JP2022057081A - Method for desalinating chlorine-containing ash and recovering calcium - Google Patents

Method for desalinating chlorine-containing ash and recovering calcium Download PDF

Info

Publication number
JP2022057081A
JP2022057081A JP2020165152A JP2020165152A JP2022057081A JP 2022057081 A JP2022057081 A JP 2022057081A JP 2020165152 A JP2020165152 A JP 2020165152A JP 2020165152 A JP2020165152 A JP 2020165152A JP 2022057081 A JP2022057081 A JP 2022057081A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
chlorine
ash
calcium
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020165152A
Other languages
Japanese (ja)
Inventor
憲史 ▲高▼橋
Norifumi Takahashi
弘樹 村岡
Hiroki Muraoka
達哉 矢島
Tatsuya Yajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020165152A priority Critical patent/JP2022057081A/en
Publication of JP2022057081A publication Critical patent/JP2022057081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a treatment method enabling chlorine-containing ash to be sufficiently desalinated and calcium included in the ash to be effectively recovered.SOLUTION: A method for desalinating chlorine-containing ash and recovering calcium is provided, including: a hydrochloric acid washing step in which chlorine-containing ash is converted into hydrochloric acid slurry, is subjected to hydrochloric acid washing at a pH of 2.5-6.0, so that calcium and chlorine included in the chlorine-contained ash is eluted; a first solid-liquid separation step in which the slurry after the hydrochloric acid washing is subjected to solid-liquid separation, so that a hydrochloric acid washing filtrate is recovered; an alkali adding step in which the pH of the hydrochloric acid washing filtrate is controlled to be 12.5 or higher by adding alkali to the hydrochloric acid washing filtrate, so that calcium included in the filtrate is converted into calcium hydroxide at a pH of 12.5 or higher and solidified; and a second solid-liquid separation step in which a solid content including the calcium hydroxide is recovered after the alkali adding step.SELECTED DRAWING: Figure 1

Description

本発明は、塩素含有灰を脱塩洗浄してカルシウムを効果的に回収する方法に関する。 The present invention relates to a method for effectively recovering calcium by desalting and washing chlorine-containing ash.

一般廃棄物や産業廃棄物の焼却によって発生した焼却灰(主灰、飛灰、燃え殻、煤塵)や最終処分場に埋め立て処分された焼却灰、あるいはセメント工場から発生するクリンカダスト等をセメント原料等として再利用することが進められている。一方、これらの焼却灰等には十数%程度の塩素が含まれているので、これらの塩素を含む上記各種の焼却灰やクリンカダスト等(以下、これらを塩素含有灰と云う)を再資源化するには用途に応じた程度まで脱塩する必要がある。 Cement raw materials such as incineration ash (main ash, fly ash, cinders, soot and dust) generated by incineration of general waste and industrial waste, incineration ash landfilled at the final disposal site, and cleana dust generated from cement factories. It is being reused as a product. On the other hand, since these incinerator ash and the like contain about 10% of chlorine, the above-mentioned various incinerator ash and cleana dust containing these chlorine (hereinafter referred to as chlorine-containing ash) are recycled. It is necessary to desalt to the extent that it is suitable for the purpose.

また、上記塩素含有灰にはカルシウム分が酸化物換算で概ね20%~50%程度と豊富に含まれおり、このカルシウム分を有効に回収できれば、塩素含有灰の再資源化を拡大することができる。例えば、塩素含有灰からカルシウム分を高純度に回収できれば、セメント原料以外にも様々な用途に再利用することが可能となる。一方、塩素含有灰には、塩素やカルシウムの他に、ケイ素、鉄、アルミニウム、チタンなどが含まれており、回収したカルシウム分にこれらの不純物が残留していると、セメント原料以外には利用し難くなり、再利用の用途が制限される場合がある。 In addition, the chlorine-containing ash contains abundant calcium content of about 20% to 50% in terms of oxide, and if this calcium content can be effectively recovered, the recycling of chlorine-containing ash can be expanded. can. For example, if calcium can be recovered from chlorine-containing ash with high purity, it can be reused for various purposes other than cement raw materials. On the other hand, chlorine-containing ash contains silicon, iron, aluminum, titanium, etc. in addition to chlorine and calcium, and if these impurities remain in the recovered calcium content, they can be used for purposes other than cement raw materials. It becomes difficult to do so, and the use for reuse may be limited.

上記塩素含有灰の脱塩について、該塩素含有灰に含まれる塩素化合物の大部分は水溶性なので水洗浄して脱塩できるが、塩素化合物の一部は水に難溶性のフリーデル氏塩(3CaO・AlO・CaCl・10HO)等を形成しており、水洗浄だけでは十分に脱塩することができない。一方、フリーデル氏塩等に酸を加えてpHを低下させることで脱塩する方法が知られている。ただし、この方法ではpHの低下に伴い、塩素と一緒にカルシウムも溶出するので、酸洗浄だけではカルシウムを十分に回収することができない。 Regarding the desalting of the chlorine-containing ash, most of the chlorine compounds contained in the chlorine-containing ash are water-soluble and can be washed with water to desalt, but some of the chlorine compounds are sparingly soluble in water. It forms 3CaO, Al 2O 3 , CaCl 2 , 10H 2 O), etc., and cannot be sufficiently desalted only by washing with water. On the other hand, a method of desalting by adding an acid to Friedel's salt or the like to lower the pH is known. However, in this method, calcium is eluted together with chlorine as the pH decreases, so that calcium cannot be sufficiently recovered by pickling alone.

また、塩素含有灰に炭酸塩を含む水を加えて洗浄する方法(特開2006-326462公報)、あるいは塩素含有灰の水スラリーに炭酸ガスを吹き込んで洗浄する方法が知られている(特許第3924822号公報)。炭酸塩や炭酸ガスを用いて洗浄すると、フリーデル氏塩は分解して脱塩されるので脱塩洗浄灰を得ることができるが、カルシウムの一部は水に難溶性の炭酸カルシウムになり、これが洗浄後の固液分離によって固形分として洗浄灰と共に回収される。この炭酸カルシウムを含む洗浄灰はセメント原料として用いるとその製造工程で多量のCOが発生する問題がある。また、この洗浄灰にはケイ素(Si)、鉄(Fe)、アルミニウム(Al)、チタン(Ti)などの不純物を含むので、その用途は概ねセメント原料に限定される。 Further, a method of adding water containing a carbonate to chlorine-containing ash for cleaning (Japanese Patent Laid-Open No. 2006-326462) or a method of blowing carbonate gas into a water slurry of chlorine-containing ash for cleaning is known (Patent No. 1). 3924822 (Ab.). When washed with carbonate or carbonic acid gas, Friedel's salt is decomposed and desalted, so demineralized washing ash can be obtained, but some of the calcium becomes poorly soluble calcium carbonate in water. This is recovered as solid content together with the washing ash by solid-liquid separation after washing. When this washing ash containing calcium carbonate is used as a raw material for cement, there is a problem that a large amount of CO 2 is generated in the manufacturing process. Further, since this cleaning ash contains impurities such as silicon (Si), iron (Fe), aluminum (Al), and titanium (Ti), its use is generally limited to cement raw materials.

このように、塩素含有灰の再利用の用途を拡大するには、十分に脱塩すると共にカルシウムを有効に回収できることが求められる。さらに、回収されたカルシウム分は十分に不純物が除去された高純度なものであることが望まれる。また、セメント製造時の低炭素化(CO排出量削減)の要求に従うには、カルシウムは炭酸塩(CaCO、CaMg(CO)など)以外の形態であることが望まれる。 As described above, in order to expand the use of chlorine-containing ash for reuse, it is required that calcium can be sufficiently demineralized and calcium can be effectively recovered. Further, it is desired that the recovered calcium content is of high purity with sufficient impurities removed. Further, in order to comply with the demand for low carbon dioxide (reduction of CO 2 emissions) during cement production, it is desired that calcium is in a form other than carbonates (CaCO 3 , CaMg (CO 3 ) 2 , etc.).

特開2006-326462号公報Japanese Unexamined Patent Publication No. 2006-326462 特許第3924822号公報Japanese Patent No. 3294822 特開2015-218369号公報Japanese Unexamined Patent Publication No. 2015-218369

本発明は、上記問題を解決したものであり、塩素含有灰を十分に脱塩すると共に灰に含まれるカルシウムを水酸化カルシウムの形態で効果的に回収することができる処理方法を提供する。 The present invention solves the above problems and provides a treatment method capable of sufficiently desalting chlorine-containing ash and effectively recovering calcium contained in ash in the form of calcium hydroxide.

本発明の方法は、以下の構成によって上記問題を解決した処理方法であり、塩素含有灰を脱塩してカルシウムを効率よく回収する方法である。
〔1〕塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰に含まれるカルシウムと塩素を溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該スラリーを固液分離して塩酸洗浄濾液を回収する第一固液分離工程と、該塩酸洗浄濾液にアルカリを加え、pH12.5以上にして該濾液に含まれるカルシウムを水酸化カルシウムにして固形化するアルカリ添加工程と、該アルカリ添加工程の後に上記水酸化カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法。
〔2〕上記アルカリ添加工程において、密閉雰囲気下または不活性ガス雰囲気下で、アルカリ溶液またはアルカリ粉末、粒状アルカリを加えてpH12.5以上にし、液温40℃~80℃に加温する上記[1]に記載する塩素含有灰の脱塩とCa回収方法。
The method of the present invention is a treatment method that solves the above-mentioned problems by the following configuration, and is a method of desalting chlorine-containing ash to efficiently recover calcium.
[1] A chlorine-containing ash is made into a hydrochloric acid slurry and washed with hydrochloric acid at a pH of 2.5 to 6.0 to elute calcium and chlorine contained in the chlorine-containing ash. After the hydrochloric acid washing, the slurry is solidified. The first solid-liquid separation step of liquid separation and recovery of the hydrochloric acid washing filtrate, and the addition of alkali to solidify the calcium contained in the filtrate as calcium hydroxide by adding alkali to the hydrochloric acid washing filtrate to pH 12.5 or higher. A method for desalting chlorine-containing ash and recovering Ca, which comprises a step and a second solid-liquid separation step of recovering the solid content containing calcium hydroxide after the alkali addition step.
[2] In the alkali addition step, the pH is adjusted to 12.5 or higher by adding an alkaline solution, an alkaline powder, or a granular alkali in a closed atmosphere or an inert gas atmosphere, and the liquid temperature is heated to 40 ° C to 80 ° C. 1] The method for desalting chlorine-containing ash and recovering Ca.

〔具体的な説明〕
本発明の処理方法は、塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰に含まれるカルシウムと塩素を溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該スラリーを固液分離して塩酸洗浄濾液を回収する第一固液分離工程と、該塩酸洗浄濾液にアルカリを加え、pH12.5以上にして該濾液に含まれるカルシウムを水酸化カルシウムにして固形化するアルカリ添加工程と、該アルカリ添加工程の後に上記水酸化カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法である。
本発明の処理方法の概略を図1の工程図に示す。
[Specific explanation]
The treatment method of the present invention comprises a hydrochloric acid washing step of converting chlorine-containing ash into a hydrochloric acid slurry and washing with hydrochloric acid at pH 2.5 to 6.0 to elute calcium and chlorine contained in the chlorine-containing ash, and after the hydrochloric acid washing. The first solid-liquid separation step of solid-liquid separation of the slurry and recovery of the hydrochloric acid washing filtrate, and the addition of alkali to the hydrochloric acid washing filtrate to make the pH 12.5 or higher and the calcium contained in the filtrate to be calcium hydroxide to solidify. It is a method for desalting chlorine-containing ash and recovering Ca, which comprises a second solid-liquid separation step of recovering the solid content containing calcium hydroxide after the alkali addition step.
The outline of the processing method of the present invention is shown in the process diagram of FIG.

<塩酸洗浄工程>
本発明の処理方法は、塩素含有灰を塩酸スラリーにし、pH2.5~6.0の液性で塩酸洗浄し、該塩素含有灰に含まれるカルシウムと塩素を溶出させる塩酸洗浄工程を有する。塩素含有灰に塩酸を直接加えて塩酸スラリーにしても良いし、塩素含有灰に洗浄水を加えてスラリー化した後に塩酸を加えて塩酸スラリーにしても良い。
<Hydrochloric acid cleaning process>
The treatment method of the present invention comprises a hydrochloric acid washing step of converting chlorine-containing ash into a hydrochloric acid slurry, washing with hydrochloric acid in a liquid state of pH 2.5 to 6.0, and eluting calcium and chlorine contained in the chlorine-containing ash. Hydrochloric acid may be directly added to the chlorine-containing ash to form a hydrochloric acid slurry, or washing water may be added to the chlorine-containing ash to form a slurry, and then hydrochloric acid may be added to form a hydrochloric acid slurry.

塩素含有灰を塩酸スラリーにし、pH2.5~6.0の液性で撹拌して塩酸洗浄することによって、塩素含有灰に含まれるSi、Fe、Al、Tiの溶出を抑えつつ、CaとClの大部分を塩素含有灰から溶出させることができる。pH2.5未満の強酸性下では、Si、Fe、Alが溶出しやすくなり、液分に含まれるSiやFe、Alの濃度が高くなるので好ましくない。一方、pHが6.0を上回るとCaの溶出量が少なくなり、また洗浄灰の残留塩素濃度が高くなり、脱塩効果が低下する。 By converting chlorine-containing ash into a hydrochloric acid slurry and stirring with a liquid of pH 2.5 to 6.0 and washing with hydrochloric acid, Ca and Cl are suppressed while suppressing the elution of Si, Fe, Al, and Ti contained in the chlorine-containing ash. Most of it can be eluted from chlorine-containing ash. Under strong acidity of less than pH 2.5, Si, Fe, and Al are likely to elute, and the concentration of Si, Fe, and Al contained in the liquid content is high, which is not preferable. On the other hand, when the pH exceeds 6.0, the amount of Ca eluted decreases, the residual chlorine concentration of the washing ash increases, and the desalting effect decreases.

塩酸に代えて硝酸を用いると、排水に窒素分が混入するため排水処理に大きな負荷がかかるので好ましくない。また、塩酸に代えて硫酸を用いると、難溶性の硫酸カルシウムが生成するため、相対的に液中のCa量が減少し、次工程のアルカリ添加によって液中のカルシウム分を水酸化カルシウムの形態で固形化して回収するのに適さない。なお、特開2015-218369号公報(特許文献3)には、セメント製造の排ガスから回収したダストを硫酸浸出した後にアルカリ浸出して金、銀を回収する方法が開示されているが、この方法では硫酸カルシウムが生成し、固形分に残留するSiやFe等の不純物との分離が面倒になり、効率よくカルシウムを回収することができない。硫酸浸出後にアルカリ浸出を行うことは本発明の方法と全く異質の処理方法である。 It is not preferable to use nitric acid instead of hydrochloric acid because nitrogen is mixed in the wastewater and a large load is applied to the wastewater treatment. In addition, when sulfuric acid is used instead of hydrochloric acid, sparingly soluble calcium sulfate is produced, so the amount of Ca in the liquid is relatively reduced, and the calcium content in the liquid is reduced to the form of calcium hydroxide by the addition of alkali in the next step. Not suitable for solidification and recovery. Japanese Unexamined Patent Publication No. 2015-218369 (Patent Document 3) discloses a method of recovering gold and silver by leaching dust recovered from exhaust gas of cement manufacturing with sulfuric acid and then leaching with alkali. In this case, calcium sulfate is generated, and separation from impurities such as Si and Fe remaining in the solid content becomes troublesome, and calcium cannot be efficiently recovered. Performing alkali leaching after sulfuric acid leaching is a treatment method completely different from the method of the present invention.

上記塩酸スラリーの液固比は2~20(液体:固体=2:1~20:1)が好ましく、3~10(液体:固体=3:1~10:1)がより好ましい。液固比がこれより小さいとスラリー濃度が高くなり、配管やポンプ等の摩耗が激しくなる。一方、液固比がこれより大きいと、塩酸量が多くなり薬剤コストが嵩むとともに排水処理の負荷が増す。 The liquid-solidity ratio of the hydrochloric acid slurry is preferably 2 to 20 (liquid: solid = 2: 1 to 20: 1), more preferably 3 to 10 (liquid: solid = 3: 1 to 10: 1). If the liquid-solidity ratio is smaller than this, the slurry concentration becomes high, and the wear of pipes, pumps, etc. becomes severe. On the other hand, if the liquid-solidification ratio is larger than this, the amount of hydrochloric acid increases, the cost of chemicals increases, and the load of wastewater treatment increases.

塩酸洗浄の前に、塩素含有灰を粉砕することによって効率よく脱塩洗浄することができる。粉砕装置としては、例えば、振動ミル、ハンマーミルなどがある。粉砕と塩酸洗浄を同時に行っても良い。 Before washing with hydrochloric acid, the chlorine-containing ash can be efficiently desalted and washed by pulverizing the ash. Examples of the crushing device include a vibration mill and a hammer mill. Grinding and washing with hydrochloric acid may be performed at the same time.

<第一固液分離工程>
塩酸洗浄したスラリーを固液分離して、溶出した塩素とカルシウムを含む塩酸洗浄濾液を回収する。分離した固形分の洗浄灰には原灰(塩素含有灰)に含まれる不純物のSi、Fe、Al、Tiの大部分が溶出せずに残留するので、これらの不純物が少ない塩酸洗浄濾液を回収することができる。固形分の脱水ケーキ(脱塩洗浄灰)は回収してセメント原料等に利用することができる。
<First solid-liquid separation process>
The hydrochloric acid-washed slurry is separated into solid and liquid, and the hydrochloric acid-washed filtrate containing eluted chlorine and calcium is recovered. Most of the impurities Si, Fe, Al, and Ti contained in the raw ash (chlorine-containing ash) remain in the separated solid cleaning ash without elution. can do. The solid dehydrated cake (demineralized and washed ash) can be recovered and used as a raw material for cement.

<アルカリ添加工程>
本発明の処理方法は、上記塩酸洗浄濾液にアルカリを加え、該濾液に含まれるカルシウムを、pH12.5以上の液性で水酸化カルシウムにして固形化するアルカリ添加工程を有する。
<Alkali addition process>
The treatment method of the present invention comprises an alkali addition step of adding an alkali to the hydrochloric acid washing filtrate and solidifying the calcium contained in the filtrate into calcium hydroxide in a liquid form having a pH of 12.5 or higher.

上記アルカリは溶液でもよく粉末状ないし粒状でもよい。アルカリの種類は水酸化ナトリウム、水酸化カリウムなど一般的なアルカリ金属の水酸化物を用いることができる。 The alkali may be a solution or may be powdery or granular. As the type of alkali, a hydroxide of a general alkali metal such as sodium hydroxide and potassium hydroxide can be used.

アルカリを添加してpH12.5以上の液性に調整することによって、液中のカルシウムは水酸化カルシウムを生成して固形化する。pHが12.5未満であると、液中のカルシウムは大部分が溶存したままで、水酸化カルシウムを殆ど形成しない。 By adding an alkali to adjust the liquid property to pH 12.5 or higher, calcium in the liquid produces calcium hydroxide and solidifies. When the pH is less than 12.5, most of the calcium in the liquid remains dissolved and hardly forms calcium hydroxide.

アルカリ添加工程は、大気中の二酸化炭素の混入によるカルシウムの炭酸化を防ぐために、密閉雰囲気にし、あるいは窒素ガスなどの不活性ガス雰囲気にすることが好ましい。さらに、液温は40~80℃程度が好ましい。水酸化カルシウムの溶解度は液温の上昇に伴って低下するので、上記液温に加温することによって水酸化カルシウムの回収量を増やすことができる。また、COガスの溶解度も温度の上昇に伴い低下するので、上記液温にすることによってカルシウムの炭酸化を抑制することができる。さらに液温を高めることによって脱塩反応を促進させることができる。なお、液温を80℃より高くする必要はない。 In the alkali addition step, in order to prevent the carbonation of calcium due to the mixing of carbon dioxide in the atmosphere, it is preferable to create a closed atmosphere or an atmosphere of an inert gas such as nitrogen gas. Further, the liquid temperature is preferably about 40 to 80 ° C. Since the solubility of calcium hydroxide decreases as the liquid temperature rises, the amount of calcium hydroxide recovered can be increased by heating to the above liquid temperature. Further, since the solubility of CO 2 gas also decreases as the temperature rises, the carbonation of calcium can be suppressed by setting the liquid temperature. Further, the desalting reaction can be promoted by increasing the liquid temperature. It is not necessary to raise the liquid temperature above 80 ° C.

<第二固液分離工程>
アルカリ添加後に固液分離して固形分を回収する。この固形分には生成した水酸化カルシウムが含まれている。塩素含有灰(原灰)を塩酸洗浄してカルシウムを溶出させ、その塩酸洗浄濾液にアルカリを加えてカルシウムを水酸化カルシウムにして固定化することによって、原灰に含まれるカルシウムの60質量%以上を水酸化カルシウムとして回収することができる。原灰に含まれるSi、Fe、Al、Tiなどの不純物は上記塩酸洗浄で溶出せずに洗浄灰に残るので、回収する水酸化カルシウムにはこれらの不純物がほとんど含まれない。
<Second solid-liquid separation step>
After adding alkali, solid-liquid separation is performed to recover the solid content. This solid content contains the generated calcium hydroxide. Calcium-containing ash (raw ash) is washed with hydrochloric acid to elute calcium, and alkali is added to the hydrochloric acid washing filtrate to convert calcium to calcium hydroxide and immobilized, so that 60% by mass or more of calcium contained in the raw ash is used. Can be recovered as calcium hydroxide. Impurities such as Si, Fe, Al, and Ti contained in the raw ash do not elute in the above-mentioned washing with hydrochloric acid and remain in the washing ash, so that the recovered calcium hydroxide contains almost no of these impurities.

第一固液分離工程および第二固液分離工程の固液分離装置として、フィルタープレス、真空ベルトフィルター、遠心脱水機などを用いることができる。フィルタープレスが使用しやすい。例えば、フィルタープレスで固液分離して得た脱水ケーキ(第一固液分離の洗浄灰または第二固液分離の水酸化カルシウム)を、さらに洗浄水で貫通洗浄することによって、脱塩効果をさらに高めることができる。また、フィルタープレスによって得られる上記脱水ケーキの含水率は25~40%程度と低く、余剰な水分が付着していないため、重量が軽減されてハンドリング性も向上する。 A filter press, a vacuum belt filter, a centrifugal dehydrator, or the like can be used as the solid-liquid separation device in the first solid-liquid separation step and the second solid-liquid separation step. Easy to use filter press. For example, the dehydrated cake obtained by solid-liquid separation with a filter press (washing ash for the first solid-liquid separation or calcium hydroxide for the second solid-liquid separation) is further washed through with washing water to obtain a desalting effect. It can be further enhanced. Further, the water content of the dehydrated cake obtained by the filter press is as low as about 25 to 40%, and since excess water does not adhere to the dehydrated cake, the weight is reduced and the handleability is improved.

上記固液分離によって生じた排水は、排水処理して放流するが、塩素濃度の低い排水は塩酸洗浄工程に循環して洗浄水として利用してもよい。 The wastewater generated by the solid-liquid separation is treated as wastewater and discharged, but the wastewater having a low chlorine concentration may be circulated in the hydrochloric acid washing step and used as washing water.

〔処理設備〕
本発明の方法を実施する処理設備の一例を図2に示す。図示する処理設備では、塩素含有灰と洗浄水を受け入れる振動ミル1が設けられている。該振動ミル1において塩素含有灰が適度に粉砕される。該振動ミル1から排出された塩素含有灰スラリーは撹拌洗浄槽2に送られる。該撹拌洗浄槽2には塩酸が供給され、pH2.5~6.0に調整されて塩酸洗浄が行われる(塩酸洗浄工程)。塩酸洗浄後のスラリーはフィルタープレス3に送られる。フィルタープレス3には洗浄水が供給され、脱水処理される(第一固液分離工程)。この脱水洗浄灰は系外に送られる。一方、回収された脱水分(塩酸洗浄濾液)は反応槽4に送られる。さらに該反応槽4にアルカリが添加された後にシックナー5に送られ、水酸化カルシウムの生成が促される(アルカリ添加工程)。シックナー5の上澄液は排水され、一方、該シックナー5から抜き出されたスラリーはフィルタープレス6に送られる。フィルタープレス6には洗浄水が供給され、脱水処理され(第二固液分離工程)、脱水ケーキ(水酸化カルシウム)が回収される。この脱水ケーキはセメント原料等として再利用することができる。排水は排水処理設備7に送られて排水処理される。
[Processing equipment]
FIG. 2 shows an example of the processing equipment that implements the method of the present invention. In the illustrated processing equipment, a vibration mill 1 for receiving chlorine-containing ash and washing water is provided. Chlorine-containing ash is appropriately pulverized in the vibration mill 1. The chlorine-containing ash slurry discharged from the vibration mill 1 is sent to the stirring and washing tank 2. Hydrochloric acid is supplied to the stirring and washing tank 2, and the pH is adjusted to 2.5 to 6.0 to perform hydrochloric acid washing (hydrochloric acid washing step). The slurry after washing with hydrochloric acid is sent to the filter press 3. Washing water is supplied to the filter press 3 and dehydrated (first solid-liquid separation step). This dehydration cleaning ash is sent out of the system. On the other hand, the recovered dehydrated component (hydrochloric acid washing filtrate) is sent to the reaction tank 4. Further, after the alkali is added to the reaction tank 4, it is sent to the thickener 5 to promote the production of calcium hydroxide (alkali addition step). The supernatant liquid of the thickener 5 is drained, while the slurry extracted from the thickener 5 is sent to the filter press 6. Washing water is supplied to the filter press 6 and dehydrated (second solid-liquid separation step), and the dehydrated cake (calcium hydroxide) is recovered. This dehydrated cake can be reused as a raw material for cement and the like. The wastewater is sent to the wastewater treatment facility 7 for wastewater treatment.

本発明の処理方法によれば、塩素含有灰を、該灰に含まれる不純物のSi、Fe、Al、Tiが溶出し難い液性下(pH2.5~6.0)で塩酸洗浄して脱塩するので、これらの不純物が少ない塩酸洗浄濾液を得ることができ、この塩酸洗浄濾液にアルカリを加えてpH12.5以上に調整し、塩素を液中に残して水酸化カルシウムの生成を促すので、カルシウムを固形化して容易に回収することができ、かつ脱塩効果を高めることができる。さらに、カルシウムは水酸化物の形態で回収されるので、セメント原料として用いたときにCOをほとんど排出せず、セメント製造時の低炭素化に大きく貢献する。また、この水酸化カルシウムは不純物が少ないので多くの用途に再利用することができる。具体的には、例えば、セメント原料の他に、排水や排ガスの処理薬剤、肥料などに利用することができる。 According to the treatment method of the present invention, chlorine-containing ash is removed by washing with hydrochloric acid under a liquid state (pH 2.5 to 6.0) in which impurities Si, Fe, Al, and Ti contained in the ash are difficult to elute. Since it is salted, it is possible to obtain a hydrochloric acid cleaning filtrate with few of these impurities. Add an alkali to this hydrochloric acid cleaning filtrate to adjust the pH to 12.5 or higher, and leave chlorine in the liquid to promote the production of calcium hydroxide. , Calcium can be solidified and easily recovered, and the desalting effect can be enhanced. Furthermore, since calcium is recovered in the form of hydroxide, it emits almost no CO 2 when used as a raw material for cement, which greatly contributes to low carbonization during cement production. Moreover, since this calcium hydroxide has few impurities, it can be reused for many purposes. Specifically, for example, in addition to cement raw materials, it can be used as a wastewater or exhaust gas treatment agent, fertilizer, or the like.

本発明の処理方法の概略を示す工程図。The process drawing which shows the outline of the processing method of this invention. 本発明の処理方法を実施する処理設備の概略図。The schematic diagram of the processing equipment which carries out the processing method of this invention. 実施例の乾燥ケーキのXRDパターン。XRD pattern of the dried cake of the example.

以下、本発明の実施例を比較例と共に示す。回収した洗浄灰のCl濃度は洗浄灰を酸溶解後に溶解液中のCl濃度を電量滴定装置で測定して分析した。回収した洗浄灰のCa濃度、Si濃度、Fe濃度、Al濃度およびTi濃度は蛍光X線分析(XRF)にて測定した。この結果を表1に示す。また、回収した洗浄灰のXRDパターンを図3に示す。 Hereinafter, examples of the present invention will be shown together with comparative examples. The Cl concentration of the recovered washing ash was analyzed by measuring the Cl concentration in the solution after acid-dissolving the washing ash with a coulometric titrator. The Ca concentration, Si concentration, Fe concentration, Al concentration and Ti concentration of the recovered washing ash were measured by fluorescent X-ray analysis (XRF). The results are shown in Table 1. The XRD pattern of the recovered wash ash is shown in FIG.

〔実施例1〕
焼却飛灰(Cl濃度、Ca濃度等を表1に示す)を105℃で乾燥した後に篩分けし、1mm以下の灰10gに6.0mol/Lの塩酸と水(合計100mL)を加えてスラリーにし、表1に示すpHに調整して振とうし、塩酸洗浄を行った。この塩酸洗浄後にスラリーを濾過し、塩酸洗浄濾液を回収すると共に、固形分(塩酸洗浄灰)を純水200mLで洗浄して洗浄灰を回収し、これを105℃で乾燥して乾燥洗浄灰を得た。乾燥洗浄灰のCa濃度等を測定することで、乾燥洗浄灰と塩酸洗浄濾液への各成分の移行率を算出した。その結果を表2に示す。
[Example 1]
Incinerated fly ash (Cl concentration, Ca concentration, etc. are shown in Table 1) is dried at 105 ° C., sieved, and 6.0 mol / L hydrochloric acid and water (100 mL in total) are added to 10 g of ash of 1 mm or less to form a slurry. The pH was adjusted to the pH shown in Table 1, shaken, and washed with hydrochloric acid. After this hydrochloric acid washing, the slurry is filtered to recover the hydrochloric acid washing filtrate, and the solid content (hydrogenic washing ash) is washed with 200 mL of pure water to recover the washing ash, which is dried at 105 ° C. to obtain dry washing ash. Obtained. By measuring the Ca concentration of the dry wash ash and the like, the transfer rate of each component to the dry wash ash and the hydrochloric acid wash filtrate was calculated. The results are shown in Table 2.

表2に示すように、塩酸洗浄時のpH2.6~5.1の試料No.3~6は、Caの溶出量が多く、洗浄灰の残留Ca量が少ない。また、塩素の溶出量が多く、洗浄灰の残留塩素が少なく脱塩効果が高い。一方、塩酸洗浄時のpH8.2、pH6.5の試料No.1、2は、Caの溶出量が少ないため洗浄灰の残留Ca量が多い。さらに洗浄灰の残留塩素も多く、脱塩効果が低い。塩酸洗浄時のpH2.2の試料No.7は、Caと塩素の溶出量は多いが、Si、Fe、Alも少量溶出し、後段の工程でこれら不純物との分離が不十分になる。 As shown in Table 2, the samples Nos. 3 to 6 having a pH of 2.6 to 5.1 during washing with hydrochloric acid have a large amount of Ca elution and a small amount of residual Ca in the washing ash. In addition, the amount of chlorine eluted is large, the residual chlorine in the washing ash is small, and the desalination effect is high. On the other hand, the samples No. 1 and 2 having pH 8.2 and pH 6.5 at the time of washing with hydrochloric acid have a large amount of residual Ca in the washing ash because the amount of Ca eluted is small. Furthermore, there is a large amount of residual chlorine in the washing ash, and the desalination effect is low. In the sample No. 7 having a pH of 2.2 during washing with hydrochloric acid, the amount of Ca and chlorine eluted is large, but Si, Fe, and Al are also eluted in a small amount, and the separation from these impurities becomes insufficient in the subsequent step.

Figure 2022057081000002
Figure 2022057081000002

Figure 2022057081000003
Figure 2022057081000003

〔実施例2〕
実施例1の試料No.4で回収した塩酸洗浄濾液100mLに、1.0mol/Lの水酸化ナトリウム溶液を加えて、表3に示すpHに調整し、液温25℃~60℃で1時間攪拌し、液中のCaを固形化した。このスラリーを濾過して脱塩ケーキを回収した。この脱塩ケーキに純水100mLを加えて洗浄し、脱水して洗浄ケーキを回収した。この洗浄ケーキを真空乾燥して乾燥ケーキを得た。この乾燥ケーキの塩素濃度、Ca濃度を測定した。この結果を表3に示す。また、回収した乾燥ケーキのXRDパターンを図3に示す。
[Example 2]
To 100 mL of the hydrochloric acid washing filtrate recovered in Sample No. 4 of Example 1, a 1.0 mol / L sodium hydroxide solution was added to adjust the pH to the pH shown in Table 3, and the liquid temperature was 25 ° C to 60 ° C for 1 hour. The mixture was stirred to solidify Ca in the liquid. The slurry was filtered to recover the desalted cake. 100 mL of pure water was added to this desalted cake for washing, dehydration was performed, and the washed cake was recovered. This washed cake was vacuum dried to obtain a dried cake. The chlorine concentration and Ca concentration of this dried cake were measured. The results are shown in Table 3. The XRD pattern of the recovered dried cake is shown in FIG.

表3に示すように、アルカリ添加工程のpH12.6~13.5の試料No.20~No.23は、乾燥ケーキのCa濃度が高く、Ca回収率は60%以上である。一方、アルカリ添加工程のpH12.2、pH11.5の試料No.24、25は、乾燥ケーキのCa濃度が非常に低く、Ca回収率は1%である。また、図3に示すように、回収した試料No.20~No.23の乾燥ケーキは大部分が水酸化カルシウムである。 As shown in Table 3, the samples No. 20 to No. 23 having a pH of 12.6 to 13.5 in the alkali addition step have a high Ca concentration in the dried cake and a Ca recovery rate of 60% or more. On the other hand, in the samples Nos. 24 and 25 having pH 12.2 and pH 11.5 in the alkali addition step, the Ca concentration of the dried cake was very low, and the Ca recovery rate was 1%. Further, as shown in FIG. 3, most of the recovered dried cakes of Samples No. 20 to No. 23 are calcium hydroxide.

Figure 2022057081000004
Figure 2022057081000004

Claims (2)

塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰に含まれるカルシウムと塩素を溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該スラリーを固液分離して塩酸洗浄濾液を回収する第一固液分離工程と、該塩酸洗浄濾液にアルカリを加え、pH12.5以上にして該濾液に含まれるカルシウムを水酸化カルシウムにして固形化するアルカリ添加工程と、該アルカリ添加工程の後に上記水酸化カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法。 The chlorine-containing ash is made into a hydrochloric acid slurry and washed with hydrochloric acid at pH 2.5 to 6.0 to elute the calcium and chlorine contained in the chlorine-containing ash. After the hydrochloric acid washing, the slurry is solid-liquid separated. A first solid-liquid separation step of recovering the hydrochloric acid washing filtrate, and an alkali addition step of adding an alkali to the hydrochloric acid washing filtrate to make the pH 12.5 or higher and converting the calcium contained in the filtrate into calcium hydroxide to solidify. A method for desalting chlorine-containing ash and recovering Ca, which comprises a second solid-liquid separation step of recovering the solid content containing calcium hydroxide after the alkali addition step. 上記アルカリ添加工程において、密閉雰囲気下または不活性ガス雰囲気下で、アルカリ溶液またはアルカリ粉末、粒状アルカリを加えてpH12.5以上にし、液温40℃~80℃に加温する請求項1に記載する塩素含有灰の脱塩とCa回収方法。



The first aspect of claim 1 is that in the alkali addition step, an alkaline solution, an alkaline powder, or a granular alkali is added to bring the pH to 12.5 or higher and heat the liquid to a liquid temperature of 40 ° C to 80 ° C in a closed atmosphere or an inert gas atmosphere. Desalting of chlorine-containing ash and Ca recovery method.



JP2020165152A 2020-09-30 2020-09-30 Method for desalinating chlorine-containing ash and recovering calcium Pending JP2022057081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165152A JP2022057081A (en) 2020-09-30 2020-09-30 Method for desalinating chlorine-containing ash and recovering calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165152A JP2022057081A (en) 2020-09-30 2020-09-30 Method for desalinating chlorine-containing ash and recovering calcium

Publications (1)

Publication Number Publication Date
JP2022057081A true JP2022057081A (en) 2022-04-11

Family

ID=81110233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165152A Pending JP2022057081A (en) 2020-09-30 2020-09-30 Method for desalinating chlorine-containing ash and recovering calcium

Country Status (1)

Country Link
JP (1) JP2022057081A (en)

Similar Documents

Publication Publication Date Title
JP5085027B2 (en) Method and apparatus for treating chlorine-containing waste
JP4960600B2 (en) Waste gypsum treatment method
JP5023469B2 (en) Method and apparatus for treating chlorine-containing waste
JP2006272168A (en) Chlorine and heavy metal containing waste treatment method
CN110304646A (en) A method of fluorine, chlorine, nitrogen component coproduction aluminium oxide concentrate are efficiently separated from aluminium ash
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP2022057081A (en) Method for desalinating chlorine-containing ash and recovering calcium
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP2000281398A (en) Treatment for converting waste into cement raw material
JP2003334510A (en) Chlorine removing treatment method for molten fly ash
KR950013314B1 (en) Retreatment method for sludge containing fluorine
JP2022066111A (en) DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD
CN114602926A (en) Device and process for resourceful treatment of waste incineration fly ash
JP2022057080A (en) Method for recovering desalinated washed ash of chlorine-containing ash
JP5084272B2 (en) Method for treating heavy metals containing zinc and substances containing chlorine
JP3794260B2 (en) Waste disposal method
JPS58137497A (en) Treatment of heavy metal-containing waste matter
JP6579317B2 (en) Desalination method of incineration ash
JP2009172552A (en) Method of and apparatus for treating waste containing water-soluble chlorine
JP2000109938A (en) Method for recovering valuable metal from fly ash
JP2023056767A (en) METHOD FOR DESALTING CHLORINE-CONTAINING ASH AND RECOVERING Ca
JP4118495B2 (en) How to reuse mud
JP2022085922A (en) Desalination method and desalination apparatus of chlorine-containing ash
JP2003290736A (en) Method of treating fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430