soil, and a method of classifying the crushed cesium-contaminated soil into a plurality of groups including particles in a predetermined particle diameter range. A classification step of separating, a washing step of adding an extractant for extracting radioactive substances from soil to a contaminated soil of a group consisting of a group of particles having a predetermined particle size or more, and a washing step; And a rinsing step of rinsing the soil,
The cesium-contaminated soil is washed by performing the washing step in an area of pH 0 or more and pH 3 or less using an extractant comprising one or more alkali salts of potassium salt, magnesium salt, lithium salt, sodium salt, and cesium salt. After the crushing, the optimum extraction and washing conditions are applied to each classified soil, so that a large amount of cesium-contaminated soil can be purified at low cost.
本発明は、抽出剤を用いて、セシウム染土壌を浄化する方法であって、特定の粒子径を境に分級された汚染土壌の複数の粒子群に対し、一定の粒子径以上の粒子群を抽出剤で洗浄を行い、洗浄後の土壌を固液分離装置にて土壌と洗浄液を分離し、分離後の土壌に対して一定の濯ぎ洗い条件下で濯ぎ洗いを行うことにより、セシウムを選択的に土壌から抽出し、抽出されたセシウムの土壌への再付着を防止することを特徴とするものである。 The present invention is a method for purifying cesium-stained soil using an extractant, wherein a plurality of particle groups of contaminated soil classified based on a specific particle diameter are classified into particles having a certain particle diameter or more. After washing with an extractant, the washed soil is separated from the soil and the washing liquid by a solid-liquid separator, and the separated soil is rinsed under a constant rinsing condition to selectively remove cesium. The present invention is characterized in that the cesium is extracted from soil to prevent reattachment of the extracted cesium to soil.
図1は、セシウム汚染土壌を大小二つの粒子径群に分級した場合のセシウム染土壌の浄化方法の各工程を示すものである。
図1において、1はセシウム汚染土壌を、単体粒子に解砕する工程(以下、第一の工程1)、2は第一の工程1により解砕された、セシウム汚染土壌を分級機により特定の粒子径を境に分級する工程(以下、第二の工程2)、3は、第二の工程2で分級された粒子径の特定の粒子径以上からなる粒子群をセシウムを選択的に抽出する抽出剤を用いて洗浄する工程(以下、第三の工程3)、4は、第三の工程3で抽出・洗浄された土壌を固液分離装置により洗浄液を分離する工程(以下、第四の工程4)、5は、第四の工程4により回収された土壌を濯ぎ液により濯ぎ洗いする工程(以下、第五の工程5)、6は、第二の高低に分級された特定の粒子径未満からなる粒子群および洗浄液等の廃液に対して凝集沈殿・脱水する工程(以下、第六の工程6)を示す。
以下、各工程を詳細に説明する。
FIG. 1 shows each step of a method for cleaning cesium-stained soil when cesium-contaminated soil is classified into two large and small particle size groups.
In FIG. 1, reference numeral 1 denotes a step of disintegrating cesium-contaminated soil into single particles (hereinafter, a first step 1), and reference numeral 2 denotes a specific step of classifying cesium-contaminated soil which has been disintegrated in the first step 1 by a classifier. In the step (hereinafter, referred to as a second step 2) of classifying the particles based on the particle diameter, a cesium is selectively extracted from a particle group having a particle diameter equal to or larger than the specific particle diameter classified in the second step 2. The step of washing with an extractant (hereinafter, the third step 3) and the step of separating the washing liquid of the soil extracted and washed in the third step 3 by a solid-liquid separator (hereinafter, the fourth step). Steps 4) and 5 are steps of rinsing the soil collected in the fourth step 4 with a rinsing liquid (hereinafter, fifth step 5), and 6 is a specific particle diameter classified into a second high and low. Coagulation sedimentation and dehydration of waste particles such as particles and cleaning liquids (hereinafter referred to as the sixth Shows the extent 6).
Hereinafter, each step will be described in detail.
[第一の工程]
第一の工程1は本発明の解砕工程に相当し、セシウム汚染土壌を解砕手段により、土壌粒子が凝集し塊状となった状態や礫・砂分等の表面にシルト・粘土が付着した状態から単粒子にときほぐすことを目的とする工程である。
[First step]
The first step 1 corresponds to the crushing step of the present invention, in which the cesium-contaminated soil is crushed by the crushing means, and the silt / clay adheres to the surface such as a state where the soil particles are agglomerated and clumped or the surface of gravel / sand. This is a step for the purpose of unraveling from a state to single particles.
第一の工程1により、単体粒子にときほぐされた土壌は、土壌粒子の大きさごとに分級が可能となる。また、抽出剤による洗浄において、土壌粒子と抽出剤の接触面積が増大し、洗浄時間が短縮し、セシウムを除去する効率も向上する。解砕に用いる土壌解砕機としては、ドラムウオッシャー、パドルミキサー、ロットミル、ボールミルなど既存の装置を利用する。
なお、解砕する前、又は解砕後の土壌から、植物片や炭ガラ、金属片などの異物を比重選別機、磁力選別機、浮遊選別機で取り除いたり、大きな土粒子を振動スクリーンで取り除いたりすることが望ましい。
According to the first step 1, the soil loosened into single particles can be classified according to the size of the soil particles. Further, in the washing with the extractant, the contact area between the soil particles and the extractant increases, the washing time is shortened, and the efficiency of removing cesium is improved. Existing equipment such as a drum washer, a paddle mixer, a lot mill, and a ball mill is used as a soil crusher used for crushing.
Before or after crushing, remove foreign substances such as plant pieces, coal flakes, and metal pieces from the soil after crushing using a specific gravity separator, a magnetic separator, or a floating separator, or remove large soil particles with a vibrating screen. Is desirable.
[第二の工程]
第二の工程2は本発明の分級工程に相当し、第一の工程1で単体粒子にときほぐされた土壌を、特定の粒子径を境に所定の粒子径の範囲にある粒子群のグループに分級することを目的とする。
分級は、スクリーン、スパイラル分級機、遠心分離機、サイクロンなどの各種の装置を単独または組み合わせて行う。
[Second step]
The second step 2 corresponds to the classification step of the present invention, and the soil separated into the single particles in the first step 1 is divided into a group of particles in a range of a predetermined particle size from a specific particle size. The purpose is to classify into.
Classification is performed using various devices such as a screen, a spiral classifier, a centrifuge, and a cyclone, alone or in combination.
分級する場合、粒子径0.075mm下はシルト・粘土質、粒子径0.075mm超え2.0mm以下は砂質で土壌の性質が異なりセシウムの吸着強度が大きく相違するため、粒子径0.075mm以下と粒子径0.075mm超え2.0mm以下の少なくとも2種類の粒子群に分級することが好ましい。
粒子径0.075mm以下と、粒子径0.075mm超え2.0mm以下のそれぞれを更に分級しても良い。特に、前述したように粒子径0.01mm以下でセシウム濃度が著しく上昇する場合が多いことから、粒子径0.075mm以下の粒子に対して、0.01mmで更なる分級を行ってもよい。
For classification, particles with a particle size of 0.075 mm or less have a particle size of 0.075 mm or less because silt and clay are below 0.075 mm and sand and particles with a particle size of more than 0.075 mm and less than 2.0 mm are sandy and have different cesium adsorption strengths. It is preferable to classify the particles into at least two types of particle groups having a size exceeding 0.075 mm and not more than 2.0 mm.
Particles having a particle diameter of 0.075 mm or less and particles having a particle diameter of more than 0.075 mm and not more than 2.0 mm may be further classified. In particular, as described above, since the cesium concentration often significantly increases at a particle diameter of 0.01 mm or less, particles having a particle diameter of 0.075 mm or less may be further classified at 0.01 mm.
[第三の工程]
第三の工程3は本発明の洗浄工程に相当するものであり、第二の工程2で分級された二つのグループのうちの特定の粒子径以上の粒子群のグループの土壌に対して抽出剤を用いて洗浄することを目的とする。この洗浄に用いる装置は、攪拌翼による混合洗浄等の土壌と抽出剤を十分に混合できるものであればよい。
[Third step]
The third step 3 corresponds to the washing step of the present invention, and the extractant is used for the soil of a group of particles having a specific particle size or more among the two groups classified in the second step 2. It is intended to be washed by using. The apparatus used for this washing may be any apparatus that can sufficiently mix the soil and the extractant, such as mixing washing with a stirring blade.
一般に、粒子径が小さいものほど土壌の中に強固にセシウムが取り込まれており、セシウムを土壌から強制的に脱離させるためには薬剤添加や加熱等が必要となるため、薬剤添加、加熱負荷による大幅なコストアップが予想される。さらに、粒子径が小さいため、処理後土壌の回収においても特殊な装置が必要となり、複数回の洗浄が必要な場合、ランニングコスト増加の要因となる。
他方、粒子径が大きい土壌では土壌とセシウムの付着が比較的緩やかなため、粒子径が小さい場合と比較して薬剤添加、加熱負荷を抑制することができ、また、処理後土壌の回収も安価な装置で対応することができる。
In general, the smaller the particle size, the more strongly cesium is taken into the soil, and it is necessary to add a drug or heat to forcibly desorb the cesium from the soil. The cost is expected to increase significantly. Further, since the particle diameter is small, a special device is required also in collecting the soil after the treatment, and when a plurality of washings are required, the running cost is increased.
On the other hand, in soils with a large particle size, the adhesion of cesium to the soil is relatively slow, so it is possible to suppress the addition of chemicals and heating load as compared with the case where the particle size is small, and it is also inexpensive to recover the soil after treatment. Can be handled by a simple device.
以上の事より、処理コストを抑制するためには、特定の粒子径以上の粒子群に対して抽出剤を用いて洗浄すればよい。
なお、抽出剤としては、雲母等の層間に固定態として取り込まれているセシウムに対して、層間を広げてセシウムと置換する効果のある、カリウム塩やアンモニウム塩、マグネシウム塩などが望ましい。中でも、マグネシウム塩とセルロース誘導体からなる抽出剤は、常温常圧において土壌の分散性を高め土壌とマグネシウム塩の接触性を向上させることにより、セシウムイオンとマグネシウムイオン、水素イオンとの置換反応を促進することができる。
As described above, in order to suppress the processing cost, the particles having a specific particle size or more may be washed with the extractant.
As the extractant, a potassium salt, an ammonium salt, a magnesium salt, or the like, which has an effect of expanding the interlayer and replacing cesium with cesium incorporated as a fixed state between layers such as mica, is desirable. Above all, an extractant consisting of a magnesium salt and a cellulose derivative promotes the substitution reaction between cesium ions, magnesium ions, and hydrogen ions by increasing the dispersibility of the soil at normal temperature and pressure and improving the contact between the magnesium salt and the soil. can do.
また、セシウムイオンと置換する水素イオンの供給の観点、および、再置換防止の観点から土壌と抽出剤を添加混合したスラリーはpH3以下に調整した方がよい。すなわち、セシウム汚染土壌を酸性領域で抽出・洗浄すると、セシウムを抽出するほか、土壌の構成成分である鉄、アルミニウム等も溶解する。一般に鉄、アルミニウムは、ある一定のpH以上(Fe2+:pH5.2以上,Fe3+:pH2.8以上,Al3+:pH4.3以上)になるとスラリー中の重金属イオンを静電的に吸着する共沈現象を生じやすく、さらに、土壌の溶解により発生する有機分やカルシウム等の存在および土壌の吸着性が相俟って土壌への再付着が発生し、土壌に残留すると考えられるため、pH3以下とした方がよい。 Further, it is better to adjust the pH of the slurry obtained by adding and mixing the soil and the extractant to pH 3 or less from the viewpoint of supplying hydrogen ions replacing cesium ions and preventing re-substitution. That is, when cesium-contaminated soil is extracted and washed in an acidic region, cesium is extracted, and iron, aluminum, and the like, which are components of the soil, are also dissolved. Generally iron, aluminum, constant pH of more than (Fe 2+: pH 5.2 or higher, Fe 3+: pH 2.8 or higher, Al 3+: pH 4.3 or higher) will the electrostatically heavy metal ions in the slurry It is considered that co-precipitation phenomena that adsorb to the soil are likely to occur, and that re-adhesion to the soil occurs due to the presence of the organic components and calcium generated by the dissolution of the soil and the adsorptivity of the soil, and remains in the soil. Therefore, it is better to set the pH to 3 or less.
しかしながら、pHが低くなるほどセシウムを溶解、抽出するほか、土壌を構成する主要鉱物、物質の溶解、抽出比率が増加し、浄化土壌の歩留まりが低下する上、液の処理などコストパフォーマンスが著しく低下するため、pH0以上が好ましい。
pHの調整には、例えば塩酸や硫酸などを添加するようにすればよい。
尚、第三工程の洗浄時間としては60分以下、洗浄装置のイニシャルコストを更に抑制する観点から好ましくは30分以下とすればよい。
However, the lower the pH, the more cesium is dissolved and extracted, and the ratio of dissolution and extraction of the main minerals and substances that make up the soil is increased. As a result, the yield of purified soil is reduced, and the cost performance such as liquid treatment is significantly reduced. Therefore, the pH is preferably 0 or more.
To adjust the pH, for example, hydrochloric acid or sulfuric acid may be added.
The cleaning time in the third step is preferably 60 minutes or less, and more preferably 30 minutes or less from the viewpoint of further reducing the initial cost of the cleaning apparatus.
[第四の工程]
第四の工程4は本発明の固液分離工程に相当し、第三の工程3を経て抽出・洗浄されたセシウム汚染土壌から洗浄後の洗浄溶液を固液分離装置により回収することを目的とする。固液分離装置は、スクリーン、スパイラル分級機、遠心分離機、サイクロン、フィルタプレスなどの既存の装置を単独または組み合わせて行う。
尚、固液分離装置で回収された洗浄溶液を、当該土壌の洗浄に再循環させる場合は、土壌を抽出洗浄する洗浄溶液が所定の洗浄能力を確保できるように新液との混合比率を適宜調整する。
[Fourth step]
The fourth step 4 corresponds to the solid-liquid separation step of the present invention, and aims at recovering the washed washing solution from the cesium-contaminated soil extracted and washed through the third step 3 by a solid-liquid separation device. I do. The solid-liquid separator is used alone or in combination with existing devices such as a screen, a spiral classifier, a centrifuge, a cyclone, and a filter press.
When the washing solution collected by the solid-liquid separator is recirculated for washing the soil, the mixing ratio with the new solution is appropriately adjusted so that the washing solution for extracting and washing the soil can maintain a predetermined washing ability. adjust.
図2は第四の工程4を具体化する設備の一例を示し、土壌を抽出・洗浄する抽出剤溶液が所定の洗浄能力を確保できるように新たな抽出剤溶液である新液との混合比率を適宜調整する設備の一例である。
図2において、7は抽出剤溶液の濃度および/またはpHを検出する検出器、8は検出器7で検出した抽出剤溶液の濃度および/またはpHに基づいて抽出・洗浄槽に使用する新抽出剤溶液の量を調整する制御装置、9は新たな抽出剤溶液である新液の量を調整する流量調整弁、10は固液分離装置から回収した抽出剤溶液を、当該土壌に使用する新液を供給する配管系に接合させる配管(再循環路)を示す。
FIG. 2 shows an example of equipment for embodying the fourth step 4, in which the extractant solution for extracting and washing the soil is mixed with a new extractant solution so that a predetermined washing ability can be secured. This is an example of equipment for appropriately adjusting the temperature.
In FIG. 2, reference numeral 7 denotes a detector for detecting the concentration and / or pH of the extractant solution, and reference numeral 8 denotes a new extraction used in the extraction / washing tank based on the concentration and / or pH of the extractant solution detected by the detector 7. A control device for adjusting the amount of the extractant solution, 9 is a flow control valve for adjusting the amount of the new solution as a new extractant solution, and 10 is a new control agent for using the extractant solution recovered from the solid-liquid separator for the soil. The piping (recirculation path) joined to the piping system for supplying the liquid is shown.
図2に示した設備においては、検出器7によって添加する抽出剤溶液(新液と回収した抽出剤溶液との混合液)の濃度および/またはpHを検出し、検出値に基づいて制御装置8が注入すべき新液の量を演算し、演算値に基づいて流量調整弁9を制御する。新液は流量調整弁9を介して配管10に注入され、当該土壌に添加する抽出剤溶液の濃度および/またはpHが調整される。 In the equipment shown in FIG. 2, the detector 7 detects the concentration and / or pH of the extractant solution to be added (mixed liquid of the new solution and the recovered extractant solution), and controls the controller 8 based on the detected value. Calculates the amount of new liquid to be injected, and controls the flow regulating valve 9 based on the calculated value. The new liquid is injected into the pipe 10 via the flow control valve 9, and the concentration and / or pH of the extractant solution added to the soil is adjusted.
[第五の工程]
第五の工程5は本発明の濯ぎ洗い工程に相当し、第四の工程4で固液分離装置により抽出剤溶液を除去した土壌を、濯ぎ洗い処理をすることを目的とする。抽出剤溶液により洗浄された土壌を浄化土壌として再利用するためには、土壌中に残留する汚染物質であるセシウムと薬剤成分を除去する必要がある。
濯ぎ洗いとしては、第三の工程3の抽出・洗浄と同様に、土壌と濯ぎ液の混合後のpHを3以下とすることにより、土壌の汚染物の再付着を防止することができ、優れた濯ぎ効果を得ることができる。なお、濯ぎ液として水もしくは弱酸が好ましい。
[Fifth step]
The fifth step 5 corresponds to the rinsing step of the present invention, and aims at rinsing the soil from which the extractant solution has been removed by the solid-liquid separator in the fourth step 4. In order to reuse the soil washed with the extractant solution as purified soil, it is necessary to remove cesium, a contaminant remaining in the soil, and drug components.
As for the rinsing, as in the case of the extraction and washing in the third step 3, by adjusting the pH after mixing the soil and the rinsing liquid to 3 or less, it is possible to prevent re-adhesion of soil contaminants, and A good rinsing effect can be obtained. Note that water or a weak acid is preferable as the rinsing liquid.
また、土壌の濯ぎ回数が不十分であると、汚染物質であるセシウムを大量に含んだ濯ぎ液が土壌に再度残留,付着するので、抽出剤溶液による洗浄効果が損なわれる。
濯ぎ液の残留によりもたらされるセシウムの土壌への再付着を防止するためには、濯ぎ液を土壌から完全に分離できればよいのであるが、現在の既存の固液分離装置では限界があり、ある一定の濯ぎ液が土壌に残留する。
Further, if the number of times of rinsing of the soil is insufficient, a rinsing liquid containing a large amount of cesium as a pollutant remains and adheres to the soil again, thereby impairing the washing effect of the extractant solution.
In order to prevent cesium caused by the remaining rinse liquid from re-adhering to the soil, it is sufficient that the rinse liquid can be completely separated from the soil. Rinse remains on the soil.
したがって、複数回、固液分離と土壌濯ぎを実施することにより、浄化後の土壌に対するこれらの影響を非常に小さいものとすることができるが、この場合、最適な濯ぎ回数、固液比等の条件で実施しなければ、濯ぎ液使用量、固液分離装置や濯ぎ洗い槽等の装置費が増大してしまう。
そこで、本発明者らは、種々の濯ぎ洗い試験より、土壌と濯ぎ液との固液重量比:A,固液分離後の土壌の含水率:B,抽出剤溶液での洗浄前の対象とするセシウム濃度(土壌に対する含有量):C0,洗浄後の目標とするセシウム濃度:αと濯ぎ回数:N(0以上の整数)の間に下記(1)式の関係を見出した。
なお、濯ぎ回数とは、抽出剤溶液での抽出・洗浄後の固液分離された土壌を濯ぎ洗い後に再度、固液分離する工程を1工程とし、その繰り返し回数とする。
Therefore, by performing solid-liquid separation and soil rinsing a plurality of times, these effects on the soil after purification can be made extremely small. In this case, however, the optimum number of times of rinsing, solid-liquid ratio, etc. If it is not carried out under the conditions, the use amount of the rinsing liquid, and the equipment costs of the solid-liquid separation device and the rinsing bath will increase.
Therefore, the present inventors have found that, based on various rinsing tests, the solid-liquid weight ratio of soil to the rinsing liquid: A, the water content of the soil after solid-liquid separation: B, the target before washing with the extractant solution. A relationship between the following cesium concentration (content relative to soil): C0, a target cesium concentration after washing: α, and the number of times of rinsing: N (an integer of 0 or more) was found by the following equation (1).
In addition, the number of times of rinsing is defined as one step in which the solid-liquid separated soil after extraction and washing with the extractant solution is rinsed and then solid-liquid separated again, and the number of repetitions.
N≧1.9×ln(α/C0)/ln[B/{A×(1−B)}]−1 ・・・・(1) N ≧ 1.9 × ln (α / C0) / ln [B / {A × (1−B)}] − 1 (1)
ここで、上記の(1)式の導出方法を説明する。
<前提条件>
(i)固液分離後の土壌には、一定の濯ぎ液が付着し、その付着水に含まれる汚染物質により、土壌含有量が真の値より大きくなるものとする。
(ii)次の濯ぎ洗い時には、付着水は一旦、土壌から遊離し、濯ぎ洗い液と均一の混合されるものとする。
(iii)濯ぎ洗い時に、汚染物質の沈殿等は起こらないものとする。
(iv)用いる記号は下記の通り。
土壌と濯ぎ液との固液重量比:A[液kg/土kg]
固液分離後の土壌の含水率:B[−]
酸性溶液での洗浄前の対象とする汚染物質の土壌含有量:C0[mg/土kg]
酸性溶液で洗浄後の汚染物質の真の土壌含有量:C[mg/土kg]
濯ぎ液で洗浄後の汚染物質の見掛けの土壌含有量:Z[mg/土kg]
土壌含有量指定基準:α[−]
濯ぎ回数:N[正の整数]
土壌重量: [土kg]
付着水重量:X[液kg]
廃液、濯ぎ液における汚染物質濃度:L[mg/液kg] (比重=1とする)
土壌の付着水として持ち出される汚染量:V[mg]
Here, a method of deriving the above equation (1) will be described.
<Preconditions>
(i) A certain rinsing liquid adheres to the soil after solid-liquid separation, and the soil content becomes larger than the true value due to the contaminants contained in the adhering water.
(ii) At the time of the next rinsing, the attached water is once released from the soil, and is uniformly mixed with the rinsing liquid.
(iii) Precipitation of contaminants shall not occur during rinsing.
(iv) The symbols used are as follows.
Solid-liquid weight ratio of soil to rinse liquid: A [liquid kg / soil kg]
Soil moisture content after solid-liquid separation: B [-]
Soil content of the pollutant of interest before washing with acidic solution: C0 [mg / kg soil]
True soil content of pollutants after washing with acidic solution: C [mg / kg soil]
Apparent soil content of contaminants after washing with rinsing liquid: Z [mg / soil kg]
Criteria for specifying soil content: α [-]
Number of rinses: N [positive integer]
Soil weight: [Soil kg]
Weight of attached water: X [liquid kg]
Contaminant concentration in waste liquid and rinsing liquid: L [mg / liquid kg] (Specific gravity = 1)
Pollution amount brought out as soil water: V [mg]
<算出式>
土壌含水率Bと土壌重量W、付着水重量Xは以下の関係で示される。
B=X/(W+X)[−] ・・・・(I)
X=B・W/(1-B)[液kg] ・・・・(II)
また、廃液における汚染物質濃度L0は、
L0=(C0-C)/A0[mg/液kg] ・・・・(III)
したがって、濯ぎ洗い1に土壌の付着水として持ち出される汚染量V0は、
v0=(C0-C)/A0×B・W/(1-B)[mg] ・・・・(IV)
付着水として持ち出された汚染量を濯ぎ洗い液で希釈するとすると汚染物質濃度L1は、
L1=(C0-C)/A0×B・W/(1-B)×1/(W・A1)
=(C0-C)/A0×B/[(1-B)×A1][mg/液kg] ・・・・(V)
同様に、濯ぎ洗い2での汚染物質濃度汚染物質濃度L2は、
L2=(C0-C)/A0×B/[(1-B)×A1]×B/[(1-B)×A2][mg/液kg] ・・・(VI)
したがって、濯ぎ洗いNでの汚染物質濃度Lnは、
Ln=(C0-C)/A0×B/[(1-B)×A1]×・・・×B/[(1-B)×An][mg/液kg] ・・(VII)
濯ぎ洗い、脱水後の見掛けの汚染物質の土壌含有量Zに換算すると、
Z-C=[濯ぎ洗いNでの濯ぎ液中の汚染濃度]×[付着水重量]/[土壌重量]
=(C0-C)/A0×B/[(1-B)×A1]×・・・×B/[(1-B)×An]×B・W/(1-B)×1/W
=(C0-C)/A0×B/[(1-B)×A1]×
・・・×B/[(1-B)×An]×B/(1-B)[mg/土kg] ・・・(VIII)
脱水後の見掛けの汚染物質の土壌含有量Zが含有量指定基準αより小であれば
含有量の観点からの濯ぎ洗いは完了となるので、
α≧Z
≧(C0-C)/A0×B/[(1-B)×A1]×
・・・・×B/[(1-B)×An]×B/(1-B)+C ・・・(IX)
今、A=A0=・・・=Anとすると、
α≧(C0-C)/A×[B/{(1-B)×A}]n×B/(1-B)+C ・・・(X)
α-C≧(C0-C)×[B/{(1-B)×A}]n+1 ・・・(XI)
[(α-C)/(C0-C)]≧[B/{(1-B)×A}]n+1 ・・・(XII)
ln[(α-C)/(C0-C)]≧(n+1)・ln[B/{(1-B)×A}] ・・・(XIII)
ln[B/{(1-B)×A}]<0より、
n+1≧ln[(α-C)/(C0-C)]/ln[B/{(1-B)×A}] ・・・(XIV)
n≧ln[(α-C)/(C0-C)]/ln[B/{(1-B)×A}]-1 ・・・(XV)
(α-C)/(C0-C)=(α/C0)Q と仮定すると、
n≧Q×ln(α/C0)/ln[B/{(1-B)×A}]-1 ・・・・(1)
<Calculation formula>
The soil water content B, soil weight W, and attached water weight X are represented by the following relationship.
B = X / (W + X) [−] ··· (I)
X = B ・ W / (1-B) [liquid kg] ・ ・ ・ ・ (II)
Also, the contaminant concentration L0 in the waste liquid is
L0 = (C0-C) / A0 [mg / kg of liquid] ・ ・ ・ ・ (III)
Therefore, the amount of contamination V0 taken out as the water attached to the soil in the rinsing 1 is
v0 = (C0-C) / A0 × B · W / (1-B) [mg] ··· (IV)
If the amount of contaminants taken out as attached water is diluted with the rinse liquid, the contaminant concentration L1 becomes
L1 = (C0-C) / A0 × B ・ W / (1-B) × 1 / (W ・ A1)
= (C0-C) / A0 x B / [(1-B) x A1] [mg / kg of liquid] ... (V)
Similarly, the pollutant concentration in the rinsing 2 The pollutant concentration L2 is
L2 = (C0-C) / A0 × B / [(1-B) × A1] × B / [(1-B) × A2] [mg / liquid kg] (VI)
Therefore, the contaminant concentration Ln in the rinsing N is:
Ln = (C0-C) / A0 × B / [(1-B) × A1] × ・ ・ ・ × B / [(1-B) × An] [mg / liquid kg] ・ ・ (VII)
When converted to the soil content Z of apparent contaminants after rinsing and dehydration,
ZC = [contamination concentration in the rinsing liquid in rinsing N] × [weight of attached water] / [weight of soil]
= (C0-C) / A0 × B / [(1-B) × A1] × ・ ・ ・ × B / [(1-B) × An] × B ・ W / (1-B) × 1 / W
= (C0-C) / A0xB / [(1-B) xA1] x
... × B / [(1-B) × An] × B / (1-B) [mg / soil kg] (VIII)
If the apparent contaminant soil content Z after dehydration is smaller than the content designation standard α, the rinsing from the viewpoint of the content is completed,
α ≧ Z
≧ (C0-C) / A0 × B / [(1-B) × A1] ×
... × B / [(1-B) × An] × B / (1-B) + C ・ ・ ・ (IX)
Now, if A = A0 = ... = An,
α ≧ (C0-C) / A × [B / {(1-B) × A}] n × B / (1-B) + C ・ ・ ・ (X)
α-C ≧ (C0-C) × [B / {(1-B) × A}] n + 1・ ・ ・ (XI)
[(α-C) / (C0-C)] ≧ [B / {(1-B) × A}] n + 1・ ・ ・ (XII)
ln [(α-C) / (C0-C)] ≧ (n + 1) · ln [B / {(1-B) × A}] ・ ・ ・ (XIII)
From ln [B / {(1-B) × A}] <0,
n + 1 ≧ ln [(α-C) / (C0-C)] / ln [B / {(1-B) × A}] (XIV)
n ≧ ln [(α-C) / (C0-C)] / ln [B / {(1-B) × A}] -1 (XV)
Assuming (α-C) / (C0-C) = (α / C0) Q ,
n ≧ Q × ln (α / C0) / ln [B / {(1-B) × A}]-1 ··· (1)
図3に、種々のセシウム汚染土壌サンプルに対する土壌と濯ぎ液の混合後のpHを2以下の条件下とした濯ぎ洗い試験の結果を示す。なお、処理後のセシウム濃度の目標値は3,000(Bq/kg)とした。
図3に示すように、セシウム濃度に関わらず、上記(1)式の関係を満たす場合、浄化後の土壌のセシウム濃度は目標値を下回るが(中抜きの記号)、満たさない場合は、浄化後の土壌のセシウム濃度が目標値より上回った(中実の記号)。
尚、土壌サンプルは、濯ぎ洗い前に、マグネシウム塩からなる抽出剤を用い、0.075〜2.0mmの砂質からなる粗粒土壌を対象として混合後のpHを1〜2として30分間洗浄した。
FIG. 3 shows the results of a rinsing test for various cesium-contaminated soil samples under the condition that the pH after mixing the soil and the rinsing liquid was 2 or less. The target value of the cesium concentration after the treatment was 3,000 (Bq / kg).
As shown in FIG. 3, regardless of the cesium concentration, when the relationship of the above equation (1) is satisfied, the cesium concentration of the soil after purification is lower than the target value (open symbol). Later the cesium concentration in the soil exceeded the target value (solid symbol).
Before the rinsing, the soil sample was washed for 30 minutes by using an extractant composed of a magnesium salt and setting the pH after mixing to 1 to 2 for coarse-grained soil composed of sand of 0.075 to 2.0 mm.
濯ぎ洗いを複数回おこなう場合において、各濯ぎ洗いでの固液比:A、含水率:B等の条件が異なる場合は、上記(1)式により、それぞれの条件下のNを算出しそれらの数値の算術平均または調和平均を用いればよい。濯ぎ洗いにおける上記(1)式の効果は、濯ぎ洗いする土壌が、セシウム汚染土壌を抽出剤溶液で抽出・洗浄後、固液分離装置により得られるものであればよく、洗浄方法を限定するものではない。 In the case where the rinsing is performed a plurality of times, when the conditions such as the solid-liquid ratio: A and the water content: B in each rinsing are different, N under each condition is calculated by the above equation (1), and the N is calculated. The arithmetic or harmonic mean of the numerical values may be used. The effect of the above formula (1) in the rinsing is as follows: the soil to be rinsed only needs to be obtained by extracting and washing cesium-contaminated soil with an extractant solution and then using a solid-liquid separator, and the washing method is limited. is not.
[第六の工程]
第六の工程6は、第二の工程2で分級された特定の粒子径未満の粒子群、および、第三、第五の工程5の廃液に対して、凝集沈殿、脱水処理することを目的とする。
本工程における凝集剤としては、無機凝集剤、高分子凝集剤等、フロックを形成、成長させ沈殿を促進させるものであればよい。
[Sixth step]
The sixth step 6 aims to coagulate, sediment and dehydrate the particles having a particle diameter smaller than the specific particle diameter classified in the second step 2 and the waste liquid of the third and fifth steps 5. And
As the flocculant in this step, any flocculant, such as an inorganic flocculant or a polymer flocculant, which forms and grows flocs and promotes precipitation can be used.
なお、脱水処理された特定の粒子径未満の粒子群、および、廃液中の浮遊物、遊離したセシウムは固形化され、固形化後は所定の場所で保管等行えばよい。この際、固形化の補助剤として、セメントや生石灰、石膏などを添加してもよい。
また、抽出剤により抽出、遊離したセシウムは、搬送時、および、第六の工程6において、特定の粒子径未満の粒子群に含まれる粘土分などのセシウム吸着性の高い成分に吸着されるため、新たに吸着剤添加を必要としないため非常に有益である。
The dehydrated particles having a particle diameter smaller than a specific particle diameter, suspended matters in the waste liquid, and released cesium are solidified, and after the solidification, they may be stored in a predetermined place. At this time, cement, quicklime, gypsum and the like may be added as an auxiliary for solidification.
Further, the cesium extracted and released by the extractant is adsorbed by a component having high cesium adsorptivity such as clay contained in a particle group having a particle diameter smaller than a specific particle diameter during transportation and in the sixth step 6. This is very advantageous because no additional adsorbent is required.
本発明は以上に述べた第一の工程1〜第六の工程6により、セシウム汚染土壌を安価な費用で浄化することが可能である。尚、各工程の説明に用いた図1では各工程を一回実施する場合を示したが、本発明は所望の洗浄効果が得られるまで必要に応じて、いずれかの工程を複数回実施することが可能である。 According to the present invention, the cesium-contaminated soil can be purified at a low cost by the first step to the sixth step 6 described above. Although FIG. 1 used for describing each process shows a case where each process is performed once, the present invention performs any one of the processes multiple times as necessary until a desired cleaning effect is obtained. It is possible.
[土壌回復工程]
第六の工程6後、浄化された土壌を再利用する場合、掘削前の土壌と同じ値のpHに再調整し埋め戻しを行えばよい。尚、ここで同じ値とは、周辺環境の生態系が速やかに回復可能な程度であれば良く、同一であることを意味しない。
pHを再調整する手段として、下記に示す1〜3のいずれか一つもしくは複数を実施すればよい。
1 水による土壌洗浄を数回実施する。
2 水酸化カルシウム、酸化カルシウム、炭酸カルシウムなどのアルカリ性薬剤を添加する。
3 非汚染が確認されている、アルカリ性の土壌および/または石炭灰を添加する。
[Soil recovery process]
When the purified soil is reused after the sixth step 6, the pH may be readjusted to the same value as the soil before excavation and backfilled. Note that the same value here is only required to be such that the ecosystem of the surrounding environment can be quickly restored, and does not mean that it is the same.
As a means for readjusting the pH, one or more of the following 1 to 3 may be performed.
1. Perform soil washing with water several times.
2 Add an alkaline agent such as calcium hydroxide, calcium oxide, calcium carbonate.
3 Add alkaline soil and / or coal ash that has been confirmed to be non-contaminated.
また、早期に、埋め戻しを行った地点の土壌を周辺環境になじませる場合は、土壌pHの再調整が完了後、汚染土壌を採取した地点もしくは近傍のシルト・粘土成分および/または腐葉土を混合すればよい。
以上の説明は、解砕後に土壌を大小二つの粒子径に分級する場合について述べたが、本発明は、解砕後の分級する粒子群のグループ数を限定するものでなく、解砕後、土壌を3つ以上のグループに分級し、1または複数のグループの土壌に対して抽出剤による抽出・洗浄を行ってもよい。
If the soil at the point of backfilling is adapted to the surrounding environment at an early stage, after re-adjustment of the soil pH, the silt / clay components and / or humus at or near the point where the contaminated soil was collected are mixed. do it.
Although the above description has described the case where the soil is classified into two large and small particle diameters after crushing, the present invention does not limit the number of groups of the particle groups to be classified after crushing, and after crushing, The soil may be classified into three or more groups, and one or more groups of soil may be extracted and washed with an extractant.
本発明の効果を確認するための実験を行ったので、以下説明する。
セシウム汚染土壌に対し、水を15%添加、パドルミキサーにより100rpm、10分間の解砕を行った後、水を固液重量比で1:1になるよう添加した。このスラリを攪拌翼の回転数300rpmで10分間水洗浄し、0.075mmの振動篩いで分級した。分級後の篩い上土壌に対し、固液重量比1:3で塩化マグネシウム5重量%、塩酸5重量%、および、セルロース誘導体からなる抽出剤溶液を添加し、30分間攪拌(攪拌条件:攪拌翼の回転数300rpm)した。この時の土壌と抽出剤溶液の混合後pHは洗浄開始直後で1.5、終了前で2.5であった。
An experiment for confirming the effect of the present invention was performed, and will be described below.
After adding 15% of water to the cesium-contaminated soil and crushing the mixture with a paddle mixer at 100 rpm for 10 minutes, water was added so as to have a solid-liquid weight ratio of 1: 1. This slurry was washed with water at a rotation speed of a stirring blade of 300 rpm for 10 minutes, and classified with a vibration sieve of 0.075 mm. An extractant solution consisting of 5% by weight of magnesium chloride, 5% by weight of hydrochloric acid, and a cellulose derivative at a solid-liquid weight ratio of 1: 3 was added to the soil on the sieve after classification, and stirred for 30 minutes (stirring conditions: stirring blades). Rotation speed of 300 rpm). At this time, the pH after the mixing of the soil and the extractant solution was 1.5 immediately after the start of the washing, and 2.5 before the end of the washing.
次に、このスラリ土壌を遠心分離器(3000rpm、10分間)で脱水し、得られた土壌を固液重量比1:3の酸性溶液で濯ぎ洗いし、遠心分離器(3000rpm、10分間)で脱水、この濯ぎ洗い操作を2回繰り返し繰り返した。
この時のすすぎ液におけるpHは1.8、2.3であった。さらに、消石灰を添加、混合して土壌を元の土壌と同じpH6.7とし、風乾した。この浄化土壌をゲルマニウム半導体検出器で同位体セシウム濃度(Cs134、Cs137の合計)を測定した。結果を表1に示す。
Next, the slurry soil is dehydrated with a centrifuge (3000 rpm, 10 minutes), and the obtained soil is rinsed with an acidic solution having a solid-liquid weight ratio of 1: 3, and then centrifuged (3000 rpm, 10 minutes). Dehydration and this rinsing operation were repeated twice.
The pH of the rinsing solution at this time was 1.8 and 2.3. Further, slaked lime was added and mixed to adjust the soil to the same pH of 6.7 as the original soil, and air-dried. The purified soil was measured for isotope cesium concentration (sum of Cs134 and Cs137) with a germanium semiconductor detector. Table 1 shows the results.
比較例1として、実施例で用いたセシウム汚染土壌における0.075mm分級篩上の土壌に対して、実施例と同じ条件下で抽出・洗浄、および、脱水を行った。
脱水後の土壌に対して、濯ぎ洗いを行わず、消石灰を添加、混合して土壌を元の土壌と同じpH6.7とし、風乾した。この浄化土壌をゲルマニウム半導体検出器で同位体セシウム濃度(Cs134、Cs137の合計)を測定した。結果を上述した表1に比較例1として合わせて示す。
As Comparative Example 1, the soil on the 0.075 mm classification sieve of the cesium-contaminated soil used in the example was subjected to extraction, washing, and dehydration under the same conditions as in the example.
The dehydrated soil was not rinsed, but slaked lime was added and mixed to make the soil the same pH of 6.7 as the original soil and air-dried. The purified soil was measured for isotope cesium concentration (sum of Cs134 and Cs137) with a germanium semiconductor detector. The results are shown in Table 1 above as Comparative Example 1.
また、他の比較例として、実施例2での濯ぎ洗い操作を1回とし、それ以外の条件は実施例と同じとした結果を上述した表1に比較例2として合わせて示す。 In addition, as another comparative example, the results in which the rinsing operation in Example 2 was performed once and the other conditions were the same as those in the example are also shown in Table 1 above as Comparative Example 2.
表1の結果のように、本発明によれば、セシウム汚染土壌に対し優れた浄化効果を確認することができた。さらに、抽出剤溶液での洗浄後にpH3以下の条件下で濯ぎ洗いを行なうことにより、優れた濯ぎ効果が得られた。また、最適な土壌の濯ぎ洗い回数を定義することにより、濯ぎ洗いにおける濯ぎ液(水)の使用量を低減することができた。 As shown in the results in Table 1, according to the present invention, an excellent purification effect on cesium-contaminated soil could be confirmed. Furthermore, an excellent rinsing effect was obtained by rinsing under the condition of pH 3 or less after washing with the extractant solution. Also, by defining the optimum number of times of rinsing of the soil, the amount of rinsing liquid (water) used in rinsing could be reduced.
1 第一の工程
2 第二の工程
3 第三の工程
4 第四の工程
5 第五の工程
6 第六の工程
7 検出器
8 制御装置
9 流量調整弁
10 再循環流路
DESCRIPTION OF SYMBOLS 1 1st process 2 2nd process 3 3rd process 4 4th process 5 5th process 6 6th process 7 Detector 8 Controller 9 Flow control valve 10 Recirculation flow path
Claims (4)
前記セシウム汚染土壌を解砕する解砕工程と、解砕されたセシウム汚染土壌を粒子径0.075mm未満と粒子径0.075mm以上の少なくとも2種類の粒子群のグループに分級する分級工程と、粒子径0.075mm以上の粒子群からなるグループの汚染土壌に対してのみ放射性物質を土壌から抽出する抽出剤を添加して洗浄する洗浄工程と、固液分離装置で土壌と洗浄溶液を分離する固液分離工程と、前記土壌の濯ぎ洗いを行う濯ぎ洗い工程とを備え、
前記洗浄工程は、カリウム塩、マグネシウム塩、リチウム塩、ナトリウム塩、セシウム塩の1種類以上のアルカリ塩からなる抽出剤を用いて、pH0以上、pH3以下の領域で行うことを特徴とするセシウム汚染土壌の浄化方法。 A method for purifying cesium-contaminated soil that purifies soil contaminated by cesium,
A crushing step of crushing the cesium contaminated soil, a classification step of classifying the pulverized cesium contaminated soil above particle diameter 0.075mm and less than the particle diameter 0.075mm of at least two particle groups groups, particle size A washing process in which an extractant that extracts radioactive substances from soil is added only to contaminated soil of a group consisting of particles of 0.075 mm or more and washing is performed, and solid-liquid separation is performed by using a solid-liquid separation device to separate the soil and the washing solution And a rinsing step of rinsing the soil,
The cesium contamination, wherein the washing step is performed in an area of pH 0 or more and pH 3 or less using an extractant comprising at least one kind of alkali salts of potassium salt, magnesium salt, lithium salt, sodium salt, and cesium salt. How to clean the soil.
N≧1.9×ln(α/C0)/ln[B/{A×(1−B)}]−1
但し、A:土壌と濯ぎ液との固液重量比
B:固液分離後の土壌の含水率
C0:洗浄前の対象とするセシウム濃度(土壌に対する含有量)
α:洗浄後の目標とするセシウム濃度 The method for purifying cesium-contaminated soil according to any one of claims 1 to 3, wherein the number of times of rinsing N satisfies the following equation in the rinsing of the soil separated by the solid-liquid separation device.
N ≧ 1.9 × ln (α / C0) / ln [B / {A × (1-B)}] − 1
However, A: solid-liquid weight ratio of soil and rinse liquid
B: Moisture content of soil after solid-liquid separation
C0: Target cesium concentration before washing (content in soil)
α: target cesium concentration after cleaning
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016110555A JP6640028B2 (en) | 2016-06-02 | 2016-06-02 | How to clean cesium-contaminated soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016110555A JP6640028B2 (en) | 2016-06-02 | 2016-06-02 | How to clean cesium-contaminated soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017215269A JP2017215269A (en) | 2017-12-07 |
JP6640028B2 true JP6640028B2 (en) | 2020-02-05 |
Family
ID=60575576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016110555A Active JP6640028B2 (en) | 2016-06-02 | 2016-06-02 | How to clean cesium-contaminated soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6640028B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006051440A (en) * | 2004-08-11 | 2006-02-23 | Jfe Mineral Co Ltd | Purification method of heavy metal contaminated soil |
JP2013178132A (en) * | 2012-02-28 | 2013-09-09 | Hitachi Ltd | Removal method of radioactive substance |
JP2013178149A (en) * | 2012-02-28 | 2013-09-09 | Hitachi Ltd | Separation method of radioactive substance contained in soil |
-
2016
- 2016-06-02 JP JP2016110555A patent/JP6640028B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017215269A (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5172026B1 (en) | Treatment system for aqueous mud containing iron particles and heavy metals | |
JP4823387B1 (en) | Material recycling system for producing sand products from mineral mixtures | |
US5316223A (en) | Method and apparatus for cleaning contaminated particulate material | |
JP5771343B1 (en) | Contaminated soil purification equipment | |
JPWO2004037453A1 (en) | Soil purification method | |
JP5647371B1 (en) | Detoxification method for contaminated soil | |
JP6334263B2 (en) | Purification method for heavy metal contaminated soil | |
JP5761544B1 (en) | Method and apparatus for desalinating chlorine-containing ash | |
JP6411909B2 (en) | Detoxification system for arsenic contaminated soil | |
JP2006051440A (en) | Purification method of heavy metal contaminated soil | |
JP5417933B2 (en) | Method for processing oil-containing granular materials | |
JP2008036525A (en) | System and method for producing cleaned soil | |
JP6497650B2 (en) | Cleaning method for arsenic contaminated soil | |
JP6640028B2 (en) | How to clean cesium-contaminated soil | |
JP2013019905A (en) | Method for treating contaminated soil containing radioactive material | |
JP4351930B2 (en) | How to clean contaminated soil | |
JP2006043532A (en) | Method and system for cleaning contaminated soil | |
JP5769044B2 (en) | How to clean cyan contaminated soil | |
JP6250411B2 (en) | Method and apparatus for treating sediment containing radioactive material | |
JP6391012B2 (en) | Cleaning method for arsenic contaminated soil | |
JP2019171304A (en) | Waste muddy water volume reduction treatment apparatus and volume reduction treatment method | |
JP2005279529A (en) | Method for cleaning heavy metal polluted soil | |
JP2005279530A (en) | Method for cleaning lead polluted soil | |
JP6391011B2 (en) | Method for measuring solid-liquid separation ratio of contaminated soil by decanter classification, method for cleaning contaminated soil using the same, and method for cleaning arsenic-contaminated soil | |
JP4097562B2 (en) | Purification method for heavy metal contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190514 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6640028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |