JP2014006111A - Decontamination method for improving classification and cleaning effect in soil contaminated with radioactive cesium - Google Patents

Decontamination method for improving classification and cleaning effect in soil contaminated with radioactive cesium Download PDF

Info

Publication number
JP2014006111A
JP2014006111A JP2012140943A JP2012140943A JP2014006111A JP 2014006111 A JP2014006111 A JP 2014006111A JP 2012140943 A JP2012140943 A JP 2012140943A JP 2012140943 A JP2012140943 A JP 2012140943A JP 2014006111 A JP2014006111 A JP 2014006111A
Authority
JP
Japan
Prior art keywords
soil
polyion
aqueous solution
classification
radioactive cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012140943A
Other languages
Japanese (ja)
Other versions
JP6083591B2 (en
Inventor
Hirochika Osanawa
弘親 長縄
Nobuyuki Yanase
信之 柳瀬
Tetsushi Nagano
哲志 永野
Kyukichi Mitamura
久吉 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2012140943A priority Critical patent/JP6083591B2/en
Publication of JP2014006111A publication Critical patent/JP2014006111A/en
Application granted granted Critical
Publication of JP6083591B2 publication Critical patent/JP6083591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving an effect in classification and cleaning to be performed in order to reduce the volume of waste soil to be generated when soil contaminated with radioactive cesium is decontaminated by removing surface soil.SOLUTION: When polyions exist in performing classification and cleaning with respect to soil contaminated with radioactive cesium, fine particles attached to rough particles are easily detached by an aggregation action with respect to fine particles held by polyions and also the reattachment of fine particles is suppressed. Thus, a classification and cleaning effect is improved.

Description

本発明は、放射性セシウム汚染土壌の分級・洗浄効果を向上させる除染方法に関する。特に、放射性セシウム汚染土壌の除染において、ポリイオンの有する土壌中微細粒子に対する凝集作用を利用して、分級・洗浄効果を向上させる方法に関する。   The present invention relates to a decontamination method for improving the classification and cleaning effect of radioactive cesium-contaminated soil. In particular, in decontamination of radioactive cesium-contaminated soil, the present invention relates to a method for improving the classification / cleaning effect by utilizing the aggregating action of polyion on fine particles in soil.

平成23年3月11日に発生した東京電力福島第一原子力発電所の事故で飛散した放射性物質により、広範囲にわたって土壌が汚染された。事故の発生から1年以上を経過した平成24年5月現在、半減期の短い放射性ヨウ素はほとんど存在せず、半減期の長い放射性セシウム(Cs-137:半減期30年、Cs-134:半減期約2年)が主たる汚染物質である。   The soil was extensively contaminated by radioactive material scattered by the accident at the TEPCO Fukushima Daiichi NPS on March 11, 2011. As of May 2012, when more than one year has passed since the accident occurred, there is almost no radioactive iodine with a short half-life, and a long half-life of radioactive cesium (Cs-137: half-life 30 years, Cs-134: half) 2 years) is the main pollutant.

放射性セシウムは、粘土などの微細粒子に吸着固定化された状態で表層の土壌(表土)にとどまりやすい性質がある。よって、汚染土壌の除染には、多くの放射性セシウムが表土に存在しているうちに、表土のみを剥離することが最も有効である。剥離した表土は、放射性セシウムの半減期のおよそ10倍の長期間にわたって適切に遮蔽保管されなければならないが、発生する廃棄土の量は膨大である。国土面積の狭い日本では、廃棄土を遮蔽保管するための処分場の確保に限界があり、廃棄土の減容化が必須である。廃棄土の減容方法としては、酸抽出法(非特許文献1参照)、土壌燃焼法(非特許文献2参照)といった方法も知られているが、酸抽出法のような化学処理は環境負荷の大きさと安全面での問題があり、土壌燃焼法はコスト面での問題が大きい。   Radioactive cesium tends to stay in the surface soil (surface soil) while adsorbed and immobilized on fine particles such as clay. Therefore, for the decontamination of contaminated soil, it is most effective to peel only the topsoil while many radioactive cesiums are present in the topsoil. The detached topsoil must be properly shielded and stored for a long period of time, approximately 10 times the half-life of radioactive cesium, but the amount of waste soil generated is enormous. In Japan, where the land area is small, there is a limit to securing a disposal site for shielding and storing waste soil, and volume reduction of waste soil is essential. As methods for reducing the volume of waste soil, methods such as an acid extraction method (see Non-Patent Document 1) and a soil combustion method (see Non-Patent Document 2) are also known. There is a problem in terms of size and safety, and the soil combustion method has a large problem in terms of cost.

一方、非放射性物質による汚染土壌の浄化方法として、分級(ふるい分け)と洗浄により土壌全体から有害成分(重金属イオンなど)及びそれを濃集する粘土などの微細粒子を分離・分別し、汚染土壌の量を減容する、土壌分級・洗浄法と呼ばれる土壌浄化技術が知られている(非特許文献3及び非特許文献4参照)。ところが、通常の分級・洗浄方法では、大粒の粒子の表面に微細粒子が付着することで、分級・洗浄が効率的に進行しないという難点があった。   On the other hand, as a purification method for contaminated soil with non-radioactive substances, harmful components (such as heavy metal ions) and fine particles such as clay that concentrate them are separated and classified from the entire soil by classification (sieving) and washing, A soil purification technique called soil classification / cleaning method for reducing the volume is known (see Non-Patent Document 3 and Non-Patent Document 4). However, in the normal classification / cleaning method, there is a problem that the classification / cleaning does not proceed efficiently because fine particles adhere to the surface of large particles.

汚染土壌表層を必要最小限の深さで効果的かつ効率的に剥がすために、分子性ポリマーや自硬性セメントを散布して土壌表層を固化させる方法が知られている。分子性ポリマーは短時間で土壌表層を固化できるが、分級・洗浄の際には、水で固化状態を軟化させるために長時間を要する。自硬性セメントは、いったん固化してしまうと水で軟化させることができないため、水を用いて分級・洗浄することは不可能になる。   In order to effectively and efficiently peel off the contaminated soil surface at a necessary minimum depth, a method of solidifying the soil surface layer by spraying a molecular polymer or self-hardening cement is known. Although the molecular polymer can solidify the soil surface layer in a short time, it takes a long time to classify and wash the solidified state with water. Since self-hardening cement cannot be softened with water once it has solidified, it cannot be classified and washed with water.

水処理分野においては、汚水中の懸濁成分を凝集・フロック化して分離する高分子凝集剤が汎用されており、ポリ陽イオン系又はポリ陰イオン系の高分子凝集剤が知られている(特許文献1及び特許文献2)。一方、分級・洗浄技術においては、界面活性剤あるいは汚染物質(除去対象の物質)と結合する薬剤を利用して洗浄効果を向上させる工夫は経験的に行われているものの、分級・洗浄効果を向上させる目的で、微細粒子を凝集させる作用を持つ薬剤が利用されたことはない。   In the field of water treatment, polymer flocculants that aggregate and flocculate and separate suspended components in wastewater are widely used, and polycation or polyanionic polymer flocculants are known ( Patent Document 1 and Patent Document 2). On the other hand, in the classification / cleaning technology, although the contrivance to improve the cleaning effect by using a surfactant or a chemical that binds to a contaminant (substance to be removed) has been empirically performed, the classification / cleaning effect is improved. For the purpose of improving, a drug having an action of aggregating fine particles has never been used.

本発明において、凝集剤は、粗い粒子の表面に付着した微細な粒子の再付着を防ぐことで分級・洗浄効果を向上させる働きをするが、分級・洗浄の分野において、今までこのような凝集剤の作用が注目されたことはなかった。分級・洗浄効果の向上には、もっぱら表面研磨法などの物理的な方法に基づいて、機械・装置の工夫がなされてきた。たとえば、機械的に粒子間の摩擦を発生させて研磨能力を向上させる方法がある(非特許文献4及び非特許文献5参照)。   In the present invention, the flocculant works to improve the classification / cleaning effect by preventing the reattachment of fine particles attached to the surface of the coarse particles. The effect of the agent has never been noticed. In order to improve the classification / cleaning effect, devices and machines have been devised exclusively based on physical methods such as surface polishing. For example, there is a method of improving the polishing ability by mechanically generating friction between particles (see Non-Patent Document 4 and Non-Patent Document 5).

特開平9-164389号公報JP-A-9-164389 特開平7-224104号公報Japanese Patent Laid-Open No. 7-224104

“土壌中のセシウムを低濃度の酸で抽出することに成功,” 産業技術総合研究所プレスリリース, 2011年8月31日“Succeeded in extracting cesium in soil with low-concentration acid,” AIST press release, August 31, 2011 “福島県飯舘村で新たな除染試験:高濃度の土壌を焼却,” 共同通信, 2011年10月26日“A new decontamination test in Iitate, Fukushima: Incineration of high-concentration soil,” Kyodo News, October 26, 2011 “区域内措置優良化ガイドブック”, 環境省, 水・大気環境局土壌環境課, 43-46 (2011). http://www.env.go.jp/water/dojo/gb_me/“Regional Measures Improvement Guidebook”, Ministry of the Environment, Soil Environment Division, Water and Air Environment Bureau, 43-46 (2011). Http://www.env.go.jp/water/dojo/gb_me/ 二見達也, “分級,比重選別,表面研磨等による重金属汚染土壌浄化実用技術の一例”, 地学雑誌, 116(6), 932-940 (2007)Tatsuya Futami, “An example of practical technology for remediation of heavy metal-contaminated soil by classification, specific gravity selection, surface polishing”, Geographical Journal, 116 (6), 932-940 (2007) 平成23年度「除染技術実証試験事業」概要,独立行政法人日本原子力研究開発機構福島技術本部,第7回原子力委員会資料1-2号,p10,12,平成24年2月21日Outline of FY2011 “Decontamination Technology Demonstration Test Project”, Japan Atomic Energy Agency, Fukushima Technology Division, 7th Atomic Energy Commission Document 1-2, p10, 12, February 21, 2012

本発明は、放射性セシウムで汚染された土壌の除染処理により産出される放射性廃棄土を減容する方法を提供することを目的とする。   It is an object of the present invention to provide a method for reducing the volume of radioactive waste soil produced by decontamination treatment of soil contaminated with radioactive cesium.

本願発明者らは、鋭意研究を重ねた結果、土壌処理剤としての利用が期待されているポリイオンが、廃棄土の分級・洗浄においても有効な作用を有し、その効率を大きく向上させることを知見し、本発明を完成するに至った。   As a result of extensive research, the inventors of the present application have found that polyion, which is expected to be used as a soil treatment agent, has an effective action in classification and washing of waste soil, and greatly improves its efficiency. As a result, the present invention has been completed.

放射性セシウム汚染土壌の除染には、放射性セシウムの多くが存在する表層土壌(表土)の剥ぎ取りが最も有効である。放射性セシウムの多くは粘土質の微細粒子成分に強く吸着・固定化されているため、粗い粒子を洗浄しながら、微細粒子だけを分級して集め、放射性セシウムを含む微細粒子成分のみを放射性廃棄土として処理する。洗浄した粗い粒子成分は、放射性セシウムを含まないので、もとの場所に戻したり、セメントの骨材などとして再利用したりすることも可能である。   For the decontamination of radioactive cesium-contaminated soil, stripping off the surface soil (surface soil) where most of the radioactive cesium exists is the most effective. Since most of the radioactive cesium is strongly adsorbed and immobilized on the clay-like fine particle components, only the fine particles are classified and collected while washing the coarse particles, and only the fine particle components containing the radioactive cesium are collected in the radioactive waste soil. Process as. Since the washed coarse particle component does not contain radioactive cesium, it can be returned to its original location or reused as cement aggregate.

本発明によれば、ポリイオン水溶液を土壌に散布後、表土を剥ぎ取り、次いで水を使って剥ぎ取った表土を分級・洗浄すると、大粒の粒子表面に付着している微細粒子が洗い出され、ポリイオンの有する微細粒子に対する凝集作用によって、洗い出された微細粒子が凝集して大粒の粒子に再付着することが防止される。こうして、従来の方法では大粒の粒子に付着して分離が困難であった微細粒子を大粒の粒子から排除し、分級・洗浄効果を向上させることができる。   According to the present invention, after spraying the polyion aqueous solution on the soil, peeling off the topsoil, and then classifying and washing the topsoil removed using water, the fine particles adhering to the surface of the large particles are washed out, The agglomeration effect on the fine particles of the polyion prevents the washed out fine particles from aggregating and reattaching to the large particles. In this way, fine particles that are attached to large particles and difficult to separate by the conventional method can be excluded from the large particles, and the classification and cleaning effect can be improved.

具体的には、放射性セシウムにより汚染された土壌にポリイオン水溶液を散布し、続いて当該土壌の表層を剥離除去した後、生じる放射性廃棄土壌を分級・洗浄し、分級サイズが0.075mm未満の微細粒子分画を放射性廃棄土壌とする、放射性セシウム汚染土壌の除染方法が提供される。実施例において詳述するように、本発明の方法によれば、たとえば、0.075mmメッシュの篩を用いることで、放射性セシウムの85%程度を0.075mm未満の微細粒子分画に濃縮できるため、放射性セシウムをあまり含まない0.075mm以上の粒子分画は放射性廃棄土壌を構成せず、大幅な減容が達成できる。放射性廃棄土壌としない分画は、洗浄後、埋め戻したり、骨材として再利用したりできる。なお、分級に用いる篩としては、0.075mmメッシュの規格のものが好ましいが、これよりも細かいメッシュ(たとえば、0.05mmメッシュ)の篩も、用いることは可能である。   Specifically, a polyion aqueous solution is sprayed on the soil contaminated with radioactive cesium, and then the surface layer of the soil is peeled and removed, and then the generated radioactive waste soil is classified and washed, and the classification size is less than 0.075 mm. Provided is a method for decontamination of radioactive cesium-contaminated soil using the particle fraction as radioactive waste soil. As described in detail in Examples, according to the method of the present invention, for example, about 85% of radioactive cesium can be concentrated to a fine particle fraction of less than 0.075 mm by using a 0.075 mm mesh sieve. The particle fraction of 0.075 mm or more, which does not contain much radioactive cesium, does not constitute radioactive waste soil and can achieve a significant volume reduction. Fraction that is not treated as radioactive waste soil can be backfilled or reused as aggregate. In addition, as a sieve used for classification, a sieve having a standard of 0.075 mm mesh is preferable, but a sieve having a finer mesh (for example, 0.05 mm mesh) can also be used.

ポリイオンにはポリ陽イオンとポリ陰イオンの2種類があり、上記の方法においては、ポリ陽イオンとしては、カチオン化セルロース、カチオン化でんぷん、アミノ基を有するポリマーもしくは4級アンモニウム塩のポリマーなどが利用できる。ポリ陰イオンとしては、カルボキシメチルセルロース、カルボキシメチルアミロース、リグニンスルホン酸およびその塩、ポリアクリル酸およびその塩、ポリスルホン酸およびその塩などが利用できる。また、ポリ陽イオンとポリ陰イオンとを混合して用いることもできる。この場合、土壌への散布時にゲル状のポリイオン複合体を生じさせないように、2〜6wt%の塩(塩化ナトリウム、塩化カリウム、硫酸カリウム、硫酸アンモニウムなど)を加えることが好ましい。   There are two types of polyions: polycations and polyanions. In the above method, polycations include cationized cellulose, cationized starch, polymers having amino groups, or polymers of quaternary ammonium salts. Available. As the polyanion, carboxymethyl cellulose, carboxymethyl amylose, lignin sulfonic acid and its salt, polyacrylic acid and its salt, polysulfonic acid and its salt and the like can be used. Moreover, a polycation and a polyanion can be mixed and used. In this case, it is preferable to add 2 to 6 wt% of a salt (sodium chloride, potassium chloride, potassium sulfate, ammonium sulfate, etc.) so as not to form a gel-like polyion complex when sprayed on soil.

本発明により、放射性セシウムにより汚染された土壌の表層を剥ぎ取った後に、これを減容するために行う分級・洗浄において、その効果を向上させることができる。   According to the present invention, after the surface layer of soil contaminated with radioactive cesium is peeled off, the effect can be improved in classification and washing performed to reduce the volume.

好ましい実施形態Preferred embodiment

本発明の除染方法は、放射性セシウムにより汚染された土壌にポリイオン水溶液を散布し、当該土壌の表層を剥離除去し、生じる放射性廃棄土壌を分級し、分級サイズが0.075mm未満の微細粒子分画を放射性廃棄土壌とする。分級サイズが0.075mmを越える分級分画は洗浄し、埋め戻し又は再利用する。   In the decontamination method of the present invention, a polyion aqueous solution is sprayed on soil contaminated with radioactive cesium, the surface layer of the soil is peeled and removed, the resulting radioactive waste soil is classified, and the fine particle fraction with a classification size of less than 0.075 mm is obtained. The painting is radioactive waste soil. Classification fractions with a classification size exceeding 0.075 mm are washed, backfilled or reused.

ポリイオン水溶液としては、カチオン化セルロース、カチオン化でんぷん、アミノ基を有するポリマーもしくは4級アンモニウム塩のポリマーから選択されるポリ陽イオンを含む水溶液;カルボキシメチルセルロース、カルボキシメチルアミロース、リグニンスルホン酸およびその塩、ポリアクリル酸およびその塩、ポリスルホン酸およびその塩から選択されるポリ陰イオンを含む水溶液、もしくはポリ陽イオンとポリ陰イオンとを含む水溶液を好ましく用いることができる。特に、ゲル状のポリイオン複合体を形成させずにポリイオン水溶液として用いることで、汚染土壌への散布及び土壌中の微細粒子への拡散が容易になるので好ましい。ポリイオン複合体の形成は、ポリイオン水溶液に、ポリ陽イオンとポリ陰イオンとが結合することを防止する緩衝剤として、塩化ナトリウム、硫酸カリウム、硫酸アンモニウムを1〜6wt%含有させることで防止することができる。   As an aqueous polyion solution, an aqueous solution containing a polycation selected from cationized cellulose, cationized starch, a polymer having an amino group or a polymer of a quaternary ammonium salt; carboxymethylcellulose, carboxymethylamylose, lignin sulfonic acid and salts thereof, An aqueous solution containing a polyanion selected from polyacrylic acid and a salt thereof, polysulfonic acid and a salt thereof, or an aqueous solution containing a polycation and a polyanion can be preferably used. In particular, it is preferable to use it as a polyion aqueous solution without forming a gel-like polyion complex, since it can be easily applied to contaminated soil and diffused into fine particles in the soil. Formation of a polyion complex can be prevented by containing 1 to 6 wt% sodium chloride, potassium sulfate, or ammonium sulfate as a buffering agent that prevents the polycation and polyanion from binding to the polyion aqueous solution. it can.

図1は、実施例及び比較例の各分画の重量割合を比較するグラフである。FIG. 1 is a graph for comparing the weight ratio of each fraction in Examples and Comparative Examples. 図2は、実施例及び比較例の各分画の放射能濃度の分布率を比較するグラフである。FIG. 2 is a graph comparing the distribution ratios of the radioactivity concentrations of the fractions of the examples and comparative examples.

以下、ポリイオンで処理した土壌の分級・洗浄におけるポリイオンの影響を1つの例として、本発明を具体的に説明するが、本発明はこれに限定されるものではない。
[実施例1]
剥離した表土を減容する目的で分級・洗浄を行う際、土壌処理剤が分級・洗浄に与える影響を把握する必要がある。そこで、ポリイオンで処理した土壌と未処理の土壌について、同一の方法で分級・洗浄を行い、その効果を比較した。
Hereinafter, the present invention will be specifically described by taking the influence of polyion in classification and washing of soil treated with polyion as an example, but the present invention is not limited thereto.
[Example 1]
When classifying and cleaning for the purpose of reducing the volume of detached topsoil, it is necessary to understand the effects of soil treatment agents on classification and cleaning. Therefore, the soil treated with polyion and untreated soil were classified and washed by the same method, and the effects were compared.

具体的には、福島県飯舘村飯樋の畑の1m四方の範囲においてポリイオン処理した土壌(ポリイオン水溶液を散布して2日間放置した土壌)およびこれと近接する未処理の土壌を採取し、分級・洗浄試験に用いた。また、ポリ陽イオンとしてカチオン化セルロース、ポリ陰イオンとしてカルボキシメチルセルロースを用いて、ポリイオン水溶液を調製した。ポリイオン水溶液は、ポリ陽イオンとポリ陰イオンとを合わせて3wt%含む水溶液とし、ポリイオン複合体が生成しないように(ポリイオン複合体のゲルが発生していない通常の水溶液として散布できるように)3wt%の塩化ナトリウムを加えたものである。なお、ポリイオン水溶液は5L/mの量で土壌に散布した。 Specifically, in the area of 1m square in Iitate, Iitate Village, Fukushima Prefecture, we collected polyion-treated soil (soil that was sprayed with a polyion aqueous solution and left for 2 days) and untreated soil in close proximity to it. Used for washing test. A polyion aqueous solution was prepared using cationized cellulose as the polycation and carboxymethylcellulose as the polyanion. The polyion aqueous solution is an aqueous solution containing 3 wt% of the polycation and the polyanion, so that the polyion complex is not generated (so that it can be dispersed as a normal aqueous solution in which the gel of the polyion complex is not generated). % Sodium chloride. In addition, the polyion aqueous solution was sprayed on the soil in an amount of 5 L / m 2 .

上記のポリイオン処理を行った土壌サンプルに対して、水(水道水)を用いて分級・洗浄を行った。なお、分級には、メッシュサイズが0.075mm、0.125mm、0.25mm、0.5mm、2.0mm、4.75mmのステンレスふるいを用い、振動などの機械力を利用しながら丁寧に水洗浄した。また、未処理の土壌についても、同一の方法で分級・洗浄を行い、ポリイオン処理した土壌の場合と比較した。分級サイズを<0.075mm、0.075−0.125mm、0.125−0.25mm、0.25−0.5mm、0.5−2.0mm、2.0−4.75mm、>4.75mmの7つの領域に分画し、それぞれの分級サイズについて、乾燥重量(g)、放射能(Bq)を測定した。これらの測定結果から、それぞれの分級サイズにおける重量割合(%)、放射能割合(%)を求めた。放射能は、NaIシンチレーション検出器により計測した。表1に未処理土壌の分級・洗浄の結果、表2にポリイオン処理した土壌の分級・洗浄の結果を示す。   The soil sample subjected to the above polyion treatment was classified and washed using water (tap water). For classification, stainless steel sieves with mesh sizes of 0.075 mm, 0.125 mm, 0.25 mm, 0.5 mm, 2.0 mm, and 4.75 mm are used, and water is carefully used while utilizing mechanical force such as vibration. Washed. Also, untreated soil was classified and washed by the same method, and compared with the soil treated with polyion. Classification size <0.075mm, 0.075-0.125mm, 0.125-0.25mm, 0.25-0.5mm, 0.5-2.0mm, 2.0-4.75mm,> 4 It was fractionated into 7 regions of .75 mm, and dry weight (g) and radioactivity (Bq) were measured for each classification size. From these measurement results, the weight ratio (%) and the radioactivity ratio (%) in each classification size were determined. Radioactivity was measured with a NaI scintillation detector. Table 1 shows the results of classification / washing of untreated soil, and Table 2 shows the results of classification / washing of polyion-treated soil.

表1と表2を比べると、ポリイオン処理した土壌では、未処理の土壌と比較して、0.075mm未満の分級サイズにおける放射能割合が大きいことがわかる。このことは、ポリイオン処理した土壌の方が分級・洗浄の効率が高いことを意味している。ポリ陽イオン、ポリ陰イオンは、微細粒子に対して凝集作用を有していることから、大きい粒子の表面に付着した微細粒子を剥離・除去する効率が高められたと考えられる。すなわち、微細粒子が大きい粒子に再付着することを防ぎながら、微細粒子だけを効果的に凝集させることができるため、分級・洗浄の効率が向上したと考えられる。   Comparing Table 1 and Table 2, it can be seen that in the polyion-treated soil, the radioactivity ratio in the classification size of less than 0.075 mm is larger than in the untreated soil. This means that the soil subjected to polyion treatment has higher classification and washing efficiency. Since the polycation and polyanion have an aggregating action on fine particles, it is considered that the efficiency of peeling and removing fine particles adhering to the surface of large particles is enhanced. That is, it is considered that only the fine particles can be effectively agglomerated while preventing the fine particles from re-adhering to the large particles, so that the efficiency of classification and cleaning is improved.

0.075mm未満の微細粒子成分が5割程度を占める飯舘村飯樋の畑土壌について本発明の除染方法を行うと、全放射能の9割近くが0.075mm未満の分級サイズに集まることがわかった。9割近くのセシウム除去率が十分と判断されるならば、廃棄土を半分程度に減容できることになる。なお、0.075mmよりも小さいサイズに分級することができれば、廃棄土の量を更に少なくできる可能性もある。   When the decontamination method of the present invention is applied to the field soil of Iitate village Iitate where fine particle components less than 0.075 mm account for about 50%, nearly 90% of the total radioactivity may be collected in a classification size of less than 0.075 mm. all right. If it is judged that the cesium removal rate of nearly 90% is sufficient, the volume of waste soil can be reduced to about half. In addition, if classification to a size smaller than 0.075 mm is possible, there is a possibility that the amount of discarded soil can be further reduced.

廃棄土の減容率は、土壌に含まれる粘土質の割合に大きく左右される。0.075mm未満の微細粒子の多くは粘土質だからである。飯舘村飯樋の畑土壌では、粘土質の微細粒子成分が多いため、廃棄土の減容率は高くはならないが、粘土質が少ない土壌では、大きな減容が得られると考えられる。   The volume reduction rate of waste soil depends greatly on the proportion of clay in the soil. This is because many fine particles of less than 0.075 mm are clayey. In Iitate village Iitate, soil has a lot of fine particles of clay, so the volume reduction of waste soil should not be high, but it is thought that a large volume reduction can be obtained in soil with little clay.

[比較例1]
ポリ酢酸ビニルのような分子性ポリマーは、ポリイオンよりも短い時間で土壌を乾燥・固化できる利点を持ち、短期間で汚染土壌を除染(表土を除去)する場合には有効である。そこで、ポリ酢酸ビニルの懸濁液についても、ポリイオン処理を行った土壌に近接した1m四方の土壌に散布し、乾燥を待って剥ぎ取った後、実施例1に示すのと同じ要領で分級・洗浄を行った。ただし、ポリ酢酸ビニルで処理した土壌は、固化したポリ酢酸ビニルを水で軟化するのに若干の時間を要するため、処理土壌を6時間、水に浸した後、分級・洗浄を行った。ポリ酢酸ビニルで処理した飯舘村飯樋の畑土壌の分級・洗浄の結果を表3に示す。
[Comparative Example 1]
Molecular polymers such as polyvinyl acetate have the advantage of drying and solidifying soil in a shorter time than polyion, and are effective in decontaminating contaminated soil (removing topsoil) in a short period of time. Therefore, the suspension of polyvinyl acetate is also sprayed on 1m square soil adjacent to the polyion-treated soil, dried and peeled off, and then classified and treated in the same manner as shown in Example 1. Washing was performed. However, since the soil treated with polyvinyl acetate takes some time to soften the solidified polyvinyl acetate with water, the treated soil was soaked in water for 6 hours, and then classified and washed. Table 3 shows the results of classification and washing of the field soil of Iitate village treated with polyvinyl acetate.

表1と表3を比較して、0.075mm未満の分級サイズにおける放射能割合は、分子性ポリマー(ポリ酢酸ビニル)で処理した土壌と未処理の土壌とで一見すると大きな差はない。   Comparing Table 1 and Table 3, the radioactivity ratio in the classification size of less than 0.075 mm is not significantly different between the soil treated with the molecular polymer (polyvinyl acetate) and the untreated soil.

実施例および比較例として、未処理土壌、ポリイオン処理土壌、分子性ポリマー処理土壌での分級・洗浄データを示したが、上記の表1〜3に示した数値を直接比較しても、未処理、ポリイオン処理、分子性ポリマー処理の3者の違いを公平に比較したことにはならない。なぜなら、たとえ同じ畑で採取したサンプルを用いたとしても、土壌は均質ではないので、それぞれのサンプルで分級サイズの分布が異なるからである。一方、同一の畑の近接する位置の土壌であれば、それぞれの分画(分級サイズ)における粒子組成はほぼ同じとみなせる。ただし、粗い粒子に微細粒子が付着した状態を考慮すると、事実上、完璧な分画は不可能である。実際、洗浄後の粗い粒子(0.075mmを越える粒子)の分画にも、ある程度の放射能が測定されている。これは、放射性セシウムを濃縮した微細粒子がわずかに残存するためである。しかも、処理法によって各分画に残存する微細粒子の量が異なる。そこで、各分画の重量割合を、未処理、ポリイオン処理、分子性ポリマー処理の3者で比較した。その結果を図1に示す。上述したように、ポリイオン処理した土壌は0.075mm未満の分画における放射能割合が大きく(逆に粗い粒子の分画における放射能割合は小さく)、他の土壌と比べれば残存微細粒子の量は少ないはずである。もし、各分画に残存する微細粒子の重量が、その分画の全体重量に対して無視できないならば、微細粒子の残存量が少ないポリイオン処理土壌の場合は、粗い粒子(0.075mm以上の粒子)の分画の山が、他の土壌の場合と比べて低くなるはずである。ところが、図1を見る限り、粗い粒子の分画の山の高さに3者間で大きな差は見られない。よって、粗い粒子の分画における残存微細粒子の重量比は、その分画の全体重量に対して十分に小さいと推測した。   As examples and comparative examples, classification / washing data in untreated soil, polyion-treated soil, molecular polymer-treated soil was shown, but even if the numerical values shown in Tables 1 to 3 above were directly compared, untreated It is not a fair comparison of the differences between the polyion treatment and the molecular polymer treatment. This is because even if samples collected from the same field are used, the soil is not homogeneous, and the distribution of classification sizes is different for each sample. On the other hand, if the soil is in the vicinity of the same field, the particle composition in each fraction (classification size) can be regarded as almost the same. However, in consideration of the state in which fine particles adhere to coarse particles, practically perfect fractionation is impossible. In fact, some radioactivity has also been measured in the fraction of coarse particles (particles greater than 0.075 mm) after washing. This is because slight fine particles enriched with radioactive cesium remain. Moreover, the amount of fine particles remaining in each fraction varies depending on the treatment method. Therefore, the weight ratio of each fraction was compared between the untreated, polyion treated, and molecular polymer treated. The result is shown in FIG. As described above, the polyion-treated soil has a large radioactivity ratio in the fraction less than 0.075 mm (conversely the radioactivity ratio in the fraction of coarse particles is small), and the amount of residual fine particles compared to other soils. There should be few. If the weight of the fine particles remaining in each fraction is not negligible with respect to the total weight of the fraction, in the case of polyion-treated soil with a small amount of fine particles remaining, coarse particles (0.075 mm or more The pile of particles) should be lower than in other soils. However, as shown in FIG. 1, there is no significant difference between the three in the height of the peak of the coarse particle fraction. Therefore, the weight ratio of the remaining fine particles in the coarse particle fraction was estimated to be sufficiently small relative to the total weight of the fraction.

以上のことから、分級・洗浄の効果を判断する指標として、放射能濃度の分布率の考え方を適用することが可能である。以下に、各分画における放射能濃度の分布率の求め方、および得られた放射能濃度と分布率の数値を示す。   From the above, it is possible to apply the concept of radioactivity concentration distribution rate as an index for judging the effect of classification and cleaning. The method for obtaining the distribution ratio of the radioactivity concentration in each fraction and the numerical values of the obtained radioactivity concentration and distribution ratio are shown below.

まず、未処理、ポリイオン処理、分子性ポリマー処理の3者について、各分画における放射能濃度を求め、各分画に対して計算された放射能濃度(Bq/g)を表4にまとめた。なお、放射能濃度とは、以下に定義される値である。   First, the radioactivity concentration in each fraction was determined for the untreated, polyion-treated, and molecular polymer treated, and the radioactivity concentration (Bq / g) calculated for each fraction was summarized in Table 4. . The radioactivity concentration is a value defined below.

放射能濃度から分布率(%)を求めるには、以下の式を用いる。   The following formula is used to obtain the distribution rate (%) from the radioactivity concentration.

式中、Diは分画iにおける分布率(%)、Ciは分画iにおける放射能濃度(Bq/g)、ΣCi はすべての分画における放射能濃度の和(全放射能濃度)である。また、上記のように、すべての分画における分布率の和は100である。 In the formula, D i is the distribution rate (%) in fraction i, C i is the radioactivity concentration in fraction i (Bq / g), ΣC i is the sum of the radioactivity concentrations in all fractions (total radioactivity concentration) ). Further, as described above, the sum of the distribution ratios in all the fractions is 100.

表5に、未処理土壌、ポリイオン処理土壌、分子性ポリマー処理土壌の各分画における放射能濃度の分布率(%)を比較した結果を示す。   Table 5 shows the results of comparing the distribution ratio (%) of the radioactivity concentration in each fraction of untreated soil, polyion-treated soil, and molecular polymer-treated soil.

表5のデータをグラフにして図2に示す。未処理の土壌では、分級サイズが大きくなるに従って、放射能濃度の分布率もほぼ一様に増加していく。それに対し、ポリイオン処理土壌では、0.075mm未満の分級サイズ(最小サイズの分画)で急激に放射能濃度の分布率が大きくなり、かつ0.075mm以上の分級サイズでは低い分布率が保たれている。このことから、ポリイオン処理土壌では未処理の土壌と比べると格段に分級・洗浄の効果が高いことがわかる。また、分子性ポリマー処理土壌と比較しても、ポリイオン処理土壌の方が分級・洗浄の効果が高いことがわかる。分子性ポリマー処理土壌は、未処理土壌とポリイオン処理土壌の中間に位置するが、傾向にはポリイオン処理土壌との類似性がある。よって、分子性ポリマー(ポリ酢酸ビニル)にも、微細粒子に対する若干の凝集作用がある可能性が示唆される。   The data of Table 5 is graphed and shown in FIG. In untreated soil, the distribution rate of radioactivity concentration increases almost uniformly as the classification size increases. On the other hand, in polyion-treated soil, the distribution rate of radioactivity concentration suddenly increases at a classification size of less than 0.075 mm (minimum size fraction), and a low distribution ratio is maintained at a classification size of 0.075 mm or more. . From this, it can be seen that polyion-treated soil has a much higher classification / cleaning effect than untreated soil. Moreover, it turns out that the effect of classification and washing | cleaning is higher in the polyion treatment soil compared with the molecular polymer treatment soil. Although the molecular polymer-treated soil is located between the untreated soil and the polyion-treated soil, the tendency is similar to the polyion-treated soil. Therefore, it is suggested that the molecular polymer (polyvinyl acetate) may have a slight aggregating action on the fine particles.

分級・洗浄では、微細粒子分画(最小サイズ分画)のみを集めることで廃棄土壌の減容を図ることから、0.075mm未満の分画への放射能濃度の分布率という観点で比較すると、未処理土壌では28.0%、分子性ポリマー処理土壌では36.3%であるのに対し、ポリイオン処理土壌では51.7%となり、最も大きな値を示す。未処理土壌に対して比較すれば、ポリイオン処理土壌での微細粒子分画(最小サイズ分画)への放射能濃度の分布率は、未処理土壌の約1.9倍となる。   In classification and washing, the volume of waste soil is reduced by collecting only the fine particle fraction (minimum size fraction), so when compared in terms of the distribution ratio of radioactivity concentration to fractions less than 0.075 mm, It is 28.0% for untreated soil and 36.3% for molecular polymer treated soil, whereas it is 51.7% for polyion treated soil, showing the largest value. Compared to untreated soil, the distribution ratio of the radioactivity concentration to the fine particle fraction (minimum size fraction) in polyion-treated soil is about 1.9 times that of untreated soil.

放射性セシウムに汚染された土壌の除染(表層土壌の除去)によって生じる廃棄土の量は膨大であり、処分場の不足が懸念されている。そこで、廃棄土を減容することができれば、処分場不足の問題を軽減できる。水による分級・洗浄法は、コスト、環境負荷の小ささ、安全性などの面から、最も現実的な汚染土壌の減容方法である。また、放射性セシウムの大部分が粘土などの微細粒子に強く吸着・固定されていることから、安定な状態(環境への流出リスクが低い状態)で処分できるという利点もある。   The amount of waste soil generated by decontamination of soil contaminated with radioactive cesium (removal of surface soil) is enormous, and there is concern about the shortage of disposal sites. Therefore, if the volume of waste soil can be reduced, the problem of a shortage of disposal sites can be reduced. The water classification and cleaning method is the most realistic method for reducing the volume of contaminated soil in terms of cost, low environmental impact, and safety. In addition, since most of the radioactive cesium is strongly adsorbed and fixed to fine particles such as clay, there is an advantage that it can be disposed of in a stable state (low risk of environmental spillage).

分級・洗浄を効果的に行うためには、粗い粒子の表面に付着した微細粒子をいかにして排除するかが課題であり、ポリイオンの持つ微細粒子に対する凝集作用を利用する本発明は、この課題に対してきわめて有効である。また、ポリイオンは安価で大量に調達できる材料であり、食品分野、化粧品の分野などの日常生活で利用されている材料であることから、安全面での問題もないと考えられる。すなわち、水による分級・洗浄において、ポリイオンを添加することで(あるいは、土壌処理剤として加えられたポリイオンが存在していることで)、その効率を大幅に向上できることのメリットは大きく、廃棄土の減容を考慮した除染技術として、有用性はきわめて高い。   In order to perform classification and cleaning effectively, the problem is how to eliminate fine particles adhering to the surface of coarse particles, and the present invention using the aggregating action of polyion on fine particles is the subject of this problem. It is very effective against. Polyion is an inexpensive material that can be procured in large quantities, and is a material that is used in daily life such as in the food and cosmetic fields, so there are no safety issues. In other words, in the classification and washing with water, by adding polyion (or by the presence of polyion added as a soil treatment agent), the merit of greatly improving the efficiency is great. It is extremely useful as a decontamination technique considering volume reduction.

Claims (6)

放射性セシウムにより汚染された土壌にポリイオン水溶液を散布した後、
当該土壌の表層を剥離除去し、
生じる放射性廃棄土壌を水の存在下で分級・洗浄し、
分級サイズが0.075mm未満の微細粒子分画を放射性廃棄土壌とする
放射性セシウム汚染土壌の除染方法。
After spraying polyion aqueous solution to soil contaminated with radioactive cesium,
Peeling off the surface layer of the soil,
The generated radioactive waste soil is classified and washed in the presence of water,
A decontamination method for radioactive cesium-contaminated soil using a fine particle fraction having a classification size of less than 0.075 mm as radioactive waste soil.
前記放射性セシウムにより汚染された土壌にポリイオン水溶液を散布して、土壌中でポリイオンをゲル化させた後、土壌表層を剥がして、大粒の土壌粒子表面に付着している微細粒子を洗い出し、放射性セシウムが吸着・固定されている微細粒子を凝集させて大粒の粒子の表面への再付着を防止しながら分級・洗浄する、請求項1に記載の放射性セシウム汚染土壌の除染方法。   After spraying a polyion aqueous solution to the soil contaminated with the radioactive cesium to gel the polyion in the soil, the surface of the soil is peeled off to wash out the fine particles adhering to the surface of the large soil particles, and the radioactive cesium The method for decontamination of radioactive cesium-contaminated soil according to claim 1, wherein fine particles adsorbed and fixed are agglomerated and classified and washed while preventing reattachment of large particles to the surface. 前記ポリイオン水溶液は、
カチオン化セルロース、カチオン化でんぷん、アミノ基を有するポリマーもしくは4級アンモニウム塩のポリマーから選択されるポリ陽イオンを含む水溶液;
カルボキシメチルセルロース、カルボキシメチルアミロース、リグニンスルホン酸およびその塩、ポリアクリル酸およびその塩、ポリスルホン酸およびその塩から選択されるポリ陰イオンを含む水溶液、もしくは
ポリ陽イオンとポリ陰イオンとを含む水溶液である、請求項1又は2に記載の除染方法。
The polyion aqueous solution is:
An aqueous solution containing a polycation selected from cationized cellulose, cationized starch, polymers having amino groups or polymers of quaternary ammonium salts;
In an aqueous solution containing a polyanion selected from carboxymethylcellulose, carboxymethylamylose, lignin sulfonic acid and salts thereof, polyacrylic acid and salts thereof, polysulfonic acid and salts thereof, or an aqueous solution containing poly cations and poly anions The decontamination method according to claim 1 or 2.
前記ポリイオン水溶液は、ポリ陽イオン及び/又はポリ陰イオンを1〜6wt%含む水溶液である、請求項3に記載の除染方法。   The decontamination method according to claim 3, wherein the polyion aqueous solution is an aqueous solution containing 1 to 6 wt% of a polycation and / or a polyanion. 前記ポリイオン水溶液は、ゲル状のポリイオン複合体を生じていない、請求項3又は4に記載の除染方法。   The decontamination method according to claim 3 or 4, wherein the polyion aqueous solution does not produce a gel-like polyion complex. 前記ポリイオン水溶液は、ポリ陽イオンとポリ陰イオンの両方を含む場合には、塩化ナトリウム、塩化カリウム、塩化アンモニウム、塩化マグネシウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硫酸マグネシウムから選択される塩をさらに含む、請求項5に記載の除染方法。   When the polyion aqueous solution contains both a polycation and a polyanion, the polyion aqueous solution further includes a salt selected from sodium chloride, potassium chloride, ammonium chloride, magnesium chloride, sodium sulfate, potassium sulfate, ammonium sulfate, and magnesium sulfate. The decontamination method according to claim 5.
JP2012140943A 2012-06-22 2012-06-22 Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil Active JP6083591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140943A JP6083591B2 (en) 2012-06-22 2012-06-22 Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140943A JP6083591B2 (en) 2012-06-22 2012-06-22 Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil

Publications (2)

Publication Number Publication Date
JP2014006111A true JP2014006111A (en) 2014-01-16
JP6083591B2 JP6083591B2 (en) 2017-02-22

Family

ID=50103967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140943A Active JP6083591B2 (en) 2012-06-22 2012-06-22 Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil

Country Status (1)

Country Link
JP (1) JP6083591B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199057A (en) * 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method
KR101570948B1 (en) 2011-12-28 2015-11-20 다이니치 세이카 고교 가부시키가이샤 Method for removing radioactive cesium, hydrophilic resin composition for removal of radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil
CN114029327A (en) * 2021-11-30 2022-02-11 中国原子能科学研究院 Method for cleaning and decontaminating radioactive contaminated soil
CN114130806A (en) * 2021-11-30 2022-03-04 中国原子能科学研究院 Radioactive contaminated soil cleaning and decontaminating system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190364A (en) * 2012-03-15 2013-09-26 Ibaraki Univ Immobilization solution for radioactive substance-containing soil using water soluble or water dispersible polymer, and decontamination method of radioactive substance using the immobilization solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190364A (en) * 2012-03-15 2013-09-26 Ibaraki Univ Immobilization solution for radioactive substance-containing soil using water soluble or water dispersible polymer, and decontamination method of radioactive substance using the immobilization solution

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
""放射性物資による環境汚染の再生に対する総合的な支援体制を構築"", [ONLINE], JPN6016029696, 29 March 2012 (2012-03-29), ISSN: 0003372286 *
RON ANDERSON, 他2名: ""Particle size separation via soil washing to obtain volume reduction"", JOURNAL OF HAZARDOUS MATERIALS, vol. Vol. 66, Issues 1-2, JPN6016029697, 23 April 1999 (1999-04-23), pages 89 - 98, ISSN: 0003372287 *
長縄弘親,ほか9名: "ポリイオンコンプレックスを固定化剤として用いる土壌表層の放射性セシウムの除去", 日本原子力学会和文論文誌, vol. 10, no. 4, JPN6015050212, 27 September 2011 (2011-09-27), JP, pages 227 - 234, ISSN: 0003241914 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570948B1 (en) 2011-12-28 2015-11-20 다이니치 세이카 고교 가부시키가이샤 Method for removing radioactive cesium, hydrophilic resin composition for removal of radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
JP2015199057A (en) * 2014-04-02 2015-11-12 国立大学法人茨城大学 Dispersion type polymer coagulant, soil solidifying agent and coagulation and sedimentation agent, and contamination spreading prevention method of radioactive substance, decontamination method of contaminated soil, vegetation base creation method and water cleaning method
JP2017185423A (en) * 2016-04-01 2017-10-12 株式会社オメガ Method for cleaning contaminated soil
CN114029327A (en) * 2021-11-30 2022-02-11 中国原子能科学研究院 Method for cleaning and decontaminating radioactive contaminated soil
CN114130806A (en) * 2021-11-30 2022-03-04 中国原子能科学研究院 Radioactive contaminated soil cleaning and decontaminating system

Also Published As

Publication number Publication date
JP6083591B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083591B2 (en) Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil
Zhang et al. EDTA-enhanced washing for remediation of Pb-and/or Zn-contaminated soils
JP5647371B1 (en) Detoxification method for contaminated soil
JP5950562B2 (en) Volume reduction method for cesium-containing soil using powder treatment agent and volume reduction treatment system for cesium-containing soil
Mallampati et al. Preferential removal and immobilization of stable and radioactive cesium in contaminated fly ash with nanometallic Ca/CaO methanol suspension
JP2013178221A (en) Decontamination device and decontamination method of solid matter contaminated with radioactive material
JP2013103206A (en) Method for cleaning polluted soil
JP2013160666A (en) Method for safely disposing burned ash containing radioactive cesium
JP2012242254A (en) Original position purification method of contaminated soil
JP2006255515A (en) Method for decontaminating soil contaminated with heavy metal
JP5683633B2 (en) Method and apparatus for treating radioactive material contaminants
JP2013185941A (en) Method for decontaminating soil contaminated with radioactive cesium
JP6795939B2 (en) Contaminated soil reclaimed material
JP2015071166A5 (en)
JP6444701B2 (en) Method and apparatus for purifying muddy water containing arsenic
Ueda et al. Removal of radioactive Cs from gravel conglomerate using water containing air bubbles
JP2012237658A (en) Method for purifying contaminated soil
JP6137887B2 (en) Method for decontamination of soil containing radioactive material
JP2014211341A (en) Removal method of contaminant, and magnetic decontamination agent and manufacturing method thereof
JP5362926B1 (en) Decontamination of contaminated soil with radioactive materials
JP6476552B2 (en) Cation separation method
Saegusa et al. Decontamination of outdoor school swimming pools in Fukushima after the nuclear accident in March 2011
JP2005144341A (en) Insolubilizing processing method of arsenic and lead in soil
CN110484263A (en) A kind of compound leaching agent and its application
JP6671856B2 (en) Treatment method for soil containing radioactive cesium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6083591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250