JP4097562B2 - Purification method for heavy metal contaminated soil - Google Patents

Purification method for heavy metal contaminated soil Download PDF

Info

Publication number
JP4097562B2
JP4097562B2 JP2003135568A JP2003135568A JP4097562B2 JP 4097562 B2 JP4097562 B2 JP 4097562B2 JP 2003135568 A JP2003135568 A JP 2003135568A JP 2003135568 A JP2003135568 A JP 2003135568A JP 4097562 B2 JP4097562 B2 JP 4097562B2
Authority
JP
Japan
Prior art keywords
soil
liquid
separation
contaminated soil
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003135568A
Other languages
Japanese (ja)
Other versions
JP2004337695A (en
Inventor
暢 中田
裕志 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2003135568A priority Critical patent/JP4097562B2/en
Publication of JP2004337695A publication Critical patent/JP2004337695A/en
Application granted granted Critical
Publication of JP4097562B2 publication Critical patent/JP4097562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、重金属類を含んだ土壌の浄化処理方法に関するものである。さらに詳しくは、重金属類を含んだ土壌から重金属類を効率的に除去し、重金属類を分離回収する、土壌の浄化方法に関するものである。
【0002】
【従来の技術】
昨今、市街地再開発による調査の増加に伴い、工場跡地等の重金属汚染が判明する事例が増加している。平成14年の土壌汚染対策法の成立により、かかる土壌汚染に対する法制度が整備され、汚染の除去等の処置の事例が今後大幅に増加することが予測される。
【0003】
土壌の重金属汚染に対して、現在国内で行われている汚染対策は、不溶化処理、覆土工事、遮水工事など、周辺環境を汚染源から遮断する方法が一般的である。しかし、これらの方法は重金属類を現場に残したままであることから、環境の変化により再溶出して汚染を引き起こす危険性が残るために土地の資産価値が損なわれる可能性があるうえ、希少資源である重金属類の節約の観点からも好ましい方法とはいえない。
【0004】
上記の方法とは別の方法として、汚染土壌を掘削して清浄な土壌と入れ替え、該汚染土壌を産業廃棄物として処分する方法もある。しかし、近年最終処分場の逼迫が社会問題となっており、この方法も好ましいとはいえない。
【0005】
このような問題を解消するため、汚染土壌から汚染物を分離・除去して清浄な土壌へ戻す、土壌の浄化法の導入が検討されている。例えば、▲1▼汚染土壌の分級洗浄、▲2▼泡沫浮上法による土壌洗浄、▲3▼重金属汚染土壌の加熱処理技術、▲4▼水蒸気加熱法による汚染土壌浄化、▲5▼塩化揮発法、▲6▼電気泳動土壌修復技術、▲7▼電気泳動法による重金属汚染土壌の浄化、▲8▼電気浸透土壌修復技術などが知られている。(非特許文献1参照)
【0006】
これらの浄化法のうち、汚染土壌の分級洗浄法は、土壌を分級しながら水に溶けやすい汚染物質を溶解して取り除くとともに、金属が主として吸着されやすい微小粒子も同時に取り除くことによって、汚染金属が分離された土壌を取り出す方法である。しかし、この方法には、汚染重金属が吸着された微小粒子分の廃棄物処理が必要という問題点がある。
【0007】
泡沫浮上法による土壌洗浄法は、浮遊選鉱法ともいわれる技術で、疎水性表面を有する粒子をバブリングによって生じた泡沫に付着させて浮上分離する方法である。この方法は、疎水性表面を有する重金属の硫化物には効果的であるが、一般の土壌中に含まれる重金属含有粒子が疎水性表面を必ずしも有していないため、通常の浮遊選鉱では分離できない場合があるという問題点がある。硫化剤を併用して重金属を硫化物に変換させて分離する方法も考えられるが、硫化剤が高価であったり、土壌中に硫化剤が残留する可能性があるという問題がある。
【0008】
重金属汚染土壌の加熱処理技術は、重金属含有土壌に空気を通じながら1000℃程度に加熱して揮発しやすい金属を土壌から除去する方法である。この方法は、有機物との複合汚染土壌の土壌処理技術としては有効であるが、揮発する前に溶融しやすい重金属は処理できないこと、重金属を含んだ排ガスを処理する必要があること、加熱した土壌は元の土壌とはかなり性質が変化するため埋め戻しが困難であるなどの問題がある。
【0009】
水蒸気加熱法による汚染土壌浄化法は、土壌を加熱しながら加熱蒸気を吹き込んで金属を揮散させることにより土壌から金属を分離する技術である。この方法は、金属の分離効率に優れており、土壌を埋め戻しできる可能性も高い利点を有するが、加熱蒸気を供給する熱源が必要なこと、排ガスおよび凝縮水の処理が必要となること、揮発しにくい金属は分離できないなどの問題がある。
【0010】
塩化揮発法は、塩化カルシウム水溶液を土壌に添加し、重金属を塩化物にして沸点を低下させたのち、土壌を800〜1000℃に加熱して重金属を揮発分離する方法である。この方法も、重金属汚染処理の加熱処理技術や水蒸気加熱法による汚染土壌浄化の方法と同様に、排ガスの処理が必要であり、排ガスの処理に用いられる水の処理が必要となることや、加熱によって非意図的に有害物質が生成する恐れがあるなどの問題がある。
【0011】
電気泳動土壌修復技術は、土壌中の間隙に水を満たして直流電流を加えることにより、陰イオンの金属を陽極に移動させ、陽極部に濃縮された金属を回収する方法である。この方法によれば、原位置で抽出できるが、除去速度が速くないために時間がかかるという問題がある。また、土壌中に塩素イオンが大量に含まれる場合には、塩素ガスの発生が予想されるという問題もある。
【0012】
電気泳動法による重金属汚染土壌の浄化は、水を含んだ土壌に直流電流を流すことで、陰イオンは陽極に、陽イオンは陰極に移動するので、土壌中に挿入した電極付近に重金属を集めて除去する技術であり、電極を半透性膜で覆い、膜内に注入したEDTA溶液を循環することにより重金属を捕集する方法が報告されている。この方法も、電気泳動土壌修復技術の方法と同様に、処理に時間がかかる傾向があり、また、塩素イオンが大量に含まれる場合には塩素ガスの発生に留意しなければならないといった問題もある。
【0013】
電気浸透土壌修復技術は、地中に直流電流を流して電磁場を作り、土壌水を陽極から陰極へ移動させて、この流れとともに水溶性の金属を陽極から陰極に移動させて回収する方法である。この方法も、電気泳動土壌修復技術や電気泳動法による重金属汚染土壌の浄化方法と同様に処理時間が長くかかり、塩素イオンが土壌中に含まれる場合には塩素ガスの発生に留意する必要があること、水を供給する必要がある場合にはこの水の後処理も必要になるなどの問題がある。
【0014】
【非特許文献1】
「土壌・地下水に係る調査・対策指針運用基準」環境庁水質保全局編,1999年,p.51−53
【0015】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の課題を背景になされたもので、その目的は、土壌中の有害な重金属を、副生廃棄物を出すことなく効率的に分離・除去して、汚染土壌を修復する浄化方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明者らは、上記課題を達成するために鋭意検討を重ねた結果、
重金属類を含有する汚染土壌を浄化する方法において、該方法には下記(a)〜(e)の工程が存在することを特徴とする汚染土壌の浄化方法により達成できることが見いだされた。
(a)洗浄液を用いて汚染土壌中の金属成分を抽出する洗浄工程
(b)洗浄工程で得られた土壌が分散している液を土壌と土壌の粒径が100μm以下の細粒分を含有する液とに分離する分離工程
(c)分離工程で得られた土壌の粒径が100μm以下の細粒分を含有する分離液を凝集処理する凝集工程
(d)凝集工程で得られた凝集粒子が分散している液を固液分離し、固液分離された凝集粒子である凝集細粒分が(b)の分離工程に返送される再分離工程
(e)再分離工程で得られた分離液から重金属類を分離回収する工程
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明が浄化の対象する汚染土壌に含有される重金属類としては、例えば、カドミウム、銅、鉛、砒素、カルシウム、鉄、アルミニウムなどを挙げることができる。これらの重金属類の土壌中における存在形態は特に限定されないが、通常イオン、酸化物、水酸化物などの状態で含有されている場合が多い。
【0018】
本発明においては、先ず洗浄液を用いて上記の汚染土壌中の重金属成分を洗浄液中に抽出する。その際、該汚染土壌は、予め粉砕機等で粉砕して微粒子としてもよいし、そのまま用いてもよい。粉砕機は既存の粉砕機を用いればよく、例えば、高速回転式衝撃粉砕機、自生粉砕機、ボールミル等を挙げることができる。一方、洗浄液としては、重金属成分を溶解抽出できるものであれば特に限定されず、例えば酸水溶液、アルカリ水溶液、キレート剤溶液等、任意の洗浄液を用いることができる。中でも酸水溶液が好ましく、特に塩酸水溶液が好ましい。
【0019】
上記の洗浄工程で、汚染土壌中の重金属成分は洗浄液中に抽出されるが、この工程により得られた土壌が分散している液を、土壌と細粒分を含有する液とに分離する。ここで用いられる分離装置としては、通常の遠心濾過機、ドラムフィルター、ヤングフィルター、フィルタープレス、ベルトプレス、液体サイクロンなど、任意の分離装置を用いることができる。分離された固形分は、該固形分中に残る洗浄液中の重金属イオン等の重金属成分をさらに回収するため、例えば新たな洗浄液での再洗浄及び固液分離を繰り返し実施してもよい。このようにして重金属類の含有量が低減された土壌は、浄化土壌として排出することができる。
【0020】
なお、上記の分離工程では、該工程の処理能力を増加させるため、土壌の細粒分、好ましくは粒径が100μm以下の細粒分を液側に同伴させる必要がある。ここで細粒分を液側に同伴させる方式は任意であるが、例えば分離装置の濾布の目開きを大きくするなどの手段を例示することができる。
【0021】
次に、上記分離工程で分離された、重金属及び土壌細粒分を含有する分離液に、例えば凝集剤(PAC等)を添加して該細粒分を凝集させる。得られた凝集粒子が分散する分散液を、例えば沈降装置に送って所定時間静置することにより再分離する。ここで分離された凝集細粒分は、例えば前記(b)の分離工程に返送することにより、該工程の分離装置で固形分として分離され、浄化土壌として排出される。
【0022】
一方、再分離工程で凝集細粒分から分離された重金属を含む分離液は、公知の処理装置を用いて該分離液から重金属成分を分離除去して処分施設へ送り、回収された洗浄液は、例えば洗浄工程の洗浄液や、分離された固形分の再洗浄用の洗浄液として循環使用することができる。
【0023】
以下、本発明の一態様を模式的に表した図1を用いて具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。本発明においては、先ず重金属類を含有する土壌を、そのまま、あるいは粉砕機などを用いて微細な粒子となして、抽出装置(図中1)に送る。該抽出装置では、汚染土壌に洗浄液を添加した後に撹拌または振盪により、土壌粒子から重金属成分を抽出する。
【0024】
次いで、固液分離装置(図中2)にて固形分を分離する。その際、例えばフィルターの目開きを調整して、細粒分を液側に同伴させる。
【0025】
分離された固形分は、該固形分に残る残液中の重金属類イオンをさらに回収するため、固液分離装置(図中3)にて再洗浄および固液分離を繰り返し実施することが好ましい。該固液分離装置(図中3)からの洗浄液は、排液処理装置(図中6)に送られ、重金属が除去され、循環洗浄液として再使用される。再洗浄された、重金属が所望の含有量まで低減された土壌は、浄化土壌として排出される。
【0026】
固液分離装置(図中2)で分離された、重金属および細粒分を含む洗浄液は凝集装置(図中4)に送られる。該凝集装置では、凝集剤(PAC等)を添加して細粒分を凝集させ、沈降装置(図中5)に送られる。そこで所定時間静置し、沈降した凝集細粒分は固液分離装置(図中2)へ返送される。
【0027】
一方、沈降装置(図中5)で分離された重金属を含む洗浄液は、排液処理装置(図中6)で重金属成分が分離除去され、回収された洗浄液は、固液分離装置(図中3)の洗浄液として循環使用される。
【0028】
【発明の効果】
以上に説明した本発明によれば、土壌中の有害な重金属を効率よく、しかも、副生廃棄物を出すことなく分離・除去できるので、汚染土壌を浄化土壌に修復する方法として極めて有用である。
【図面の簡単な説明】
【図1】本発明実施の一態様を示したプロセスの概略図である。
【符号の説明】
1 抽出装置
2 固液分離装置
3 固液分離装置
4 凝集装置
5 沈降装置
6 排液処理装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying soil containing heavy metals. More specifically, the present invention relates to a soil purification method for efficiently removing heavy metals from soil containing heavy metals and separating and recovering heavy metals.
[0002]
[Prior art]
In recent years, with the increase in surveys due to urban redevelopment, there have been an increase in cases where heavy metal contamination is found in factory sites and the like. With the establishment of the Soil Contamination Countermeasures Law in 2002, a legal system for such soil contamination is established, and it is predicted that cases of measures such as removal of contamination will increase significantly in the future.
[0003]
In general, domestic pollution countermeasures against soil heavy metal contamination include methods such as insolubilization treatment, soil covering work, and water shielding work to block the surrounding environment from pollution sources. However, these methods leave heavy metals on-site, which may damage the asset value of the land due to the risk of re-elution due to environmental changes and causing pollution, and scarce resources. From the viewpoint of saving heavy metals, it is not a preferable method.
[0004]
As another method different from the above method, there is a method in which the contaminated soil is excavated and replaced with clean soil, and the contaminated soil is disposed as industrial waste. However, in recent years, the final disposal site has become a social problem, and this method is not preferable.
[0005]
In order to solve such problems, introduction of a soil remediation method that separates and removes contaminants from contaminated soil and returns them to clean soil is being considered. For example, (1) classified washing of contaminated soil, (2) soil washing by foam flotation method, (3) heat treatment technology of heavy metal contaminated soil, (4) contaminated soil purification by steam heating method, (5) chloride volatilization method, (6) Electrophoretic soil remediation technology, (7) Heavy metal contaminated soil purification by electrophoresis, (8) Electroosmotic soil remediation technology, etc. are known. (See Non-Patent Document 1)
[0006]
Among these purification methods, the classification cleaning method for contaminated soil dissolves and removes pollutants that are easily dissolved in water while classifying the soil, and simultaneously removes fine particles that are mainly adsorbed by metals, thereby removing contaminated metals. This is a method of taking out the separated soil. However, this method has a problem that it is necessary to dispose of a waste of minute particles on which contaminated heavy metals are adsorbed.
[0007]
The soil washing method by the foam flotation method is a technique called a flotation method, and is a method in which particles having a hydrophobic surface are attached to the foam generated by bubbling and floated and separated. This method is effective for heavy metal sulfides having a hydrophobic surface, but the heavy metal-containing particles contained in general soils do not necessarily have a hydrophobic surface and cannot be separated by ordinary flotation. There is a problem that there are cases. A method of separating heavy metals by converting them into sulfides in combination with a sulfiding agent is also conceivable, but there is a problem that the sulfiding agent may be expensive or the sulfiding agent may remain in the soil.
[0008]
The heat treatment technology for heavy metal-contaminated soil is a method for removing metals that are likely to volatilize by heating to about 1000 ° C. while passing air through the heavy metal-containing soil. This method is effective as a soil treatment technology for complex-contaminated soil with organic matter, but it cannot treat heavy metals that are easy to melt before volatilizing, it must treat exhaust gas containing heavy metals, heated soil Has a problem that it is difficult to backfill because its properties change considerably from the original soil.
[0009]
The contaminated soil purification method by the water vapor heating method is a technique for separating metal from soil by blowing heated steam and volatilizing the metal while heating the soil. This method has the advantage of excellent metal separation efficiency and high possibility of being able to backfill the soil, but requires a heat source that supplies heated steam, requires treatment of exhaust gas and condensed water, There is a problem that metals that are difficult to volatilize cannot be separated.
[0010]
The chlorinated volatilization method is a method in which an aqueous calcium chloride solution is added to soil, the heavy metal is converted into chloride to lower the boiling point, and then the soil is heated to 800 to 1000 ° C. to volatilize and separate the heavy metal. This method also requires the treatment of exhaust gas, like the heat treatment technology for heavy metal contamination treatment and the method of remediation of contaminated soil by the steam heating method. There is a problem that unintentionally harmful substances may be generated.
[0011]
The electrophoretic soil remediation technique is a method in which anionic metal is moved to an anode by filling a gap in the soil with water and a direct current is applied, and the metal concentrated in the anode portion is recovered. According to this method, extraction can be performed at the original position, but there is a problem that it takes time because the removal speed is not fast. In addition, when the soil contains a large amount of chlorine ions, there is a problem that generation of chlorine gas is expected.
[0012]
Purification of heavy metal-contaminated soils by electrophoresis is performed by flowing a direct current through soil that contains water, so that anions move to the anode and cations move to the cathode, so heavy metals are collected near the electrodes inserted in the soil. A technique for collecting heavy metals by covering an electrode with a semipermeable membrane and circulating an EDTA solution injected into the membrane has been reported. This method also has a problem that, like the method of electrophoretic soil repair technology, the treatment tends to take time, and when chlorine ions are contained in large quantities, attention must be paid to generation of chlorine gas. .
[0013]
Electroosmotic soil remediation technology is a method in which a direct current is passed through the ground to create an electromagnetic field, and soil water is moved from the anode to the cathode, and along with this flow, water-soluble metal is moved from the anode to the cathode and recovered. . This method also requires a long treatment time, like the electrophoretic soil remediation technology and the purification method of heavy metal contaminated soil by electrophoresis, and it is necessary to pay attention to the generation of chlorine gas when chlorine ions are contained in the soil. In addition, when it is necessary to supply water, there is a problem that post-treatment of this water is also required.
[0014]
[Non-Patent Document 1]
“Survey and Countermeasure Guidelines Operational Standards for Soil and Groundwater” edited by the Environment Agency Water Quality Conservation Bureau, 1999, p. 51-53
[0015]
[Problems to be solved by the invention]
The present invention has been made against the background of the problems of the prior art described above, and its purpose is to efficiently separate and remove harmful heavy metals in the soil without producing by-product waste, It is to provide a purification method for repairing soil.
[0016]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above problems, the present inventors have
In the method for purifying contaminated soil containing heavy metals, it has been found that this method can be achieved by a method for purifying contaminated soil characterized by the following steps (a) to (e).
(A) Washing step for extracting metal components in contaminated soil using a washing solution (b) A solution in which soil obtained in the washing step is dispersed contains fine particles with a soil particle size of 100 μm or less. (C) agglomeration step for aggregating the separation liquid containing fine particles having a particle size of 100 μm or less obtained in the separation step (d) agglomerated particles obtained in the agglomeration step The liquid in which the liquid is dispersed is subjected to solid-liquid separation, and the agglomerated fine particles, which are the agglomerated particles subjected to solid-liquid separation, are returned to the separation process of (b) (e) The separation obtained in the re-separation process Step of separating and recovering heavy metals from the liquid
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Examples of the heavy metals contained in the contaminated soil to be purified by the present invention include cadmium, copper, lead, arsenic, calcium, iron, aluminum and the like. Although the existence form in the soil of these heavy metals is not specifically limited, Usually, it contains in the state of an ion, an oxide, a hydroxide, etc. in many cases.
[0018]
In the present invention, first, the heavy metal component in the contaminated soil is extracted into the cleaning liquid using the cleaning liquid. At that time, the contaminated soil may be pulverized in advance by a pulverizer or the like to form fine particles, or may be used as it is. An existing pulverizer may be used as the pulverizer, and examples thereof include a high-speed rotary impact pulverizer, an autogenous pulverizer, and a ball mill. On the other hand, the cleaning liquid is not particularly limited as long as it can dissolve and extract heavy metal components, and any cleaning liquid such as an acid aqueous solution, an alkali aqueous solution, a chelating agent solution, and the like can be used. Among these, an aqueous acid solution is preferable, and an aqueous hydrochloric acid solution is particularly preferable.
[0019]
In the washing step, heavy metal components in the contaminated soil are extracted into the washing liquid, and the liquid in which the soil obtained by this step is dispersed is separated into the liquid containing the soil and fine particles. As a separation apparatus used here, arbitrary separation apparatuses, such as a normal centrifugal filter, a drum filter, a Young filter, a filter press, a belt press, and a liquid cyclone, can be used. The separated solid content may be repeatedly subjected to, for example, re-washing with a new washing liquid and solid-liquid separation in order to further recover heavy metal components such as heavy metal ions in the washing liquid remaining in the solid content. Thus, the soil in which the content of heavy metals is reduced can be discharged as purified soil.
[0020]
In the above separation step, in order to increase the processing capacity of the step, it is necessary to entrain fine particles of soil, preferably fine particles having a particle size of 100 μm or less, on the liquid side. Here, the method of bringing the fine particles into the liquid side is arbitrary, but examples thereof include, for example, increasing the opening of the filter cloth of the separation device.
[0021]
Next, for example, an aggregating agent (PAC or the like) is added to the separation liquid containing heavy metal and soil fine particles separated in the separation step, and the fine particles are aggregated. The obtained dispersion liquid in which the agglomerated particles are dispersed is re-separated by, for example, sending it to a sedimentation device and allowing it to stand for a predetermined time. The agglomerated fine particles separated here are, for example, returned to the separation step (b), separated as solids by the separation device in the step, and discharged as purified soil.
[0022]
On the other hand, the separation liquid containing heavy metals separated from the agglomerated fine particles in the re-separation step is separated and removed from the separation liquid using a known processing apparatus and sent to a disposal facility. It can be circulated and used as a cleaning liquid for the cleaning process or a cleaning liquid for re-cleaning the separated solid content.
[0023]
Hereinafter, although it demonstrates concretely using FIG. 1 which represented typically the one aspect | mode of this invention, this invention does not receive any limitation by this. In the present invention, first, soil containing heavy metals is converted into fine particles as it is or using a pulverizer or the like, and sent to an extraction device (1 in the figure). In this extraction apparatus, after adding a washing | cleaning liquid to contaminated soil, a heavy metal component is extracted from a soil particle by stirring or shaking.
[0024]
Subsequently, solid content is isolate | separated with a solid-liquid separator (2 in a figure). At that time, for example, the opening of the filter is adjusted to bring the fine particles into the liquid side.
[0025]
The separated solid content is preferably repeatedly washed and solid-liquid separated by a solid-liquid separation device (3 in the figure) in order to further recover heavy metal ions in the residual liquid remaining in the solid content. The cleaning liquid from the solid-liquid separator (3 in the figure) is sent to the drainage processing apparatus (6 in the figure), where heavy metals are removed and reused as a circulating cleaning liquid. The rewashed soil in which heavy metals are reduced to the desired content is discharged as purified soil.
[0026]
The cleaning liquid containing heavy metals and fine particles separated by the solid-liquid separator (2 in the figure) is sent to the aggregating apparatus (4 in the figure). In the aggregating apparatus, an aggregating agent (PAC or the like) is added to agglomerate the fine particles, which are sent to a sedimentation apparatus (5 in the figure). Therefore, the agglomerated fine particles that have been allowed to stand for a predetermined time and have settled are returned to the solid-liquid separator (2 in the figure).
[0027]
On the other hand, the cleaning liquid containing heavy metal separated by the sedimentation device (5 in the figure) is separated and removed by the heavy metal component by the drainage treatment apparatus (6 in the figure), and the recovered cleaning liquid is separated into the solid-liquid separation device (3 in the figure). ) Is used as a cleaning solution.
[0028]
【The invention's effect】
According to the present invention described above, harmful heavy metals in the soil can be efficiently separated and removed without producing by-product waste, which is extremely useful as a method for restoring contaminated soil to purified soil. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a process illustrating one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Extraction device 2 Solid-liquid separation device 3 Solid-liquid separation device 4 Coagulation device 5 Sedimentation device 6 Drainage processing device

Claims (3)

重金属類を含有する汚染土壌を浄化する方法において、該方法には下記(a)〜(e)の工程が存在することを特徴とする汚染土壌の浄化方法。
(a)洗浄液を用いて汚染土壌中の金属成分を抽出する洗浄工程
(b)洗浄工程で得られた土壌が分散している液を土壌と土壌の粒径が100μm以下の細粒分を含有する液とに分離する分離工程
(c)分離工程で得られた土壌の粒径が100μm以下の細粒分を含有する分離液を凝集処理する凝集工程
(d)凝集工程で得られた凝集粒子が分散している液を固液分離し、固液分離された凝集粒子である凝集細粒分が(b)の分離工程に返送される再分離工程
(e)再分離工程で得られた分離液から重金属類を分離回収する工程
In the method for purifying contaminated soil containing heavy metals, the method includes the following steps (a) to (e):
(A) Washing step for extracting metal components in contaminated soil using a washing solution (b) A solution in which soil obtained in the washing step is dispersed contains fine particles with a soil particle size of 100 μm or less. (C) agglomeration step for aggregating the separation liquid containing fine particles having a particle size of 100 μm or less obtained in the separation step (d) agglomerated particles obtained in the agglomeration step The liquid in which the liquid is dispersed is subjected to solid-liquid separation, and the agglomerated fine particles, which are the agglomerated particles subjected to solid-liquid separation, are returned to the separation process of (b) (e) The separation obtained in the re-separation process Process for separating and recovering heavy metals from liquid
(a)の工程に用いる洗浄液が、塩酸水溶液である請求項1記載の汚染土壌の浄化方法。  The method for purifying contaminated soil according to claim 1, wherein the cleaning liquid used in the step (a) is a hydrochloric acid aqueous solution. (d)の工程で分離された凝集粒子である凝集細粒分を(b)の工程の分散液に混合して固液分離する請求項1記載の汚染土壌の浄化方法。The method for purifying contaminated soil according to claim 1 , wherein the agglomerated fine particles, which are the agglomerated particles separated in the step (d), are mixed with the dispersion liquid in the step (b) and solid-liquid separated.
JP2003135568A 2003-05-14 2003-05-14 Purification method for heavy metal contaminated soil Expired - Fee Related JP4097562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135568A JP4097562B2 (en) 2003-05-14 2003-05-14 Purification method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135568A JP4097562B2 (en) 2003-05-14 2003-05-14 Purification method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2004337695A JP2004337695A (en) 2004-12-02
JP4097562B2 true JP4097562B2 (en) 2008-06-11

Family

ID=33525793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135568A Expired - Fee Related JP4097562B2 (en) 2003-05-14 2003-05-14 Purification method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4097562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823387B1 (en) * 2011-03-01 2011-11-24 株式会社山▲崎▼砂利商店 Material recycling system for producing sand products from mineral mixtures
CN104438305B (en) * 2013-09-20 2016-10-12 重庆文理学院 A kind of drum-type soil heavy metal elution system
JP6497650B2 (en) * 2014-02-24 2019-04-10 清水建設株式会社 Cleaning method for arsenic contaminated soil

Also Published As

Publication number Publication date
JP2004337695A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US5316223A (en) Method and apparatus for cleaning contaminated particulate material
JPWO2004037453A1 (en) Soil purification method
US5268128A (en) Method and apparatus for cleaning contaminated particulate material
EP0605136B1 (en) Method for remediating soil containing radioactive contaminants
JP2013019880A (en) System for treating contaminated soil containing radioactive material
JP4097562B2 (en) Purification method for heavy metal contaminated soil
JP2008036525A (en) System and method for producing cleaned soil
JP2006051440A (en) Purification method of heavy metal contaminated soil
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
JP2013019905A (en) Method for treating contaminated soil containing radioactive material
JP4351930B2 (en) How to clean contaminated soil
JP2019171304A (en) Waste muddy water volume reduction treatment apparatus and volume reduction treatment method
CN106563692B (en) Method for restoring heavy metal contaminated soil
JP6497650B2 (en) Cleaning method for arsenic contaminated soil
JP2012110803A (en) Method and apparatus for cleaning soil
US20050207954A1 (en) Soil cleaning process
JP3891372B2 (en) How to clean contaminated soil
JP6640028B2 (en) How to clean cesium-contaminated soil
JP2005279529A (en) Method for cleaning heavy metal polluted soil
JP2002371324A (en) Method for collecting metal component from soil
JP2005279530A (en) Method for cleaning lead polluted soil
JP2015171708A (en) Contaminated soil washing method and arsenic-contaminated soil washing method
JP3799736B2 (en) Purification method for heavy metal contaminated soil
JP2005279531A (en) Method for cleaning lead polluted soil
JP5747470B2 (en) Cleaning method for arsenic contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees