JP2017185423A - Method for cleaning contaminated soil - Google Patents

Method for cleaning contaminated soil Download PDF

Info

Publication number
JP2017185423A
JP2017185423A JP2016074298A JP2016074298A JP2017185423A JP 2017185423 A JP2017185423 A JP 2017185423A JP 2016074298 A JP2016074298 A JP 2016074298A JP 2016074298 A JP2016074298 A JP 2016074298A JP 2017185423 A JP2017185423 A JP 2017185423A
Authority
JP
Japan
Prior art keywords
contaminated soil
water
harmful substances
clay
silt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074298A
Other languages
Japanese (ja)
Other versions
JP6770821B2 (en
Inventor
中村 信一
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2016074298A priority Critical patent/JP6770821B2/en
Publication of JP2017185423A publication Critical patent/JP2017185423A/en
Application granted granted Critical
Publication of JP6770821B2 publication Critical patent/JP6770821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning contaminated soil, which can separate a contaminant from the soil concretely and effectively.SOLUTION: The method for cleaning contaminated soil comprises: supplying electrolytic strong acid water 3 and electrolytic strong alkaline water 4 in this order to soil 1 contaminated by harmful substances and, thereby, transferring at least a portion of clay and silt, to which the harmful substances are adsorbed, into the electrolytic strong acid water 3 and/or the electrolytic strong alkaline water 4 by peeling the clay and silt from contaminated soil 1; and separating the electrolytic strong acid water 3 and/or the electrolytic strong alkaline water 4, into which the clay and silt having the harmful substances adsorbed are transferred, from sand by means of a classifying mechanism 6.SELECTED DRAWING: Figure 1

Description

この発明は、放射性セシウムや重金属類その他の有害物質に汚染された土壌の浄化方法に関するものである。   The present invention relates to a method for purifying soil contaminated with radioactive cesium, heavy metals and other harmful substances.

従来、放射能汚染土壌の処理方法に関する提案があった(特許文献1)。
すなわち、原子力発電所等の放射線管理区域内で発生した放射性物質で汚染された廃棄物は、汚染レベルに関係なく全て放射性廃棄物に区分されて管理されている。この様に放射線管理区域内で発生した廃棄物は放射性廃棄物として管理され、最終的には所定の処理を施した後に放射性廃棄物の処分施設に埋設処分される。この埋設処分(最終処分)により一連の処理・処分が完了する。
放射性廃棄物は、通常はセメントなどにより固形化処理されて、上述の最終処分に供されるのが一般的である。
ところで、福島第一原子力発電所の事故では、発電所敷地外の周辺で大量の汚染土壌等が発生することになった。このように、発電所敷地外で発生した汚染土壌等は、除染作業により収集して仮置場ないしは中間貯蔵施設にて貯蔵するとともに、適切な処理を行って約30年間の貯蔵の後に最終的な処分に供されることになっている。
汚染土壌等は具体的には、建物などの除染や地表土を数センチ除去するなどの除染作業を通して集められ、フレコンパックなどに充填されて仮置き場に集積され、最大3年間仮置き場にて貯蔵保管される。その後、汚染土壌等は中間になっている。
環境省は、福島第一原子力発電所の事故による除染に伴って発生する汚染土壌等の量を、福島県内より約2,800万m3、その他の地域より約1,300万m3の合計約4,100万m3と推定している。この量は、東京ドーム約34杯分の量に相当し、非常に大量な量である。これらの多量の発生汚染土壌等は仮置き場にて約3年間保管された後に、中間貯蔵施設にて30年間保管しその後最終処分に供される。
中間貯蔵施設は、処理設備が併設されて汚染土壌等の処理が行われる計画となっている。福島県内で発生する2,800万m3の土壌を深さ10mのピットにて保管するとなれば、それだけで約2km×2kmの敷地が必要となる。
このような大量の汚染土壌を全量最終処分に供することは最終処分コスト及び最終処分場の確保などの観点より、大きな課題となっている。このため、これら大量の汚染土壌を分別や除染等の処理を行い各放射能濃度に応じて再利用も含めて適切に処置することが求められている。
ところで、発電所敷地外で発生する汚染土壌の物量は発電所敷地内で発生する汚染土壌の物量よりはるかに多い。そのため、これら汚染土壌を除染するには莫大な費用が発生してしまうという課題がある。したがって、発電所敷地外で発生した汚染土壌の除染は効率良く行い、低コストで除染を行うことが極めて重要である。
そこで従来提案の目的は、原子力発電所事故等により原子力発電所外周辺地の土壌や草木等が放射能で汚染され場合の管理および処理・処分を合理的に行うことができる放射能汚染土壌の処理方法を提供することにある。
上記課題を解決するために従来提案は、原子力発電所等の放射線管理区域外における放射能汚染土壌の処理方法において、前記放射能汚染土壌を汚染レベルごとに分別する工程と、分別された前記汚染レベルに応じて放射能濃度を低減する為の処理ないしは処分を施す工程とを有するというものである。
しかし、この提案では土壌から汚染物質を具体的に有効に分離することは出来ないという問題があった。
Conventionally, there has been a proposal regarding a method for treating radioactively contaminated soil (Patent Document 1).
In other words, wastes contaminated with radioactive materials generated in radiation control areas such as nuclear power plants are all classified and managed as radioactive wastes regardless of the contamination level. In this way, the waste generated in the radiation control area is managed as radioactive waste, and finally subjected to a predetermined treatment and then buried in a radioactive waste disposal facility. A series of processing and disposal is completed by this burying disposal (final disposal).
In general, radioactive waste is usually solidified with cement or the like and subjected to the above-mentioned final disposal.
By the way, in the accident at the Fukushima Daiichi nuclear power plant, a large amount of contaminated soil was generated around the power plant site. In this way, contaminated soil generated outside the power plant site is collected by decontamination work and stored in a temporary storage site or intermediate storage facility, and after appropriate storage, it is finally stored after about 30 years of storage. To be disposed of.
Specifically, contaminated soil, etc. is collected through decontamination work such as decontamination of buildings and removal of several centimeters of surface soil, filled in flexible container packs, etc., and accumulated in temporary storage, for up to 3 years. Stored and stored. After that, the contaminated soil is in the middle.
The Ministry of the Environment has a total amount of about 28 million m3 from the Fukushima prefecture and about 13 million m3 from other areas, resulting from decontamination due to the accident at the Fukushima Daiichi nuclear power plant. It is estimated to be 41 million m3. This amount corresponds to the amount of about 34 cups of Tokyo Dome and is a very large amount. These large amounts of contaminated soil, etc. are stored in a temporary storage area for about 3 years, then stored in an intermediate storage facility for 30 years, and then subjected to final disposal.
The intermediate storage facility is planned to be treated with contaminated soil with processing equipment. If 28 million m3 of soil generated in Fukushima Prefecture is stored in a pit with a depth of 10 m, a site of about 2 km x 2 km will be required.
Providing all such a large amount of contaminated soil for final disposal is a major issue from the viewpoint of final disposal costs and securing a final disposal site. For this reason, it is required to treat such a large amount of contaminated soil appropriately, including recycling, depending on each radioactivity concentration by processing such as separation and decontamination.
By the way, the amount of contaminated soil generated outside the power plant site is much larger than the amount of contaminated soil generated inside the power plant site. Therefore, there is a problem that enormous costs are required to decontaminate these contaminated soils. Therefore, it is very important to decontaminate contaminated soil generated outside the power plant site efficiently and at low cost.
Therefore, the purpose of the conventional proposal is to create radioactively contaminated soil that can be reasonably managed, treated and disposed of when soil and vegetation around the nuclear power plant are contaminated with radiation due to an accident at a nuclear power plant. It is to provide a processing method.
In order to solve the above-mentioned problem, the conventional proposal is a method for treating radioactively contaminated soil outside a radiation control area such as a nuclear power plant, in which the radioactively contaminated soil is separated according to contamination level, and the separated contamination And a process for reducing or treating the radioactive concentration according to the level.
However, this proposal has a problem that it cannot specifically and effectively separate pollutants from the soil.

特開2014-137253号公報Japanese Patent Laid-Open No. 2014-137253

そこでこの発明は、土壌から汚染物質を具体的に有効に分離することができる汚染土壌の浄化方法を提供しようとするものである。   Therefore, the present invention intends to provide a method for purifying contaminated soil that can specifically and effectively separate contaminants from soil.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の汚染土壌の浄化方法は、有害物質による汚染土壌に電解強酸性水、電解強アルカリ性水の順で及ぼすことにより、前記有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌から剥離させて電解強酸性水又は/及び電解強アルカリ性水に移行せしめると共に、前記有害物質が収着した粘土・シルトが移行した電解強酸性水又は/及び電解強アルカリ性水を、分級機構により砂から分離するようにしたことを特徴とする。
In order to solve the above problems, the present invention takes the following technical means.
(1) In the method for purifying contaminated soil according to the present invention, at least a part of the clay and silt sorbed with the harmful substances is applied to the contaminated soil with harmful substances in the order of electrolytically strong acidic water and electrolytically strong alkaline water. Separation from contaminated soil and transfer to electrolytically strong acidic water and / or electrolytically strong alkaline water, and classification mechanism of electrolytically strong acidic water and / or electrolytically strong alkaline water to which clay and silt sorbed by the harmful substances have been transferred It is characterized in that it is separated from the sand.

この汚染土壌の浄化方法は、有害物質による汚染土壌に電解強酸性水、電解強アルカリ性水の順で及ぼすこととしているので、有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌から剥離させることが出来る。
また、有害物質による汚染土壌に電解強酸性水、電解強アルカリ性水の順で及ぼすようにしたので、汚染土壌の環境のpHを急激に変動させることになり、粘土・シルトの荷電状態(土壌粒子のゼータポテンシャル)を変化させて粘土・シルトの水中への分散をし易くすることが出来る。
ここで、前記有害物質として、原発事故で降下したセシウム134、セシウム137などの放射性セシウムや、カドミウム、鉛、六価クロムなどの重金属類、PCBやダイオキシンなどの有機物を例示することが出来る。
前記電解強酸性水や電解強アルカリ性水は、有隔膜の電気分解機構により生成させることが出来る。具体的には、例えば有隔膜の陽極側に所定濃度の食塩水(0.5〜20%等)を流すと共に、同陰極側に水を流すことが出来る。
前記電解強酸性水の水素イオン濃度は例えばpH3以下が好ましく、前記電解強アルカリ性水の水素イオン濃度は例えばpH12以上が好ましい。前記電解強酸性水には、例えば電解生成塩素(Cl2、HOCl)が含まれることになる。なお、電解強酸性水と電解強アルカリ性水の酸・アルカリの強度は、汚染土壌に及ぼす時点で該当していたら足り、その後の経過は問わないものである。
前記汚染土壌に電解強酸性水、電解強アルカリ性水の順で及ぼす態様として、汚染土壌に電解強酸性水と電解強アルカリ性水を交互に及ぼすことを例示することが出来る。また、最初に汚染土壌を電解強酸性水に浸漬しておいて、次に前記汚染土壌に電解強アルカリ性水を及ぼすようにすることも出来る。
前記汚染土壌に電解強酸性水と電解強アルカリ性水を交互に及ぼす態様として、該土壌にかけ流したりシャワー状に噴霧したり浸漬したりすることを例示できる。
This method of remediating contaminated soil is intended to affect the soil contaminated with harmful substances in the order of electrolytically strongly acidic water and electrolytically strongly alkaline water, so that at least a part of the clay and silt sorbed with the harmful substances is peeled from the contaminated soil. It can be made.
In addition, since it has been applied to the soil contaminated with harmful substances in the order of electrolytically strongly acidic water and electrolytically strongly alkaline water, the pH of the contaminated soil's environment is rapidly changed, and the charged state of the clay and silt (soil particles) The zeta potential can be changed to facilitate dispersion of clay and silt in water.
Here, examples of the harmful substances include radioactive cesium such as cesium 134 and cesium 137 that have fallen in the nuclear accident, heavy metals such as cadmium, lead, and hexavalent chromium, and organic substances such as PCB and dioxin.
The electrolytically strong acidic water and the electrolytically strong alkaline water can be generated by an electrolysis mechanism of a diaphragm. Specifically, for example, a predetermined concentration of saline (0.5 to 20% or the like) can be flowed to the anode side of the diaphragm, and water can be flowed to the cathode side.
The hydrogen ion concentration of the electrolytically strong acidic water is preferably, for example, pH 3 or lower, and the hydrogen ion concentration of the electrolytically strong alkaline water is, for example, preferably pH 12 or higher. The electrolytically strongly acidic water contains, for example, electrolytically generated chlorine (Cl 2 , HOCl). It should be noted that the acid / alkali strength of the electrolytically strong acidic water and the electrolytically strong alkaline water only needs to be applicable at the time of exerting on the contaminated soil, and the subsequent course does not matter.
As an aspect in which the electrolytically strong acidic water and the electrolytically strong alkaline water are applied to the contaminated soil in this order, the electrolytically strong acidic water and the electrolytically strong alkaline water are alternately applied to the contaminated soil. It is also possible to first immerse the contaminated soil in electrolytically strong acidic water and then apply electrolytically strong alkaline water to the contaminated soil.
Examples of an aspect in which electrolytically strong acidic water and electrolytically strong alkaline water are alternately applied to the contaminated soil include pouring over the soil, spraying in a shower, or immersing.

また、前記有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌から剥離させて電解強酸性水又は/及び電解強アルカリ性水に移行せしめることとしているので、有害物質の処理を土壌処理(固体)から水処理(液体)へと質的に転換することが出来る。   Moreover, since at least a part of the clay and silt sorbed with the harmful substances is peeled off from the contaminated soil and transferred to electrolytically strong acidic water and / or electrolytically strong alkaline water, the treatment of harmful substances can be performed by soil treatment ( It can be qualitatively converted from solid) to water treatment (liquid).

さらに、前記有害物質が収着した粘土・シルトが移行した電解強酸性水又は/及び電解強アルカリ性水を、分級機構により砂から分離するようにしているので、電解強酸性水又は/及び電解強アルカリ性水中に移行した有害物質を土壌を構成する砂から分離することが出来る。
ここで、例えば前記粘土・シルトは、岩石が熱作用や化学作用を受けて変性した二次鉱物であって、その層間に陽イオン(例えば放射性セシウムや重金属類)が収着し易い性質を有するものである。
前記分級機構として、複数の貫通部を有するふるい方式や遠心手段を具備するサイクロン方式を例示することが出来る。
前記分級機構の目の態様として、メッシュ状(例えば網の目状)やスリット状(例えば細長線状)の貫通部が形成されているものを例示することが出来る。
Furthermore, since the electrolytically strong acidic water and / or electrolytically strong alkaline water to which the clay and silt sorbed with the harmful substances have been transferred is separated from the sand by a classification mechanism, the electrolytically strong acidic water and / or electrolytic strong water is separated. Hazardous substances that have migrated into alkaline water can be separated from the sand that constitutes the soil.
Here, for example, the clay / silt is a secondary mineral in which rock is modified by thermal action or chemical action, and has a property that cations (for example, radioactive cesium and heavy metals) are easily sorbed between the layers. Is.
Examples of the classification mechanism include a sieving system having a plurality of through portions and a cyclone system having a centrifugal means.
Examples of the eye of the classification mechanism include those in which mesh-like (for example, mesh-like) or slit-like (for example, elongated line-like) penetration portions are formed.

(2)前記汚染土壌を、電解強酸性水が及ぼされる酸洗浄槽から電解強アルカリ性水が及ぼされるアルカリ洗浄槽へと移行せしめるようにし、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部を有する分級機構を具備するようにしてもよい。 (2) The contaminated soil is transferred from an acid cleaning tank to which electrolytically strong acidic water is applied to an alkaline cleaning tank to which electrolytically strong alkaline water is applied. You may make it comprise the classification mechanism which has a penetration part which can penetrate.

このように、前記汚染土壌を、電解強酸性水が及ぼされる酸洗浄槽から電解強アルカリ性水が及ぼされるアルカリ洗浄槽へと移行せしめるようにすると、有害物質による汚染土壌に電解強酸性水、電解強アルカリ性水の順で及ぼすことが出来る。
また、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部を有する分級機構を具備するようにすると、有害物質が収着した粘土・シルトが移行した電解強酸性水又は/及び電解強アルカリ性水を砂から分離することが出来る。
As described above, when the contaminated soil is moved from the acid cleaning tank to which electrolytic strong acidic water is applied to the alkaline cleaning tank to which electrolytic strong alkaline water is applied, electrolytic strong acidic water, electrolytic It can be applied in the order of strong alkaline water.
Further, if each of the washing tanks has a classification mechanism having a penetrating portion through which the clay and silt in which the harmful substances have been sorbed, the electrolytically strong acidic water to which the clay and silt in which the harmful substances have been sorbed or / And electrolytically alkaline water can be separated from the sand.

(3)前記電解強アルカリ性水が及ぼされた汚染土壌からアルカリ性水を洗い流すアルカリ性水すすぎ槽を具備せしめるようにし、前記アルカリ性水すすぎ槽は有害物質が収着した粘土・シルトが透過できる貫通部を有する分級機構を具備するようにしてもよい。 (3) An alkaline water rinsing tank for rinsing alkaline water from the contaminated soil to which the electrolytically strong alkaline water has been applied is provided. You may make it comprise the classification mechanism which has.

このように、電解強アルカリ性水が及ぼされた汚染土壌からアルカリ性水を洗い流すアルカリ性水すすぎ槽を具備せしめるようにすると、電解強アルカリ性水が及ぼされた土壌の次工程への影響を緩和することが出来る。
また、前記アルカリ性水すすぎ槽は有害物質が収着した粘土・シルトが透過できる貫通部を有する分級機構を具備するようにすると、有害物質が収着した粘土・シルトが移行したすすぎ水を砂から分離することが出来る。
As described above, if an alkaline water rinsing tank for washing alkaline water from contaminated soil to which electrolytic strong alkaline water has been applied is provided, the influence on the next step of the soil to which electrolytic strong alkaline water has been applied can be mitigated. I can do it.
Further, when the alkaline water rinsing tank has a classification mechanism having a penetrating portion through which the clay and silt sorbed with harmful substances can pass, the rinsing water to which the clay and silt sorbed with harmful substances have migrated from the sand. Can be separated.

(4)前記分級機構からの排出水中の有害物質が収着した粘土・シルトを、活性炭に吸着させるようにしてもよい。
このようにすると、汚染土壌から有害物質を実際に選択的に分離して活性炭に移行させることが出来る。
(4) Clay and silt in which harmful substances in the discharged water from the classification mechanism are adsorbed may be adsorbed on activated carbon.
In this way, harmful substances can be actually selectively separated from the contaminated soil and transferred to activated carbon.

(5)前記有害物質が収着した粘土・シルトを吸着した活性炭の焼却処理を行って減容化するようにしてもよい。
このようにすると、排出水中の有害物質を活性炭に吸着・濃縮しこれを焼却して減容化することが出来る。
(5) The volume may be reduced by incineration of activated carbon adsorbing clay / silt adsorbed with the harmful substances.
In this way, harmful substances in the discharged water can be adsorbed and concentrated on activated carbon and incinerated to reduce the volume.

この発明は上述のような構成であり、次の効果を有する。
有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌から剥離させることが出来るので、土壌から汚染物質を具体的に有効に分離することができる汚染土壌の浄化方法を提供することが出来る。
The present invention is configured as described above and has the following effects.
Since at least a part of the clay and silt sorbed with harmful substances can be peeled from the contaminated soil, it is possible to provide a method for purifying contaminated soil that can specifically and effectively separate the pollutants from the soil. .

この発明の汚染土壌の浄化方法の実施形態1を説明するシステム・フロー図。The system flow figure explaining Embodiment 1 of the purification method of the contaminated soil of this invention. この発明の汚染土壌の浄化方法の実施形態2を説明するシステム・フロー図。The system flow figure explaining Embodiment 2 of the purification method of the contaminated soil of this invention.

以下、この発明の実施の形態を説明する。
〔実施形態1〕
図1に示すように、この実施形態の汚染土壌の浄化方法は、有害物質による汚染土壌1(保管放射能汚染土壌としてフレコンバッグ2に収容)を5mm以下に分級(放射能濃度が20,000Bq/kg以上であった)して、電解強酸性水3、電解強アルカリ性水4の順で及ぼすことにより、前記有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌1から剥離させて電解強酸性水3、電解強アルカリ性水4に移行せしめるようにした。
Embodiments of the present invention will be described below.
Embodiment 1
As shown in FIG. 1, the contaminated soil purification method of this embodiment classifies contaminated soil 1 (contained in flexible container bag 2 as stored radioactively contaminated soil) to 5 mm or less (having a radioactive concentration of 20,000 Bq / day). 2 kg), and then applying electrolytic strong acidic water 3 and electrolytic strong alkaline water 4 in that order, the clay and silt sorbed with the harmful substances are separated from the contaminated soil 1 for electrolysis. It was made to transfer to strong acidic water 3 and electrolytic strong alkaline water 4.

前記有害物質として、原発事故で降下したセシウム134、セシウム137などの放射性セシウムを含む土壌を処理した。前記粘土・シルトは、岩石が熱作用や化学作用を受けて変性した二次鉱物であって、その層間に陽イオン(放射性セシウム)が収着し易い性質を有する。
前記電解強酸性水3や電解強アルカリ性水4は、有隔膜の電気分解機構(電解水生成装置5)により生成させた。すなわち、有隔膜の陽極側に所定濃度(約3%)の食塩水を流すと共に(電解強酸性水3が生成)、同陰極側に水を流した(電解強アルカリ性水4が生成)。そして、前記電解強酸性水3の水素イオン濃度はpH3以下になるよう調整し、前記電解強アルカリ性水4の水素イオン濃度はpH12以上になるよう調整した(電流密度6A/dm2)。
前記電解強酸性水3には、電解生成塩素(Cl2、HOCl)が含まれることになる(残留塩素濃度は数百ppmであった)。この電解生成塩素が汚染土壌1中の有機物を分解することにより、有害物質が収着している粘土・シルトが土壌から剥離し易くなる。
前記汚染土壌1に電解強酸性水3、電解強アルカリ性水4の順で及ぼす態様として、汚染土壌1に電解強酸性水3と電解強アルカリ性水4を交互に2回及ぼすようにした(除染機1と除染機2)。また、前記汚染土壌1に電解強酸性水3と電解強アルカリ性水4を交互に及ぼす態様として、該土壌にかけ流し浸漬するようにした。
Soil containing radioactive cesium such as cesium 134, cesium 137, etc., dropped as a result of the nuclear accident was treated. The clay / silt is a secondary mineral in which rock is modified by thermal action or chemical action, and has a property that cation (radioactive cesium) is easily sorbed between the layers.
The electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 were generated by an electrolysis mechanism (electrolyzed water generating device 5) of the diaphragm. That is, a saline solution having a predetermined concentration (about 3%) was flowed to the anode side of the diaphragm (electrolyzed strongly acidic water 3 was generated), and water was flowed to the cathode side (electrolyzed strongly alkaline water 4 was generated). Then, the hydrogen ion concentration of the electrolytically strong acidic water 3 was adjusted to be pH 3 or lower, and the hydrogen ion concentration of the electrolytically strong alkaline water 4 was adjusted to be pH 12 or higher (current density 6 A / dm 2).
The electrolytically strongly acidic water 3 contains electrolytically generated chlorine (Cl 2 , HOCl) (residual chlorine concentration was several hundred ppm). The electrolytically generated chlorine decomposes the organic matter in the contaminated soil 1 so that the clay and silt in which the harmful substances are sorbed easily peel from the soil.
As an aspect in which the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 are sequentially applied to the contaminated soil 1, the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 are alternately applied twice to the contaminated soil 1 (decontamination). Machine 1 and decontamination machine 2). In addition, as an aspect in which the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 are alternately applied to the contaminated soil 1, it is poured and immersed in the soil.

そして、前記有害物質が収着した粘土・シルトが移行した電解強酸性水3、電解強アルカリ性水4を、分級機構6により砂から分離するようにした。前記分級機構6として、複数の貫通部を有するふるい方式を採用した。前記分級機構6の目の態様として、スリット状(細長線状)の貫通部7(図2参照)が形成されているものを使用した。   Then, the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 to which the clay and silt sorbed with the harmful substances are separated from the sand by the classification mechanism 6. As the classification mechanism 6, a sieving method having a plurality of through portions was adopted. As the eye form of the classifying mechanism 6, one in which a slit-like (elongated line-like) penetrating portion 7 (see FIG. 2) is formed was used.

具体的には汚染土壌1を、先ず除染機1で、電解強酸性水3が及ぼされる酸洗浄槽8から電解強アルカリ性水4が及ぼされるアルカリ洗浄槽9へと移行せしめるようにし(土壌は図示右方向に移動)、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部7を有する分級機構6(1mm回転スクリーン)を具備するようにした。前記回転スクリーンはモータMにより回転駆動される。
前記1mm回転スクリーンの目を透過した1mm未満の土壌には、放射能濃度が高い粘土・シルトが含まれており、これを電解酸性水除去装置と電解アルカリ性除去装置に移行させ、pH調整したりPACを添加したりして有害物質を含む粘土・シルトを沈降分離した。これは高濃度放射性土壌であり、放射能濃度が30,000Bq/kg以上であった。
前記除染機1のアルカリ洗浄槽9から排出された汚染土壌1を、除染機2の電解強酸性水3が及ぼされる酸洗浄槽8から電解強アルカリ性水4が及ぼされるアルカリ洗浄槽9へと移行せしめるようにし(土壌は図示右方向に移動)、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部7を有する分級機構6(120μm回転スクリーン)を具備するようにした。前記回転スクリーンはモータMにより回転駆動される。
この除染機2のアルカリ洗浄槽9から排出された土壌の放射能濃度は、3,000Bq/kg以下にまで低減されていた(除染埋戻し土壌10)。
一方、120μm回転スクリーンの目を透過した120μm未満の土壌には、放射能濃度が高い粘土・シルトが含まれており、これを電解酸性水除去装置と電解アルカリ性除去装置に移行させ、pH調整したりPACを添加したりして有害物質を含む粘土・シルトを沈降分離した。これは高濃度放射性土壌11であり、放射能濃度が30,000Bq/kg以上であった。
Specifically, the contaminated soil 1 is first transferred by the decontamination machine 1 from the acid cleaning tank 8 to which the electrolytically strong acidic water 3 is applied to the alkaline cleaning tank 9 to which the electrolytically strong alkaline water 4 is applied (the soil is Each washing tank is provided with a classification mechanism 6 (1 mm rotating screen) having a penetrating part 7 through which clay and silt sorbed with harmful substances can pass. The rotary screen is rotated by a motor M.
The soil of less than 1 mm that has passed through the eyes of the 1 mm rotating screen contains clay and silt with high radioactivity concentration, and this is transferred to an electrolytic acid water removing device and an electrolytic alkaline removing device to adjust pH. Clay and silt containing harmful substances were settled and separated by adding PAC. This was high-concentration radioactive soil, and the radioactivity concentration was over 30,000 Bq / kg.
The contaminated soil 1 discharged from the alkaline cleaning tank 9 of the decontamination machine 1 is transferred from the acid cleaning tank 8 of the decontamination machine 2 to which the electrolytically strong acidic water 3 is applied to the alkaline cleaning tank 9 of which the electrolytically strong alkaline water 4 is applied. (The soil moves to the right in the figure), and each washing tank is equipped with a classification mechanism 6 (120 μm rotating screen) having a penetrating portion 7 through which clay and silt sorbed with harmful substances can permeate. did. The rotary screen is rotated by a motor M.
The radioactive concentration of the soil discharged from the alkaline washing tank 9 of the decontamination machine 2 was reduced to 3,000 Bq / kg or less (decontamination backfill soil 10).
On the other hand, the soil of less than 120 μm that has passed through the eyes of a 120 μm rotating screen contains clay and silt with high radioactivity concentration, and this is transferred to an electrolytic acid water removal device and an electrolytic alkaline removal device to adjust the pH. Clay and silt containing harmful substances were settled and separated by adding PAC. This was high-concentration radioactive soil 11, and the radioactivity concentration was 30,000 Bq / kg or more.

このように汚染土壌1を除染機1と除染機2とで、電解強酸性水3が及ぼされる酸洗浄槽8から電解強アルカリ性水4が及ぼされるアルカリ洗浄槽9へと移行せしめるようにしたので、これらの装置により有害物質による汚染土壌1に電解強酸性水3、電解強アルカリ性水4の順で及ぼすことが出来た。
また、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部7を有する分級機構6を具備するようにしており、この機構により有害物質が収着した粘土・シルトが移行した電解強酸性水3、電解強アルカリ性水4を砂から分離することが出来た。
In this way, the contaminated soil 1 is moved by the decontamination machine 1 and the decontamination machine 2 from the acid washing tank 8 to which the electrolytically strong acidic water 3 is applied to the alkaline washing tank 9 to which the electrolytically strong alkaline water 4 is applied. As a result, it was possible to apply electrolytic strong acidic water 3 and electrolytic strong alkaline water 4 in this order to soil 1 contaminated with harmful substances by these devices.
In addition, each of the washing tanks is provided with a classification mechanism 6 having a penetrating portion 7 through which the clay and silt in which the harmful substances are sorbed, and the clay and silt in which the toxic substances are absorbed are transferred by this mechanism. Electrolytic strong acidic water 3 and electrolytic strong alkaline water 4 could be separated from the sand.

次に、この実施形態の汚染土壌の浄化方法の使用状態を説明する。
この汚染土壌の浄化方法は、有害物質による汚染土壌1に電解強酸性水3、電解強アルカリ性水4の順で及ぼすこととしているので、有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌1から剥離させることができ、土壌から汚染物質を具体的に有効に分離することができるという利点を有する。
また、有害物質による汚染土壌1に電解強酸性水3、電解強アルカリ性水4の順で及ぼすようにしたので、汚染土壌1の環境のpHを急激に変動させることになり、粘土・シルトの荷電状態(土壌粒子のゼータポテンシャル)を変化させて粘土・シルトの水中への分散をし易くすることが出来るという利点を有する。
Next, the use state of the purification method of contaminated soil of this embodiment is demonstrated.
This method of remediating contaminated soil is intended to affect soil 1 contaminated with harmful substances in the order of electrolytically strong acidic water 3 and electrolytically strong alkaline water 4 in order, so that at least a part of the clay and silt in which the harmful substances are sorbed is contaminated. It has the advantage that it can be peeled from the soil 1 and the pollutants can be specifically and effectively separated from the soil.
In addition, since the strong acidic water 3 and the strong alkaline water 4 are applied in this order to the contaminated soil 1 due to harmful substances, the environmental pH of the contaminated soil 1 is rapidly changed, and the clay and silt are charged. It has the advantage that the state (the zeta potential of soil particles) can be changed to facilitate dispersion of clay and silt in water.

さらに、前記有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌1から剥離させて電解強酸性水3、電解強アルカリ性水4に移行せしめることとしているので、有害物質の処理を土壌処理(固体)から水処理(液体)へと質的に転換することが出来るという利点を有する。   Furthermore, since at least a part of the clay and silt sorbed with the harmful substances is peeled off from the contaminated soil 1 and transferred to the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4, the treatment of the harmful substances is performed in the soil treatment. It has the advantage that it can be qualitatively converted from (solid) to water treatment (liquid).

その上、前記有害物質が収着した粘土・シルトが移行した電解強酸性水3、電解強アルカリ性水4を、分級機構6により砂から分離するようにしているので、電解強酸性水3、電解強アルカリ性水4中に移行した有害物質を土壌を構成する砂から分離することが出来るという利点を有する。   In addition, the electrolytically strong acidic water 3 and the electrolytically strong alkaline water 4 to which the clay and silt sorbed with the harmful substances have been separated from the sand by the classification mechanism 6. There is an advantage that harmful substances transferred to the strong alkaline water 4 can be separated from the sand constituting the soil.

〔実施形態2〕
次に、実施形態2を前記実施形態との相違点を中心に説明する。
図2に示すように、この実施形態の汚染土壌の浄化方法は、前記電解強アルカリ性水4が及ぼされた汚染土壌1から、工業用水12でアルカリ性水を洗い流すアルカリ性水すすぎ槽13を具備せしめるようにし、前記アルカリ性水すすぎ槽13は有害物質が収着した粘土・シルトが透過できる貫通部7を有する分級機構6を具備するようにした。
[Embodiment 2]
Next, Embodiment 2 will be described focusing on differences from the above-described embodiment.
As shown in FIG. 2, the method for purifying contaminated soil according to this embodiment includes an alkaline water rinsing tank 13 for washing alkaline water with industrial water 12 from the contaminated soil 1 to which the electrolytically strong alkaline water 4 has been applied. The alkaline water rinsing tank 13 is provided with a classification mechanism 6 having a penetrating portion 7 through which clay and silt sorbed with harmful substances can permeate.

このように、電解強アルカリ性水4が及ぼされた汚染土壌1からアルカリ性水を洗い流すアルカリ性水すすぎ槽13を具備せしめるようにしたので、電解強アルカリ性水4が及ぼされた土壌の次工程(除染機2、除染機2排出)への影響を緩和することが出来る。
また、前記アルカリ性水すすぎ槽13は有害物質が収着した粘土・シルトが透過できる貫通部7を有する分級機構6を具備するようにしており、有害物質が収着した粘土・シルトが移行したすすぎ水を砂から分離するようにした。
As described above, since the alkaline water rinsing tank 13 for rinsing alkaline water from the contaminated soil 1 to which the electrolytically strong alkaline water 4 has been applied is provided, the next step (decontamination) of the soil to which the electrolytically strong alkaline water 4 has been applied is provided. The impact on machine 2 and decontamination machine 2 discharge) can be mitigated.
Further, the alkaline water rinsing tank 13 is provided with a classification mechanism 6 having a penetrating portion 7 through which clay and silt in which harmful substances have been sorbed, and rinse in which clay and silt in which toxic substances have been transferred has been transferred. The water was separated from the sand.

さらに、前記分級機構6からの排出水中の有害物質が収着した粘土・シルトを、活性炭に吸着させるようにしており、汚染土壌1から有害物質を実際に選択的に分離して活性炭に移行させるようにした(図示せず)。   Furthermore, clay and silt in which harmful substances in the discharged water from the classification mechanism 6 are adsorbed are adsorbed on activated carbon, and the harmful substances are actually selectively separated from the contaminated soil 1 and transferred to activated carbon. (Not shown).

その上、前記有害物質が収着した粘土・シルトを吸着した活性炭の焼却処理を行って減容化するようにしており、排出水中の有害物質を活性炭に吸着・濃縮しこれを焼却して減容化するようにした(図示せず)。   In addition, the volume of the activated carbon that adsorbs the clay and silt adsorbed with the harmful substances is reduced by incineration, and the harmful substances in the discharged water are adsorbed and concentrated on the activated carbon and incinerated. (Not shown).

<技術の概要>
埋戻しが可能な放射性セシウム濃度が3,000Bq/kg以下の除染土壌と、濃縮土壌とに分離する技術と、その仕組みを明らかにした。この方法の特徴は、材料は、安価な「水」と「食塩」と非常に少ない電気使用量(低電圧で維持費も低価格)で実行可能であり、使用した水も回収・再利用できる点にある。
放射能汚染土壌の除染・減容化方法として、除染効果や顕在性の面から水洗法と粒度選別法の組み合わせが有望視されており、水洗で容易に落ちない土壌物質に付着した放射性セシウムの剥離、洗浄を促進するための提案が色々となされているが、これらの方法では微細な粘度質に強固に結合した放射性セシウムを選択的に除染・減容化できていない。
しかし、本除染・減容化技術は、放射性セシウムをイオンの形で取り出すのではなく、「放射性セシウムが固着した非常に細かい粘土粒子」として、汚染土壌から剥離して、濃縮する技術であり、当社の開発した電気分解技術を応用した「水」と「食塩」と「少ない電気使用量」で可能にした、安価で画期的な除染・減容化技術である。
<Technology overview>
Clarified the technology and mechanism to separate the decontaminated soil with a radioactive cesium concentration of 3,000 Bq / kg or less and the concentrated soil that can be backfilled. The feature of this method is that the material can be implemented with low-cost “water” and “salt” and a very small amount of electricity used (low voltage and low maintenance cost), and the used water can be recovered and reused. In the point.
As a method for decontamination and volume reduction of radioactively contaminated soil, the combination of water washing method and particle size sorting method is promising from the viewpoint of decontamination effect and manifestation, and the radioactive material attached to the soil material that does not easily fall off with water washing Various proposals have been made to promote the removal and cleaning of cesium. However, these methods cannot selectively decontaminate and reduce the volume of radioactive cesium firmly bonded to a fine viscosity.
However, this decontamination and volume reduction technology does not extract radioactive cesium in the form of ions, but separates and concentrates it from contaminated soil as “very fine clay particles with radioactive cesium fixed”. This is a low-priced and innovative decontamination / volume reduction technology made possible by “water,” “salt,” and “small amount of electricity used” by applying our electrolysis technology.

土壌から汚染物質を具体的に有効に分離することが出来ることによって、種々の汚染土壌の浄化方法に利用することが出来る。   By specifically and effectively separating the contaminants from the soil, it can be used in various methods for purifying contaminated soil.

1 汚染土壌
3 電解強酸性水
4 電解強アルカリ性水
6 分級機構
7 貫通部
8 酸洗浄槽
9 アルカリ洗浄槽
13 アルカリすすぎ槽
DESCRIPTION OF SYMBOLS 1 Contaminated soil 3 Electrolytic strong acidic water 4 Electrolytic strong alkaline water 6 Classification mechanism 7 Penetration part 8 Acid washing tank 9 Alkaline washing tank
13 Alkaline rinsing tank

Claims (5)

有害物質による汚染土壌(1)に電解強酸性水(3)、電解強アルカリ性水(4)の順で及ぼすことにより、前記有害物質が収着した粘土・シルトの少なくとも一部を汚染土壌(1)から剥離させて電解強酸性水(3)又は/及び電解強アルカリ性水(4)に移行せしめると共に、前記有害物質が収着した粘土・シルトが移行した電解強酸性水(3)又は/及び電解強アルカリ性水(4)を、分級機構(6)により砂から分離するようにしたことを特徴とする汚染土壌の浄化方法。   By applying electrolytic strong acidic water (3) and electrolytic strong alkaline water (4) in this order to contaminated soil (1) due to harmful substances, at least a part of the clay and silt sorbed with the harmful substances is contaminated with soil (1 ) And is transferred to electrolytically strong acidic water (3) and / or electrolytically strong alkaline water (4), and the strongly acidic acidic water (3) and / or to which clay and silt sorbed with the harmful substances are transferred. A method for purifying contaminated soil, characterized in that electrolytically strong alkaline water (4) is separated from sand by a classification mechanism (6). 前記汚染土壌(1)を、電解強酸性水(3)が及ぼされる酸洗浄槽(8)から電解強アルカリ性水(4)が及ぼされるアルカリ洗浄槽(9)へと移行せしめるようにし、前記各洗浄槽は有害物質が収着した粘土・シルトが透過できる貫通部(7)を有する分級機構(6)を具備するようにした請求項1記載の汚染土壌の浄化方法。   The contaminated soil (1) is transferred from an acid washing tank (8) to which electrolytic strong acidic water (3) is applied to an alkaline washing tank (9) to which electrolytic strong alkaline water (4) is applied, The method for purifying contaminated soil according to claim 1, wherein the washing tank comprises a classification mechanism (6) having a penetrating portion (7) through which clay and silt sorbed with harmful substances can permeate. 前記電解強アルカリ性水(4)が及ぼされた汚染土壌(1)からアルカリ性水を洗い流すアルカリ性水すすぎ槽(13)を具備せしめるようにし、前記アルカリ性水すすぎ槽(13)は有害物質が収着した粘土・シルトが透過できる貫通部(7)を有する分級機構(6)を具備するようにした請求項1又は2記載の汚染土壌の浄化方法。   An alkaline water rinsing tank (13) for rinsing alkaline water from the contaminated soil (1) exposed to the electrolytically strong alkaline water (4) is provided, and the alkaline water rinsing tank (13) has sorbed harmful substances. The method for purifying contaminated soil according to claim 1 or 2, further comprising a classification mechanism (6) having a penetrating portion (7) through which clay and silt can permeate. 前記分級機構(6)からの排出水中の有害物質が収着した粘土・シルトを、活性炭に吸着させるようにした請求項1乃至3のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 3, wherein clay and silt in which harmful substances in the discharged water from the classification mechanism (6) are adsorbed are adsorbed on activated carbon. 前記有害物質が収着した粘土・シルトを吸着した活性炭の焼却処理を行って減容化するようにした請求項4記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 4, wherein the volume is reduced by incineration of activated carbon adsorbing clay and silt adsorbed with the harmful substances.
JP2016074298A 2016-04-01 2016-04-01 How to purify contaminated soil Active JP6770821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074298A JP6770821B2 (en) 2016-04-01 2016-04-01 How to purify contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074298A JP6770821B2 (en) 2016-04-01 2016-04-01 How to purify contaminated soil

Publications (2)

Publication Number Publication Date
JP2017185423A true JP2017185423A (en) 2017-10-12
JP6770821B2 JP6770821B2 (en) 2020-10-21

Family

ID=60043721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074298A Active JP6770821B2 (en) 2016-04-01 2016-04-01 How to purify contaminated soil

Country Status (1)

Country Link
JP (1) JP6770821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162572A (en) * 2018-03-19 2019-09-26 株式会社東芝 Contamination removing device and contamination removing method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288896A (en) * 1992-04-07 1993-11-05 Japan Atom Energy Res Inst Method for volume reduction of radioactive waste
JP2001149913A (en) * 1999-11-24 2001-06-05 Shimizu Corp Cleaning method of contaminated soil
JP2006255515A (en) * 2005-03-15 2006-09-28 Nippo Corporation:Kk Method for decontaminating soil contaminated with heavy metal
JP2006326434A (en) * 2005-05-24 2006-12-07 Eco Techno:Kk Polluted soil cleaning method
JP2008080181A (en) * 2006-09-25 2008-04-10 Hitachi Plant Technologies Ltd Soil cleaning method and soil cleaning apparatus
JP2008136966A (en) * 2006-12-04 2008-06-19 Sumitomo Osaka Cement Co Ltd Purification method and purifying agent for contaminated soil
JP2013103206A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial Science & Technology Method for cleaning polluted soil
JP2013137289A (en) * 2011-11-30 2013-07-11 Ebara Kogyo Senjo Kk Decontamination method and device for radioactive cesium solid contaminee
JP2014006111A (en) * 2012-06-22 2014-01-16 Japan Atomic Energy Agency Decontamination method for improving classification and cleaning effect in soil contaminated with radioactive cesium
JP2014134403A (en) * 2013-01-08 2014-07-24 Masaharu Sato Method for decontaminating cesium contamination
JP2014178157A (en) * 2013-03-14 2014-09-25 Taisei Corp Decontamination method for radioactive material contaminated soil
JP2015087130A (en) * 2013-10-28 2015-05-07 株式会社本間組 Radioactive substance removal method and removal device
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288896A (en) * 1992-04-07 1993-11-05 Japan Atom Energy Res Inst Method for volume reduction of radioactive waste
JP2001149913A (en) * 1999-11-24 2001-06-05 Shimizu Corp Cleaning method of contaminated soil
JP2006255515A (en) * 2005-03-15 2006-09-28 Nippo Corporation:Kk Method for decontaminating soil contaminated with heavy metal
JP2006326434A (en) * 2005-05-24 2006-12-07 Eco Techno:Kk Polluted soil cleaning method
JP2008080181A (en) * 2006-09-25 2008-04-10 Hitachi Plant Technologies Ltd Soil cleaning method and soil cleaning apparatus
JP2008136966A (en) * 2006-12-04 2008-06-19 Sumitomo Osaka Cement Co Ltd Purification method and purifying agent for contaminated soil
JP2013103206A (en) * 2011-11-16 2013-05-30 National Institute Of Advanced Industrial Science & Technology Method for cleaning polluted soil
JP2013137289A (en) * 2011-11-30 2013-07-11 Ebara Kogyo Senjo Kk Decontamination method and device for radioactive cesium solid contaminee
JP2014006111A (en) * 2012-06-22 2014-01-16 Japan Atomic Energy Agency Decontamination method for improving classification and cleaning effect in soil contaminated with radioactive cesium
JP2014134403A (en) * 2013-01-08 2014-07-24 Masaharu Sato Method for decontaminating cesium contamination
JP2014178157A (en) * 2013-03-14 2014-09-25 Taisei Corp Decontamination method for radioactive material contaminated soil
JP2015087130A (en) * 2013-10-28 2015-05-07 株式会社本間組 Radioactive substance removal method and removal device
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162572A (en) * 2018-03-19 2019-09-26 株式会社東芝 Contamination removing device and contamination removing method

Also Published As

Publication number Publication date
JP6770821B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP5925016B2 (en) Decontamination method for removing radioactive cesium from combustible materials with radioactive cesium attached
JP4766719B1 (en) Disposal method of leachate at final disposal site
KR20020005759A (en) Reclamation of materials in a closed environment with remedial water
JP5746407B1 (en) Method and apparatus for purifying muddy water containing arsenic
JP2014163843A (en) Cleaning acid recycling method and recycling facility
Valdovinos et al. Treatment methods for radioactive wastes and its electrochemical applications
IL115270A (en) Methods of decontaminating soils containing hazardous substances
JP6770821B2 (en) How to purify contaminated soil
JP2013019880A (en) System for treating contaminated soil containing radioactive material
EP0483286A4 (en) Method of removing ions
JP6381102B2 (en) Purification method for contaminated soil
JP6474679B2 (en) Method and apparatus for purifying muddy water containing arsenic
KR20180079539A (en) Washing method for uranium-contaminated materials
JP6842839B2 (en) Arsenic recovery method and arsenic-containing muddy water purification method and purification device
WO2013021475A1 (en) Method for preventing calcium scale
JP2016114472A (en) Radioactive waste liquid processing method and processing device for radioactive waste liquid
JP2015211816A (en) Method for removing radioactive cesium and dioxins
JP2013140116A (en) Radioactive substance removal method
Elaziz et al. Electrochemistry and Radioactive Wastes: A Scientific Overview
KR102308557B1 (en) Decontamination Method for Contaminated Soil in Decommissioning Nuclear Power Plant
JP2018058071A (en) Method for purifying contaminated soil
CA3070620A1 (en) Methods of treating metal mine tailings
KR101559675B1 (en) A method of separating polymers from fixed contaminated soil
Kim et al. Improved treatment technique for the reuse of waste solution generated from a electrokinetic decontamination system
Vibishini et al. Study on Electrokinetics to Enhance the Contaminated Soil

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191128

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191129

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200124

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200203

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200707

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200831

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200928

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R150 Certificate of patent or registration of utility model

Ref document number: 6770821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250