JP2022066111A - DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD - Google Patents

DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD Download PDF

Info

Publication number
JP2022066111A
JP2022066111A JP2020175049A JP2020175049A JP2022066111A JP 2022066111 A JP2022066111 A JP 2022066111A JP 2020175049 A JP2020175049 A JP 2020175049A JP 2020175049 A JP2020175049 A JP 2020175049A JP 2022066111 A JP2022066111 A JP 2022066111A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
ash
chlorine
washing
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020175049A
Other languages
Japanese (ja)
Inventor
憲史 ▲高▼橋
Norifumi Takahashi
弘樹 村岡
Hiroki Muraoka
達哉 矢島
Tatsuya Yajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020175049A priority Critical patent/JP2022066111A/en
Publication of JP2022066111A publication Critical patent/JP2022066111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

To provide a treatment method that is able to sufficiently desalinate chlorine-containing ash and effectively recover calcium contained in the ash.SOLUTION: A desalination of chlorine-containing ash and a Ca recovering method include: a hydrochloric acid washing step of making chlorine containing ash into a hydrochloric acid slurry and washing the hydrochloric acid slurry with hydrochloric acid at a pH of 2.5 to 6.0 to desalinate the chlorine-containing ash and to elute calcium contained in the chloride-containing ash; a first solid-liquid separation step of, after the hydrochloric acid washing, separating the hydrochloric acid slurry into solid and liquid to recover filtered hydrochloric acid washed liquid and the washed ash; a carbonation step of introducing a carbonic acid source into the filtered hydrochloric acid washed liquid and adjusting the solution to a pH7.0 to 12.0 to make calcium contained in the filtered liquid into a solid of calcium carbonate; and a second solid-liquid separation step of recovering a solid content containing the calcium carbonate.SELECTED DRAWING: Figure 1

Description

本発明は、塩素含有灰を脱塩洗浄してカルシウムを効果的に回収する方法に関する。 The present invention relates to a method for effectively recovering calcium by desalting and washing chlorine-containing ash.

一般廃棄物や産業廃棄物の焼却によって発生した焼却灰(主灰、飛灰、燃え殻、煤塵)や最終処分場に埋め立て処分された焼却灰、あるいはセメント工場から発生するクリンカダスト等をセメント原料等として再利用することが進められている。一方、これらの焼却灰等には十数%程度の塩素が含まれているので、これらの塩素を含む上記各種の焼却灰やクリンカダスト等(以下、これらを塩素含有灰と云う)を再資源化するには用途に応じた程度まで脱塩する必要がある。 Cement raw materials such as incineration ash (main ash, fly ash, cinders, soot and dust) generated by incineration of general waste and industrial waste, incineration ash landfilled at the final disposal site, and cleana dust generated from cement factories. It is being reused as a product. On the other hand, since these incinerator ash and the like contain about 10% of chlorine, the above-mentioned various incinerator ash and cleana dust containing these chlorine (hereinafter referred to as chlorine-containing ash) are recycled. It is necessary to desalt to the extent that it is suitable for the purpose.

また、上記塩素含有灰にはカルシウム分が酸化物換算で概ね20%~50%程度と豊富に含まれおり、このカルシウム分を有効に回収できれば、塩素含有灰の再資源化を拡大することができる。例えば、塩素含有灰からカルシウム分を高純度に回収できれば、セメント原料以外にも様々な用途に再利用することが可能となる。一方、塩素含有灰には、塩素やカルシウムの他に、ケイ素(Si)、鉄(Fe)、アルミニウム(Al)、チタン(Ti)などが含まれており、回収したカルシウム分にこれらの不純物が残留していると、セメント原料以外には利用し難くなり、再利用の用途が制限される場合がある。 In addition, the chlorine-containing ash contains abundant calcium content of about 20% to 50% in terms of oxide, and if this calcium content can be effectively recovered, the recycling of chlorine-containing ash can be expanded. can. For example, if calcium can be recovered from chlorine-containing ash with high purity, it can be reused for various purposes other than cement raw materials. On the other hand, chlorine-containing ash contains silicon (Si), iron (Fe), aluminum (Al), titanium (Ti), etc. in addition to chlorine and calcium, and these impurities are contained in the recovered calcium content. If it remains, it becomes difficult to use it for anything other than cement raw materials, and its reuse may be limited.

上記塩素含有灰の脱塩について、該塩素含有灰に含まれる塩素化合物の大部分は水溶性なので水洗浄して脱塩できるが、塩素化合物の一部は水に難溶性のフリーデル氏塩(3CaO・AlO・CaCl・10HO)等を形成しており、水洗浄だけでは十分に脱塩することができない。一方、フリーデル氏塩等に酸を加えてpHを低下させることで脱塩する方法が知られている。ただし、この方法ではpHの低下に伴い、塩素と一緒にカルシウムも溶出するので、酸洗浄だけではカルシウムを十分に回収することができない。 Regarding the desalting of the chlorine-containing ash, most of the chlorine compounds contained in the chlorine-containing ash are water-soluble and can be washed with water to desalt, but some of the chlorine compounds are sparingly soluble in water. It forms 3CaO, Al 2O 3 , CaCl 2 , 10H 2 O), etc., and cannot be sufficiently desalted only by washing with water. On the other hand, a method of desalting by adding an acid to Friedel's salt or the like to lower the pH is known. However, in this method, calcium is eluted together with chlorine as the pH decreases, so that calcium cannot be sufficiently recovered by pickling alone.

また、塩素含有灰に炭酸塩を含む水を加えて洗浄する方法(特開2006-326462公報)、あるいは塩素含有灰の水スラリーに炭酸ガスを吹き込んで洗浄する方法が知られている(特許第3924822号公報)。炭酸塩や炭酸ガスを用いて洗浄すると、フリーデル氏塩は分解して脱塩されるので脱塩洗浄灰を得ることができるが、カルシウムの一部は水に難溶性の炭酸カルシウムになり、これが洗浄後の固液分離によって固形分として洗浄灰と共に回収されるため、カルシウムを分離して回収するのが難しくなる。 Further, a method of adding water containing a carbonate to chlorine-containing ash for cleaning (Japanese Patent Laid-Open No. 2006-326462) or a method of blowing carbonate gas into a water slurry of chlorine-containing ash for cleaning is known (Patent No. 1). 3924822 (Ab.). When washed with carbonate or carbon dioxide, Friedel's salt is decomposed and desalted, so that desalted washing ash can be obtained, but some of the calcium becomes poorly soluble calcium carbonate in water. Since this is recovered as solid content together with the washing ash by solid-liquid separation after washing, it becomes difficult to separate and recover calcium.

特開2006-326462号公報Japanese Unexamined Patent Publication No. 2006-326462 特許第3924822号公報Japanese Patent No. 3294822 特開2015-218369号公報Japanese Unexamined Patent Publication No. 2015-218369

本発明は、上記問題を解決したものであり、塩素含有灰を十分に脱塩することができ、かつ脱塩によって塩素含有灰から溶出したカルシウムを洗浄灰から分離して有効に回収することができる処理方法を提供する。 The present invention solves the above-mentioned problems, and can sufficiently desalinate chlorine-containing ash, and can effectively recover calcium eluted from chlorine-containing ash by desalting from the washing ash. Provide a processing method that can be performed.

本発明の方法は、以下の構成によって上記問題を解決した処理方法であり、塩素含有灰を脱塩してカルシウムを効率よく回収する方法である。
〔1〕塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰を脱塩すると共に該塩素含有灰に含まれるカルシウムを溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該塩酸スラリーを固液分離して塩酸洗浄濾液と洗浄灰を回収する第一固液分離工程と、該塩酸洗浄濾液に炭酸源を導入し、pH7.0~12.0に調整して該濾液に含まれるカルシウムを炭酸カルシウムにして固形化する炭酸化工程と、該炭酸カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法。
〔2〕上記炭酸化工程において、炭酸源としてアルカリ炭酸塩を用いて炭酸源と共にアルカリを導入し、あるいは炭酸源として二酸化炭素含有ガスを用いると共にアルカリを添加して、pH7.0~12.0に調整して炭酸カルシウムを生成させる上記[1]に記載する塩素含有灰の脱塩とCa回収方法。
The method of the present invention is a treatment method that solves the above-mentioned problems by the following configuration, and is a method of desalting chlorine-containing ash to efficiently recover calcium.
[1] A hydrochloric acid washing step in which a chlorine-containing ash is made into a hydrochloric acid slurry and washed with hydrochloric acid at pH 2.5 to 6.0 to desalinate the chlorine-containing ash and elute calcium contained in the chlorine-containing ash, and the hydrochloric acid. After washing, the hydrochloric acid slurry is solid-liquid separated to recover the hydrochloric acid washing filtrate and the washing ash, and a carbon dioxide source is introduced into the hydrochloric acid washing filtrate to adjust the pH to 7.0 to 12.0. Desalting of chlorine-containing ash, which comprises a carbonization step of converting calcium contained in the filtrate into calcium carbonate and solidifying it, and a second solid-liquid separation step of recovering the solid content containing the calcium carbonate. Ca recovery method.
[2] In the above carbonation step, an alkali carbonate is used as a carbonic acid source and an alkali is introduced together with the carbonic acid source, or a carbon dioxide-containing gas is used as a carbonic acid source and an alkali is added to pH 7.0 to 12.0. The method for desalting and Ca recovery of chlorine-containing ash according to the above [1], which is adjusted to produce calcium carbonate.

〔具体的な説明〕
本発明の処理方法は、塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰を脱塩すると共に該塩素含有灰に含まれるカルシウムを溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該塩酸スラリーを固液分離して塩酸洗浄濾液と洗浄灰を回収する第一固液分離工程と、該塩酸洗浄濾液に炭酸源を導入し、pH7.0~12.0に調整して該濾液に含まれるカルシウムを炭酸カルシウムにして固形化する炭酸化工程と、該炭酸カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法である。
本発明の処理方法の概略を図1の工程図に示す。
[Specific explanation]
The treatment method of the present invention is a hydrochloric acid washing step in which chlorine-containing ash is made into a hydrochloric acid slurry and washed with hydrochloric acid at pH 2.5 to 6.0 to desalt the chlorine-containing ash and elute calcium contained in the chlorine-containing ash. After the hydrochloric acid washing, the hydrochloric acid slurry is solid-liquid separated to recover the hydrochloric acid washing filtrate and the washing ash, and a carbon dioxide source is introduced into the hydrochloric acid washing filtrate, and the pH is 7.0 to 12. Chlorine-containing ash characterized by having a carbonization step of adjusting to 0 and solidifying calcium contained in the filtrate to calcium carbonate, and a second solid-liquid separation step of recovering the solid content containing the calcium carbonate. It is a method of desalting and recovering Ca.
The outline of the processing method of the present invention is shown in the process diagram of FIG.

<塩酸洗浄工程>
本発明の処理方法は、塩素含有灰を塩酸スラリーにし、pH2.5~6.0の液性で塩酸洗浄し、該塩素含有灰を脱塩すると共に該塩素含有灰に含まれるカルシウムを溶出させる塩酸洗浄工程を有する。塩素含有灰に塩酸を直接加えて塩酸スラリーにしても良いし、塩素含有灰に洗浄水を加えてスラリー化した後に塩酸を加えて塩酸スラリーにしても良い。
<Hydrochloric acid cleaning process>
In the treatment method of the present invention, chlorine-containing ash is made into a hydrochloric acid slurry, washed with hydrochloric acid in a liquid state of pH 2.5 to 6.0, the chlorine-containing ash is desalted, and the calcium contained in the chlorine-containing ash is eluted. Has a hydrochloric acid cleaning step. Hydrochloric acid may be directly added to the chlorine-containing ash to form a hydrochloric acid slurry, or washing water may be added to the chlorine-containing ash to form a slurry, and then hydrochloric acid may be added to form a hydrochloric acid slurry.

塩素含有灰を塩酸スラリーにし、pH2.5~6.0の液性で撹拌して塩酸洗浄することによって、塩素含有灰に含まれるSi、Fe、Al、Tiの溶出を抑えつつ、CaとClの大部分を塩素含有灰から溶出させることができる。pH2.5未満の強酸性下では、Si、Fe、Alが溶出しやすくなり、液分に含まれるSiやFe、Alの濃度が高くなるので好ましくない。一方、pHが6.0を上回るとCaの溶出量が少なくなり、また洗浄灰の残留塩素濃度が高くなり、脱塩効果が低下する。 Ca and Cl while suppressing the elution of Si, Fe, Al, and Ti contained in the chlorine-containing ash by converting the chlorine-containing ash into a hydrochloric acid slurry and stirring with a liquid of pH 2.5 to 6.0 and washing with hydrochloric acid. Most of it can be eluted from chlorine-containing ash. Under strong acidity of less than pH 2.5, Si, Fe, and Al are likely to elute, and the concentration of Si, Fe, and Al contained in the liquid is high, which is not preferable. On the other hand, when the pH exceeds 6.0, the amount of Ca eluted decreases, the residual chlorine concentration of the washing ash increases, and the desalting effect decreases.

塩酸に代えて硝酸を用いると、排水に窒素分が混入するため排水処理に大きな負荷がかかるので好ましくない。また、塩酸に代えて硫酸を用いると、難溶性の硫酸カルシウムが生成するため、相対的に液中のCa量が減少し、次工程の炭酸化工程において液中のカルシウム分を炭酸カルシウムの形態で固形化して回収するのに適さない。なお、特開2015-218369号公報(特許文献3)には、セメント製造の排ガスから回収したダストを硫酸浸出した後にアルカリ浸出して金、銀を回収する方法が開示されているが、この方法では硫酸カルシウムが生成し、固形分に残留するSiやFe等の不純物との分離が面倒になり、効率よくカルシウムを回収することができない。硫酸浸出後にアルカリ浸出を行うことは本発明の方法と全く異質の処理方法である。 It is not preferable to use nitric acid instead of hydrochloric acid because nitrogen is mixed in the wastewater and a large load is applied to the wastewater treatment. In addition, when sulfuric acid is used instead of hydrochloric acid, sparingly soluble calcium sulfate is produced, so that the amount of Ca in the liquid is relatively reduced, and the calcium content in the liquid is converted into the form of calcium carbonate in the next step of carbonization. Not suitable for solidification and recovery. Japanese Unexamined Patent Publication No. 2015-218369 (Patent Document 3) discloses a method of recovering gold and silver by leaching dust recovered from exhaust gas of cement manufacturing with sulfuric acid and then leaching with alkali. In this case, calcium sulfate is generated, and separation from impurities such as Si and Fe remaining in the solid content becomes troublesome, and calcium cannot be efficiently recovered. Performing alkali leaching after sulfuric acid leaching is a treatment method completely different from the method of the present invention.

上記塩酸スラリーの液固比は2~20(液体:固体=2:1~20:1)が好ましく、3~10(液体:固体=3:1~10:1)がより好ましい。液固比がこれより小さいとスラリー濃度が高くなり、配管やポンプ等の摩耗が激しくなる。一方、液固比がこれより大きいと、塩酸量が多くなり薬剤コストが嵩むとともに排水処理の負荷が増す。 The liquid-solidity ratio of the hydrochloric acid slurry is preferably 2 to 20 (liquid: solid = 2: 1 to 20: 1), more preferably 3 to 10 (liquid: solid = 3: 1 to 10: 1). If the liquid-solidity ratio is smaller than this, the slurry concentration becomes high, and the wear of pipes, pumps, etc. becomes severe. On the other hand, if the liquid-solidification ratio is larger than this, the amount of hydrochloric acid increases, the cost of chemicals increases, and the load of wastewater treatment increases.

塩酸洗浄の前に、塩素含有灰を粉砕することによって効率よく脱塩洗浄することができる。粉砕装置としては、例えば、振動ミル、ハンマーミルなどがある。粉砕と塩酸洗浄を同時に行っても良い。 Before washing with hydrochloric acid, the chlorine-containing ash can be efficiently desalted and washed by pulverizing the ash. Examples of the crushing device include a vibration mill and a hammer mill. Grinding and washing with hydrochloric acid may be performed at the same time.

<第一固液分離工程>
塩酸洗浄したスラリーを固液分離して、溶出した塩素とカルシウムを含む塩酸洗浄濾液を回収する。分離した固形分の洗浄灰には原灰(塩素含有灰)に含まれる不純物のSi、Fe、Al、Tiの大部分が溶出せずに残留するので、これらの不純物が少ない塩酸洗浄濾液を回収することができる。固形分の脱水ケーキ(脱塩洗浄灰)は回収してセメント原料等に利用することができる。
<First solid-liquid separation process>
The hydrochloric acid-washed slurry is separated into solid and liquid, and the hydrochloric acid-washed filtrate containing eluted chlorine and calcium is recovered. Most of the impurities Si, Fe, Al, and Ti contained in the raw ash (chlorine-containing ash) remain in the separated solid cleaning ash without elution, so the hydrochloric acid cleaning filtrate with less impurities is recovered. can do. The solid dehydrated cake (demineralized and washed ash) can be recovered and used as a raw material for cement.

<炭酸化工程>
本発明の処理方法は、上記塩酸洗浄濾液に炭酸源を導入し、pH7.0~12.0に調整して該濾液に含まれるカルシウムを炭酸カルシウムにして固形化する炭酸化工程を有する。炭酸源としてアルカリ炭酸塩を用いて炭酸源と共にアルカリを導入してもよく、あるいは炭酸源として二酸化炭素含有ガスを用いると共にアルカリを添加して、pH7.0~12.0に調整してもよい。
<Carbonation process>
The treatment method of the present invention includes a carbonation step in which a carbonic acid source is introduced into the hydrochloric acid washing filtrate, the pH is adjusted to 7.0 to 12.0, and the calcium contained in the filtrate is converted into calcium carbonate and solidified. Alkaline carbonate may be used as a carbonic acid source and an alkali may be introduced together with the carbonic acid source, or a carbon dioxide-containing gas may be used as a carbonic acid source and an alkali may be added to adjust the pH to 7.0 to 12.0. ..

アルカリ炭酸塩として、炭酸アンモニウム、炭酸カリウム、炭酸カリウムナトリウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素カリウム、炭酸水素ナトリウムを用いることができる。炭酸ナトリウムが反応当量およびコストの点から好ましい。アルカリ炭酸塩の添加によって、該濾液のpHが7.0~12.0になった場合は、アルカリを添加する必要はない。 As the alkaline carbonate, ammonium carbonate, potassium carbonate, sodium potassium carbonate, sodium carbonate, ammonium hydrogencarbonate, potassium hydrogencarbonate, and sodium hydrogencarbonate can be used. Sodium carbonate is preferred in terms of reaction equivalents and cost. If the pH of the filtrate becomes 7.0 to 12.0 due to the addition of alkaline carbonate, it is not necessary to add alkali.

炭酸源として用いる二酸化炭素含有ガスは燃焼排ガスなど利用することができる。二酸化炭素の導入によってpHは徐々に低下する。pHが7.0~12.0の範囲になるようにアルカリを添加する。アルカリとして、水酸化ナトリウム、水酸化カリウムなどの一般的なアルカリ金属の水酸化物を用いることができる。このアルカリは溶液でも粉末ないし粒状でもよい。 The carbon dioxide-containing gas used as a carbonic acid source can be used as combustion exhaust gas or the like. The pH gradually decreases with the introduction of carbon dioxide. Alkali is added so that the pH is in the range of 7.0 to 12.0. As the alkali, a hydroxide of a general alkali metal such as sodium hydroxide and potassium hydroxide can be used. The alkali may be a solution, powder or granular.

液性をpH7.0~12.0に調整することによって、液中のカルシウムは炭酸カルシウムを生成して固形化する。pHが7.0未満では、大部分が溶存したままで、炭酸カルシウムを殆ど形成しない。pHが12.0を超えるとアルカリの使用量が増大し、本工程の処理の効率が低下する。 By adjusting the liquid property to pH 7.0 to 12.0, the calcium in the liquid produces calcium carbonate and solidifies. When the pH is less than 7.0, most of it remains dissolved and almost no calcium carbonate is formed. When the pH exceeds 12.0, the amount of alkali used increases and the processing efficiency of this step decreases.

<第二固液分離工程>
上記炭酸化処理の後に固液分離して固形分を回収する。この固形分には生成した炭酸カルシウムが含まれている。塩素含有灰(原灰)を塩酸洗浄してカルシウムを溶出させ、その塩酸洗浄濾液に炭酸源を導入し上記pH域で液中のカルシウムを炭酸カルシウムにして固定化することによって、原灰に含まれるカルシウムの60質量%以上を炭酸カルシウムとして回収することができる。また、原灰に含まれるSi、Fe、Al、Tiなどの不純物は上記塩酸洗浄で溶出せずに洗浄灰に残るので、これらの不純物の少ない炭酸カルシウムを回収することができる。
<Second solid-liquid separation step>
After the carbonation treatment, solid-liquid separation is performed to recover the solid content. This solid content contains the calcium carbonate produced. Calcium-containing ash (raw ash) is washed with hydrochloric acid to elute calcium, and a carbon dioxide source is introduced into the hydrochloric acid washing filtrate to convert calcium in the liquid to calcium carbonate and immobilize it in the above pH range. 60% by mass or more of the calcium carbonate can be recovered as calcium carbonate. Further, since impurities such as Si, Fe, Al, and Ti contained in the raw ash remain in the washing ash without being eluted by the above-mentioned hydrochloric acid washing, calcium carbonate having few these impurities can be recovered.

第一固液分離工程および第二固液分離工程の固液分離装置として、フィルタープレス、真空ベルトフィルター、遠心脱水機などを用いることができる。フィルタープレスが使用しやすい。例えば、フィルタープレスで固液分離して得た脱水ケーキ(第一固液分離の洗浄灰または第二固液分離の炭酸カルシウムを、さらに洗浄水で貫通洗浄することによって、脱塩効果をさらに高めることができる。また、フィルタープレスによって得られる上記脱水ケーキの含水率は25~40%程度と低く、余剰な水分が付着していないため、重量が軽減されてハンドリング性も向上する。 A filter press, a vacuum belt filter, a centrifugal dehydrator, or the like can be used as the solid-liquid separation device in the first solid-liquid separation step and the second solid-liquid separation step. Easy to use filter press. For example, the dehydrated cake obtained by solid-liquid separation with a filter press (washing ash of the first solid-liquid separation or calcium carbonate of the second solid-liquid separation is further washed through with washing water to further enhance the desalting effect. Further, the water content of the dehydrated cake obtained by the filter press is as low as about 25 to 40%, and since excess water is not attached, the weight is reduced and the handling property is improved.

上記固液分離によって生じた排水は、排水処理して放流するが、塩素濃度の低い排水は塩酸洗浄工程に循環して洗浄水として利用してもよい。 The wastewater generated by the solid-liquid separation is treated as wastewater and discharged, but the wastewater having a low chlorine concentration may be circulated in the hydrochloric acid washing step and used as washing water.

〔処理設備〕
本発明の方法を実施する処理設備の一例を図2に示す。図示する処理設備では、塩素含有灰と洗浄水を受け入れる振動ミル1が設けられている。該振動ミル1において塩素含有灰が適度に粉砕される。該振動ミル1から排出された塩素含有灰スラリーは撹拌洗浄槽2に送られる。該撹拌洗浄槽2には塩酸が供給され、pH2.5~6.0に調整されて塩酸洗浄が行われる(塩酸洗浄工程)。塩酸洗浄後のスラリーはフィルタープレス3に送られる。フィルタープレス3には洗浄水が供給され、脱水処理される(第一固液分離工程)。この脱水洗浄灰は系外に送られる。一方、回収された脱水分(塩酸洗浄濾液)は反応槽4に送られる。さらに該反応槽4に炭酸ガスとアルカリが導入されてpH7.0~12.0のアルカリ域に調整された後にシックナー5に送られ、炭酸カルシウムの生成が促される(炭酸化工程)。シックナー5の上澄液は排水され、一方、該シックナー5から抜き出されたスラリーはフィルタープレス6に送られる。フィルタープレス6には洗浄水が供給され、脱水処理され(第二固液分離工程)、脱水ケーキ(炭酸カルシウム)が回収される。この炭酸カルシウムは各種の用途に再利用することができる。排水は排水処理設備7に送られて排水処理される。
[Processing equipment]
FIG. 2 shows an example of a processing facility that implements the method of the present invention. In the illustrated processing equipment, a vibration mill 1 for receiving chlorine-containing ash and washing water is provided. Chlorine-containing ash is appropriately pulverized in the vibration mill 1. The chlorine-containing ash slurry discharged from the vibration mill 1 is sent to the stirring and washing tank 2. Hydrochloric acid is supplied to the stirring and washing tank 2, and the pH is adjusted to 2.5 to 6.0 to perform hydrochloric acid washing (hydrochloric acid washing step). The slurry after washing with hydrochloric acid is sent to the filter press 3. Washing water is supplied to the filter press 3 and dehydrated (first solid-liquid separation step). This dehydration cleaning ash is sent out of the system. On the other hand, the recovered dehydrated component (hydrochloric acid washing filtrate) is sent to the reaction tank 4. Further, carbon dioxide gas and an alkali are introduced into the reaction tank 4 to adjust the pH to an alkaline range of 7.0 to 12.0, and then sent to the thickener 5 to promote the production of calcium carbonate (carbonation step). The supernatant liquid of the thickener 5 is drained, while the slurry extracted from the thickener 5 is sent to the filter press 6. Washing water is supplied to the filter press 6 and dehydrated (second solid-liquid separation step), and the dehydrated cake (calcium carbonate) is recovered. This calcium carbonate can be reused for various purposes. The wastewater is sent to the wastewater treatment facility 7 for wastewater treatment.

本発明の処理方法によれば、塩素含有灰(原灰)の塩酸洗浄によって十分に脱塩された洗浄灰を回収することができる。この脱塩洗浄灰はセメント原料に再利用することができる。また、塩酸洗浄は原灰に含まれる不純物のSi、Fe、Al、Tiが溶出し難い液性下(pH2.5~6.0)で行うので、これらの不純物が少ない塩酸洗浄濾液を得ることができ、この濾液から炭酸カルシウムを回収することができる。この炭酸カルシウムは不純物が少ないので多くの用途に再利用することができる。具体的には、例えば、セメント原料の他に、排水や排ガスの処理薬剤、建材などに利用することができる。このように、本発明の処理方法では十分に脱塩された洗浄灰と不純物の少ない炭酸カルシウムを分離して回収することができるので、塩素含有灰の処理回収物を、セメント原料に限らず、幅広い用途を広げることができる。 According to the treatment method of the present invention, the washed ash sufficiently desalted by washing the chlorine-containing ash (raw ash) with hydrochloric acid can be recovered. This desalted and washed ash can be reused as a raw material for cement. Further, since the hydrochloric acid cleaning is carried out under a liquid condition (pH 2.5 to 6.0) in which the impurities Si, Fe, Al and Ti contained in the raw ash are difficult to elute, a hydrochloric acid cleaning filtrate having less of these impurities can be obtained. And calcium carbonate can be recovered from this filtrate. Since this calcium carbonate has few impurities, it can be reused for many purposes. Specifically, for example, it can be used as a wastewater or exhaust gas treatment agent, a building material, or the like, in addition to a cement raw material. As described above, in the treatment method of the present invention, sufficiently desalted cleaning ash and calcium carbonate having few impurities can be separated and recovered. Therefore, the treated recovery product of chlorine-containing ash is not limited to the cement raw material. It can be used in a wide range of applications.

本発明の処理方法は、アルカリ添加の炭酸化であるので、アルカリの使用量を減らすことができ、また炭酸源として工場排ガスを利用することができるので、処理コストを大幅に低減することができる。 Since the treatment method of the present invention is carbonation with addition of alkali, the amount of alkali used can be reduced, and since factory exhaust gas can be used as a carbonic acid source, the treatment cost can be significantly reduced. ..

本発明の処理方法の概略を示す工程図。The process drawing which shows the outline of the processing method of this invention. 本発明の処理方法を実施する処理設備の概略図。The schematic diagram of the processing equipment which carries out the processing method of this invention. 実施例の乾燥ケーキのXRDパターン。XRD pattern of the dried cake of the example.

以下、本発明の実施例を比較例と共に示す。回収した洗浄灰のCl濃度は洗浄灰を酸溶解後に溶解液中のCl濃度を電量滴定装置で測定して分析した。回収した洗浄灰のCa濃度、Si濃度、Fe濃度、Al濃度およびTi濃度は蛍光X線分析(XRF)にて測定した。この結果を表1に示す。また、回収した洗浄灰のXRDパターンを図3に示す。 Hereinafter, examples of the present invention will be shown together with comparative examples. The Cl concentration of the recovered washing ash was analyzed by measuring the Cl concentration in the solution after acid-dissolving the washing ash with a coulometric titrator. The Ca concentration, Si concentration, Fe concentration, Al concentration and Ti concentration of the recovered washing ash were measured by fluorescent X-ray analysis (XRF). The results are shown in Table 1. The XRD pattern of the recovered wash ash is shown in FIG.

〔実施例1〕
焼却飛灰(Cl濃度、Ca濃度等を表1に示す)を105℃で乾燥した後に篩分けし、1mm以下の灰10gに6.0mol/Lの塩酸と水(合計100mL)を加えてスラリーにし、表1に示すpHに調整して振とうし、塩酸洗浄を行った(塩酸洗浄工程)。この塩酸洗浄後にスラリーを濾過し、塩酸洗浄濾液を回収すると共に、固形分(塩酸洗浄灰)を純水200mLで洗浄して洗浄灰を回収し、これを105℃で乾燥して乾燥洗浄灰を得た。乾燥洗浄灰のCa濃度等を測定することで、乾燥洗浄灰と塩酸洗浄濾液への各成分の移行率を算出した。その結果を表2に示す。
[Example 1]
Incinerated flying ash (Cl concentration, Ca concentration, etc. are shown in Table 1) is dried at 105 ° C., sieved, and 6.0 mol / L hydrochloric acid and water (100 mL in total) are added to 10 g of ash of 1 mm or less to form a slurry. The pH was adjusted to the pH shown in Table 1, shaken, and washed with hydrochloric acid (hydrochloric acid washing step). After this washing with hydrochloric acid, the slurry is filtered to recover the hydrochloric acid washing filtrate, and the solid content (hydrous washing ash) is washed with 200 mL of pure water to recover the washing ash, which is dried at 105 ° C. to obtain dry washing ash. Obtained. By measuring the Ca concentration of the dry wash ash and the like, the transfer rate of each component to the dry wash ash and the hydrochloric acid wash filtrate was calculated. The results are shown in Table 2.

表2示すように、塩酸洗浄時のpH2.6~5.1の試料No.3~6は、Caの溶出量が多く、洗浄灰の残留Ca量が少ない。また、塩素の溶出量が多く、洗浄灰の残留塩素が少なく脱塩効果が高い。一方、塩酸洗浄時のpH8.2、pH6.5の試料No.1、2は、Caの溶出量が少ないため洗浄灰の残留Ca量が多い。さらに洗浄灰の残留塩素も多く、脱塩効果が低い。塩酸洗浄時のpH2.2の試料No.7は、Caと塩素の溶出量は多いが、Si、Fe、Alも少量溶出し、後段の工程でこれら不純物との分離が不十分になる。 As shown in Table 2, the samples Nos. 3 to 6 having a pH of 2.6 to 5.1 during washing with hydrochloric acid have a large amount of Ca elution and a small amount of residual Ca in the washing ash. In addition, the amount of chlorine eluted is large, the residual chlorine in the washing ash is small, and the desalination effect is high. On the other hand, the samples No. 1 and 2 having pH 8.2 and pH 6.5 at the time of washing with hydrochloric acid have a large amount of residual Ca in the washing ash because the amount of Ca eluted is small. Furthermore, there is a large amount of residual chlorine in the washing ash, and the desalination effect is low. In the sample No. 7 having a pH of 2.2 during washing with hydrochloric acid, the amount of Ca and chlorine eluted is large, but Si, Fe, and Al are also eluted in a small amount, and the separation from these impurities becomes insufficient in the subsequent step.

Figure 2022066111000002
Figure 2022066111000002

Figure 2022066111000003
Figure 2022066111000003

〔実施例2〕
実施例1の試料No.4で回収した塩酸洗浄濾液100mLに、1.0mol/Lの水酸化ナトリウム溶液を添加して表3に示すpHに調整すると共に、炭酸ガス(CO濃度99.5vol.%以上)を0.1L/minの流量で1時間導入して、液中のCaを固形化した(炭酸化工程)。このアルカリスラリーを濾過して脱塩ケーキ(炭酸Ca)を回収した。この脱塩ケーキに純水100mLを加えて洗浄し、脱水して洗浄ケーキを回収した。この洗浄ケーキを真空乾燥して乾燥ケーキを得た。この乾燥ケーキの塩素濃度、Ca濃度を測定した。この結果を表3に示す。また、回収した乾燥ケーキのXRDパターンを図3に示す。
[Example 2]
To 100 mL of the hydrochloric acid washing filtrate recovered in Sample No. 4 of Example 1, a 1.0 mol / L sodium hydroxide solution was added to adjust the pH to the pH shown in Table 3, and carbon dioxide gas (CO 2 concentration 99.5 vol) was added. .% Or more) was introduced at a flow rate of 0.1 L / min for 1 hour to solidify Ca in the liquid (carbonation step). The alkaline slurry was filtered to recover the desalted cake (Ca carbonate). 100 mL of pure water was added to this desalted cake for washing, dehydration was performed, and the washed cake was recovered. This washed cake was vacuum dried to obtain a dried cake. The chlorine concentration and Ca concentration of this dried cake were measured. The results are shown in Table 3. The XRD pattern of the recovered dried cake is shown in FIG.

表3に示すように、炭酸化工程のpH7.0~12.0の試料No.20~No.24は、乾燥ケーキのCa濃度が高く、Ca回収率は60%以上である。一方、炭酸化工程のpH6.0、pH6.5の試料No.25、26は、乾燥ケーキのCa回収率は37~49%と低い。また、図3に示すように、回収した試料No.20~No.24の乾燥ケーキは大部分が炭酸カルシウムである。 As shown in Table 3, the samples No. 20 to No. 24 having a pH of 7.0 to 12.0 in the carbonation step have a high Ca concentration in the dried cake, and the Ca recovery rate is 60% or more. On the other hand, in the samples No. 25 and 26 of pH 6.0 and pH 6.5 in the carbonation step, the Ca recovery rate of the dried cake is as low as 37 to 49%. Further, as shown in FIG. 3, most of the recovered dried cakes of Samples No. 20 to No. 24 are calcium carbonate.

Figure 2022066111000004
Figure 2022066111000004

Claims (2)

塩素含有灰を塩酸スラリーにし、pH2.5~6.0で塩酸洗浄して該塩素含有灰を脱塩すると共に該塩素含有灰に含まれるカルシウムを溶出させる塩酸洗浄工程と、該塩酸洗浄の後に該塩酸スラリーを固液分離して塩酸洗浄濾液と洗浄灰を回収する第一固液分離工程と、該塩酸洗浄濾液に炭酸源を導入し、pH7.0~12.0に調整して該濾液に含まれるカルシウムを炭酸カルシウムにして固形化する炭酸化工程と、該炭酸カルシウムを含む固形分を回収する第二固液分離工程を有することを特徴とする塩素含有灰の脱塩とCa回収方法。
After the hydrochloric acid washing step of converting the chlorine-containing ash into a hydrochloric acid slurry and washing with hydrochloric acid at pH 2.5 to 6.0 to desalt the chlorine-containing ash and elution the calcium contained in the chlorine-containing ash, and after the hydrochloric acid washing. The first solid-liquid separation step of separating the hydrochloric acid slurry into solid and liquid to recover the hydrochloric acid washing filtrate and the washing ash, and introducing a carbon dioxide source into the hydrochloric acid washing filtrate to adjust the pH to 7.0 to 12.0 and adjusting the filtrate. A method for desalting chlorine-containing ash and recovering Ca, which comprises a carbonization step of converting calcium contained in calcium into calcium carbonate and solidifying it, and a second solid-liquid separation step of recovering the solid content containing the calcium carbonate. ..
上記炭酸化工程において、炭酸源としてアルカリ炭酸塩を用いて炭酸源と共にアルカリを導入し、あるいは炭酸源として二酸化炭素含有ガスを用いると共にアルカリを添加して、pH7.0~12.0に調整して炭酸カルシウムを生成させる請求項1に記載する塩素含有灰の脱塩とCa回収方法。






In the above carbonation step, an alkali carbonate is used as a carbonic acid source and an alkali is introduced together with the carbonic acid source, or a carbon dioxide-containing gas is used as a carbonic acid source and an alkali is added to adjust the pH to 7.0 to 12.0. The method for desalting chlorine-containing ash and recovering Ca according to claim 1, wherein carbonic acid is produced.






JP2020175049A 2020-10-17 2020-10-17 DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD Pending JP2022066111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020175049A JP2022066111A (en) 2020-10-17 2020-10-17 DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020175049A JP2022066111A (en) 2020-10-17 2020-10-17 DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD

Publications (1)

Publication Number Publication Date
JP2022066111A true JP2022066111A (en) 2022-04-28

Family

ID=81387565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020175049A Pending JP2022066111A (en) 2020-10-17 2020-10-17 DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD

Country Status (1)

Country Link
JP (1) JP2022066111A (en)

Similar Documents

Publication Publication Date Title
JP6252653B1 (en) Method and system for treating chlorine-containing ash
CN101309761A (en) Method of and apparatus for treating chlorine-containing waste
CN109534466B (en) Method for preparing water purifying agent containing polymerized aluminum chloride from aluminum ash
JP2006272168A (en) Chlorine and heavy metal containing waste treatment method
CN110304646A (en) A method of fluorine, chlorine, nitrogen component coproduction aluminium oxide concentrate are efficiently separated from aluminium ash
JP4174708B2 (en) Method for recovering and purifying calcium fluoride from a by-product mixed salt containing fluorine
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
CA2400854C (en) Method for utilising steelworks dust
JP2022066111A (en) DESALINATION OF CHLORINE-CONTAINING ASH AND Ca RECOVERING METHOD
JP4253203B2 (en) How to remove fluorine from gypsum
CN218798139U (en) Waste incineration fly ash and waste sulfuric acid co-processing and utilizing equipment
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP2003292350A (en) Method for treating cement kiln extracted gas
JP2022057081A (en) Method for desalinating chlorine-containing ash and recovering calcium
JP2003334510A (en) Chlorine removing treatment method for molten fly ash
KR950013314B1 (en) Retreatment method for sludge containing fluorine
JP3717869B2 (en) Waste stabilization treatment method and waste stabilization treatment product
JP2022057080A (en) Method for recovering desalinated washed ash of chlorine-containing ash
JP4525014B2 (en) By-product salt purification method, by-product salt and snow melting agent
JP2000167529A (en) Separation of water soluble component from exhaust gas dust or incineration ash
JP2023056767A (en) METHOD FOR DESALTING CHLORINE-CONTAINING ASH AND RECOVERING Ca
JPH01284381A (en) Treatment of fly ash
JP2005230655A (en) Dust treatment method
JP2008169424A (en) Method for treating substance containing heavy metals including zinc
JP4118495B2 (en) How to reuse mud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240430