JP2006255515A - Method for decontaminating soil contaminated with heavy metal - Google Patents

Method for decontaminating soil contaminated with heavy metal Download PDF

Info

Publication number
JP2006255515A
JP2006255515A JP2005072981A JP2005072981A JP2006255515A JP 2006255515 A JP2006255515 A JP 2006255515A JP 2005072981 A JP2005072981 A JP 2005072981A JP 2005072981 A JP2005072981 A JP 2005072981A JP 2006255515 A JP2006255515 A JP 2006255515A
Authority
JP
Japan
Prior art keywords
heavy metal
soil
acid
aqueous medium
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005072981A
Other languages
Japanese (ja)
Inventor
Takanobu Sugo
高信 須郷
Shuichi Mihashi
秀一 三橋
Masahiro Kataoka
昌裕 片岡
Takayoshi Hayama
高義 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippo Corp Inc
Kankyo Joka Kenkyusyo KK
Original Assignee
Nippo Corp Inc
Kankyo Joka Kenkyusyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippo Corp Inc, Kankyo Joka Kenkyusyo KK filed Critical Nippo Corp Inc
Priority to JP2005072981A priority Critical patent/JP2006255515A/en
Publication of JP2006255515A publication Critical patent/JP2006255515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decontaminating the soil contaminated with a heavy metal, in which sorting work and the work of treating waste water are done efficiently and even a contaminated soil particle, which is discarded in the conventional method, can be decontaminated. <P>SOLUTION: A heavy metal collecting fibrous material produced by a radiation graft polymerization method is mixed with the soil contaminated with the heavy metal and an aqueous medium and then recovered. The heavy metal adsorbed on the heavy metal collecting fibrous material is eluted and cleaned by using a dilute acid, for example, dilute hydrochloric acid to regenerate the heavy metal collecting fibrous material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、重金属で汚染された土壌をより効率的に浄化することができる重金属汚染土壌の浄化方法に関する。   The present invention relates to a method for purifying heavy metal-contaminated soil that can more efficiently purify soil contaminated with heavy metals.

土壌汚染対策法の施行を契機に土壌汚染が判明する事例が増加している。環境省の調査結果では重金属の汚染事例が最も多いことが報告されている。   There are an increasing number of cases where soil contamination has been identified following the enforcement of the Soil Contamination Countermeasures Law. According to the survey results of the Ministry of the Environment, there are the most cases of heavy metal contamination.

重金属汚染土壌に対するわが国の浄化対策としては、汚染土壌を不溶化処理する方法や汚染土壌の封じ込め工法、遮水工法、覆土工法といった方法があるが、これらの対策を実施しても汚染物質は除去されたわけではなく、対策後においても土地利用の制限を受けたり、不動産取引ではマイナス要因となることが多い。また汚染土壌を搬出し、汚染されていない土壌と置き換える対策も講じられているが、汚染土壌を受け入れる最終処分場が不足するのは明らかである。そこで、欧州を中心に実績のある土壌洗浄工法が注目され、わが国にも導入されている。   Japan's cleanup measures against heavy metal-contaminated soil include methods such as insolubilizing contaminated soil, methods of containment of contaminated soil, water-impervious construction methods, and methods of covering soil, but these measures can also remove contaminants. This is not to say that land use is restricted even after measures are taken, and it is often a negative factor in real estate transactions. Measures are also taken to remove contaminated soil and replace it with uncontaminated soil, but it is clear that there will be a shortage of final disposal sites that accept contaminated soil. Therefore, the soil cleaning method with a track record mainly in Europe attracts attention and has been introduced in Japan.

土壌洗浄工法とは、水または適当な溶媒により土壌を洗浄し汚染物質を液中に溶かし出し、分離する方法である。その典型例は、汚染土壌に加水することにより土壌を所定の粒径毎に分離し、重金属が多く含有される細かい土粒子を廃棄し、粗い土粒子は洗浄して汚染物を除去し、埋め戻すことにより再利用し、汚染土壌の量を減容化する工法である。この工法では、重金属が多く含有される細かい土粒子が少ないほど効果的な浄化工法となる。   The soil washing method is a method of washing soil with water or an appropriate solvent, dissolving contaminants in the liquid, and separating them. A typical example is that the soil is separated by a predetermined particle size by adding water to the contaminated soil, fine soil particles rich in heavy metals are discarded, and coarse soil particles are washed to remove contaminants and buried. It is a method of reusing it by returning it to reduce the volume of contaminated soil. In this construction method, the more fine soil particles containing a lot of heavy metals, the more effective the purification method.

土壌洗浄工法は、重金属汚染土壌を洗浄、分級する工程と土壌を洗浄した水や土壌の脱水後の重金属を含んだ水を浄化する排水処理工程からなるが、土粒子に付着した汚染物質を水で洗浄するためや、例えば0.075mmなどの小さい粒径の土砂まで分級するために大量の水を必要とし、そのために重金属を含んだ大量の水が生じる。土壌洗浄工法では一般的にこの水を浄化して再利用するが、浄化するためには、pHの調整や重金属の種類に応じた薬剤やキレート材が必要となる。したがって、洗浄、分級の設備の他に洗浄水の浄化にともなう処理のための設備が非常に大掛かりとなり、かつ薬剤、キレート材といった材料費のコストがかかり、浄化の単価が高くなる。特に、重金属が多く含有されやすい土粒子が多いほど廃棄する土壌が多くなり、廃棄するためのコストも大きくなる。わが国では火山灰土のような細かい土粒子が堆積している地域が多く、実用性に乏しいという問題があった。   The soil cleaning method consists of a process for cleaning and classifying heavy metal contaminated soil and a wastewater treatment process for purifying the soil-washed water and water containing heavy metals after dehydration of the soil. For example, a large amount of water is required for cleaning with a small particle size such as 0.075 mm, so that a large amount of water containing heavy metals is generated. In the soil washing method, this water is generally purified and reused, but in order to purify it, a chemical and a chelating material corresponding to the adjustment of pH and the type of heavy metal are required. Therefore, in addition to the equipment for cleaning and classification, the equipment for the treatment associated with the purification of the washing water becomes very large, and the cost of materials such as chemicals and chelating materials is increased, resulting in an increase in the unit price of the purification. In particular, the more soil particles that are likely to contain a lot of heavy metals, the more soil that is discarded, and the higher the cost for disposal. In Japan, there are many areas where fine soil particles such as volcanic ash are deposited, and there is a problem that they are not practical.

本発明の目的は、上記の問題点を解決することにあり、特に、分級および排水処理を効率化し、さらに従来法では廃棄していた土粒子に対してもその浄化が可能な重金属汚染土壌の浄化方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems, and in particular, it is possible to improve the efficiency of classification and wastewater treatment, and further to the heavy metal-contaminated soil that can purify soil particles that were discarded in the conventional method. It is to provide a purification method.

本発明は、例えば、海水中に溶在するウラン資源を採取するための吸着材として知られていた基材(例:ポリエチレン不織布)に放射性グラフト重合法で結合されたポリマー鎖(例:ポリアクリロニトリル鎖、ポリアクリロニトリルーメタクリル鎖)の部分をアミドキシム化してなる吸着材[「日本海水学会誌」53,p.180―184(1999年)参照]が、水性媒体中のカドミウム等の金属を迅速かつ効果的に吸着し、しかもその吸着金属を希酸での洗浄によって容易に脱離、解放するという知見に基づいている。   The present invention relates to a polymer chain (eg, polyacrylonitrile) bonded to a base material (eg, polyethylene nonwoven fabric) known as an adsorbent for collecting uranium resources dissolved in seawater by, for example, a radioactive graft polymerization method. Adsorbent formed by amidoximation of the chain, polyacrylonitrile-methacrylic chain portion (see “Journal of the Seawater Society of Japan” 53, p. 180-184 (1999)) quickly and rapidly removes metals such as cadmium in aqueous media. It is based on the knowledge that it adsorbs effectively and that the adsorbed metal is easily desorbed and released by washing with dilute acid.

したがって、本発明は、重金属汚染土壌と水性媒体とを混合して得られたスラリー状混合物を放射線グラフト重合法により作製した繊維状重金属捕集材に接触させて、重金属汚染土壌から溶離した有害金属を上記捕集材に吸着させ;スラリー状混合物を脱水して土壌と水性媒体を分別し;上記捕集材によって吸着された重金属を希酸で溶離することで回収し、;他方、上記分別された浄化土壌を系外へ取り出す;諸工程を含む重金属汚染土壌から重金属を除去する方法を提供する。   Therefore, the present invention brings a slurry-like mixture obtained by mixing heavy metal-contaminated soil and an aqueous medium into contact with a fibrous heavy metal collecting material prepared by a radiation graft polymerization method, and harmful metals eluted from the heavy metal-contaminated soil. The slurry mixture is dehydrated to separate the soil and the aqueous medium; the heavy metal adsorbed by the collection material is recovered by eluting with a dilute acid; A method for removing heavy metals from soil contaminated with heavy metals including various processes is provided.

本発明方法において、重金属汚染土壌から重金属の溶出を促進するために水性媒体として塩酸や有機酸水溶液といった酸を含む溶液を用いても良い。   In the method of the present invention, a solution containing an acid such as hydrochloric acid or an organic acid aqueous solution may be used as an aqueous medium in order to promote elution of heavy metals from heavy metal contaminated soil.

本発明方法において、重金属汚染土壌と水性媒体および繊維状重金属捕集材を同時に混合する方法では、重金属汚染土壌から水性媒体に溶離した重金属を放射線グラフト重合法により作製した繊維状重金属捕集材が迅速に吸着するため、汚染土壌から水性媒体に溶出する重金属濃度が低く保たれるため、溶出する効率が良い。   In the method of the present invention, in the method of simultaneously mixing heavy metal-contaminated soil, an aqueous medium and a fibrous heavy metal collector, a fibrous heavy metal collector prepared by radiation graft polymerization of heavy metal eluted from the heavy metal-contaminated soil into the aqueous medium is used. Since it is adsorbed quickly, the concentration of heavy metals eluted from the contaminated soil into the aqueous medium is kept low, so that the elution efficiency is good.

本発明方法における、重金属と水性媒体の混合および放射線グラフト重合法により作製した繊維状重金属捕集材の接触操作においては、重金属汚染土壌が環境省告示第19号に準じて行った土壌含有量試験にしたがって測定される重金属汚染土壌の含有量が、土壌汚染対策法で定められた含有量基準以下になるまで低減される時間にわたり実施する。   In the method of the present invention, in the contact operation of the fibrous heavy metal collector prepared by mixing the heavy metal and the aqueous medium and the radiation graft polymerization method, the soil content test conducted by the heavy metal contaminated soil according to Ministry of the Environment Notification No. 19 Is carried out over a period of time that is reduced until the content of heavy metal-contaminated soil measured in accordance with is reduced below the content standard stipulated in the Soil Contamination Countermeasures Law.

本発明方法において放射線グラフト重合法により作製した繊維状重金属捕集材は、放射線グラフト重合法により繊維基材に重合性モノマー(アクリル酸、アクリロニトリル、グリシジルメタクリレート等)をグラフト側鎖として導入し、その側鎖に重金属の種類に応じたキレート形成基及びイオン交換基を導入して得られたものである。キレート形成基及びイオン交換基としては、イミノジ酢酸、ジメチルアミン、トリメチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エタノールジアミン、アミドキシム、ホスホン、スルホン、カルボキシル等の重金属イオン吸着性官能基を単独または組み合わせて導入したものが挙げられる。   The fibrous heavy metal scavenger prepared by the radiation graft polymerization method in the method of the present invention introduces a polymerizable monomer (acrylic acid, acrylonitrile, glycidyl methacrylate, etc.) as a graft side chain into the fiber substrate by the radiation graft polymerization method, It is obtained by introducing a chelate-forming group and an ion exchange group corresponding to the type of heavy metal into the side chain. As chelate-forming groups and ion-exchange groups, heavy metal ion-adsorptive functional groups such as iminodiacetic acid, dimethylamine, trimethylamine, ethanolamine, diethanolamine, triethanolamine, ethanoldiamine, amidoxime, phosphone, sulfone, and carboxyl are used alone or in combination. What has been introduced.

本発明方法で、放射線グラフト重合法により作製した繊維状重金属捕集材は重金属と水性媒体の混合後に回収し、重金属捕集剤に吸着した重金属の溶離を希酸例えば希塩酸で洗浄することより再生することができる。   In the method of the present invention, the fibrous heavy metal collection material prepared by the radiation graft polymerization method is recovered after mixing the heavy metal and the aqueous medium, and regenerated by washing the elution of heavy metal adsorbed on the heavy metal collection agent with a dilute acid such as dilute hydrochloric acid. can do.

本発明によれば、重金属で汚染された土壌をより効率的に浄化することができる。   According to the present invention, soil contaminated with heavy metals can be more efficiently purified.

本発明により、所定の粒径より小さい汚染土壌はそれ以下の粒径に分級する必要はなく、かつ放射線グラフト重合法により作製した繊維状重金属捕集材により土壌の浄化と洗浄後の水性媒体の浄化が行えるので、分級および排水処理を効率化できる。また従来の土壌洗浄工法では廃棄していた細粒土も浄化できるため、埋め戻し材料として有効利用ができ、コストダウンが可能となる。   According to the present invention, it is not necessary to classify contaminated soil smaller than a predetermined particle size to a particle size smaller than that, and the aqueous medium after purification and washing of the soil by a fibrous heavy metal collector prepared by a radiation graft polymerization method. Since purification can be performed, classification and wastewater treatment can be made more efficient. Moreover, since the fine soil which was thrown away by the conventional soil washing method can be purified, it can be effectively used as a backfill material, and the cost can be reduced.

図1に従来の土壌洗浄工法の一例を、図2に本発明方法の一例を示す。図1の浄化法では、例えば粒径40mm以上といった大塊およびガラを取り除いた汚染土壌に加水して洗浄装置1で洗浄し、選別装置Aにより選別して粒径Aより大きい清浄土を得る。ついで粒径Aより小さい粒径Bで分級し、粒径Bより大きい清浄土を得る。選別装置Bを通過した重金属が濃縮した土砂は脱水装置により重金属が濃縮した汚染土と重金属を含む汚染水に分けられ、重金属濃縮汚染土は廃棄物として処理し、汚染水は水処理をして再利用する。この方法は一例であり、洗浄の工程や分級に採用する粒径やその方法は種々のものがあるが、一般には最終の選別の粒径は0.075mmのシルト分に相当する場合が多く、このような細かい粒径からなる土壌は重金属が濃縮して多く含まれるため、汚染土として廃棄する。したがって、廃棄土を少なくするには、精密な分級が必要であり、洗浄・分級装置が増加する。また重金属を含んだ洗浄水は一般には、重金属に応じてpHの調整や重金属の種類に応じた薬剤、キレート材や各反応槽、処理槽が必要となり、設備が非常に大掛かりとなる。   FIG. 1 shows an example of a conventional soil cleaning method, and FIG. 2 shows an example of the method of the present invention. In the purification method of FIG. 1, for example, water is added to the contaminated soil from which large lumps and burrs having a particle diameter of 40 mm or more have been removed, washed by the cleaning device 1, and sorted by the sorting device A to obtain clean soil larger than the particle size A. Next, classification is performed with a particle size B smaller than the particle size A to obtain clean soil larger than the particle size B. Sediment that has been concentrated by heavy metals that has passed through the sorting device B is divided into contaminated soil that has been concentrated by heavy metals and contaminated water that contains heavy metals. The heavy metal concentrated contaminated soil is treated as waste, and the contaminated water is treated with water. Reuse. This method is an example, and there are various particle sizes and methods employed in the washing process and classification, but generally the final selection particle size often corresponds to a silt content of 0.075 mm, Since soil with such a fine particle size contains a large amount of heavy metals, it is discarded as contaminated soil. Therefore, in order to reduce waste soil, precise classification is required, and the number of cleaning / classification devices increases. In addition, washing water containing heavy metals generally requires pH adjustment according to the heavy metals, chemicals according to the type of heavy metals, chelating materials, reaction tanks, and treatment tanks, which greatly increases the equipment.

図2に本発明例の一例を示す。まず、例えば40mm以上といった大塊およびガラを取り除く。次に回収が可能なグラフト重合法により作製した繊維状重金属捕集材が装填された抽出洗浄・分級装置Cに、水性媒体を加えて重金属汚染土壌と水性媒体のスラリー状混合物に前記重金属捕集材を接触させながら、粒径Cによる選別を行って、粒径Cより大きい清浄土を得る。粒径Cより小さい土砂については、脱水を行って清浄土を得る。重金属が吸着した前記重金属捕集材は回収後に希塩酸で洗浄し、再利用する。なおこれらの清浄土は、水性媒体として酸溶液を用いる場合、土壌のpHが低いため、重金属が溶出しやすいケースも考えられるが、この場合には清浄水によるすすぎ洗いを行うか、少量の生石灰を混合し、土砂の乾燥を促進するとともにpHを中性域まで上昇させ、重金属の溶出を防ぐ方法も考えられる。   FIG. 2 shows an example of the present invention. First, large lumps and glass such as 40 mm or more are removed. Next, an aqueous medium is added to an extraction cleaning / classifying apparatus C loaded with a fibrous heavy metal collection material prepared by a graft polymerization method that can be recovered, and the heavy metal is collected in a slurry-like mixture of heavy metal contaminated soil and aqueous medium. While contacting the material, sorting by particle size C is performed to obtain clean soil larger than particle size C. About the earth and sand smaller than the particle size C, dehydration is performed to obtain clean soil. The said heavy metal collection material which heavy metal adsorb | sucked is wash | cleaned with dilute hydrochloric acid after collection | recovery, and is reused. In addition, when using an acid solution as an aqueous medium for these clean soils, the pH of the soil is low, so there are cases where heavy metals are likely to elute, but in this case, rinsing with clean water or a small amount of quicklime is possible. In order to prevent the elution of heavy metals, it is also possible to promote the drying of earth and sand and raise the pH to a neutral range.

本発明においては、従来の土壌洗浄法のように廃棄土を少なくするために精密な分級を行う必要がないため、洗浄・分級に要する装置が簡素化される。さらに従来技術では廃棄していた細かい粒径の土壌も洗浄でき、洗浄後の粗い粒径の土壌と混合して利用することにより良質な埋め戻し土として再利用が可能となり、廃棄物の減少になるとともにコストダウンが可能となる。また重金属汚染土壌および水性媒体からなるスラリーと上記重金属捕集材を接触させることにより、土壌と水性媒体の双方の浄化が可能となるので、水性媒体の浄化に必要な設備がコンパクト化され、よりコストダウンが可能となる。   In the present invention, unlike the conventional soil cleaning method, it is not necessary to perform precise classification in order to reduce waste soil, so that the apparatus required for cleaning and classification is simplified. Furthermore, soil with a fine particle size that was discarded in the conventional technology can be washed, and can be reused as a high-quality backfill soil by mixing with soil with a coarse particle size after washing, thereby reducing waste. In addition, the cost can be reduced. In addition, by bringing the heavy metal contaminated soil and the aqueous medium into contact with the heavy metal collector, it is possible to purify both the soil and the aqueous medium, thereby reducing the size of equipment necessary for the purification of the aqueous medium. Cost reduction is possible.

重金属捕集材は、市販の土木用脱水シート(繊維径40μmのポリプロピレン製不織布)に、放射線グラフト重合法を用いてアクリロニトリルをグラフトし、ヒドロキシルアミンを反応させて3.5mmol/gのアミドキシム基を導入して作製した。このアミドキシム型キレート樹脂を2.5%の水酸化カリウム水溶液中に入れ、80℃で1時間アルカリ処理した。アルカリ処理後に洗浄液が中性になるまで水洗いし、重金属を吸着する捕集材を得た。   The heavy metal collector is a commercially available dehydration sheet for civil engineering (polypropylene nonwoven fabric having a fiber diameter of 40 μm), grafted with acrylonitrile using a radiation graft polymerization method, reacted with hydroxylamine to form an amidoxime group of 3.5 mmol / g. Introduced and produced. This amidoxime-type chelate resin was placed in a 2.5% aqueous potassium hydroxide solution and alkali-treated at 80 ° C. for 1 hour. After the alkali treatment, the sample was washed with water until the washing solution became neutral to obtain a collection material that adsorbs heavy metals.

カドミウムと鉛をそれぞれ200mg/kg含有する粒径2mm以下の粗砂20gに水性媒体50gおよび1辺1cmの正方形の形状とした上記捕集材1.2gを加えて振とう機で1時間振とうした。水性媒体は1モルのリンゴ酸と1モルの水酸化ナトリウムを1:1で混合した溶液を用いた。この混合溶液のpHは3.9であった。上記捕集材に吸着したカドミウムと鉛は1モル硝酸を用いて溶離した。   Add 50 g of aqueous medium and 1.2 g of the above collection material in the shape of a square with a side of 1 cm to 20 g of coarse sand having a particle diameter of 2 mm or less containing 200 mg / kg of cadmium and lead, respectively, and shake with a shaker for 1 hour. did. As the aqueous medium, a solution in which 1 mol of malic acid and 1 mol of sodium hydroxide were mixed at a ratio of 1: 1 was used. The pH of this mixed solution was 3.9. Cadmium and lead adsorbed on the collecting material were eluted using 1 molar nitric acid.

表―1に振とう後の土壌のカドミウムと鉛含有量、上記捕集材に吸着したカドミウム、鉛吸着量、水性媒体に溶離したカドミウム、鉛濃度を示す。なお、表中の値は土壌1kg当たりの重金属量の絶対値で表す。

Figure 2006255515
Table 1 shows the cadmium and lead contents of the soil after shaking, the cadmium adsorbed on the above collection material, the amount of lead adsorbed, the cadmium eluted in the aqueous medium, and the lead concentration. In addition, the value in a table | surface is represented by the absolute value of the amount of heavy metals per 1 kg of soil.
Figure 2006255515

処理前のカドミウムおよび鉛含有量は200mg/kgと土壌含有量基準である150mg/kgを超えていたが、水性媒体と混合することによりカドミウムが40mg/kg、鉛が60mg/kgに低減され、土壌含有量基準150mg/kg以下に低減した。また上記重金属捕集材により吸着したカドミウムは153mg/kg、鉛は110mg/kgを吸着した。上記捕集材の吸着量はカドミウムで約77%、鉛では55%と高い吸着率を示し、水性媒体の濃度もカドミウムは12mg/kg、鉛は13mg/kgと低い値を示す。その結果、水性媒体も毎回洗浄する必要はなく、装置のコンパクト化およびコストダウンにつながる。   The cadmium and lead contents before the treatment exceeded 200 mg / kg and the soil content standard of 150 mg / kg, but mixing with an aqueous medium reduced cadmium to 40 mg / kg and lead to 60 mg / kg, The soil content was reduced to 150 mg / kg or less. The cadmium adsorbed by the heavy metal collector adsorbed 153 mg / kg and lead adsorbed 110 mg / kg. The adsorbed amount of the trapping material is about 77% for cadmium and 55% for lead, and the concentration of the aqueous medium is as low as 12 mg / kg for cadmium and 13 mg / kg for lead. As a result, it is not necessary to wash the aqueous medium every time, which leads to downsizing of the apparatus and cost reduction.

カドミウムと鉛をそれぞれ333、367mg/kg含有する粒径0.075mm以下の粘性土20gに水性媒体50gおよび1辺1cmの正方形の形状とした上記捕集材1.2gを加えて振とう機で1時間振とうした。水性媒体は1モルのリンゴ酸と1モルの水酸化ナトリウムを1:1で混合した溶液を用いた。浸透後の土壌の含有量はカドミウムが47mg/kg、鉛が133mg/kgに低減し、0.075mm以下の細粒土でもカドミウム、鉛は、土壌環境基準以下に低減し、有効利用が可能となる。   Add 20 g of viscous soil containing 333 and 367 mg / kg of cadmium and lead to a particle size of 0.075 mm or less and 50 g of aqueous medium and 1.2 g of the above collecting material in the shape of a square of 1 cm on a side. Shake for 1 hour. As the aqueous medium, a solution in which 1 mol of malic acid and 1 mol of sodium hydroxide were mixed at a ratio of 1: 1 was used. Soil content after infiltration is reduced to 47 mg / kg for cadmium and 133 mg / kg for lead. Cadmium and lead are reduced to below the soil environmental standard even in fine-grained soil of 0.075 mm or less, enabling effective use. Become.

繊維径25μmのポリエチレン製長繊維を脱酸素容器に入れ、コバルト-60γ線を10kGy照射し、脱酸素したグリシジルメタクリレート(GMA)の含浸グラフト重合を行った。GMAグラフト繊維のグリシジル基にイミノジ酢酸を反応させて4.0mmol/gのイミノジ酢酸基と親水性水酸基を導入した。イミノジ酢酸基を導入したポリエチレン長繊維1.5gを1辺1cm正三角形のサランネット製テトラパックに充填した捕集材容器を鉛、亜鉛、ニッケルをそれぞれ200mg/kg含有する粒径0.075mm以下の粘性土20gに水性媒体50gとともに加えて振とう機で1時間振とうした。水性媒体は1モルのリンゴ酸と1モルの水酸化ナトリウムを1:1で混合した溶液を用いた。浸透後の土壌の含有量は鉛が30mg/kg、亜鉛が33mg/kgにニッケルが35mg/kgに低減し、0.075mm以下の細粒土でも重金属は土壌環境基準以下に低減し、効率的な重金属の除去効果が確認された。   A polyethylene long fiber having a fiber diameter of 25 μm was placed in a deoxygenation vessel, and irradiated with cobalt-60γ rays at 10 kGy to carry out impregnation graft polymerization of deoxygenated glycidyl methacrylate (GMA). Iminodiacetic acid was reacted with the glycidyl group of the GMA graft fiber to introduce 4.0 mmol / g of iminodiacetic acid group and hydrophilic hydroxyl group. A collection container filled with 1.5 g of polyethylene long fiber introduced with iminodiacetic acid groups in a 1 cm square triangular triangle pack made of saran net contains particles of 200 mg / kg each of lead, zinc and nickel 0.075 mm or less The mixture was added to 20 g of the viscous soil together with 50 g of the aqueous medium and shaken for 1 hour with a shaker. As the aqueous medium, a solution in which 1 mol of malic acid and 1 mol of sodium hydroxide were mixed at a ratio of 1: 1 was used. Soil content after infiltration is 30 mg / kg for lead, 33 mg / kg for zinc, 35 mg / kg for nickel, and even for fine-grained soil of 0.075 mm or less, heavy metals are reduced to below the soil environmental standard. The removal effect of heavy metals was confirmed.

従来の土壌洗浄法の一実施例を示す図である。It is a figure which shows one Example of the conventional soil washing | cleaning method. 本発明の土壌洗浄法の一実施例を示す図である。It is a figure which shows one Example of the soil washing | cleaning method of this invention.

Claims (7)

重金属汚染土壌と水性媒体とを混合して得られたスラリー状混合物を放射線グラフト重合法により作製した繊維状重金属捕集材に接触させて、重金属汚染土壌から溶離した重金属を上記捕集材に吸着させ;スラリー状混合物を土壌と水性媒体に分別し;上記捕集材によって吸着された重金属を希酸で溶離することで回収し、;他方、上記分別された浄化土壌を系外へ取り出す;諸工程を含む重金属汚染土壌から重金属を除去する方法。   A slurry-like mixture obtained by mixing heavy metal-contaminated soil and an aqueous medium is brought into contact with a fibrous heavy metal collector prepared by radiation graft polymerization, and the heavy metal eluted from the heavy metal-contaminated soil is adsorbed to the collector. Separating the slurry mixture into soil and an aqueous medium; recovering the heavy metal adsorbed by the trapping material by eluting with dilute acid; and taking out the separated purified soil out of the system; A method of removing heavy metals from heavy metal contaminated soil, including a process. 放射線グラフト重合法により作製した繊維状重金属捕集材は、有害金属の種類に応じたキレート形成基を繊維に導入した重金属捕集材である請求項1に記載の方法。   The method according to claim 1, wherein the fibrous heavy metal collecting material produced by the radiation graft polymerization method is a heavy metal collecting material in which a chelate-forming group corresponding to the type of harmful metal is introduced into the fiber. 吸着された重金属を希酸を用いて溶離することにより除去した後の繊維状重金属捕集材をアルカリで洗浄、中和して、再生し、次いで重金属吸着のために再使用する請求項1に記載の方法。   The fibrous heavy metal collector after removing the adsorbed heavy metal by eluting with dilute acid is washed with alkali, neutralized, regenerated, and then reused for heavy metal adsorption. The method described. 重金属捕集材がスラリー状混合物と分離可能な形状をもつ請求項1ないし3に記載の方法。   4. The method according to claim 1, wherein the heavy metal collecting material has a shape separable from the slurry mixture. 重金属溶離用の希酸として塩酸、硝酸、燐酸などの鉱酸を単独又は混合物で用いる請求項1ないし4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein a mineral acid such as hydrochloric acid, nitric acid or phosphoric acid is used alone or in a mixture as a dilute acid for eluting heavy metals. 重金属分離後の清浄土壌に塩基性土壌及び/又は生石灰を添加して、中和する工程を含む請求項1ないし5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, further comprising a step of neutralizing by adding basic soil and / or quicklime to the clean soil after separation of heavy metals. 重金属汚染土壌と混合する水性媒体が無機酸あるいは有機酸水溶液の単独又は混合物である請求項1ないし6のいずれかに記載の方法。   The method according to any one of claims 1 to 6, wherein the aqueous medium to be mixed with the heavy metal contaminated soil is an inorganic acid or an organic acid aqueous solution alone or as a mixture.
JP2005072981A 2005-03-15 2005-03-15 Method for decontaminating soil contaminated with heavy metal Pending JP2006255515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072981A JP2006255515A (en) 2005-03-15 2005-03-15 Method for decontaminating soil contaminated with heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072981A JP2006255515A (en) 2005-03-15 2005-03-15 Method for decontaminating soil contaminated with heavy metal

Publications (1)

Publication Number Publication Date
JP2006255515A true JP2006255515A (en) 2006-09-28

Family

ID=37095309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072981A Pending JP2006255515A (en) 2005-03-15 2005-03-15 Method for decontaminating soil contaminated with heavy metal

Country Status (1)

Country Link
JP (1) JP2006255515A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167606A (en) * 2010-02-17 2011-09-01 Nippon Rensui Co Ltd Method for producing chelate forming group-containing adsorbing material
JP2013136046A (en) * 2011-11-28 2013-07-11 Nihon Sanmo Dyeing Co Ltd Ion adsorbent and method of manufacturing the same
CN105689371A (en) * 2015-12-13 2016-06-22 深圳多元拓展环保科技有限公司 In-situ capturing treatment method for soil heavy metal pollution
JP6052945B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using a chelating agent
JP6052947B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method for soil purification facility using wash water containing chelating agent
JP6052946B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using wash water containing a chelating agent
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045708A (en) * 2000-08-08 2002-02-12 Japan Atom Energy Res Inst Chenille-shaped capturing material and its manufacturing method
JP2004089809A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Method and apparatus for cleaning contaminated soil
JP2004351288A (en) * 2003-05-28 2004-12-16 Mitsui Mining & Smelting Co Ltd Method for treating heavy-metal containing water or heavy-metal-containing soil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045708A (en) * 2000-08-08 2002-02-12 Japan Atom Energy Res Inst Chenille-shaped capturing material and its manufacturing method
JP2004089809A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Method and apparatus for cleaning contaminated soil
JP2004351288A (en) * 2003-05-28 2004-12-16 Mitsui Mining & Smelting Co Ltd Method for treating heavy-metal containing water or heavy-metal-containing soil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167606A (en) * 2010-02-17 2011-09-01 Nippon Rensui Co Ltd Method for producing chelate forming group-containing adsorbing material
JP2013136046A (en) * 2011-11-28 2013-07-11 Nihon Sanmo Dyeing Co Ltd Ion adsorbent and method of manufacturing the same
JP2015071166A (en) * 2011-11-28 2015-04-16 日本蚕毛染色株式会社 Method for recovering material suspended in liquid
CN105689371A (en) * 2015-12-13 2016-06-22 深圳多元拓展环保科技有限公司 In-situ capturing treatment method for soil heavy metal pollution
CN105689371B (en) * 2015-12-13 2019-06-07 深圳多元拓展环保科技有限公司 A kind of heavy metal pollution of soil original position trapping administering method
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil
JP6052945B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using a chelating agent
JP6052947B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method for soil purification facility using wash water containing chelating agent
JP6052946B1 (en) * 2016-10-25 2016-12-27 公信 山▲崎▼ Soil purification method in a soil purification facility using wash water containing a chelating agent

Similar Documents

Publication Publication Date Title
Aziman et al. Remediation of thorium (IV) from wastewater: Current status and way forward
JP5736094B1 (en) Contaminated soil purification equipment
JP5771342B1 (en) Contaminated soil purification equipment
CN103137231B (en) Decontamination method and apparatus for solid-state material contaminated by radiocesium
EP3153246B1 (en) Method for soil and sediment remediation
JP2006255515A (en) Method for decontaminating soil contaminated with heavy metal
JP5490035B2 (en) How to clean contaminated soil
CA2041727A1 (en) Method and apparatus for cleaning contaminated particulate material
JP6093942B2 (en) Radioactive liquid decontamination method
CN105817469A (en) Magnetic separation purifying treatment technology for removing heavy metal pollution of soil
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
KR102504769B1 (en) Method for purification of radioactive contaminated soil
JP2004089809A (en) Method and apparatus for cleaning contaminated soil
JP2013178221A (en) Decontamination device and decontamination method of solid matter contaminated with radioactive material
Rashid et al. Removal of dissolved cadmium ions from contaminated wastewater using raw scrap zero-valent iron and zero valent aluminum as locally available and inexpensive sorbent wastes
JP2000051835A (en) Method for cleaning soil by using iron powder
JP6444701B2 (en) Method and apparatus for purifying muddy water containing arsenic
JP5881043B2 (en) Radioactive material recovery method and radioactive material recovery device
JP2015071166A (en) Method for recovering material suspended in liquid
Tharanitharan et al. Removal of Pb (II) from aqueous solutions by using dioctyl sodium sulphosuccinate-EDTA modified Amberlite XAD-7HP resin
JP2004188250A (en) Method for cleaning soil contaminated with heavy metal
JP2019209250A (en) Treatment agent for incineration ash, and treatment method of incineration ash
JP2014035193A (en) Cleaning method, processing method, cleaning device and processing device for fly ash
JP2014055895A (en) Adsorbent for radioactive material, reproduction method therefor, and purification method for radioactive contaminated material
CN113387527B (en) Treatment method of bottom mud with heavy metal and organic compound pollution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110725

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906