JP3717869B2 - Waste stabilization treatment method and waste stabilization treatment product - Google Patents

Waste stabilization treatment method and waste stabilization treatment product Download PDF

Info

Publication number
JP3717869B2
JP3717869B2 JP2002172142A JP2002172142A JP3717869B2 JP 3717869 B2 JP3717869 B2 JP 3717869B2 JP 2002172142 A JP2002172142 A JP 2002172142A JP 2002172142 A JP2002172142 A JP 2002172142A JP 3717869 B2 JP3717869 B2 JP 3717869B2
Authority
JP
Japan
Prior art keywords
waste
weight
parts
sodium
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002172142A
Other languages
Japanese (ja)
Other versions
JP2004016852A (en
Inventor
勝哉 森本
泰典 柴田
和人 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002172142A priority Critical patent/JP3717869B2/en
Publication of JP2004016852A publication Critical patent/JP2004016852A/en
Application granted granted Critical
Publication of JP3717869B2 publication Critical patent/JP3717869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排煙脱硫石膏、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、集塵ダスト等の廃棄物の安定化処理方法に関するものであり、廃棄物が含有する微量の有害物を安定化し、溶出を抑制するものである。
【0002】
【従来の技術】
廃棄物中には、微量の有害成分が含まれている場合が多く、埋め立て時、あるいは有効利用時に、環境規制物質、特に2001年に土壌環境基準に追加されたフッ素、ホウ素が規制値をオーバーする場合がある。
廃棄物の中でいわゆる副生品として再利用が進められているものの一つに、副生石膏がある。副生石膏としては、石炭、石油などを用いるプラントに設置されている排煙脱硫装置より排出される排脱石膏、また、リン酸や酸化チタン等の製造の際に排出される化学石膏があり、合計で約550万t/年排出されている。排脱石膏、化学石膏(以後、石膏と称する)は、セメント添加材、石膏ボード原料などとして利用されているが、セメント、石膏ボードの生産量は低下する一方で、石膏の排出量は増加している。また、脱水スラッジ等他の廃棄物に関しても、環境規制強化などにより、利用に際して含まれる不純物の除去、特にフッ素、ホウ素の除去が課題となっている。したがって、廃棄物の用途拡大、利用量向上のために、安定化技術の開発が望まれている。
【0003】
石膏等廃棄物からのフッ素溶出量の低減方法としては、以下のような従来技術が知られている。
例えば、特開昭46−1512号公報には、石膏を乾燥し、濃硫酸を散水後、200〜300℃で加熱し、フッ素を揮発させて安定化石膏を製造する技術が開示されている。
また、特開昭48−297号公報には、石膏を水で洗浄後、石膏100重量部に1〜2重量部の希硫酸を加え(硫酸濃度:2〜20重量%)、20〜90℃で短時間攪拌後、固液分離し、さらに水洗浄を行い、安定化石膏を製造する技術が開示されている。
また、特開昭57−22118号公報、特開平6−256015号公報には、5〜20%の石膏スラリを15〜20μmを分離径として、ハイドロサイクロン処理を2回行い、安定化石膏(粗粒)を得る技術が開示されている。
【0004】
【発明が解決しようとする課題】
従来の技術では、安定性、品質において、以下のような問題点がある。
(1)安定性
石膏を乾燥し、濃硫酸を散水後、200〜300℃で加熱し、フッ素を揮発させて安定化石膏を製造する技術では、200〜300℃の温度で処理するため、エネルギー消費量が多くなり、処理コストが増大するとともに、II型無水石膏となるので、石膏ボードなどの製品に適用しにくい。また、環境規制物質は完全には揮発しないので、安定性が不十分である。
石膏スラリに1〜2重量%の希硫酸を加え(硫酸濃度:2〜20重量%)、20〜90℃で短時間攪拌後、固液分離し、さらに水洗浄を行い、安定化石膏を製造する技術の場合、洗浄後の安定化石膏には、0.2〜0.3%のフッ素が含まれており、環境庁告示46号に準拠した溶出試験で、数mg/Lのフッ素の溶出があり、環境規制値を満足しない。
【0005】
(2)品質
5〜20%の石膏スラリを15〜20μmを分離径として、ハイドロサイクロン処理を2回行い、安定化石膏(粗粒)を得る技術では、分離径が大きいので、安定化石膏の回収量が低くなる。また、微粒子分を除去することにより不純物量は減少するが、フッ素等の含有量を十分低くすることはできず、環境庁告示46号に準拠した溶出試験で、数mg/Lのフッ素の溶出があり、環境規制値を満足しない。
特に排煙脱硫石膏の場合は、うす茶色、あるいはうす灰色を呈しているが、石膏ボード等建材にリサイクルされるためには、白色度が高い方が望ましく、従来の技術では、白色化(高品質化)は不十分である。
【0006】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、廃棄物にアルカリ金属化合物を添加して攪拌(あるいは混練)し、廃棄物に微量含まれるフッ素等の環境規制物質を難溶化することにより、フッ素等の環境規制物質の溶出量を基準値以下とすることができる廃棄物の安定化処理方法及び廃棄物の安定化処理物を提供することにある。
また、本発明の目的は、前処理として、酸洗浄、又は/及びフッ素等不純物が濃縮された微粒子をシックナーあるいはハイドロサイクロンによって除去することにより、不純物の除去、白色度の向上を図り、リサイクルする際の廃棄物の純度向上、高品質化による付加価値の向上が実現できる廃棄物の安定化処理方法及び廃棄物の安定化処理物を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の廃棄物の安定化処理方法は、廃棄物(排煙脱硫石膏、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、集塵ダスト等)が懸濁しているスラリの固形分100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を0.01〜10重量部加えて、常温〜200℃、好ましくは常温〜95℃にて1分間〜10時間、好ましくは5分間〜4時間攪拌処理を行うことで、廃棄物に含まれるフッ素等の環境規制物質を難溶化し、ついで、スラリを固液分離して安定化した高品質の処理物を得るように構成されている(図1参照)。
【0008】
また、本発明の方法は、廃棄物100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物0.01〜10重量部を含有する水溶液1〜50重量部を加えて、常温〜200℃、好ましくは常温〜95℃にて1分間〜10時間、好ましくは5分間〜4時間混練処理を行い、廃棄物に含まれるフッ素等の環境規制物質を難溶化することを特徴としている(図2参照)。
【0009】
また、本発明の方法は、廃棄物100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物0.01〜10重量部、及び水(水道水、工水、海水等)60〜10000重量部を加えて、常温〜200℃、好ましくは常温〜95℃にて1分間〜10時間、好ましくは5分間〜4時間攪拌処理を行うことで、廃棄物に含まれるフッ素等の環境規制物質を難溶化し、ついで、スラリを固液分離して安定化した高品質の処理物を得ることを特徴としている(図3参照)。
なお、攪拌(又は混練)処理の温度を高くし過ぎると、エネルギー消費量が多くなり、しかも、高温高圧に耐え得る設備が必要になり、コスト高となる。
【0010】
前処理として、廃棄物が懸濁しているスラリの固形分100重量部に、硫酸、塩酸、シュウ酸等の酸性物質を単独あるいは組み合わせて0.1〜20重量部となるように添加して、常温〜95℃にて1〜60分間攪拌処理を行い、この廃棄物が懸濁しているスラリに対して上記(図1参照)の処理を行うことができる。また、前処理として、廃棄物100重量部に、水(水道水、工水、海水等)30〜1000重量部、及び硫酸、塩酸、シュウ酸等の酸性物質を単独あるいは組み合わせて0.1〜20重量部となるように添加してスラリとした後、常温〜95℃にて1〜60分間攪拌処理を行い、これを固液分離して得た固形廃棄物に対して上記(図2、図3参照)の処理を行うことができる。
【0011】
また、廃棄物が懸濁しているスラリをシックナー、ハイドロサイクロン等により5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリに対して上記(図1参照)の処理を行うことができる。
また、廃棄物が懸濁しているスラリをシックナー、ハイドロサイクロン等により5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリの固形分100重量部に、硫酸、塩酸、シュウ酸等の酸性物質を単独あるいは組み合わせて0.1〜20重量部となるように添加して、常温〜95℃にて1〜60分間攪拌処理を行い、この廃棄物が懸濁しているスラリに対して上記(図1参照)の処理を行うことができる。
【0012】
また、廃棄物が懸濁しているスラリをシックナー、ハイドロサイクロン等により5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリを固液分離して得た固形廃棄物に対して上記(図2、図3参照)の処理を行うことができる。
また、廃棄物が懸濁しているスラリをシックナー、ハイドロサイクロン等により5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリの固形分100重量部に、硫酸、塩酸、シュウ酸等の酸性物質を単独あるいは組み合わせて0.1〜20重量部となるように添加して、常温〜95℃にて1〜60分間攪拌処理を行い、このスラリを固液分離して得た固形廃棄物に対して上記(図2、図3参照)の処理を行うことができる。
【0013】
また、本発明の方法は、廃棄物が懸濁しているスラリの固形分100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を0.01〜10重量部加えて、常温〜200℃、好ましくは常温〜95℃にて1分間〜10時間、好ましくは5分間〜4時間攪拌処理を行い、廃棄物に含まれるフッ素等の環境規制物質を難溶化した後、このスラリをシックナー、ハイドロサイクロン等により5〜10μmで分級して、不純物、環境規制物質を多く含有する微粒子を除去し、ついで、粗粒子側スラリを固液分離して安定化した高品質の処理物を得ることを特徴としている。
【0014】
本発明の廃棄物の安定化処理物は、排煙脱硫石膏など副生品として排出される石膏に、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴としている。
【0015】
また、本発明の処理物は、副生品として排出される石膏に、硫酸、塩酸、シュウ酸等の酸性物質を添加して酸洗浄を行い、ついで、得られた処理物に水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴としている。
【0016】
また、本発明の処理物は、副生品として排出される石膏をシックナー、ハイドロサイクロン等により分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去し、ついで、分離した粗粒子に水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴としている。
【0017】
また、本発明の処理物は、副生品として排出される石膏をシックナー、ハイドロサイクロン等により分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去し、ついで、分離した粗粒子に硫酸、塩酸、シュウ酸等の酸性物質を添加して酸洗浄を行い、ついで、得られた処理物に水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等のアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴としている。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。
(1)安定性
排煙脱硫石膏、脱水スラッジ等廃棄物が含有するフッ素は、微量であり、概ね数百〜数千mg/kgである。上述した従来の技術は数%含有されているフッ素を、洗浄、あるいは揮発させて数千mg/kgにまで低減する技術である。しかし、フッ素の溶出量は、含有しているフッ素化合物の溶解度に左右され、含有量を数十mg/kg程度に低減しても、溶出量はそれほど変わらないことを確認している。なお、フッ素の土壌環境基準値は0.8mg/Lである。このため、洗浄、揮発等により、フッ素の含有量を低減するのみでは不十分であり、廃棄物表面に付着しているフッ素を安定化、すなわち、難溶化して、溶出しない難溶性化合物へ変化させることが必要である。
【0019】
(2)品質
排煙脱硫石膏には、電気集塵機で捕捉できなかった石炭灰の微粒子等が微量含まれており、石膏の純度としては95〜99%程度のものが多い。このため、石膏ボード等へリサイクルされる場合に、純度の問題、色の問題より、ボード原料への添加に量的制約がある。微粒子除去による、純度の向上、あるいは着色物質の除去、さらにシュウ酸等還元性物質を用いた洗浄処理や120℃以上の加熱処理による白色度の向上により、リサイクル可能な高品質の石膏を得ることができる。
【0020】
図1は、本発明の実施の第1形態による廃棄物の安定化処理方法を実施する装置の概略構成を示している。本実施の形態は、例えば、排煙脱硫システムにおける脱水工程前のスラリー状の廃棄物に、アルカリ金属化合物を加えて攪拌機10内で反応させ、脱水して固形廃棄物を得る方法である。排煙脱硫石膏を例に説明すると、脱水機12へ入る前の石膏スラリーの段階で、固形分100重量部に対し、アルカリ金属化合物を0.01〜10重量部添加し、常温〜200℃で、1分間〜10時間、好ましくは5分間〜4時間攪拌処理を実施し、フッ素等の環境規制物質を難溶化合物に反応させた後、脱水して安定化した石膏を得る。攪拌処理が100℃以下では二水石膏、100〜150℃ではα型半水石膏、150〜200℃ではII型無水石膏と、処理温度により、様々な形態の石膏を得ることができる。アルカリ金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム、硫酸ナトリウム等が用いられる。アルカリ金属化合物の添加量が0.01重量部未満の場合は難溶化反応が十分進行せず、効果が顕著に現れない。一方、10重量部より多い場合はコスト高になるとともに、未反応分が残留するなどし、安定化処理物の品質低下を招く。攪拌時間は1分間より短すぎると効果は十分でなく、逆に10時間を超えると設備が大きくなりすぎて、実用的ではない。さらに、処理温度が200℃を超えると装置の耐圧構造の強化が必要となり、設備費が高くなる。脱水機としては、フィルタープレス、ベルトプレス、遠心分離機、真空ろ過機などが使用可能である。
【0021】
この場合、前処理として、石膏等の廃棄物スラリーに硫酸、塩酸、シュウ酸等の酸性物質を加えて、常温〜95℃で攪拌処理を行い、酸洗浄を実施して、フッ素の含有量を減らした後、上記の方法を実施することができる。フッ素等は酸に対する溶解度が高いため、酸性溶液で洗浄することにより、単なる水洗よりも効率的に、廃棄物からフッ素を除去でき、その後の安定化処理を容易にすることができる。
また、不純物除去を併用するため、シックナー、ハイドロサイクロン等を用いた微粒子除去を組み合わせる。スラリをシックナー、ハイドロサイクロン等で分級し、微粒子を除去した後、粗粒子側スラリにアルカリ金属化合物を添加し、廃棄物の安定化を図る。石膏を例にとると、微粒子に不純物の含有量が多く、5〜10μmで分級すると微粉側にフッ素の80%以上が濃縮していることがわかった。このため、前処理として、この微粉を除去すれば、アルカリ金属化合物との組み合わせで安定化処理がより確実となる。なお、前処理として、シックナー、ハイドロサイクロン等を用いた微粒子除去の後に酸洗浄を行うことも可能である。また、廃棄物スラリにアルカリ金属化合物を添加、攪拌して、表面を難溶性化合物に変化させた後、シックナー、ハイドロサイクロン等で微粒子を除去することもあり、効果は同じである。
【0022】
図2は、本発明の実施の第2形態による廃棄物の安定化処理方法を実施する装置の概略構成を示している。本実施の形態は、脱水後の廃棄物、あるいは集塵ダスト等、乾燥した状態で排出される廃棄物への適用を想定したものである。排煙脱硫石膏を例に説明すると、脱水後の石膏にアルカリ金属化合物の水溶液を加えて、混練機14で混練し、フッ素等の環境規制物質を難溶化合物へ反応させる。混練処理温度が100℃以下では二水石膏であるが、100〜150℃の飽和水蒸気圧下ではα型半水石膏となり、150〜200℃の飽和水蒸気圧下ではII型無水石膏となる。一方、120〜180℃の飽和水蒸気圧以下の加熱では、β型半水石膏、180〜200℃の飽和水蒸気圧以下ではIII型無水石膏となる。120℃以上の飽和水蒸気圧以下の加熱処理では、有機分が減少し、白色化が進む。
【0023】
この場合、前処理として、脱水後の石膏等の廃棄物に硫酸、塩酸、シュウ酸等の酸性物質を加えて、常温〜95℃で攪拌処理を行い、固液分離して洗浄を実施し、フッ素の含有量を減らした後、上記の方法を実施する。フッ素等は酸に対する溶解度が高いため、酸性溶液で洗浄することにより、単なる水洗よりも効率的に、廃棄物からフッ素を除去でき、その後の安定化処理を容易にすることができる。
また、不純物除去を併用するため、シックナー、ハイドロサイクロン等を用いた微粒子除去を組み合わせる。スラリをシックナー、ハイドロサイクロン等で分級し、微粒子を除去した後、粗粒子側スラリを脱水した廃棄物にアルカリ金属化合物を添加し、廃棄物の安定化を図る。石膏を例にとると、微粒子に不純物の含有量が多く、5〜10μmで分級すると微粉側にフッ素の80%以上が濃縮していることがわかった。このため、前処理として、この微粉を除去すれば、アルカリ金属化合物との組み合わせで安定化処理がより確実となる。
他の構成及び作用は、実施の第1形態の場合と同様である。
【0024】
図3は、本発明の実施の第3形態による廃棄物の安定化処理方法を実施する装置の概略構成を示している。本実施の形態は、脱水後の廃棄物、あるいは集塵ダスト等、乾燥した状態で排出される廃棄物への適用を想定したものである。排煙脱硫石膏を例に説明すると、脱水後の石膏にアルカリ金属化合物、水を加えてスラリ状とした後、攪拌して、フッ素等の環境規制物質を難溶化合物へ反応させ、再度脱水する。攪拌処理温度が100℃以下では二水石膏、100〜150℃ではα型半水石膏、150〜200℃ではII型無水石膏が得られる。
他の構成及び作用は、実施の第1、第2形態の場合と同様である。
【0025】
ここでは、主として副生石膏を例に挙げ、説明したが、本発明は、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、集塵ダスト等の廃棄物に対しても有効である。
【0026】
【実施例】
下記の表1に示す組成の石膏を例にとって、本発明の実施例及びその比較例を説明する。
【0027】
【表1】

Figure 0003717869
【0028】
実施例1
石膏スラリー中の固形分100重量部に対し、NaOH0.15重量部を添加し、常温(20℃)で10分間攪拌を行い、固液分離し、安定化石膏(二水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.7mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類(B、Pb、Cd、As、Cr6+、Hg、Se)は元々基準値以下である。
【0029】
実施例2
脱水後の石膏100重量部に対し、Na2AlO3(アルミン酸ナトリウム)0.25重量部を水1重量部に溶かした水溶液を添加し、常温(20℃)で10分間混練を行い、安定化石膏(二水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.5mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。
【0030】
実施例3
脱水後の石膏100重量部に対し、Na2AlO3(アルミン酸ナトリウム)0.25重量部を水1重量部に溶かした水溶液を添加し、160℃で1.5時間混練を行い、固液分離して、安定化石膏(β型半水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.6mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。また、石膏の白色度(色彩色差計での明度 黒:0〜100:白)は75から89に向上した。
【0031】
実施例4
脱水後の石膏100重量部に対し、水100重量部、水ガラス1重量部を添加し、スラリとした後、135℃で60分間攪拌を行い、固液分離して、安定化石膏(α型半水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.5mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。
【0032】
実施例5
脱水後の石膏100重量部に対し、水100重量部、シュウ酸3重量部を添加し、スラリとした後、60℃で10分間攪拌を行い、固液分離したのち、Na2AlO3(アルミン酸ナトリウム)0.5重量部及び水を添加し、常温(20℃)で10分間混練を行い、安定化石膏(二水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.4mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。また、石膏の白色度(色彩色差計での明度 黒:0〜100:白)は75から89に向上した。
【0033】
実施例6
石膏スラリーを、ハイドロサイクロンを用いて、カットポイントを5μmとし、微粒子を除去した後、粗粒子側スラリ中の固形分100重量部に対し、NaOH0.15重量部を添加し、常温(20℃)で10分間攪拌を行い、固液分離し、安定化石膏(二水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.2mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。また、石膏の純度は97.5%から98.8%へ向上し、石膏の白色度(色彩色差計での明度 黒:0〜100:白)は75から87に向上した。
【0034】
実施例7
石膏スラリー中の固形分100重量部に対し、水ガラス0.5重量部を添加して、常温(20℃)で10分間攪拌を行った後、ハイドロサイクロンを用いて、カットポイントを5μmとして、微粒子を除去し、ついで、固液分離して、安定化石膏(二水)を製造した。安定化石膏の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.2mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。また、石膏の純度は97.5%から98.6%へ向上し、石膏の白色度(色彩色差計での明度 黒:0〜100:白)は75から86に向上した。
【0035】
比較例
脱水後の石膏100重量部に対し、水100重量部、硫酸10重量部を添加し、スラリとした後、常温(20℃)で10分間攪拌を行い、固液分離をし、安定化石膏(二水)を製造した。安定化石膏のフッ素含有量は200mg/kgと大幅に減少したが、溶出試験結果(環境庁告示46号準拠)の結果、フッ素溶出量は3.0mg/Lと土壌環境基準を満足しなかった。
【0036】
また、脱水スラッジ、下水汚泥を例にとって他の実施例を説明する。
実施例8
脱水スラッジ(脱水前)の固形分100重量部に対し、NaOH0.2重量部を添加し、常温(20℃)で10分間攪拌を行い、固液分離し、安定化した脱水スラッジを得た。スラッジの溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.6mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。
【0037】
実施例9
脱水後の下水汚泥100重量部に対し、Na2AlO3(アルミン酸ナトリウム)0.3重量部を水1重量部に溶かした水溶液を添加し、常温(20℃)で10分間混練を行い、安定化した下水汚泥を製造した。安定化下水汚泥の溶出試験結果(環境庁告示46号準拠)は、フッ素、ホウ素を含めて全て土壌環境基準値以下であった。特に、フッ素の溶出量は0.5mg/Lまで低減され、土壌環境基準値の0.8mg/Lを下回った。なお、他の重金属類は元々基準値以下である。
【0038】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 廃棄物に微量含まれる環境規制物質を難溶化することにより、環境規制物質の溶出量を基準値以下とすることができる。
(2) 不純物の除去、白色度の向上により、リサイクルする際の廃棄物の純度向上、高品質化による付加価値の向上を図ることができる。
(3) 排煙脱硫石膏など副生品として排出される石膏から得られる処理物は、フッ素等の環境規制物質が難溶化されており、しかも、純度及び白色度が高いので、石膏ボードなどに有効にリサイクルできる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による廃棄物の安定化処理方法を実施する装置を示す概略構成説明図である。
【図2】本発明の実施の第2形態による廃棄物の安定化処理方法を実施する装置を示す概略構成説明図である。
【図3】本発明の実施の第3形態による廃棄物の安定化処理方法を実施する装置を示す概略構成説明図である。
【符号の説明】
10 攪拌機
12 脱水機
14 混練機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stabilizing waste such as flue gas desulfurization gypsum, dewatered sludge, clean water sludge, sewage sludge, crushed stone sludge, contaminated soil, dust collection dust, and the like. It stabilizes things and suppresses elution.
[0002]
[Prior art]
Wastes often contain trace amounts of harmful components, and environmental control substances, especially fluorine and boron that were added to the soil environmental standards in 2001, exceeded the control values at the time of landfilling or effective use. There is a case.
One of the wastes being reused as a by-product is by-product gypsum. As by-product gypsum, there are exhaust gypsum discharged from flue gas desulfurization equipment installed in plants using coal, oil, etc., and chemical gypsum discharged in the production of phosphoric acid, titanium oxide, etc. A total of about 5.5 million tons / year is discharged. Waste gypsum and chemical gypsum (hereinafter referred to as gypsum) are used as cement additives, gypsum board raw materials, etc., while the production of cement and gypsum board decreases, while the amount of gypsum discharged increases. ing. In addition, with regard to other wastes such as dewatered sludge, removal of impurities contained in use, particularly removal of fluorine and boron, has become an issue due to stricter environmental regulations. Therefore, development of stabilization technology is desired in order to expand the use of waste and improve the amount of use.
[0003]
The following conventional techniques are known as methods for reducing the amount of elution of fluorine from waste such as gypsum.
For example, Japanese Patent Application Laid-Open No. Sho 46-1512 discloses a technique for producing stabilized gypsum by drying gypsum, sprinkling concentrated sulfuric acid and then heating at 200 to 300 ° C. to volatilize fluorine.
JP-A-48-297 discloses that after washing gypsum with water, 1-2 parts by weight of dilute sulfuric acid is added to 100 parts by weight of gypsum (sulfuric acid concentration: 2-20% by weight), 20-90 ° C. And a technique for producing a stabilized gypsum by solid-liquid separation after further stirring for a short time and further washing with water.
In Japanese Patent Laid-Open Nos. 57-22118 and 6-256015, hydrocyclone treatment is performed twice with 5-20% gypsum slurry having a separation diameter of 15-20 μm, and stabilized gypsum (coarse) A technique for obtaining a grain) is disclosed.
[0004]
[Problems to be solved by the invention]
The conventional techniques have the following problems in stability and quality.
(1) Stability
Drying gypsum, sprinkling concentrated sulfuric acid, heating at 200-300 ° C, volatilizing fluorine to produce stabilized gypsum, processing at a temperature of 200-300 ° C increases energy consumption. As the processing cost increases, it becomes II type anhydrous gypsum, which is difficult to apply to products such as gypsum board. In addition, environmentally regulated substances do not volatilize completely and therefore have insufficient stability.
Add 1 to 2% by weight of dilute sulfuric acid to the gypsum slurry (sulfuric acid concentration: 2 to 20% by weight), stir at 20 to 90 ° C for a short time, separate into solid and liquid, and then wash with water to produce stabilized gypsum. In the case of the technology to be used, the stabilized gypsum after washing contains 0.2 to 0.3% of fluorine, and in the dissolution test based on the Environmental Agency Notification No. 46, the dissolution of several mg / L of fluorine Does not meet the environmental regulations.
[0005]
(2) Quality
In the technology that obtains stabilized gypsum (coarse particles) by performing hydrocyclone treatment twice with 5-20% gypsum slurry as a separation diameter of 15-20 μm, the recovered gypsum is low because the separation diameter is large. Become. In addition, the amount of impurities is reduced by removing fine particles, but the content of fluorine and the like cannot be reduced sufficiently. Elution of fluorine of several mg / L in the dissolution test in accordance with Environment Agency Notification No. 46 Does not meet the environmental regulations.
In particular, flue gas desulfurization gypsum has a light brown or light gray color. However, in order to be recycled into building materials such as gypsum board, higher whiteness is desirable. Quality improvement) is insufficient.
[0006]
The present invention has been made in view of the above points, and an object of the present invention is to add an alkali metal compound to waste and stir (or knead) it to make it difficult to remove environmentally regulated substances such as fluorine contained in a small amount of waste. An object of the present invention is to provide a waste stabilization treatment method and a waste stabilization treatment product that can reduce the elution amount of an environmentally regulated substance such as fluorine to a reference value or less by solubilization.
Another object of the present invention is to recycle by improving the whiteness and removing impurities by acid cleaning or / and removing fine particles enriched with impurities such as fluorine by thickener or hydrocyclone as pretreatment. It is an object of the present invention to provide a waste stabilization treatment method and a waste stabilization treatment product capable of improving the added value by improving the purity and quality of the waste.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the waste stabilization method of the present invention is a waste (desulfurization desulfurization gypsum, dewatered sludge, dewatered sludge, sewage sludge, crushed sludge, contaminated soil, dust collection dust, etc.) 0.01 to 10 parts by weight of an alkali metal compound such as sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate, etc. In addition to parts by weight, environmental control substances such as fluorine contained in the waste can be obtained by stirring at room temperature to 200 ° C., preferably from room temperature to 95 ° C. for 1 minute to 10 hours, preferably 5 minutes to 4 hours. It is configured so as to obtain a high-quality processed product that is hardly soluble and then solid-liquid-separated and stabilized (see FIG. 1).
[0008]
In addition, the method of the present invention is performed by using 0.01 to 10 alkali metal compounds such as sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, and sodium sulfate with respect to 100 parts by weight of the waste. 1 to 50 parts by weight of an aqueous solution containing parts by weight is added, and kneading is performed at room temperature to 200 ° C., preferably from room temperature to 95 ° C. for 1 minute to 10 hours, preferably 5 minutes to 4 hours, and included in waste It is characterized by slightly solubilizing environmentally regulated substances such as fluorine (see FIG. 2).
[0009]
In addition, the method of the present invention is performed by using 0.01 to 10 alkali metal compounds such as sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, and sodium sulfate with respect to 100 parts by weight of the waste. Parts by weight and 60 to 10000 parts by weight of water (tap water, industrial water, seawater, etc.) are added at room temperature to 200 ° C., preferably from room temperature to 95 ° C. for 1 minute to 10 hours, preferably 5 minutes to 4 hours. By carrying out the agitation treatment, environmentally controlled substances such as fluorine contained in the waste are hardly soluble, and then the slurry is solid-liquid separated to obtain a high-quality treated product (FIG. 3). reference).
If the temperature of the stirring (or kneading) process is too high, energy consumption increases, and moreover, equipment that can withstand high temperatures and pressures is required, resulting in high costs.
[0010]
As a pretreatment, an acidic substance such as sulfuric acid, hydrochloric acid, oxalic acid or the like is added alone or in combination to 100 parts by weight of the solid content of the slurry in which the waste is suspended. Stir processing is performed at room temperature to 95 ° C. for 1 to 60 minutes, and the above-described processing (see FIG. 1) can be performed on the slurry in which the waste is suspended. Further, as pretreatment, 0.1 to 100 parts by weight of waste, 30 to 1000 parts by weight of water (tap water, industrial water, seawater, etc.) and acidic substances such as sulfuric acid, hydrochloric acid, oxalic acid, etc. After adding to 20 parts by weight to make a slurry, the mixture is stirred at room temperature to 95 ° C. for 1 to 60 minutes, and the solid waste obtained by solid-liquid separation is subjected to the above (FIG. 2, (See FIG. 3).
[0011]
In addition, the slurry in which the waste is suspended is classified with a thickener, hydrocyclone, etc. at 5 to 10 μm to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances. The above processing (see FIG. 1) can be performed.
In addition, the slurry in which the waste is suspended is classified with a thickener, hydrocyclone, etc. at 5 to 10 μm to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances. To 100 parts by weight, an acidic substance such as sulfuric acid, hydrochloric acid, oxalic acid or the like is added alone or in combination so as to be 0.1 to 20 parts by weight, and stirred at room temperature to 95 ° C. for 1 to 60 minutes, The above-described treatment (see FIG. 1) can be performed on the slurry in which the waste is suspended.
[0012]
In addition, the slurry in which the waste is suspended is classified with a thickener, hydrocyclone, etc. at 5 to 10 μm to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances. The above-described treatment (see FIGS. 2 and 3) can be performed on the solid waste obtained by the separation.
In addition, the slurry in which the waste is suspended is classified with a thickener, hydrocyclone, etc. at 5 to 10 μm to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances. To 100 parts by weight, an acidic substance such as sulfuric acid, hydrochloric acid, oxalic acid or the like is added alone or in combination so as to be 0.1 to 20 parts by weight, and stirred at room temperature to 95 ° C. for 1 to 60 minutes, The above-described treatment (see FIGS. 2 and 3) can be performed on the solid waste obtained by solid-liquid separation of the slurry.
[0013]
Further, the method of the present invention is based on 100 parts by weight of the solid content of the slurry in which the waste is suspended, such as sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate, etc. 0.01 to 10 parts by weight of an alkali metal compound is added to room temperature to 200 ° C., preferably from room temperature to 95 ° C. for 1 minute to 10 hours, preferably 5 minutes to 4 hours, and contained in waste. After the environmentally controlled substances such as fluorine are made slightly soluble, the slurry is classified with a thickener, hydrocyclone, etc. at 5 to 10 μm to remove fine particles containing a large amount of impurities and environmentally controlled substances. It is characterized by obtaining a stabilized and high-quality processed product by solid-liquid separation.
[0014]
The waste stabilization treatment product of the present invention is made of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate into gypsum discharged as a by-product such as flue gas desulfurization gypsum. It is characterized in that it is produced by subjecting an environmentally regulated substance such as fluorine to be hardly soluble by adding or stirring or kneading the alkali metal compound such as.
[0015]
The treated product of the present invention is a gypsum discharged as a by-product, and an acid substance such as sulfuric acid, hydrochloric acid, oxalic acid, etc. is added to perform acid cleaning, and then sodium hydroxide, A treatment that makes an environmentally regulated substance such as fluorine insoluble by adding an alkali metal compound such as potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate and stirring or kneading. It is characterized by being manufactured by applying.
[0016]
In addition, the treated product of the present invention classifies gypsum discharged as a by-product with a thickener, hydrocyclone, etc., and removes impurities such as fluorine and fine particles containing a large amount of environmentally regulated substances, and then separates the separated crude gypsum. Environmentally controlled substances such as fluorine contained by adding or stirring or kneading alkali metal compounds such as sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate to the particles It is characterized by being manufactured by applying a treatment for making it difficult to dissolve.
[0017]
In addition, the treated product of the present invention classifies gypsum discharged as a by-product with a thickener, hydrocyclone, etc., and removes impurities such as fluorine and fine particles containing a large amount of environmentally regulated substances, and then separates the separated crude gypsum. Acid particles such as sulfuric acid, hydrochloric acid, oxalic acid, etc. are added to the particles for acid cleaning, and then the resulting treatment is treated with sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, It is characterized by being produced by adding an alkali metal compound such as sodium sulfate and stirring or kneading to subject it to a process for making an environmentally regulated substance such as fluorine hardly soluble.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
(1) Stability
The amount of fluorine contained in wastes such as flue gas desulfurization gypsum and dehydrated sludge is very small and is generally several hundred to several thousand mg / kg. The above-mentioned conventional technique is a technique for reducing fluorine contained in several percent to several thousand mg / kg by washing or volatilizing. However, the elution amount of fluorine depends on the solubility of the fluorine compound contained, and it has been confirmed that the elution amount does not change so much even when the content is reduced to about several tens mg / kg. The soil environmental standard value of fluorine is 0.8 mg / L. For this reason, it is not enough to reduce the fluorine content by washing, volatilization, etc., and the fluorine adhering to the waste surface is stabilized, that is, hardly soluble and changed to a hardly soluble compound that does not elute. It is necessary to make it.
[0019]
(2) Quality
The flue gas desulfurization gypsum contains a minute amount of fine particles of coal ash that could not be captured by the electric dust collector, and the purity of the gypsum is often about 95 to 99%. For this reason, when recycled to gypsum board or the like, there are quantitative restrictions on the addition to the board raw material due to problems of purity and color. To obtain high-quality recyclable gypsum by improving the purity by removing fine particles, removing colored substances, and further improving the whiteness by washing with a reducing substance such as oxalic acid and heat treatment at 120 ° C or higher. Can do.
[0020]
FIG. 1 shows a schematic configuration of an apparatus for carrying out a waste stabilization method according to a first embodiment of the present invention. In the present embodiment, for example, a solid waste is obtained by adding an alkali metal compound to a slurry-like waste before a dehydration step in a flue gas desulfurization system, causing the mixture to react in the stirrer 10, and dehydrating the waste. Explaining the flue gas desulfurization gypsum as an example, at the stage of the gypsum slurry before entering the dehydrator 12, 0.01 to 10 parts by weight of an alkali metal compound is added to 100 parts by weight of the solid content, and the temperature is from room temperature to 200 ° C. Stirring is performed for 1 minute to 10 hours, preferably 5 minutes to 4 hours, and an environmentally regulated substance such as fluorine is reacted with a hardly soluble compound, followed by dehydration to obtain a stabilized gypsum. Dihydrate gypsum can be obtained when the stirring treatment is 100 ° C. or lower, α-type hemihydrate gypsum at 100 to 150 ° C., II-type anhydrous gypsum at 150 to 200 ° C., and various treatment forms. Examples of the alkali metal compound include sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride, sodium sulfate and the like. When the addition amount of the alkali metal compound is less than 0.01 part by weight, the hardly solubilization reaction does not proceed sufficiently, and the effect does not appear remarkably. On the other hand, when the amount is more than 10 parts by weight, the cost is increased and unreacted components remain, leading to a decrease in quality of the stabilized product. If the stirring time is too short for 1 minute, the effect is not sufficient. Conversely, if the stirring time exceeds 10 hours, the equipment becomes too large, which is not practical. Furthermore, if the processing temperature exceeds 200 ° C., it is necessary to reinforce the pressure-resistant structure of the apparatus, resulting in an increase in equipment costs. As the dehydrator, a filter press, a belt press, a centrifuge, a vacuum filter, or the like can be used.
[0021]
In this case, as a pretreatment, an acid substance such as sulfuric acid, hydrochloric acid, oxalic acid, etc. is added to a waste slurry such as gypsum, stirred at room temperature to 95 ° C., acid washed, and the fluorine content is increased. After reduction, the above method can be carried out. Since fluorine or the like has high solubility in acid, washing with an acidic solution can remove fluorine from waste more efficiently than simple water washing, and can facilitate subsequent stabilization treatment.
Moreover, in order to use impurity removal together, fine particle removal using a thickener, hydrocyclone, or the like is combined. The slurry is classified with a thickener, hydrocyclone, etc., and after removing fine particles, an alkali metal compound is added to the coarse particle side slurry to stabilize the waste. Taking gypsum as an example, it was found that the content of impurities in the fine particles was large, and when classified at 5 to 10 μm, 80% or more of fluorine was concentrated on the fine powder side. For this reason, if this fine powder is removed as a pretreatment, the stabilization treatment becomes more reliable in combination with an alkali metal compound. As a pretreatment, it is also possible to perform acid cleaning after fine particle removal using a thickener, hydrocyclone or the like. Further, after adding an alkali metal compound to the waste slurry and stirring to change the surface to a poorly soluble compound, the fine particles may be removed with a thickener, hydrocyclone or the like, and the effect is the same.
[0022]
FIG. 2 shows a schematic configuration of an apparatus for carrying out the waste stabilization method according to the second embodiment of the present invention. This embodiment assumes application to waste discharged after drying, such as waste after dehydration or dust collection dust. The flue gas desulfurization gypsum will be described as an example. An aqueous solution of an alkali metal compound is added to gypsum after dehydration, and the mixture is kneaded by a kneader 14 to react an environmentally regulated substance such as fluorine with a hardly soluble compound. When the kneading treatment temperature is 100 ° C. or lower, it is dihydrate gypsum, but it becomes α-type hemihydrate gypsum under a saturated water vapor pressure of 100 to 150 ° C., and II type anhydrous gypsum under a saturated water vapor pressure of 150 to 200 ° C. On the other hand, heating at 120 to 180 ° C. or lower saturated water vapor pressure results in β-type hemihydrate gypsum, and heating at 180 to 200 ° C. or lower saturated water vapor pressure results in type III anhydrous gypsum. In the heat treatment at 120 ° C. or higher and a saturated water vapor pressure or lower, the organic content decreases and whitening proceeds.
[0023]
In this case, as a pretreatment, an acidic substance such as sulfuric acid, hydrochloric acid, oxalic acid, etc. is added to waste such as gypsum after dehydration, stirring is performed at room temperature to 95 ° C., solid-liquid separation is performed, and washing is performed. After reducing the fluorine content, the above method is carried out. Since fluorine or the like has high solubility in acid, washing with an acidic solution can remove fluorine from waste more efficiently than simple water washing, and can facilitate subsequent stabilization treatment.
Moreover, in order to use impurity removal together, fine particle removal using a thickener, hydrocyclone, or the like is combined. The slurry is classified with a thickener, hydrocyclone, etc., and after removing fine particles, an alkali metal compound is added to the waste from which the coarse particle side slurry has been dehydrated to stabilize the waste. Taking gypsum as an example, it was found that the content of impurities in the fine particles was large, and when classified at 5 to 10 μm, 80% or more of fluorine was concentrated on the fine powder side. For this reason, if this fine powder is removed as a pretreatment, the stabilization treatment becomes more reliable in combination with an alkali metal compound.
Other configurations and operations are the same as those in the first embodiment.
[0024]
FIG. 3 shows a schematic configuration of an apparatus for carrying out a waste stabilization method according to the third embodiment of the present invention. This embodiment assumes application to waste discharged after drying, such as waste after dehydration or dust collection dust. Taking flue gas desulfurization gypsum as an example, an alkali metal compound and water are added to the dehydrated gypsum to form a slurry, and then stirred to react environmentally controlled substances such as fluorine with poorly soluble compounds and dehydrate again. . Dihydrate gypsum is obtained when the stirring temperature is 100 ° C. or lower, α-type hemihydrate gypsum is obtained at 100 to 150 ° C., and II-type anhydrous gypsum is obtained at 150 to 200 ° C.
Other configurations and operations are the same as those in the first and second embodiments.
[0025]
Here, by-product gypsum has been mainly described as an example, but the present invention is also effective for wastes such as dewatered sludge, clean water sludge, sewage sludge, crushed stone sludge, contaminated soil, and dust collection dust.
[0026]
【Example】
Examples of the present invention and comparative examples thereof will be described using gypsum having the composition shown in Table 1 below as an example.
[0027]
[Table 1]
Figure 0003717869
[0028]
Example 1
To 100 parts by weight of solid content in the gypsum slurry, 0.15 part by weight of NaOH was added, stirred at room temperature (20 ° C.) for 10 minutes, solid-liquid separated, and stabilized gypsum (two water) was produced. The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the elution amount of fluorine was reduced to 0.7 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. Other heavy metals (B, Pb, Cd, As, Cr 6+ , Hg, Se) are originally below the reference value.
[0029]
Example 2
For 100 parts by weight of gypsum after dehydration, Na 2 AlO Three An aqueous solution in which 0.25 part by weight of (sodium aluminate) was dissolved in 1 part by weight of water was added, and kneading was performed at room temperature (20 ° C.) for 10 minutes to produce a stabilized gypsum (two water). The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. Particularly, the elution amount of fluorine was reduced to 0.5 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value.
[0030]
Example 3
For 100 parts by weight of gypsum after dehydration, Na 2 AlO Three (Sodium aluminate) An aqueous solution in which 0.25 part by weight is dissolved in 1 part by weight of water is added, kneaded at 160 ° C. for 1.5 hours, solid-liquid separated, and stabilized gypsum (β-type semi-water) is added. Manufactured. The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the elution amount of fluorine was reduced to 0.6 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value. Moreover, the whiteness of the plaster (brightness black: 0 to 100: white on a color difference meter) was improved from 75 to 89.
[0031]
Example 4
100 parts by weight of water and 1 part by weight of water glass are added to 100 parts by weight of the gypsum after dehydration to form a slurry, followed by stirring at 135 ° C. for 60 minutes, solid-liquid separation, and stabilizing gypsum (α type Half water) was produced. The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. Particularly, the elution amount of fluorine was reduced to 0.5 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value.
[0032]
Example 5
After adding 100 parts by weight of water and 3 parts by weight of oxalic acid to 100 parts by weight of the gypsum after dehydration to make a slurry, the mixture is stirred at 60 ° C. for 10 minutes, and after solid-liquid separation, Na 2 AlO Three (Sodium aluminate) 0.5 part by weight and water were added and kneaded at room temperature (20 ° C.) for 10 minutes to produce a stabilized gypsum (two water). The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the fluorine elution amount was reduced to 0.4 mg / L, which was lower than the soil environmental standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value. Moreover, the whiteness of the plaster (brightness black: 0 to 100: white on a color difference meter) was improved from 75 to 89.
[0033]
Example 6
The gypsum slurry was cut using hydrocyclones with a cut point of 5 μm and fine particles were removed. Then, 0.15 parts by weight of NaOH was added to 100 parts by weight of the solid content in the coarse particle side slurry, and room temperature (20 ° C.). The mixture was stirred for 10 minutes and separated into solid and liquid to produce stabilized gypsum (dihydrate). The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the elution amount of fluorine was reduced to 0.2 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value. Moreover, the purity of the gypsum was improved from 97.5% to 98.8%, and the whiteness of the gypsum (brightness black: 0 to 100: white on a color difference meter) was improved from 75 to 87.
[0034]
Example 7
After adding 0.5 parts by weight of water glass to 100 parts by weight of the solid content in the gypsum slurry and stirring for 10 minutes at room temperature (20 ° C.), using a hydrocyclone, the cut point is set to 5 μm, Fine particles were removed, followed by solid-liquid separation to produce stabilized gypsum (dihydrate). The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the elution amount of fluorine was reduced to 0.2 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value. The purity of the gypsum was improved from 97.5% to 98.6%, and the whiteness of the gypsum (brightness black: 0 to 100: white on a color difference meter) was improved from 75 to 86.
[0035]
Comparative example
100 parts by weight of water and 10 parts by weight of sulfuric acid are added to 100 parts by weight of the gypsum after dehydration to make a slurry, followed by stirring at room temperature (20 ° C.) for 10 minutes, solid-liquid separation, and stabilization of gypsum ( Dihydro). Although the fluorine content of the stabilized gypsum was greatly reduced to 200 mg / kg, as a result of the dissolution test (according to Notification No. 46 of the Environment Agency), the fluorine dissolution was 3.0 mg / L and did not satisfy the soil environmental standards. .
[0036]
Another embodiment will be described by taking dewatered sludge and sewage sludge as examples.
Example 8
To 100 parts by weight of the solid content of the dewatered sludge (before dewatering), 0.2 part by weight of NaOH was added, stirred for 10 minutes at room temperature (20 ° C.), solid-liquid separated, and a stabilized dewatered sludge was obtained. Sludge dissolution test results (according to Environmental Agency Notification No. 46) were all below the soil environmental standard value including fluorine and boron. In particular, the elution amount of fluorine was reduced to 0.6 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value.
[0037]
Example 9
For 100 parts by weight of sewage sludge after dehydration, Na 2 AlO Three An aqueous solution in which 0.3 part by weight of (sodium aluminate) was dissolved in 1 part by weight of water was added and kneaded for 10 minutes at room temperature (20 ° C.) to produce a stabilized sewage sludge. The dissolution test results of the stabilized sewage sludge (according to Notification No. 46 of the Environment Agency) were all below the soil environmental standard value including fluorine and boron. Particularly, the elution amount of fluorine was reduced to 0.5 mg / L, which was lower than the soil environment standard value of 0.8 mg / L. In addition, other heavy metals are originally below a reference value.
[0038]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By making the environmentally regulated substances contained in a trace amount insoluble, the elution amount of the environmentally regulated substances can be reduced below the standard value.
(2) By removing impurities and improving whiteness, it is possible to improve the purity of waste when recycling and to improve the added value by improving the quality.
(3) Processed products obtained from gypsum discharged as a by-product such as flue gas desulfurization gypsum are hardly soluble in environmentally controlled substances such as fluorine, and have high purity and whiteness. It can be recycled effectively.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory view showing an apparatus for carrying out a waste stabilization method according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration explanatory view showing an apparatus for implementing a waste stabilization method according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration explanatory view showing an apparatus for carrying out a waste stabilization method according to a third embodiment of the present invention.
[Explanation of symbols]
10 Stirrer
12 Dehydrator
14 Kneading machine

Claims (6)

廃棄物が懸濁しているスラリをシックナー及びハイドロサイクロンのいずれかにより5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリの固形分100重量部に、硫酸、塩酸及びシュウ酸の少なくともいずれかの酸性物質を0.1〜20重量部添加して、常温〜95℃にて1〜60分間攪拌処理を行い、この廃棄物が懸濁しているスラリの固形分100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物を0.01〜10重量部加えて、常温〜200℃にて1分間〜10時間攪拌処理を行うことで、廃棄物に含まれるフッ素等の環境規制物質を難溶化し、ついで、スラリを固液分離して安定化した高品質の処理物を得ることを特徴とする廃棄物の安定化処理方法。 The slurry in which the waste is suspended is classified at 5 to 10 μm by either thickener or hydrocyclone to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances, and then the solid content of the coarse particle side slurry. To 100 parts by weight, 0.1 to 20 parts by weight of an acidic substance of at least one of sulfuric acid, hydrochloric acid and oxalic acid is added and stirred at room temperature to 95 ° C. for 1 to 60 minutes. An alkali metal compound selected from the group consisting of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride and sodium sulfate is added to 100 parts by weight of the solid content of the turbid slurry. In addition to 01 to 10 parts by weight, environmentally controlled substances such as fluorine contained in the waste by stirring at room temperature to 200 ° C. for 1 minute to 10 hours And poorly soluble, then stabilization treatment method of waste, characterized in that to obtain a high quality of treated product stabilized by solid-liquid separation slurry. 廃棄物が懸濁しているスラリをシックナー及びハイドロサイクロンのいずれかにより5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリの固形分100重量部に、硫酸、塩酸及びシュウ酸の少なくともいずれかの酸性物質を0.1〜20重量部添加して、常温〜95℃にて1〜60分間攪拌処理を行い、このスラリを固液分離して得た固形廃棄物100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物0.01〜10重量部を含有する水溶液1〜50重量部を加えて、常温〜200℃にて1分間〜10時間混練処理を行い、廃棄物に含まれるフッ素等の環境規制物質を難溶化することを特徴とする廃棄物の安定化処理方法。 The slurry in which the waste is suspended is classified at 5 to 10 μm by either thickener or hydrocyclone to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances, and then the solid content of the coarse particle side slurry. To 100 parts by weight, 0.1 to 20 parts by weight of an acidic substance of at least one of sulfuric acid, hydrochloric acid and oxalic acid is added, and stirred at room temperature to 95 ° C. for 1 to 60 minutes. Alkali metal compound selected from the group consisting of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride and sodium sulfate with respect to 100 parts by weight of the solid waste obtained by separation ; 1 to 50 parts by weight of an aqueous solution containing 01 to 10 parts by weight is added, and the mixture is kneaded at room temperature to 200 ° C. for 1 minute to 10 hours and contained in waste. Stabilization method of waste environmental regulations substances such as fluorine, characterized in that hardly soluble. 廃棄物が懸濁しているスラリをシックナー及びハイドロサイクロンのいずれかにより5〜10μmで分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去した後、粗粒子側スラリの固形分100重量部に、硫酸、塩酸及びシュウ酸の少なくともいずれかの酸性物質を0.1〜20重量部添加して、常温〜95℃にて1〜60分間攪拌処理を行い、このスラリを固液分離して得た固形廃棄物100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物0.01〜10重量部、及び水60〜10000重量部を加えて、常温〜200℃にて1分間〜10時間攪拌処理を行うことで、廃棄物に含まれるフッ素等の環境規制物質を難溶化し、ついで、スラリを固液分離して安定化した高品質の処理物を得ることを特徴とする廃棄物の安定化処理方法 The slurry in which the waste is suspended is classified at 5 to 10 μm by either thickener or hydrocyclone to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances, and then the solid content of the coarse particle side slurry. To 100 parts by weight, 0.1 to 20 parts by weight of an acidic substance of at least one of sulfuric acid, hydrochloric acid and oxalic acid is added, and stirred at room temperature to 95 ° C. for 1 to 60 minutes. Alkali metal compound selected from the group consisting of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride and sodium sulfate with respect to 100 parts by weight of the solid waste obtained by separation ; By adding 01 to 10 parts by weight and 60 to 10000 parts by weight of water and stirring at room temperature to 200 ° C. for 1 minute to 10 hours, Environmental regulations substance Murrell such as fluorine and poorly soluble, then stabilization treatment method of waste, characterized in that to obtain a high quality of treated product stabilized by solid-liquid separation slurry. 廃棄物が懸濁しているスラリの固形分100重量部に対して、水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物を0.01〜10重量部加えて、常温〜200℃にて1分間〜10時間攪拌処理を行い、廃棄物に含まれるフッ素等の環境規制物質を難溶化した後、このスラリをシックナー及びハイドロサイクロンのいずれかにより5〜10μmで分級して、不純物、環境規制物質を多く含有する微粒子を除去し、ついで、粗粒子側スラリを固液分離して安定化した高品質の処理物を得ることを特徴とする廃棄物の安定化処理方法 Alkali metal selected from the group consisting of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride and sodium sulfate with respect to 100 parts by weight of the solid content of the slurry in which the waste is suspended The compound is added in an amount of 0.01 to 10 parts by weight, stirred at room temperature to 200 ° C. for 1 minute to 10 hours, and hardly soluble in environmentally regulated substances such as fluorine contained in the waste. Classify at 5-10 μm with one of the hydrocyclone to remove fine particles containing a large amount of impurities and environmentally regulated substances, and then solid-liquid-separate the coarse particle side slurry to obtain a high quality treated product A method for stabilizing waste . 副生品として排出される石膏に、硫酸、塩酸及びシュウ酸の少なくともいずれかの酸性物質を添加して酸洗浄を行い、ついで、得られた処理物に水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴とする廃棄物の安定化処理物 At least one of sulfuric acid, hydrochloric acid, and oxalic acid is added to gypsum discharged as a by-product, and acid cleaning is performed. Then, sodium hydroxide, potassium hydroxide, water glass is added to the processed product. In addition, an alkali metal compound selected from the group consisting of sodium aluminate, sodium carbonate, sodium chloride, and sodium sulfate is added and stirred or kneaded to subject the environmentally regulated substance such as fluorine contained therein to insolubilization. stabilization of waste, characterized in that it is manufactured by. 副生品として排出される石膏をシックナー及びハイドロサイクロンのいずれかにより分級して、フッ素等の不純物、環境規制物質を多く含有する微粒子を除去し、ついで、分離した粗粒子に硫酸、塩酸及びシュウ酸の少なくともいずれかの酸性物質を添加して酸洗浄を行い、ついで、得られた処理物に水酸化ナトリウム、水酸化カリウム、水ガラス、アルミン酸ナトリウム、炭酸ナトリウム、塩化ナトリウム及び硫酸ナトリウムからなる群より選ばれたアルカリ金属化合物を添加して攪拌又は混練することで、含有されるフッ素等の環境規制物質を難溶化する処理を施すことによって製造されることを特徴とする廃棄物の安定化処理物。  The gypsum discharged as a by-product is classified by either thickener or hydrocyclone to remove fine particles containing a large amount of impurities such as fluorine and environmentally regulated substances, and then the separated coarse particles are mixed with sulfuric acid, hydrochloric acid and Acidic cleaning is performed by adding at least one acidic substance of the acid, and then the obtained treatment product is composed of sodium hydroxide, potassium hydroxide, water glass, sodium aluminate, sodium carbonate, sodium chloride and sodium sulfate. Stabilization of waste characterized in that it is manufactured by adding an alkali metal compound selected from the group and stirring or kneading it to render it environmentally insoluble substances such as fluorine. Processed product.
JP2002172142A 2002-06-13 2002-06-13 Waste stabilization treatment method and waste stabilization treatment product Expired - Fee Related JP3717869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172142A JP3717869B2 (en) 2002-06-13 2002-06-13 Waste stabilization treatment method and waste stabilization treatment product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172142A JP3717869B2 (en) 2002-06-13 2002-06-13 Waste stabilization treatment method and waste stabilization treatment product

Publications (2)

Publication Number Publication Date
JP2004016852A JP2004016852A (en) 2004-01-22
JP3717869B2 true JP3717869B2 (en) 2005-11-16

Family

ID=31171779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172142A Expired - Fee Related JP3717869B2 (en) 2002-06-13 2002-06-13 Waste stabilization treatment method and waste stabilization treatment product

Country Status (1)

Country Link
JP (1) JP3717869B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908817B2 (en) * 2005-10-12 2012-04-04 川崎重工業株式会社 Stabilization processing method and stabilization processing apparatus for hardened gypsum
JP4752038B2 (en) * 2007-06-01 2011-08-17 独立行政法人国立高等専門学校機構 Method for treating gypsum to reduce elution of contained fluorine
JP5656060B2 (en) * 2010-09-06 2015-01-21 清水建設株式会社 Method for separating fine particles in soil and method for cleaning contaminated soil
JP5769044B2 (en) * 2010-10-07 2015-08-26 清水建設株式会社 How to clean cyan contaminated soil

Also Published As

Publication number Publication date
JP2004016852A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4960600B2 (en) Waste gypsum treatment method
JP6274875B2 (en) Method and apparatus for converting waste incineration ash into cement raw material
JP6252653B1 (en) Method and system for treating chlorine-containing ash
JP3717869B2 (en) Waste stabilization treatment method and waste stabilization treatment product
JP3309689B2 (en) Detoxification treatment method of alkali fly ash
KR870000144B1 (en) Process for reducing radioactive contaminatiow in phosphogypsum
JP2001524371A (en) Method for separating heavy metal and halogen from waste or residue
JP6198617B2 (en) Method and apparatus for converting waste incineration ash into cement raw material
JP6198651B2 (en) Method and apparatus for converting incinerated ash into cement raw material
KR950013314B1 (en) Retreatment method for sludge containing fluorine
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP6198635B2 (en) Method and apparatus for converting incinerated ash into cement raw material
CN111017974A (en) Mineral processing technology for resource utilization of low-grade celestite
JP2005230655A (en) Dust treatment method
JP4118495B2 (en) How to reuse mud
JP2022066111A (en) DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD
JP6226776B2 (en) Method and apparatus for converting incinerated ash into cement raw material
CN115594190B (en) Treatment method and treatment system for secondary aluminum ash
JP2004269330A (en) Processing method of gas extraction dust
JP2000313645A (en) Method for dust treatment
JP2022057081A (en) Method for desalinating chlorine-containing ash and recovering calcium
JP2001087739A (en) Recovering method of heavy metal from fly ash
JP2009240952A (en) Waste treatment method
JP2022057080A (en) Method for recovering desalinated washed ash of chlorine-containing ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees