JP2015112580A - Method for purifying contaminated soil - Google Patents

Method for purifying contaminated soil Download PDF

Info

Publication number
JP2015112580A
JP2015112580A JP2013258409A JP2013258409A JP2015112580A JP 2015112580 A JP2015112580 A JP 2015112580A JP 2013258409 A JP2013258409 A JP 2013258409A JP 2013258409 A JP2013258409 A JP 2013258409A JP 2015112580 A JP2015112580 A JP 2015112580A
Authority
JP
Japan
Prior art keywords
soil
water
electrolytic
sieve
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013258409A
Other languages
Japanese (ja)
Other versions
JP6381102B2 (en
Inventor
中村 信一
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2013258409A priority Critical patent/JP6381102B2/en
Publication of JP2015112580A publication Critical patent/JP2015112580A/en
Application granted granted Critical
Publication of JP6381102B2 publication Critical patent/JP6381102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contaminated soil purification method that can separate contaminants from soil more effectively than conventional purification methods.SOLUTION: Acidic electrolytic water 1 is supplied from the anode 5 side of a diaphragm electrolysis mechanism, alkaline electrolytic water 2 is supplied from the cathode 8 side of the diaphragm electrolysis mechanism, and soil contaminated with harmful substances is treated with the acidic electrolytic water 1 and then treated with the alkaline electrolytic water 2. A process may be provided in which the treatment water is applied to a screen 12 and soil water passing through the screen 12 is acidified to precipitate soil.

Description

この発明は、重金属等や放射性セシウムなどの有害物質の汚染土壌の浄化方法に関するものである。   The present invention relates to a method for purifying soil contaminated with hazardous substances such as heavy metals and radioactive cesium.

従来、表面改質による放射能汚染土壌の除染・減容化方法及び装置に関する提案があった(特許文献1)。
すなわち、放射能汚染土壌の除染、減容化方法としては、水洗法、粒度選別法、浮遊選鉱法、化学処理法、生物処理法、或いは、これらの組み合わせが提案されているが、除染効果や顕在性の面から水洗法と粒度選別法の組み合わせが有望視されている。
水洗法は、基本的に比較的粗大な土壌の粒子に付着した放射性セシウムを水中に分離(剥離、洗浄、溶解)して回収し、凝集沈殿法で放射性セシウムを濃縮したケーキにして減容化する方式である。
また、水洗で容易に落ちない土壌物質に付着した放射性セシウムの剥離、洗浄を促進するために、特殊な構造の土壌洗浄装置(内筒と外筒を逆回転させて土壌粒子表面に付着した汚染物質を水中に剥離、洗浄する装置)や各種界面活性剤が提案されている。
しかし、これらの方法では、微細な粘度質の土壌に強固に結合(吸着)した放射性セシウムを選択的に除染、減容化できない欠点があった。微細な粘土質の放射性セシウムの除染、減容化には、浮遊選鉱法による汚染微細粘土質の分離が適していると考えられるが、放射性セシウムが結合(吸着)した微細粘土質の分離、回収に最適な浮遊選鉱法は、未だ、開発されていない。
一方、化学処理法は、処理コストが高く、多量の薬剤使用による二次汚染等の問題があり、生物処理法も処理時間が長くかかり、有機体と結合した放射性セシウムのみしか除染できず、除染率が低い等の欠点がある。
この従来提案が解決しようとする課題は、微細な粘度質の土壌に強固に結合(吸着)した放射性セシウムを選択的に除染することにある。
この従来提案に係る放射能汚染土壌の除染・減容化方法は、放射能汚染土壌を洗浄して粗粒土壌に付着している放射性セシウムを洗浄水の中に分離すると共に当該洗浄水及び粗粒土壌を回収し、スラリー状の細粒土壌及び微細な粘土質土壌を高速剪断ミキサーに導入して浮選性を向上させた後、細粒土壌を回収すると共に微細な粘土質土壌に結合している放射性セシウムを浮選機で分離回収し、前記洗浄水を凝集沈殿槽に導入して放射性セシウムを含んだ沈殿物と処理水に分離し、前記沈殿物と浮選機で回収した放射性セシウムが結合している粘土質スラリーとを脱水して一次保管容器に保管する、というものである。
しかし、土壌に結合している放射性セシウム(汚染物質)を清浄土壌から有効に分離できないという問題があった。
Conventionally, there has been a proposal regarding a decontamination / volume reduction method and apparatus for radioactively contaminated soil by surface modification (Patent Document 1).
That is, as a method for decontamination and volume reduction of radioactively contaminated soil, a water washing method, a particle size selection method, a flotation method, a chemical treatment method, a biological treatment method, or a combination thereof has been proposed. The combination of the water washing method and the particle size selection method is considered promising from the standpoint of effectiveness and manifestation.
In the water washing method, radioactive cesium adhering to particles of relatively coarse soil is basically separated (peeled, washed, dissolved) in water and collected, and the volume is reduced to a cake obtained by concentrating radioactive cesium by the coagulation sedimentation method. It is a method to do.
Also, in order to promote the separation and cleaning of radioactive cesium adhering to soil materials that do not easily fall off with water washing, a specially structured soil cleaning device (contamination adhered to the soil particle surface by rotating the inner and outer cylinders in reverse) Devices for peeling and cleaning substances in water) and various surfactants have been proposed.
However, these methods have a drawback that it is not possible to selectively decontaminate and reduce the volume of radioactive cesium that is firmly bonded (adsorbed) to the soil of fine viscosity. For the decontamination and volume reduction of fine clayey radioactive cesium, it is thought that separation of contaminated fine clayey by the flotation method is suitable, but separation of fine clayey with radioactive cesium bound (adsorbed), The optimum flotation method for recovery has not been developed yet.
On the other hand, the chemical treatment method has a high treatment cost and has problems such as secondary contamination due to the use of a large amount of chemicals. The biological treatment method also takes a long treatment time, and can only decontaminate radioactive cesium bound to an organism, There are disadvantages such as low decontamination rate.
The problem to be solved by this conventional proposal is to selectively decontaminate radioactive cesium that is firmly bonded (adsorbed) to fine-viscous soil.
The conventional method for decontaminating and reducing the volume of radioactively contaminated soil is to wash the radioactively contaminated soil and separate radioactive cesium adhering to the coarse-grained soil into the washed water, Coarse-grained soil is collected, and slurry-like fine-grained soil and fine clayey soil are introduced into a high-speed shear mixer to improve flotation, and then fine-grained soil is collected and combined with fine clayey soil. The radioactive cesium is separated and recovered with a flotation machine, the washing water is introduced into a coagulation sedimentation tank, separated into a precipitate containing radioactive cesium and treated water, and the radioactive substance recovered with the precipitate and the flotation machine The clay slurry to which cesium is bound is dehydrated and stored in a primary storage container.
However, there is a problem that radioactive cesium (contaminant) bound to soil cannot be effectively separated from clean soil.

特開2013−221819号公報JP 2013-221819 A

そこでこの発明は、土壌から汚染物質を従来よりも有効に分離できる汚染土壌の浄化方法を提供しようとするものである。   Accordingly, the present invention is intended to provide a method for purifying contaminated soil that can more effectively separate contaminants from soil than in the past.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の汚染土壌の浄化方法は、有隔膜電気分解機構の陽極側から電解酸性水を供給し、前記有隔膜電気分解機構の陰極側から電解アルカリ性水を供給すると共に、有害物質の汚染土壌を前記電解酸性水で処理した後、前記電解アルカリ性水で処理するようにしたことを特徴とする。
前記有害物質として、カドミウム、鉛、六価クロム、砒素、水銀、アルキル水銀、セレン、フッ素、ホウ素、シアンなど土壌汚染対策法にいう重金属等や、原発事故で降下したセシウム134、セシウム137などの放射性セシウムなどを例示することが出来る。
前記土壌は、濾過砂(例えば、シャモット)、ゼオライトなどのアミノケイ酸塩なども包含するものである。また、重金属等の汚染土壌水(泥水、下水)、放射性セシウム等の有害物質が降下した山の土が流入したダム水、原発事故のクーラント水(トリチウムや放射性セシウムなどの放射性物質で汚染されている)が漏れ滲出した汚染土壌(水)やその近辺の海水なども含むものである。
In order to solve the above problems, the present invention takes the following technical means.
(1) In the method for purifying contaminated soil according to the present invention, electrolytic acid water is supplied from the anode side of the diaphragm electrolysis mechanism, electrolytic alkaline water is supplied from the cathode side of the diaphragm electrolysis mechanism, and harmful substances are removed. The contaminated soil is treated with the electrolytic acid water and then treated with the electrolytic alkaline water.
Examples of the harmful substances include cadmium, lead, hexavalent chromium, arsenic, mercury, alkylmercury, selenium, fluorine, boron, and cyanogen, heavy metals used in the Soil Contamination Countermeasures Law, cesium 134, cesium 137, etc. A radioactive cesium etc. can be illustrated.
The soil includes filtered sand (for example, chamotte), aminosilicate such as zeolite, and the like. In addition, contaminated soil water such as heavy metals (muddy water, sewage), dam water into which mountain soils where harmful substances such as radioactive cesium have fallen, and coolant water from nuclear accidents (contaminated with radioactive substances such as tritium and radioactive cesium) This also includes contaminated soil (water) that leaked and exuded and seawater in the vicinity.

前記電解酸性水を供給するための電解質としてNaCl ,HCl,KCl, HNO3,H2O2などを例示することができ、電解アルカリ性水を供給するための電解質としてNaCl ,NaOHなどを例示することができる。有隔膜電気分解機構の陽極側では水素イオンが発生して酸性(水素イオン濃度がpH3以下になることが好ましい)となり、陰極側では水酸化物イオンが発生してアルカリ性(水素イオン濃度がpH12以上になることが好ましい)となる。 Examples of the electrolyte for supplying the electrolytic acid water include NaCl, HCl, KCl, HNO 3 and H 2 O 2 , and examples of the electrolyte for supplying the electrolytic alkaline water include NaCl and NaOH Can do. Hydrogen ions are generated on the anode side of the membrane electrolysis mechanism and become acidic (hydrogen ion concentration is preferably pH 3 or lower), and hydroxide ions are generated on the cathode side and alkaline (hydrogen ion concentration is pH 12 or higher). Is preferable).

この発明では、有害物質の汚染土壌を前記電解酸性水で処理するようにしたので、土壌中の酸化物(酸化鉄、酸化カルシウム、シリカなど)が水中に溶出することによって、土壌の表層を壊離していくこととなる。
また、その後電解アルカリ性水で処理するようにしたので、土壌の酸化物(酸化鉄、酸化カルシウム、アルミナ、シリカなど)が水中に溶出することによって、土壌の表層を壊離していくこととなる。
In this invention, since the soil contaminated with hazardous substances is treated with the electrolytic acid water, oxides (iron oxide, calcium oxide, silica, etc.) in the soil are eluted into the water, thereby destroying the surface layer of the soil. It will be separated.
Moreover, since it was made to treat with electrolytic alkaline water after that, the soil oxide (iron oxide, calcium oxide, alumina, silica, etc.) elutes in water, and the surface layer of soil will be destroyed.

そして、重金属や放射性物質などの有害物質は土壌の表層近傍に吸着しているので、この表層を壊離された土壌(内側部分)を清浄化することが出来る。
さらに、有隔膜電気分解機構の陽極側から電解酸性水を供給し、前記有隔膜電気分解機構の陰極側から電解アルカリ性水を供給するようにしたので、酸性の薬剤(塩酸など)や塩基性の薬剤(水酸化ナトリウムなど)を多量に消費することがない。
And since harmful substances, such as a heavy metal and a radioactive substance, adsorb | suck to the surface layer vicinity of soil, the soil (inner part) by which this surface layer was broken can be cleaned.
Furthermore, since electrolytic acidic water is supplied from the anode side of the diaphragm electrolysis mechanism and electrolytic alkaline water is supplied from the cathode side of the diaphragm electrolysis mechanism, acidic chemicals (hydrochloric acid, etc.) and basic Do not consume large amounts of drugs (such as sodium hydroxide).

その上、電気分解機構で電解水中に生成する活性酸素や・OHラジカルの作用により、土壌に対して強力な分解作用を及ぼすことが出来る。また、有隔膜電気分解機構の陽極側では塩化物イオンの共存下で塩素(Cl2,HOCl)が発生することとなり、この塩素により土壌中の有機物が分解されて減容化されることとなる。 In addition, it can exert a strong decomposition effect on the soil by the action of active oxygen and .OH radicals generated in the electrolyzed water by the electrolysis mechanism. In addition, chlorine (Cl 2 , HOCl) is generated in the coexistence of chloride ions on the anode side of the diaphragm electrolysis mechanism, and the organic matter in the soil is decomposed by this chlorine and the volume is reduced. .

そして、前記有害物質の汚染土壌(放射性物質による汚染土壌など)を最初に電解酸性水で処理するようにすると、有害物質(放射能濃度など)の低減の度合いに顕著な差異が認められる。   When the soil contaminated with harmful substances (such as soil contaminated with radioactive substances) is first treated with electrolytic acid water, a remarkable difference is observed in the degree of reduction of harmful substances (radioactive concentration etc.).

(2)前記処理水をふるいに掛け、ふるいを抜けた土壌水を酸性にして沈降させる工程を有するようにしてもよい。
このように構成すると、ふるいの上の残った表層を壊離された清浄土壌(内側部分)と、ふるいを抜けた後に酸性にして沈降させた土壌の表層の壊離汚染土壌とに分離することが出来る。そして、ふるいの上の残った表層を壊離された清浄土壌(内側部分)は、元の場所に埋め戻すことが出来る。
前記ふるいとして例えば100〜120μmの目のものを使用することが出来るが、土壌自体の性状や有害物質の汚染度などに応じて適宜のサイズのものを選択するとよい。
(2) You may make it have the process which sifts the said treated water and sifts the soil water which passed through the sieve to acidity.
When configured in this way, the remaining surface layer on the sieve is separated into clean soil (inner part) that has been crushed and the surface soil that has been clarified after passing through the sieve and separated into debris-contaminated soil. I can do it. And the clean soil (inner part) from which the remaining surface layer on the sieve was broken can be backfilled to the original place.
For example, a sieve having a size of 100 to 120 μm can be used as the sieve, but an appropriate size may be selected according to the properties of the soil itself, the degree of contamination of harmful substances, and the like.

この発明は上述のような構成であり、次の効果を有する。
表層を壊離された土壌(内側部分)を清浄化することが出来るので、土壌から汚染物質を従来よりも有効に分離できる汚染土壌の浄化方法を提供することが出来る。
The present invention is configured as described above and has the following effects.
Since the soil (inner part) whose surface layer has been separated can be cleaned, it is possible to provide a method for purifying contaminated soil that can more effectively separate contaminants from the soil than in the past.

この発明の汚染土壌の浄化方法の実施形態1を説明するシステム・フロー図。The system flow figure explaining Embodiment 1 of the purification method of the contaminated soil of this invention. この発明の汚染土壌の浄化方法の実施形態2を説明するシステム・フロー図。The system flow figure explaining Embodiment 2 of the purification method of the contaminated soil of this invention.

以下、この発明の実施の形態を説明する。
〔実施形態1〕
放射性セシウムで汚染された田畑の土壌(粒径200μm以下)について実施した。
図1に示すように、この実施形態の汚染土壌の浄化方法は、有隔膜電気分解機構の陽極側から電解酸性水1を供給し、前記有隔膜電気分解機構の陰極側から電解アルカリ性水2を供給するようにしている。前記有隔膜電気分解機構は高分子隔膜3を有し、直流電源装置4で駆動を行う。
陽極側では陽極5と電解酸性水槽6との間を循環するようにし、循環経路の途中から処理槽7へと電解酸性水1を供給するようにしている。また、陰極側では陰極8と電解アルカリ性水槽9との間を循環するようにし、循環経路の途中から処理槽7へと電解アルカリ性水2を供給するようにしている。
Embodiments of the present invention will be described below.
Embodiment 1
The field soil (particle size 200μm or less) contaminated with radioactive cesium was carried out.
As shown in FIG. 1, in the method for purifying contaminated soil of this embodiment, electrolytic acid water 1 is supplied from the anode side of the diaphragm electrolysis mechanism, and electrolytic alkaline water 2 is supplied from the cathode side of the diaphragm electrolysis mechanism. I am trying to supply. The diaphragm electrolysis mechanism has a polymer diaphragm 3 and is driven by a DC power supply device 4.
On the anode side, it is circulated between the anode 5 and the electrolytic acid water tank 6, and the electrolytic acid water 1 is supplied to the treatment tank 7 from the middle of the circulation path. Further, the cathode side is circulated between the cathode 8 and the electrolytic alkaline water tank 9, and the electrolytic alkaline water 2 is supplied to the treatment tank 7 from the middle of the circulation path.

前記電解酸性水1を供給するための電解質としてNaCl(NaCl水槽10から供給)とHClを使用し、電解アルカリ性水2を供給するための電解質としてNaClとNaOHを使用した。有隔膜電気分解機構の陽極5側では水素イオンが発生して酸性(水素イオン濃度がpH1〜2となるように設定)となり、陰極8側では水酸化物イオンが発生してアルカリ性(水素イオン濃度がpH12〜14となるように設定)となった。
そして、有害物質(原発事故で降下したセシウム134、セシウム137:放射性セシウム)の汚染土壌を前記電解酸性水1で処理した後、前記電解アルカリ性水2で処理するようにしている。具体的には、電解酸性水1による処理→電解アルカリ性水2による処理→電解酸性水1による処理→電解アルカリ性水2による処理工程を複数回交互に行った。この処理槽7内では、撹拌翼11をモータMにより回転駆動した。図中、Pはポンプを示す。
NaCl (supplied from the NaCl water tank 10) and HCl were used as the electrolyte for supplying the electrolytic acid water 1, and NaCl and NaOH were used as the electrolyte for supplying the electrolytic alkaline water 2. On the anode 5 side of the diaphragm electrolysis mechanism, hydrogen ions are generated and become acidic (hydrogen ion concentration is set to pH 1-2), and on the cathode 8 side, hydroxide ions are generated and alkaline (hydrogen ion concentration). Was set to pH 12-14).
Then, after treating the contaminated soil of harmful substances (cesium 134, cesium 137: radioactive cesium) dropped by the nuclear accident with the electrolytic acid water 1, the soil is treated with the electrolytic alkaline water 2. Specifically, the treatment with electrolytic acid water 1 → the treatment with electrolytic alkaline water 2 → the treatment with electrolytic acidic water 1 → the treatment step with electrolytic alkaline water 2 was alternately performed a plurality of times. In the treatment tank 7, the stirring blade 11 was rotated by a motor M. In the figure, P indicates a pump.

また、前記処理水を100μmのメッシュ網(縦スクリーン)のふるい12に掛け、ふるい12を抜けた土壌水を酸性にして沈降させる工程を有するようにした。前記ふるい12としてこの実施形態では100μmの目のものを使用したが、土壌自体の性状や有害物質の汚染度などに応じて適宜のサイズのものを選択するとよい。   Further, the treated water was passed through a sieve 12 of a 100 μm mesh screen (vertical screen), and the soil water that passed through the sieve 12 was acidified and settled. In this embodiment, the sieve 12 having a size of 100 μm is used as the sieve 12, but an appropriate size may be selected according to the properties of the soil itself, the degree of contamination with harmful substances, and the like.

次に、この実施形態の汚染土壌の浄化方法の使用状態を説明する。
この汚染土壌の浄化方法では、有害物質の汚染土壌を電解酸性水1で処理するようにしたので、土壌中の酸化物(酸化鉄、酸化カルシウム、シリカなど)が水中に溶出することによって、土壌の表層を壊離していくこととなる。
また、その後電解アルカリ性水2で処理するようにしたので、土壌の酸化物(酸化鉄、酸化カルシウム、アルミナ、シリカなど)が水中に溶出することによって、土壌の表層を壊離していくこととなる。
Next, the use state of the purification method of contaminated soil of this embodiment is demonstrated.
In this method of remediating contaminated soil, soil contaminated with hazardous substances is treated with electrolytic acid water 1, so that the soil oxides (iron oxide, calcium oxide, silica, etc.) are eluted in the water, The surface layer of will be destroyed.
Moreover, since it was made to process with the electrolysis alkaline water 2 after that, soil oxides (iron oxide, calcium oxide, an alumina, silica, etc.) will elute in water, and the surface layer of soil will be destroyed. .

そして、放射性セシウム(有害物質)は土壌の表層近傍に吸着しているので、この表層を壊離された土壌(内側部分)を清浄化することができ、土壌から汚染物質を従来よりも有効に分離できるという利点を有する。
さらに、有隔膜電気分解機構の陽極5側から電解酸性水1を供給し、前記有隔膜電気分解機構の陰極8側から電解アルカリ性水2を供給するようにしたので、酸性の薬剤(塩酸など)や塩基性の薬剤(水酸化ナトリウムなど)を多量に消費することがなく経済的である。
And since radioactive cesium (hazardous material) is adsorbed in the vicinity of the surface layer of the soil, it is possible to clean the soil (inner part) where the surface layer has been separated, and to make the contaminants from the soil more effective than before. It has the advantage that it can be separated.
Furthermore, since the electrolytic acid water 1 is supplied from the anode 5 side of the diaphragm electrolysis mechanism and the electrolytic alkaline water 2 is supplied from the cathode 8 side of the diaphragm electrolysis mechanism, an acidic chemical (hydrochloric acid, etc.) It is economical without consuming a large amount of basic drugs (such as sodium hydroxide).

その上、電気分解機構で電解水中に生成する活性酸素や・OHラジカルの作用により、土壌に対して強力な分解作用を及ぼすことが出来る。また、有隔膜電気分解機構の陽極5側では塩化物イオンの共存下で塩素(Cl2,HOCl)が発生することとなり、この塩素などにより土壌中の有機物(生態系由来のものを多く含有)が分解されて減容化されることとなる。 In addition, it can exert a strong decomposition effect on the soil by the action of active oxygen and .OH radicals generated in the electrolyzed water by the electrolysis mechanism. In addition, on the anode 5 side of the diaphragm electrolysis mechanism, chlorine (Cl 2 , HOCl) is generated in the presence of chloride ions, and this chlorine and other organic matter in the soil (contains many ecosystem-derived materials) Will be decomposed and reduced in volume.

さらに、前記処理水をふるい12に掛け、ふるい12を抜けた土壌水を酸性にして沈降させる工程を有するようにしたので、ふるい12の上の残った、表層を壊離された清浄土壌(内側部分)と、ふるい12を抜けた後に酸性にして沈降させた、土壌の表層の壊離汚染土壌とに分離することが出来る。壊離汚染土壌は濃縮汚泥沈殿槽13に送り、フィルタープレス14で脱水した。
一方、ふるい12の上の残った表層を壊離された清浄土壌(内側部分)は排出して、元の場所に埋め戻す(埋戻土壌15)。
Furthermore, since the process water is applied to the sieve 12 and the soil water that has passed through the sieve 12 is acidified and settled, the remaining soil on the sieve 12 and the clean soil (inside Part) and acidified and settled after passing through the sieve 12, it can be separated into soils that are soiled and devastated. The debris contaminated soil was sent to the concentrated sludge settling tank 13 and dehydrated by the filter press 14.
On the other hand, the clean soil (inner part) from which the remaining surface layer on the sieve 12 has been crushed is discharged and backfilled to the original place (backfill soil 15).

以上のように、放射性セシウム(有害物質)の汚染土壌を酸・アルカリ処理することにより、土壌の表層(放射性セシウムが固着)の小さな粒子の粘土・シルトが処理水中に壊離することとなり、この小さな粒子の粘土・シルト(放射性セシウムが固着)を土壌から分離することが出来る。
これにより、放射性セシウムが分離されて清浄になった土壌と、放射性セシウムが固着する小さな粒子の粘土(濃縮側)とに分画することができ、清浄化された土壌(除染側)は元の場所に埋め戻すことが出来る。
As mentioned above, by treating soil contaminated with radioactive cesium (hazardous substances) with acid / alkali, the clay / silt of small particles on the surface of the soil (the radioactive cesium is fixed) will be broken into the treated water. Small particles of clay and silt (fixed with radioactive cesium) can be separated from soil.
As a result, it can be divided into soil that has been cleaned by separation of radioactive cesium and small clay (concentration side) to which radioactive cesium adheres, and the purified soil (decontamination side) is the original Can be backfilled in place.

そして、前記有害物質の汚染土壌(放射性物質による汚染土壌など)を最初に電解酸性水1で処理するようにすると、有害物質(放射能濃度など)の低減の度合いに顕著な差異が認められる。   When the soil contaminated with the harmful substance (contaminated soil with the radioactive substance) is first treated with the electrolytic acid water 1, a remarkable difference is recognized in the degree of reduction of the harmful substance (radioactive concentration and the like).

〔実施形態2〕
次に、実施形態2を上記実施形態との相違点を中心に説明する。
上記実施形態では処理槽7中の汚染土壌水を撹拌翼11により撹拌するようにしたが、この実施形態では、図2に示すように所定角が傾いた円筒状のロータリー・スクリーン16(外周が100μmのメッシュ網のふるい12)を回転させることにより土壌水を撹拌するようにしている。
実施形態1の撹拌翼は土壌の投入量などによって過度な荷重が掛かると該翼が破損することがあり得るが、この実施形態のものではそのようなおそれが少ない。
[Embodiment 2]
Next, the second embodiment will be described focusing on the differences from the above embodiment.
In the above embodiment, the contaminated soil water in the treatment tank 7 is stirred by the stirring blade 11. However, in this embodiment, as shown in FIG. The soil water is agitated by rotating the sieve of mesh screen of 100μm12).
The agitating blade of the first embodiment may be damaged when an excessive load is applied depending on the amount of input soil, etc., but this embodiment is less likely to cause such a failure.

福島県の原発事故により放射能に汚染された田畑土壌(粒径1〜5mmサイズ)200gを採取した。この土壌(原土)の放射能濃度を測定すると、43,823Bq/kgであった。放射能濃度の計測には、EMFジャパン社製のEMI211型ガンマ線スペクトロメータを使用した。   200 g of field soil (particle size 1-5 mm) contaminated with radioactivity due to the nuclear accident in Fukushima Prefecture was collected. When the radioactivity concentration of this soil (raw soil) was measured, it was 43,823 Bq / kg. An EMI211 gamma-ray spectrometer manufactured by EMF Japan was used for measuring the radioactivity concentration.

(1回目)電解酸性水による処理
RO水2LにNaClを添加し塩濃度1%を調整し、35%塩酸を添加しpH2に調整し、電流12Aで直接電解して電解酸性水を生成した。電解後にpH6.7になったので、35%塩酸を添加しpH2に調整した。
前記電解酸性水400ccを添加し、土壌200gをジュ−サーで10分攪拌した。その後、残りの電解酸性水1.6Lを添加して土壌を沈殿させ、沈殿した土壌を回収した。
(2回目)電解アルカリ性水による処理
RO水2LにNaClを添加し塩濃度1%を調整し、48%苛性ソーダを添加してpH13に調整し、電流12Aで直接電解して電解アルカリ性水を作成した。
1回目処理で回収した土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(3,4,5回目)電解アルカリ性水による処理
2回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(6回目)電解酸性水による処理
5回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解酸性水により流水洗浄処理を行った。
(7回目)電解アルカリ性水による処理
6回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(8回目)電解酸性水による処理
7回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解酸性水により流水洗浄処理を行った。
(9回目)電解アルカリ性水による処理
8回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(10回目)電解酸性水による処理
9回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解酸性水により流水洗浄処理を行った。
10回目でふるいの上に残った土壌を絶乾して放射能濃度を計測すると、2,331Bq/kgに低減していた。また、全ての洗浄水を合流し、酸性にして土壌を沈殿させ、沈殿した土壌(ふるいを通り抜けた方)の放射能濃度を計測すると、57,611Bq/kgであった。一方、前記洗浄水(うわ水)自体の放射能濃度を計測すると、23Bq/kgであった。
(First time) Treatment with electrolytic acid water
NaCl was added to 2 L of RO water to adjust the salt concentration of 1%, 35% hydrochloric acid was added to adjust to pH 2, and electrolysis was directly performed at a current of 12 A to generate electrolytic acidic water. Since the pH reached 6.7 after electrolysis, 35% hydrochloric acid was added to adjust to pH2.
400 cc of the electrolytic acid water was added, and 200 g of soil was stirred with a juicer for 10 minutes. Thereafter, 1.6 L of the remaining electrolytic acid water was added to precipitate the soil, and the precipitated soil was recovered.
(Second time) Treatment with electrolytic alkaline water
NaCl was added to 2 L of RO water to adjust the salt concentration to 1%, 48% caustic soda was added to adjust the pH to 13, and electrolysis was directly performed at a current of 12 A to prepare electrolytic alkaline water.
The soil collected in the first treatment was washed with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(3rd, 4th, 5th) Treatment with electrolytic alkaline water The soil remaining on the sieve in the second time was washed with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(Sixth) Treatment with Electrolyzed Acidic Water The soil remaining on the sieve in the fifth time was washed with running water with 2 L of electrolyzed acidic water on a 100-120 μm sieve.
(Seventh) Treatment with electrolytic alkaline water The soil remaining on the sieve at the sixth time was washed with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(Eighth) Treatment with electrolytic acid water The soil remaining on the sieve at the seventh time was washed with 2 L of electrolytic acid water on a 100 to 120 μm sieve.
(9th) Treatment with Electrolytic Alkaline Water The soil remaining on the sieve at the 8th time was washed with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(10th) Treatment with Electrolyzed Acidic Water The soil remaining on the sieve at the 9th time was washed with running water with 2 L of electrolyzed acidic water on a 100-120 μm sieve.
The soil remaining on the sieve at the 10th time was completely dried and the radioactivity concentration was measured, and it was reduced to 2,331 Bq / kg. Moreover, when all the washing waters were merged and acidified, the soil was precipitated, and the radioactivity concentration of the precipitated soil (one passing through the sieve) was measured, it was 57,611 Bq / kg. On the other hand, when the radioactivity concentration of the washing water (wow water) itself was measured, it was 23 Bq / kg.

実施例1では、有害物質の汚染土壌(放射能汚染土壌)を最初に電解酸性水で処理したが、この実施例2では最初は電解アルカリ性水で処理した。
(1回目)電解アルカリ性水による処理
RO水2LにNaClを添加し塩濃度1%を調整し、48%苛性ソーダを添加してpH13に調整し、電流12Aで直接電解して電解アルカリ性水を作成した。
前記電解アルカリ性水400ccを添加し、土壌200gをジュ−サーで10分攪拌した。その後、残りの電解アルカリ性水1.6Lを添加して土壌を沈殿させ、沈殿した土壌を回収した。
(2,3,4回目)電解アルカリ性水による処理
1回目処理で回収した土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(5回目)電解酸性水による処理
RO水2LにNaClを添加し塩濃度1%を調整し、35%塩酸を添加しpH2に調整し、電流12Aで直接電解して電解酸性水を生成した。電解後にpH6.7になったので、35%塩酸を添加しpH2に調整した。
4回目でふるいの上に残った土壌を、電解酸性水2Lによる流水洗浄処理を行った。
(6回目)電解アルカリ性水による処理
5回目処理で回収した土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(7回目)電解酸性水による処理
6回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解酸性水により流水洗浄処理を行った。
(8回目)電解アルカリ性水による処理
7回目処理で回収した土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
(9回目)電解酸性水による処理
8回目でふるいの上に残った土壌を、100〜120μmのふるいの上で2Lの電解酸性水により流水洗浄処理を行った。
(10回目)電解アルカリ性水による処理
9回目処理で回収した土壌を、100〜120μmのふるいの上で2Lの電解アルカリ性水により流水洗浄処理を行った。
10回目でふるいの上に残った土壌を絶乾して放射能濃度を計測すると、3,200Bq/kgに低減していた。また、全ての洗浄水を合流し、酸性にして土壌を沈殿させ、沈殿した土壌(ふるいを通り抜けた方)の放射能濃度を計測すると、66,946Bq/kgであった。一方、前記洗浄水(うわ水)自体の放射能濃度を計測すると、21Bq/kgであった。
In Example 1, soil contaminated with harmful substances (radioactive contaminated soil) was first treated with electrolytic acid water, but in Example 2, it was first treated with electrolytic alkaline water.
(First time) Treatment with electrolytic alkaline water
NaCl was added to 2 L of RO water to adjust the salt concentration to 1%, 48% caustic soda was added to adjust the pH to 13, and electrolysis was directly performed at a current of 12 A to prepare electrolytic alkaline water.
400 cc of the electrolytic alkaline water was added, and 200 g of soil was stirred with a juicer for 10 minutes. Thereafter, the remaining 1.6 L of electrolytic alkaline water was added to precipitate the soil, and the precipitated soil was recovered.
(2, 3, 4th) Treatment with electrolytic alkaline water The soil collected in the first treatment was washed with running water with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(5th) Treatment with electrolytic acid water
NaCl was added to 2 L of RO water to adjust the salt concentration of 1%, 35% hydrochloric acid was added to adjust to pH 2, and electrolysis was directly performed at a current of 12 A to generate electrolytic acidic water. Since the pH reached 6.7 after electrolysis, 35% hydrochloric acid was added to adjust to pH2.
The soil remaining on the sieve at the fourth time was washed with running water with 2 L of electrolytic acid water.
(Sixth) Treatment with Electrolytic Alkaline Water The soil collected in the fifth treatment was washed with running water with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(Seventh) Treatment with Electrolyzed Acidic Water The soil remaining on the sieve at the sixth time was washed with running water with 2 L of electrolyzed acidic water on a 100-120 μm sieve.
(Eighth) Treatment with Electrolytic Alkaline Water The soil collected in the seventh treatment was washed with running water with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
(9th) Treatment with Electrolyzed Acidic Water The soil remaining on the sieve at the 8th time was washed with running water with 2 L of electrolyzed acidic water on a 100-120 μm sieve.
(10th) Treatment with Electrolytic Alkaline Water The soil collected in the 9th treatment was washed with 2 L of electrolytic alkaline water on a 100-120 μm sieve.
The soil remaining on the sieve at the 10th time was completely dried and the radioactivity concentration was measured, and it was reduced to 3,200 Bq / kg. Moreover, when all the washing waters were merged and acidified, the soil was precipitated, and the radioactivity concentration of the precipitated soil (one passing through the sieve) was measured, it was 66,946 Bq / kg. On the other hand, when the radioactivity concentration of the washing water (wow water) itself was measured, it was 21 Bq / kg.

(評価)
これらの結果を対比すると、43,823Bq/kgあった放射能汚染土壌(原土)は、最初に電解酸性水で処理していない実施例2ではふるいの上の土壌は3,200Bq/kgまで低減したのに対し、最初に電解酸性水で処理した実施例1ではふるいの上の土壌は2,331Bq/kg(実施例2の3,200Bq/kgに対してさらに30%弱減)まで低減した。
すなわち、原土の44,000Bq/kg弱をいずれも3,000Bq/kg程度まで低減することができ優れた効果を確認できたが、最初に電解酸性水で処理するか否かで、放射能濃度(有害物質)の低減の度合いに顕著な差異(30%弱程度)が認められた。
(Evaluation)
Comparing these results, 43,823 Bq / kg of radioactively contaminated soil (raw soil) was reduced to 3,200 Bq / kg of soil on the sieve in Example 2 that was not initially treated with electrolytic acid water. On the other hand, in Example 1 which was first treated with electrolytic acid water, the soil on the sieve was reduced to 2,331 Bq / kg (an additional 30% decrease from 3,200 Bq / kg in Example 2).
In other words, it was possible to reduce all of the raw soil to less than 44,000 Bq / kg to about 3,000 Bq / kg, confirming excellent effects. However, depending on whether or not it is first treated with electrolytic acid water, the radioactivity concentration ( There was a significant difference (less than 30%) in the degree of reduction of harmful substances.

土壌から汚染物質を従来よりも有効に分離できることによって、種々の有害物質の汚染土壌の浄化の用途に適用することができる。   Since the contaminants can be separated from the soil more effectively than before, it can be applied to the purification of soil contaminated with various harmful substances.

1 電解酸性水
2 電解アルカリ性水
5 陽極
8 陰極
12 ふるい
1 Electrolytic acid water 2 Electrolytic alkaline water 5 Anode 8 Cathode
12 Sieve

Claims (2)

有隔膜電気分解機構の陽極側から電解酸性水を供給し、前記有隔膜電気分解機構の陰極側から電解アルカリ性水を供給すると共に、有害物質の汚染土壌を前記電解酸性水で処理した後、前記電解アルカリ性水で処理するようにしたことを特徴とする汚染土壌の浄化方法。   Supplying electrolytic acidic water from the anode side of the diaphragm electrolysis mechanism, supplying electrolytic alkaline water from the cathode side of the diaphragm electrolysis mechanism, and treating contaminated soil of harmful substances with the electrolytic acid water, A method for purifying contaminated soil, characterized by being treated with electrolytic alkaline water. 前記処理水をふるいに掛け、ふるいを抜けた土壌水を酸性にして沈降させる工程を有するようにした請求項1記載の汚染土壌の浄化方法。   2. The method for purifying contaminated soil according to claim 1, further comprising a step of sieving the treated water to make the soil water passed through the screen acidic and settling.
JP2013258409A 2013-12-13 2013-12-13 Purification method for contaminated soil Active JP6381102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258409A JP6381102B2 (en) 2013-12-13 2013-12-13 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258409A JP6381102B2 (en) 2013-12-13 2013-12-13 Purification method for contaminated soil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017212978A Division JP2018058071A (en) 2017-11-02 2017-11-02 Method for purifying contaminated soil

Publications (2)

Publication Number Publication Date
JP2015112580A true JP2015112580A (en) 2015-06-22
JP6381102B2 JP6381102B2 (en) 2018-08-29

Family

ID=53526899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258409A Active JP6381102B2 (en) 2013-12-13 2013-12-13 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP6381102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil
JP2019056520A (en) * 2017-09-21 2019-04-11 株式会社オメガ Liquid treatment device and method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273584A (en) * 1993-03-24 1994-09-30 Toyo Eng Corp Elimination method for radioactive ruthenium compound
JPH11197495A (en) * 1998-01-16 1999-07-27 Canon Inc Method for cleaning medium containing pollutant, device used therefor and method for extracting pollutant contained in medium
JP2002326081A (en) * 2001-03-01 2002-11-12 Dowa Mining Co Ltd Method for making contaminated soil harmless
JP2003061610A (en) * 2001-08-21 2003-03-04 Honda Motor Co Ltd Sterilization method and sterilization device each using electrolytic water
JP2006051440A (en) * 2004-08-11 2006-02-23 Jfe Mineral Co Ltd Purification method of heavy metal contaminated soil
JP2006326434A (en) * 2005-05-24 2006-12-07 Eco Techno:Kk Polluted soil cleaning method
JP2012024702A (en) * 2010-07-23 2012-02-09 Omega:Kk Method of cleaning heavy metals or the like in soil
JP2012030198A (en) * 2010-08-03 2012-02-16 Omega:Kk Reattachment prevention mechanism to soil, such as heavy metal
JP2012110803A (en) * 2010-11-22 2012-06-14 Shimizu Corp Method and apparatus for cleaning soil
JP2013088241A (en) * 2011-10-17 2013-05-13 Gokatsude Kazuhisa Decontamination method and vehicle for decontamination
JP2013103206A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial Science & Technology Method for cleaning polluted soil
JP2013124898A (en) * 2011-12-14 2013-06-24 Zenitaka Corp Volume reduction method of cesium containing soil using power processing agent, volume reduction processing system for cesium containing soil and power processing agent for cesium removal
JP2013124960A (en) * 2011-12-15 2013-06-24 Shimizu Corp Treatment method of cesium-contaminated soil
JP2013224918A (en) * 2012-03-21 2013-10-31 Mitsubishi Heavy Ind Ltd Device and method for treating contaminants
JP2014134403A (en) * 2013-01-08 2014-07-24 Masaharu Sato Method for decontaminating cesium contamination

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273584A (en) * 1993-03-24 1994-09-30 Toyo Eng Corp Elimination method for radioactive ruthenium compound
JPH11197495A (en) * 1998-01-16 1999-07-27 Canon Inc Method for cleaning medium containing pollutant, device used therefor and method for extracting pollutant contained in medium
JP2002326081A (en) * 2001-03-01 2002-11-12 Dowa Mining Co Ltd Method for making contaminated soil harmless
JP2003061610A (en) * 2001-08-21 2003-03-04 Honda Motor Co Ltd Sterilization method and sterilization device each using electrolytic water
JP2006051440A (en) * 2004-08-11 2006-02-23 Jfe Mineral Co Ltd Purification method of heavy metal contaminated soil
JP2006326434A (en) * 2005-05-24 2006-12-07 Eco Techno:Kk Polluted soil cleaning method
JP2012024702A (en) * 2010-07-23 2012-02-09 Omega:Kk Method of cleaning heavy metals or the like in soil
JP2012030198A (en) * 2010-08-03 2012-02-16 Omega:Kk Reattachment prevention mechanism to soil, such as heavy metal
JP2012110803A (en) * 2010-11-22 2012-06-14 Shimizu Corp Method and apparatus for cleaning soil
JP2013088241A (en) * 2011-10-17 2013-05-13 Gokatsude Kazuhisa Decontamination method and vehicle for decontamination
JP2013103206A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial Science & Technology Method for cleaning polluted soil
JP2013124898A (en) * 2011-12-14 2013-06-24 Zenitaka Corp Volume reduction method of cesium containing soil using power processing agent, volume reduction processing system for cesium containing soil and power processing agent for cesium removal
JP2013124960A (en) * 2011-12-15 2013-06-24 Shimizu Corp Treatment method of cesium-contaminated soil
JP2013224918A (en) * 2012-03-21 2013-10-31 Mitsubishi Heavy Ind Ltd Device and method for treating contaminants
JP2014134403A (en) * 2013-01-08 2014-07-24 Masaharu Sato Method for decontaminating cesium contamination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil
JP2019056520A (en) * 2017-09-21 2019-04-11 株式会社オメガ Liquid treatment device and method

Also Published As

Publication number Publication date
JP6381102B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP4907950B2 (en) Method and apparatus for removing metal from waste water
CN110143774B (en) Sea sand purification system
JP5376683B2 (en) How to prevent calcium scale
EP2444377A1 (en) NORM (Naturally Occurring Radioactive Material) removal from frac water
JP2013178222A (en) Decontamination device and decontamination method of wood contaminated with radioactive material
CN108579669A (en) For the regenerated regenerative agent of heavy-metal contaminated soil ring waste and preparation method and application
JP5267355B2 (en) Method and apparatus for removing and collecting thallium from waste water
JP6381102B2 (en) Purification method for contaminated soil
JP2008246273A (en) Washing treatment system for soil contaminated with dioxins and the like
JP2013019880A (en) System for treating contaminated soil containing radioactive material
JP2008076054A (en) Method and device for treating waste liquid containing radionuclide
JP2015031661A (en) Method for cleaning incineration fly ash
JP2018058071A (en) Method for purifying contaminated soil
JP2013019905A (en) Method for treating contaminated soil containing radioactive material
JP2014182069A (en) Method and apparatus for removing inorganic particle from contaminated object including inorganic particle
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
KR101725258B1 (en) High efficiency electrokinetic treatment method for uranium contaminated soil using the ion-exchange resins
JP2005238102A (en) Method for cleaning contaminated soil
JP5651755B1 (en) Incineration fly ash cleaning method
KR20180079539A (en) Washing method for uranium-contaminated materials
JP2014133188A (en) Water treatment method and water treatment apparatus
JP6770821B2 (en) How to purify contaminated soil
JP2014010144A (en) Method for purifying water containing radioactive cesium
WO2013021475A1 (en) Method for preventing calcium scale
JP2014163841A (en) Sewage sludge incineration ash processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170419

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R150 Certificate of patent or registration of utility model

Ref document number: 6381102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250