JP5769044B2 - How to clean cyan contaminated soil - Google Patents
How to clean cyan contaminated soil Download PDFInfo
- Publication number
- JP5769044B2 JP5769044B2 JP2010227902A JP2010227902A JP5769044B2 JP 5769044 B2 JP5769044 B2 JP 5769044B2 JP 2010227902 A JP2010227902 A JP 2010227902A JP 2010227902 A JP2010227902 A JP 2010227902A JP 5769044 B2 JP5769044 B2 JP 5769044B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- cyan
- slurry
- particles
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002689 soil Substances 0.000 title claims description 69
- 238000000034 method Methods 0.000 claims description 41
- 239000010419 fine particle Substances 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 29
- 238000005345 coagulation Methods 0.000 claims description 23
- 230000015271 coagulation Effects 0.000 claims description 23
- 229920000642 polymer Polymers 0.000 claims description 16
- 239000002002 slurry Substances 0.000 claims description 15
- 238000004140 cleaning Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 13
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims description 12
- 230000002776 aggregation Effects 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 9
- 239000000701 coagulant Substances 0.000 claims description 8
- 239000010802 sludge Substances 0.000 claims description 7
- 238000004062 sedimentation Methods 0.000 claims description 6
- 239000006228 supernatant Substances 0.000 claims description 6
- 238000005054 agglomeration Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims 1
- 238000001556 precipitation Methods 0.000 description 29
- 238000005189 flocculation Methods 0.000 description 7
- 230000016615 flocculation Effects 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000004931 aggregating effect Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- PANJMBIFGCKWBY-UHFFFAOYSA-N iron tricyanide Chemical group N#C[Fe](C#N)C#N PANJMBIFGCKWBY-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- -1 cyanide compound Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004016 soil organic matter Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
本発明は汚染土壌の洗浄処理技術に係わり、特に低濃度のシアン汚染土壌を対象とする洗浄方法に関する。 The present invention relates to a technique for cleaning contaminated soil, and more particularly to a cleaning method for low-concentration cyan contaminated soil.
都市ガス製造工場の跡地は石炭ガスの製造工程から排出されるシアン化化合物やベンゼン,重金属によって汚染されている場合が多く、その浄化処理が必要である。
シアン汚染土壌を対象とする浄化技術としては、たとえば特許文献1や特許文献2に示されるような洗浄処理によるものが知られている。
The site of a city gas production plant is often contaminated with cyanide compounds, benzene, and heavy metals emitted from the coal gas production process, and purification is required.
As a purification technique for cyan contaminated soil, for example, a cleaning technique as shown in Patent Document 1 or Patent Document 2 is known.
これらの土壌洗浄技術では、汚染土壌中の環境汚染物質(重金属類、鉱物油、シアンなど)は、砂分や礫分などの粗粒子分よりも土壌有機物(腐植質)や粘土・シルトなどの細粒子分に多く吸着・保持されていることから、その浄化に際しては粗粒子分と細粒子分とを分離・除去することが効率的な処理を行ううえで有利である。 With these soil cleaning technologies, environmental pollutants (heavy metals, mineral oil, cyanide, etc.) in contaminated soil are more contaminated with soil organic matter (humus), clay, silt, etc. than coarse particles such as sand and gravel. Since a large amount of fine particles are adsorbed and retained, it is advantageous for the purification to separate and remove coarse particles and fine particles for efficient treatment.
たとえば特許文献1に開示されているような土壌洗浄方法は、汚染土壌をスラリーとして汚染物質を吸着している細粒子分をハイドロサイクロンにより分離したうえで、その細粒子分を含む懸濁液に凝集剤を添加・攪拌して凝集沈澱処理し、凝集スラッジを脱水して濃縮汚染土(脱水ケーキ)として処分するものである。
この場合、ハイドロサイクロンは土壌スラリーを分級する上で便利で処理能力の高い装置であるが、分級点が20〜30μmよりも小さいハイドロサイクロンではサイズが小さいため処理能力が低く、したがって大量の土壌スラリーを処理するためには非常に多くのサイクロンとポンプを必要とするため現実的ではないことから、土壌洗浄の分野においては分級点を20〜30μm程度とすることが限界であって通常は分級点が63〜125μmのハイドロサイクロンが一般に用いられる。
For example, in the soil washing method disclosed in Patent Document 1, a fine particle component adsorbing a pollutant is separated by a hydrocyclone using a contaminated soil as a slurry, and then a suspension containing the fine particle component. The coagulant is added and stirred to coagulate and settle, and the coagulated sludge is dehydrated and disposed as concentrated contaminated soil (dehydrated cake).
In this case, the hydrocyclone is a device that is convenient for classifying the soil slurry and has a high processing capacity. However, the hydrocyclone having a classification point smaller than 20 to 30 μm has a small processing capacity because of its small size, and thus a large amount of soil slurry. Since it requires a large number of cyclones and pumps to treat the wastewater, it is not practical, so in the field of soil washing, it is the limit that the classification point is about 20-30 μm. A hydrocyclone having a diameter of 63 to 125 μm is generally used.
また、特許文献2に示される汚染土壌の浄化方法は、重金属類やシアン等の有害物質に汚染された土壌を対象として、抽出剤を添加し、混合機で混練し、浸出液で浸出し、固液分離することにより有害物質を除去するものであるが、この場合もドラムウオッシャ、振動篩、ハイドロサイクロン、スパイラル分級機等を用いて150μm前後で分級し、粒径150μm以上の粒子を浄化処理するようにしている。 In addition, the method for purifying contaminated soil disclosed in Patent Document 2 is for soil contaminated with hazardous substances such as heavy metals and cyan, adding an extractant, kneading with a mixer, leaching with a leachate, The harmful substances are removed by liquid separation. In this case as well, the particles are classified at around 150 μm using a drum washer, vibrating sieve, hydrocyclone, spiral classifier, etc., and the particles having a particle size of 150 μm or more are purified. I am doing so.
上記のように汚染土壌を分級したうえで洗浄処理する場合においては、たとえ低濃度の汚染土壌であっても分級した細粒子分の全てを濃縮汚染土(脱水ケーキ)として最終処分する必要があるから、処分土量および処分コストを削減するためには分級点を可及的に小さくしたいという要請がある。
すなわち、日本各地の土壌には63μm以下の細粒子分が乾燥比重比で25〜40%程度含まれていることが通常であり、粘土・シルト分を多く含む地域では細粒子分が土壌全体の50〜60%を示す場合もあることから、上記従来の洗浄方法において分級点を63〜125μmないし150μm程度に設定した場合には実質的に汚染土壌全体の大半を処理し処分しなければならないことになり、そのために多大なコストを要するものとなる。
In the case of cleaning treatment after classifying contaminated soil as described above, it is necessary to dispose of all classified fine particles as concentrated contaminated soil (dehydrated cake) even if it is contaminated soil with a low concentration. Therefore, there is a request to reduce the classification point as much as possible in order to reduce the amount of disposal soil and disposal costs.
In other words, it is normal for soils in various parts of Japan to contain fine particles of 63 μm or less in a dry specific gravity ratio of about 25 to 40%. In regions containing a large amount of clay and silt, fine particles are contained in the entire soil. Since it may indicate 50-60%, when the classification point is set to about 63-125 μm to 150 μm in the conventional cleaning method, it is necessary to treat and dispose of most of the contaminated soil substantially. Therefore, a large cost is required for that.
そこで、分級点をたとえば5〜10μm程度にまで小さくし、それにより分級した微細粒子を対象として処理・処分するようにすれば、処分土量や処分コストを大幅に削減することが可能であるが、上述したように従来のハイドロサイクロンを始めとする一般的な分級手段では処理効率を低下させることなく分級点を63〜125μmよりも充分に小さくすることは困難であることから、それを可能とする有効適切な手段の開発が望まれているのが実状である。 Therefore, if the classification point is reduced to, for example, about 5 to 10 μm and the fine particles thus classified are processed and disposed of, the amount of soil to be disposed and the disposal cost can be greatly reduced. As described above, it is difficult to make the classification point sufficiently smaller than 63 to 125 μm without lowering the processing efficiency with the conventional classification means including the conventional hydrocyclone. In fact, the development of effective and appropriate means is desired.
上記事情に鑑み、本発明はシアンによる汚染土壌を洗浄処理するに際し、処理対象の汚染土壌をスラリーとし、該スラリーに無機凝集剤の添加を省略して高分子凝集剤を添加して混合攪拌することにより、スラリー中の5〜10μm以上の土粒子のみを選択的に凝集させてフロックを形成するとともに、5〜10μm未満の微細粒子を凝集させることなくスラリー中に分散させ、前記スラリーから前記フロックを沈降分離して該フロックからアルカリ抽出によりシアンを溶存態として抽出した後、該フロックを中和安定化し脱水処理することにより5〜10μm以上の土粒子からなる浄化土を得るとともに、前記フロックから抽出した溶存態としてのシアンを含む抽出水と、5〜10μm未満の微細粒子を含む前記スラリーの上澄水とをさらに無機凝集剤と高分子凝集剤とを併用する凝集沈殿処理をしてその凝集スラッジを脱水処理することによりシアンを含む濃縮汚染土を得ることを特徴とする。
In view of the above circumstances, in the present invention, when cleaning soil contaminated with cyan, the contaminated soil to be treated is made into a slurry, and the addition of a polymer flocculant to the slurry is omitted and mixed and stirred. Thus, only the soil particles of 5 to 10 μm or more in the slurry are selectively agglomerated to form flocs, and fine particles of less than 5 to 10 μm are dispersed in the slurry without agglomerating, and the flocs from the slurry From the flocs, the cyanide is extracted from the flocs by alkali extraction to obtain a purified soil composed of soil particles of 5 to 10 μm or more by neutralizing and stabilizing the flocs and dehydrating the flocs. an extraction water containing cyanide as extracted dissolved, over supernatant water Metropolitan of the slurry containing fine particles of less than 5~10μm further And a coagulation sedimentation process using both the machine flocculant and a polymer flocculant; and obtaining concentrated contaminated soil containing cyan by dehydrating the aggregation sludge.
本発明では、ハイドロサイクロン等の物理的手法では達成が困難である5〜10μm未満の微細粒子分の効率的な分離を化学的な手法である凝集沈澱法により分離するものであり、特に通常の凝集沈澱法の一部を省略して敢えて不完全な凝集沈澱処理を意図的に行うことによって、5〜10μm以上の土粒子のみを選択的にフロックとして沈降分離することにより5〜10μm未満の微細粒子の分級を可能としたものである。
そして、本発明では上記のようにして微細粒子分を分級した後の土粒子からアルカリ抽出によりシアンを溶存態として抽出し、その抽出水と5〜10μm未満の微細粒子を含む上澄水とをさらに凝集沈殿処理し脱水処理することによって、シアンが高濃度に濃縮された処分対象の濃縮汚染土を得るものであり、かつシアンを抽出した後の5〜10μm以上の土粒子を中和安定化し脱水処理して再利用可能な浄化土を得るものである。
したがって本発明によれば、従来一般のこの種の洗浄方法においては処分せざるを得ない5〜10μm以上の大量の土粒子を再利用可能な浄化土として回収可能であり、その結果、濃縮汚染土の発生量を大幅に低減し得てその処分に要するコストを大幅に削減することが可能である。
In the present invention, efficient separation of fine particles of less than 5 to 10 μm, which is difficult to achieve with a physical method such as hydrocyclone, is separated by a coagulation precipitation method that is a chemical method. By deliberately performing an incomplete coagulation sedimentation process by omitting a part of the coagulation sedimentation method, only 5-10 μm or more of soil particles are selectively separated as flocs so as to be finer than 5-10 μm. This makes it possible to classify particles.
In the present invention, cyan is extracted as a dissolved state from the soil particles after classification of the fine particles as described above by alkali extraction, and the extracted water and the supernatant water containing fine particles of less than 5 to 10 μm are further added. By aggregating and precipitating and dehydrating, the concentrated contaminated soil to be disposed of is concentrated to a high concentration of cyanide, and the soil particles of 5-10 μm or more after cyan extraction are neutralized and stabilized. Treated and reclaimed soil is obtained.
Therefore, according to the present invention, a large amount of soil particles having a size of 5 to 10 μm which must be disposed of in the conventional general cleaning method can be recovered as reusable purified soil. The amount of soil generated can be greatly reduced, and the cost required for disposal can be greatly reduced.
本発明の実施形態を説明するに先立ち、本発明が対象としている都市ガス製造工場跡地におけるシアン汚染土壌の特性について説明する。 Prior to describing the embodiment of the present invention, the characteristics of the cyan contaminated soil in the former site of the city gas production factory targeted by the present invention will be described.
都市ガス製造工場跡地のシアン汚染土壌の粒度分布とロードカーブ(土壌粒子径と汚染物質の含有量との関係)を図6に示す。
図6(b)に示す全シアン含有量のロードカーブデータから、土壌全体の全シアン含有量は14mg/kgであるのに対し、38μm以下の細粒子分の全シアン含有量は100mg/kgと著しく高いこと、すなわち細粒子分側にシアンが偏在していることが認められる。
FIG. 6 shows the particle size distribution and load curve (relationship between soil particle size and pollutant content) of cyan contaminated soil at the site of the city gas manufacturing plant.
From the load curve data of the total cyan content shown in FIG. 6 (b), the total cyan content of the whole soil is 14 mg / kg, whereas the total cyan content of fine particles of 38 μm or less is 100 mg / kg. It can be seen that it is extremely high, that is, cyan is unevenly distributed on the fine particle side.
また、都市ガス製造工場跡地におけるシアン汚染土壌中のシアン化合物の主体は毒性の強い遊離シアンではなく無害に近いと考えられている鉄シアン錯体(フェロシアン化鉄など)である。この鉄シアン錯体の溶解度はpHと酸化還元電位に大きく左右され、酸性から中性のpH領域かつ中程度の好気から嫌気状態においては鉄シアン錯体の溶解度はかなり小さい(1mg/L未満)が、アルカリ性かつ高い好気状態においてはこれらの溶解度は比較的高くなる。
したがって、この種のシアン汚染土壌はアルカリ溶液の中でスクラビング(擦り合わせ)を行ってアルカリ抽出を行うことにより、シアンを効果的に抽出させて細粒子分の浄化が可能であると考えられる。
The main cyanide compound in the soil contaminated with cyanide at the site of the city gas manufacturing plant is iron cyanide complex (such as iron ferrocyanide) that is considered to be almost harmless, not highly toxic free cyanide. The solubility of this iron cyanide complex is greatly influenced by the pH and redox potential, and in the acidic to neutral pH range and in the moderate aerobic to anaerobic state, the solubility of the iron cyanide complex is quite small (less than 1 mg / L). In the alkaline and highly aerobic state, their solubility is relatively high.
Therefore, it is considered that this kind of cyan-contaminated soil is scrubbed (rubbed) in an alkaline solution and subjected to alkali extraction, thereby effectively extracting cyan and purifying fine particles.
本発明は、上記のようなシアン汚染土壌についての知見に基づき、以下で説明する特殊な凝集沈殿法(以下、「不完全凝集沈澱法」と称す)と「アルカリ抽出法」とによってシアン汚染土壌を洗浄することを主眼とする。
本発明における「不完全凝集沈澱法」は、ハイドロサイクロン等の物理的手法では達成が困難である5〜10μm未満の微細粒子分の効率的な分離を化学的な手法である凝集沈澱法により可能とするものであるが、通常の凝集沈澱法の一部を省略して敢えて不完全な凝集沈澱処理を意図的に行うようにしたものである。
The present invention is based on the above knowledge about cyan-contaminated soil, and a cyan-contaminated soil is obtained by a special coagulation precipitation method (hereinafter referred to as “incomplete coagulation precipitation method”) and an “alkali extraction method” described below. The main objective is to wash
The “incomplete flocculation precipitation method” in the present invention enables efficient separation of fine particles of less than 5 to 10 μm, which is difficult to achieve with a physical method such as hydrocyclone, by the flocculation precipitation method which is a chemical method. However, a part of the ordinary coagulation precipitation method is omitted, and an incomplete coagulation precipitation process is intentionally performed.
本発明における「不完全凝集沈殿法」を説明するに先立ち、まず図5を参照して通常の凝集沈澱法について説明する。
水中の粒子が凝集せずに安定に分散している理由は、粒子表面は一般に負の電荷を帯びており、粒子どうしの荷電の反発が生じるため、および粒子周囲に存在するイオンや溶存分子が接近を阻害しているためである。
したがって、凝集作用によって大きな粒子に成長させるためには、粒子の表面電荷を反対電荷によって中和して静電的な反発を弱め、また吸着しやすい官能基(吸着基)をもった高分子凝集剤で粒子間を架橋することが必要であり、そのため通常の凝集沈澱法においては図5に示すように無機凝集剤(PAC、硫酸バンドなど)と高分子凝集剤とを併用して凝集沈澱処理を行うことが必要である。
すなわち、無機凝集剤は粒子表面の荷電中和の作用が強く、同時に粒子や溶解物への吸着作用があるので、小さい粒子をもれなく集めるのに適しているが、強度の弱い小フロックしか形成できない。そこで、その小フロックに、さらに分子量が大きくアミド基やカルボキシル基などの吸着基をもったアニオン性や非イオン性の高分子凝集剤を添加することで、小フロックは架橋して強固な大フロックとなり、沈降が促進される。
Prior to explaining the “incomplete coagulation precipitation method” in the present invention, first, an ordinary coagulation precipitation method will be explained with reference to FIG.
The reason why particles in water are stably dispersed without agglomeration is that the particle surface is generally negatively charged and repulsion between the particles occurs, and ions and dissolved molecules present around the particles This is because access is blocked.
Therefore, in order to grow into large particles by aggregating action, the surface charge of the particles is neutralized by the opposite charge to weaken the electrostatic repulsion, and the polymer agglomerates with functional groups (adsorptive groups) that are easy to adsorb It is necessary to cross-link the particles with an agent. Therefore, in the ordinary coagulation precipitation method, as shown in FIG. 5, coagulation precipitation treatment is performed by using an inorganic coagulant (PAC, sulfate band, etc.) and a polymer coagulant in combination. It is necessary to do.
In other words, the inorganic flocculant has a strong charge neutralizing action on the particle surface and at the same time adsorbs to the particles and dissolved matter, so it is suitable for collecting all the small particles, but can form only small flocs with low strength. . Therefore, by adding an anionic or nonionic polymer flocculant having a larger molecular weight and an adsorbing group such as an amide group or a carboxyl group to the small flocs, the small flocs are cross-linked and become strong large flocs. And sedimentation is promoted.
このように通常の凝集沈澱法では無機凝集剤と高分子凝集剤とを併用することによって大フロックを形成して凝集沈澱作用を得るのであるが、この場合は微細粒子も含めて全ての粒子が大フロックとなって沈降して沈澱汚泥となるから、5〜10μmの微細粒子のみを選択的に分離することはできない。 In this way, in the ordinary coagulation precipitation method, a combination of an inorganic coagulant and a polymer coagulant forms a large floc to obtain an aggregation coagulation action. In this case, all particles including fine particles are dispersed. Since it becomes a large floc and settles to become a precipitated sludge, only fine particles of 5 to 10 μm cannot be selectively separated.
そこで本発明では、図4に示すように、無機凝集剤の添加を省略して高分子凝集剤のみを添加するに留めて、上述のように不完全な凝集沈澱処理を意図的に行う。
すなわち、無機凝集剤を添加せずに高分子凝集剤のみで凝集させる場合には凝集可能な粒子径は自ずと限界があり、5〜6μm以上の比較的大径の粒子どうしは従来と同様に大フロックを形成して沈降して沈澱汚泥となるが、5〜6μm未満の微細粒子に対しては高分子凝集剤の架橋作用が働きにくく、フロックを形成しないか、あるいはフロックを形成してもごく微細なものでしかなく、これらは沈降速度が小さいために浮遊しながらオーバーフローとして流出させることができる。
したがって、大フロックとなって沈降する沈澱汚泥(アンダーフロー)と上澄水(オーバーフロー)とを分離することが可能であり、それにより5〜6μm未満の微細粒子分とそれよりも大きな細粒子分とを分離できることになる。但し、現実的には上澄水を溢水流としてオーバーフローさせて回収することになるから、水平方向に流れる溢水流に伴われて10μm程度の微細粒子も回収されるため、実際の分級点はやや大きくなって図中に示しているように5〜10μm程度となる。
Therefore, in the present invention, as shown in FIG. 4, the addition of the inorganic flocculant is omitted and only the polymer flocculant is added, and the incomplete flocculation and precipitation treatment is intentionally performed as described above.
That is, in the case of agglomerating only with the polymer aggregating agent without adding the inorganic aggregating agent, the particle size that can be agglomerated naturally has a limit. Forms flocs and settles to form precipitated sludge. However, the cross-linking action of the polymer flocculant is difficult to work on fine particles of less than 5 to 6 μm, and no flocs are formed, or even flocs are formed. These are only fine, and since they have a low sedimentation rate, they can flow out as an overflow while floating.
Therefore, it is possible to separate the sedimented sludge (underflow) and the supernatant water (overflow) that settle down as large flocs, thereby reducing the fine particle content of less than 5 to 6 μm and the fine particle content larger than that. Can be separated. However, since the supernatant water is actually overflowed and collected as an overflow stream, fine particles of about 10 μm are also collected along with the overflow stream flowing in the horizontal direction, so the actual classification point is slightly larger. As shown in the figure, it becomes about 5 to 10 μm.
なお、上記のような不完全凝集による微細粒子の分級・分離が可能となるためには、無機凝集剤の添加を省略することを前提として、高分子凝集剤の添加量およびpHを適正に調整する必要があるが、高分子凝集剤の添加量は通常の凝集沈澱法の場合に比べて少なくて良く、またpHは通常の凝集沈澱法の適正pHと異なるpH領域で凝集を行うように調整すると良い。
たとえば、高分子凝集剤の添加量は通常の凝集沈澱法において適正とされる量の1/2〜2/3程度で良い。また、高分子凝集剤としてアニオン系ポリマーを用いる場合における通常の凝集沈澱法ではpH=7〜9とすることが一般的であるが、本発明ではpH=9〜11とすることが好ましい。また、オーバーフローの溢流速度は、高分子凝集剤の添加量およびpHの調整と関連づけて上記のように分級点が5〜10μmとなるように適切に設定すれば良い。
In order to be able to classify and separate fine particles by incomplete aggregation as described above, the addition amount and pH of the polymer flocculant are adjusted appropriately on the premise that the addition of the inorganic flocculant is omitted. However, the amount of the polymer flocculant added may be smaller than that of the normal coagulation precipitation method, and the pH is adjusted so that the coagulation is performed in a pH range different from the appropriate pH of the normal coagulation precipitation method. Good.
For example, the addition amount of the polymer flocculant may be about 1/2 to 2/3 of the amount that is considered appropriate in a normal coagulation precipitation method. Further, in the usual aggregation precipitation method in the case of using an anionic polymer as the polymer flocculant, the pH is generally 7 to 9, but in the present invention, the pH is preferably 9 to 11. Further, the overflow rate of overflow may be appropriately set so that the classification point is 5 to 10 μm as described above in association with the addition amount of the polymer flocculant and the adjustment of pH.
本発明は、シアン汚染土壌に対して上記の「不完全凝集沈殿法」と「アルカリ抽出法」を順次実施することを要旨とし、それによってシアン汚染土壌を効率的に洗浄浄化することが可能なものであり、その具体的な実施形態を図1〜図2に示す。 The gist of the present invention is to sequentially carry out the above-mentioned “incomplete coagulation precipitation method” and “alkaline extraction method” on cyan contaminated soil, thereby enabling efficient cleaning and purification of cyan contaminated soil. FIG. 1 to FIG. 2 show specific embodiments thereof.
まず、処理対象の汚染土壌に水を加えて湿式フルイによって2mmを超える粗粒子分を予め除去したうえで、2mm以下の細粒子分をハイドロサイクロンによって63μm以上の砂分(アンダーフロー)と63μm未満の細粒子分(オーバーフロー)とにより分級する。 First, water is added to the contaminated soil to be treated and the coarse particles exceeding 2 mm are removed beforehand by wet fluid, and then the fine particles of 2 mm or less are sanded (underflow) of 63 μm or more and less than 63 μm by hydrocyclone. Classification by fine particle fraction (overflow).
ハイドロサイクロンからのアンダーフローについては、フローテーションによってシアンを含有する細粒子分を選択的に分離することのみで環境基準を満足する洗浄砂が得られるが、ここで分離した細粒子分には高濃度のシアンを含んでいるので、これは後段の凝集沈殿工程に送ってさらに処理する。 With regard to underflow from hydrocyclone, cleaning sand that satisfies environmental standards can be obtained only by selectively separating fine particles containing cyanide by flotation. Since it contains a concentration of cyanide, it is sent to a subsequent aggregation and precipitation step for further processing.
ハイドロサイクロンからのオーバーフローである63μm未満の細粒子分には、上述したようにその中の特に5〜10μm未満の微細粒子や有機物にシアンが偏在していることから、ここで上述の「不完全凝集沈澱法」を適用してさらに分級し、低濃度のシアンを含む5〜10μm以上の細粒子分をフロックとして沈降分離するとともに、高濃度のシアンを含む5〜10μm未満の微細粒子分を上澄水として回収する。 As described above, cyan is unevenly distributed in fine particles and organic substances less than 5 to 10 μm in the fine particles less than 63 μm that are overflow from the hydrocyclone. Applying the “aggregation precipitation method”, the particles are further classified to settle and separate fine particles of 5 to 10 μm or more containing a low concentration of cyan as flocs, and the fine particles of less than 5 to 10 μm containing a high concentration of cyan are added. Collect as clear water.
上記の不完全凝集沈澱法により分離したフロックは低濃度のシアンを含有しているから、ここでNaOHを添加して上述の「アルカリ抽出法」を適用することによりシアンを抽出した後、中和・安定化処理し脱水することにより環境基準を満足する洗浄土(リサイクル土)が得られる。 Since flocs separated by the above incomplete flocculation precipitation method contain a low concentration of cyanide, neutralization is carried out after extracting cyan by adding NaOH and applying the above-mentioned “alkali extraction method”. -Washed soil (recycled soil) that satisfies environmental standards can be obtained by stabilizing and dewatering.
一方、不完全凝集沈殿法により分離された高濃度のシアンを含む上澄水と、上記のフローテーションからの細粒子分、および上記のアルカリ抽出工程からの抽出水は、さらにその後段で通常の凝集沈殿法(無機凝集剤を使用するいわば完全凝集沈殿法)を実施し、ここで5〜10μm未満の微細粒子および溶存態のシアンを全て凝集スラッジとして水中から分離し、それをプレスして脱水することにより高濃度のシアンを含む濃縮汚染土が得られるからこれは外部処分する。 On the other hand, the supernatant water containing high-concentration cyan separated by the incomplete flocculation precipitation method, the fine particles from the above flotation, and the extracted water from the above alkali extraction step are further subjected to normal flocculation. A precipitation method (a so-called complete coagulation precipitation method using an inorganic coagulant) is carried out, in which all fine particles of less than 5 to 10 μm and dissolved cyan are separated from the water as coagulated sludge, which is pressed and dehydrated. As a result, a concentrated contaminated soil containing a high concentration of cyanide is obtained.
本発明によれば、従来においては濃縮汚染土に含まれてしまうことから処分せざるを得ない大量の5〜10μm以上の粒子分を再利用可能な浄化土として回収可能であり、したがって濃縮汚染土の発生量を大幅に低減し得てその処分に要するコストを大幅に削減することが可能である。
一実験例によれば、ハイドロサイクロンにより63μmで分級していた従来法による場合には処理対象の土壌全体の35%を濃縮汚染土として処分する必要があったが、上記の不完全凝集沈澱法により5〜10μmで分級した場合には濃縮汚染土を5〜8%未満にまで低減させることができ、従来法に比べて濃縮汚染土量を1/4程度にまで低減できることが確認されている。
According to the present invention, a large amount of particles having a size of 5 to 10 μm or more that must be disposed of in the past because they are contained in the concentrated contaminated soil can be recovered as reusable purified soil, and thus concentrated contaminated. The amount of soil generated can be greatly reduced, and the cost required for disposal can be greatly reduced.
According to one experimental example, in the case of the conventional method in which the hydrocyclone was classified at 63 μm, it was necessary to dispose 35% of the entire soil to be treated as concentrated contaminated soil. It is confirmed that the concentrated contaminated soil can be reduced to less than 5-8% when classified by 5 to 10 μm, and the amount of concentrated contaminated soil can be reduced to about 1/4 compared with the conventional method. .
具体的には、図3に示すように2mm以下の土壌試料100kg-dryを対象とした場合、従来においてはハイドロサイクロンにより分級された63μm未満の細粒子分(オーバーフロー)は35kg-dry(全体の35%)にもなり、それがそのまま濃縮されて濃縮汚染土として処分する必要があったのに対し、本発明ではハイドロサイクロンからのオーバーフロー分を不完全凝集沈殿によりさらに分級することにより5〜10μm未満の微細粒子は5kg-dry(全体の5%)にまで低減し、最終的に処分するべき濃縮汚染土量はフローテーションおよびアルカリ抽出からの回収分を含めてもわずか8kg-dry(全体の8%)に留まった。 Specifically, as shown in FIG. 3, when a soil sample of 2 kg or less is 100 kg-dry as shown in FIG. 3, the conventional fine particle fraction (overflow) of less than 63 μm classified by hydrocyclone is 35 kg-dry (total In the present invention, the overflow from the hydrocyclone is further classified by incomplete agglomeration and precipitation, and it is necessary to dispose as concentrated contaminated soil. Less fine particles are reduced to 5 kg-dry (5% of the total), and the amount of concentrated contaminated soil to be finally disposed of is only 8 kg-dry (total of recovered from flotation and alkaline extraction) 8%).
しかも、図6に示したようにシアンの含有量は粒子径が小さいほど高いことから、本発明のように微細粒子分を選択的に処理することで従来法に比べてより効率的な処理が可能である。
以上のことから、本発明の洗浄方法は「不完全凝集沈澱法」と「アルカリ抽出法」を有機的に組み合わせたことで比較的低濃度のシアン汚染土壌を効率的に処理可能なものであり、極めて合理的であり有効である。
In addition, as shown in FIG. 6, the cyan content is higher as the particle size is smaller, and therefore, by treating fine particles selectively as in the present invention, more efficient treatment can be achieved compared to the conventional method. Is possible.
From the above, the cleaning method of the present invention can efficiently treat relatively low concentration of cyan contaminated soil by organically combining the “incomplete flocculation precipitation method” and the “alkali extraction method”. , Extremely reasonable and effective.
Claims (1)
処理対象の汚染土壌をスラリーとし、該スラリーに無機凝集剤の添加を省略して高分子凝集剤を添加して混合攪拌することにより、スラリー中の5〜10μm以上の土粒子のみを選択的に凝集させてフロックを形成するとともに、5〜10μm未満の微細粒子を凝集させることなくスラリー中に分散させ、
前記スラリーから前記フロックを沈降分離して該フロックからアルカリ抽出によりシアンを溶存態として抽出した後、該フロックを中和安定化し脱水処理することにより5〜10μm以上の土粒子からなる浄化土を得るとともに、
前記フロックから抽出した溶存態としてのシアンを含む抽出水と、5〜10μm未満の微細粒子を含む前記スラリーの上澄水とをさらに無機凝集剤と高分子凝集剤とを併用する凝集沈殿処理をして、その凝集スラッジを脱水処理することによりシアンを含む濃縮汚染土を得ることを特徴とするシアン汚染土壌の洗浄方法。 A method for cleaning soil contaminated with cyanide,
By treating the contaminated soil to be treated as a slurry, omitting the addition of the inorganic flocculant to the slurry, adding the polymer flocculant, and mixing and stirring, selectively only the soil particles of 5 to 10 μm or more in the slurry. Aggregate to form floc and disperse fine particles less than 5-10 μm in the slurry without agglomeration,
After the floc is settled and separated from the slurry and extracted from the floc by alkali extraction as a dissolved state of cyan, the floc is neutralized and stabilized and dehydrated to obtain a purified soil composed of soil particles of 5 to 10 μm or more. With
The extract water containing cyan as a dissolved state extracted from the floc and the supernatant water of the slurry containing fine particles of less than 5 to 10 μm are further subjected to a coagulation sedimentation treatment using an inorganic coagulant and a polymer coagulant in combination. A method for cleaning cyan-contaminated soil, characterized in that concentrated polluted soil containing cyanide is obtained by dehydrating the agglomerated sludge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010227902A JP5769044B2 (en) | 2010-10-07 | 2010-10-07 | How to clean cyan contaminated soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010227902A JP5769044B2 (en) | 2010-10-07 | 2010-10-07 | How to clean cyan contaminated soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012081387A JP2012081387A (en) | 2012-04-26 |
JP5769044B2 true JP5769044B2 (en) | 2015-08-26 |
Family
ID=46240837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010227902A Active JP5769044B2 (en) | 2010-10-07 | 2010-10-07 | How to clean cyan contaminated soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5769044B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013248559A (en) * | 2012-05-31 | 2013-12-12 | Shimizu Corp | Method for cleaning heavy metal contaminated soil |
JP6042237B2 (en) * | 2013-03-08 | 2016-12-14 | Jfeミネラル株式会社 | Purification method |
FR3106074B1 (en) * | 2020-01-10 | 2022-01-07 | Brezillon | Soil decontamination |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3717869B2 (en) * | 2002-06-13 | 2005-11-16 | 川崎重工業株式会社 | Waste stabilization treatment method and waste stabilization treatment product |
JP4351930B2 (en) * | 2004-02-26 | 2009-10-28 | 西松建設株式会社 | How to clean contaminated soil |
JP2005279454A (en) * | 2004-03-30 | 2005-10-13 | Toda Constr Co Ltd | Washing method of contaminated soil |
JP2006116397A (en) * | 2004-10-20 | 2006-05-11 | Shimizu Corp | Washing method and washing apparatus of contaminated soil |
-
2010
- 2010-10-07 JP JP2010227902A patent/JP5769044B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012081387A (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101375482B1 (en) | System and method for remediation of highly concentrated soil by continuous sequential advanced??separation and heavy metals removal process | |
US5316223A (en) | Method and apparatus for cleaning contaminated particulate material | |
JP4949849B2 (en) | Organic drainage and sludge treatment method and treatment equipment | |
JP2006116397A (en) | Washing method and washing apparatus of contaminated soil | |
CN205740628U (en) | A kind of Novel water-purifying system | |
CN106977009B (en) | Rapid treatment and recycling method of spodumene flotation tailing water | |
JPWO2004037453A1 (en) | Soil purification method | |
CN114212962B (en) | Recycling process of waste mud in highway construction | |
KR20140137917A (en) | System and method for remediation of soil being contaminated by concentrated heavy metal | |
KR101693575B1 (en) | Apparatus for washing soils contaminated by heavy metals and method therefor | |
JP4806426B2 (en) | Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles | |
JP5769044B2 (en) | How to clean cyan contaminated soil | |
JP4169614B2 (en) | Wastewater treatment method | |
JP2008036525A (en) | System and method for producing cleaned soil | |
CN105461118A (en) | Coal mine sewage treating and recycling technology | |
JP5656060B2 (en) | Method for separating fine particles in soil and method for cleaning contaminated soil | |
JP6497650B2 (en) | Cleaning method for arsenic contaminated soil | |
JP4351930B2 (en) | How to clean contaminated soil | |
JP5747470B2 (en) | Cleaning method for arsenic contaminated soil | |
JP5777075B2 (en) | Cleaning method for arsenic contaminated soil | |
WO2020089506A1 (en) | Method and arrangement for process water treatment | |
JP6391012B2 (en) | Cleaning method for arsenic contaminated soil | |
JP2004160340A (en) | Method and equipment for treating organic waste water and sludge | |
JP2005262076A (en) | Method for cleaning soil contaminated with oil | |
KR101039835B1 (en) | Apparatus and method for refining infested soil in phisical and chemica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150519 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5769044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |