JP6671856B2 - Treatment method for soil containing radioactive cesium - Google Patents
Treatment method for soil containing radioactive cesium Download PDFInfo
- Publication number
- JP6671856B2 JP6671856B2 JP2015079005A JP2015079005A JP6671856B2 JP 6671856 B2 JP6671856 B2 JP 6671856B2 JP 2015079005 A JP2015079005 A JP 2015079005A JP 2015079005 A JP2015079005 A JP 2015079005A JP 6671856 B2 JP6671856 B2 JP 6671856B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- specific gravity
- radioactive cesium
- cesium
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Description
本発明は、放射性セシウムを含有した土壌の処理方法に関する。 The present invention relates to a method for treating soil containing radioactive cesium.
原子力発電所において大規模な事故が発生した場合、大量の放射性核種が飛散し、環境汚染を引き起こすことが懸念される。この環境汚染は、土壌、樹木、建築物、建造物、海洋、湖沼水等の広い範囲にわたる。 When a large-scale accident occurs at a nuclear power plant, there is a concern that a large amount of radionuclides will be scattered and cause environmental pollution. This environmental pollution covers a wide range of soils, trees, buildings, buildings, oceans, lake waters and the like.
汚染された土壌に含有される放射性核種の大部分は、134Cs、137Cs、90Srであり、特に137Csは半減期が30.2年と長く、長期に影響を及ぼすことが想定される。そのため、放射性セシウムを含有した土壌、建築物、建造物、汚泥及び焼却灰等から、放射性セシウムを除去する技術の確立が模索されている。 Most of the radionuclides contained in the contaminated soil are 134 Cs, 137 Cs, and 90 Sr. In particular, 137 Cs has a long half-life of 30.2 years and is expected to have a long-term effect. . Therefore, establishment of a technology for removing radioactive cesium from soil, buildings, buildings, sludge, incinerated ash and the like containing radioactive cesium is being sought.
このような放射性セシウムの除去に関しては、いくつかの提案がなされている。例えば、セシウムの付着した土壌に、硝酸、硫酸、塩酸、酢酸、アンモニウムなどの水溶液を加えて撹拌して混合物を得て、得られた混合物を60〜90℃で1〜6時間保持して脱離処理する方法が提案されている(例えば、特許文献1参照。)。 Several proposals have been made regarding such removal of radioactive cesium. For example, an aqueous solution of nitric acid, sulfuric acid, hydrochloric acid, acetic acid, ammonium or the like is added to the soil to which cesium is attached, and the mixture is stirred to obtain a mixture. The resulting mixture is held at 60 to 90 ° C. for 1 to 6 hours to remove the mixture. A separation method has been proposed (for example, see Patent Document 1).
また、汚染土壌を除染し、除去物と処理土に分離する除染工程と、汚染土壌を、汚染土壌に混入した植物と、植物が除去された植物除去土に分離する植物除去工程を含む土壌除染方法が提案されている。当該土壌除染方法では、植物除去工程に先立ち、汚染土壌を水と混合して一次混合物を得て、得られた一次混合物を湿式分級する工程を行うことも提案されている(例えば、特許文献2参照。)。 In addition, the method includes a decontamination step of decontaminating the contaminated soil and separating the contaminated soil into a removed substance and a treated soil, and a plant removal step of separating the contaminated soil into a plant mixed with the contaminated soil and a plant-removed soil from which the plant has been removed. Soil decontamination methods have been proposed. In the soil decontamination method, it has been proposed to perform a step of mixing a contaminated soil with water to obtain a primary mixture and wet-classifying the obtained primary mixture prior to the plant removal step (for example, Patent Document 1). 2).
また、汚染土壌に対して水による洗浄及び振動を加えながらスクリーニングを行うことで、複数のサイズにふるい分けを行う工程と、その後、最小サイズの土壌成分と洗浄時に生じた排水を混合させ、土壌成分を沈殿させる工程を有する汚染物質分離除去方法が知られている(例えば、特許文献3参照。)。 In addition, a step of screening the contaminated soil while applying washing and vibration with water to sieve to a plurality of sizes, and then mixing the minimum-size soil component with the wastewater generated at the time of washing, and There is known a method for separating and removing contaminants having a step of precipitating (see, for example, Patent Document 3).
しかしながら、上記した方法では、いずれも、例えば土性の異なる土壌について、除染効率が異なる場合があり、十分な除染ができないことが懸念される。また、十分な除染ができないことで、廃棄物発生量が増大するおそれがあるという課題がある。 However, in any of the above methods, for example, decontamination efficiency may be different for soils having different soil properties, and there is a concern that sufficient decontamination cannot be performed. In addition, there is a problem that the amount of generated waste may increase due to insufficient decontamination.
本発明は、上記した課題を解消するためになされたものであって、除染効率を向上させるとともに、廃棄物発生量を低減することのできる放射性セシウム含有土壌の処理方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and aims to provide a method for treating radioactive cesium-containing soil that can improve the decontamination efficiency and reduce the amount of waste generated. And
本発明の放射性セシウム含有土壌の処理方法の一態様は、放射性セシウムを含有する土壌を除染する放射性セシウム含有土壌の処理方法であって、前記土壌を重液によって異なる比重の複数種の土壌に分離する比重分離工程と、前記比重分離された土壌に含まれるセシウムを除去するセシウム除去工程とを備えることを特徴とする。 One embodiment of the method for treating radioactive cesium-containing soil of the present invention is a method for treating radioactive cesium-containing soil for decontaminating radioactive cesium-containing soil, wherein the soil is converted into a plurality of types of soil having different specific gravities by heavy liquid. It is characterized by comprising a specific gravity separation step of separating and a cesium removal step of removing cesium contained in the soil separated by the specific gravity.
本発明によれば、除染効率を向上させるとともに、廃棄物発生量を低減することのできる放射性セシウム含有土壌の処理方法を提供することができる。 According to the present invention, it is possible to provide a method for treating radioactive cesium-containing soil, which can improve the decontamination efficiency and reduce the amount of waste generated.
図1は、本実施形態における放射性セシウム含有土壌の処理方法を概略的に示すフロー図である。本実施形態における放射性セシウム含有土壌の処理方法は、放射性セシウムを含有する土壌S中のセシウムを除去して除染する方法である。土壌Sは、汚泥、砂等を含んでいてもよい。 FIG. 1 is a flowchart schematically showing a method for treating radioactive cesium-containing soil in the present embodiment. The method of treating radioactive cesium-containing soil in the present embodiment is a method of removing and decontaminating cesium in radioactive cesium-containing soil S. The soil S may include sludge, sand, and the like.
図1に示す放射性セシウム含有土壌の処理方法は、放射性セシウムを含有する土壌Sを、重液を用いて比重で分離する比重分離工程S1と、比重分離された土壌Sに含まれるセシウムを除去するセシウム除去工程S2とを備えている。また、図1に示す放射性セシウム含有土壌の処理方法は、比重分離工程S1の前に、土壌Sを複数の粒径の土壌に分級する分級工程S3を備えている。ここで、分級工程S3は必須ではなく、必要に応じて行えばよい。 The method for treating radioactive cesium-containing soil shown in FIG. 1 includes a specific gravity separation step S1 of separating radioactive cesium-containing soil S at a specific gravity using a heavy liquid, and removing cesium contained in the specific gravity-separated soil S. And a cesium removal step S2. Further, the method for treating radioactive cesium-containing soil shown in FIG. 1 includes a classification step S3 for classifying the soil S into soil having a plurality of particle sizes before the specific gravity separation step S1. Here, the classification step S3 is not essential, and may be performed as needed.
本実施形態の放射性セシウム含有土壌の処理方法においては、比重分離工程S1で、重液Lを用いて土壌Sを比重の異なる複数の種類の土壌に分離する。 In the method for treating radioactive cesium-containing soil according to the present embodiment, in the specific gravity separation step S1, the heavy liquid L is used to separate the soil S into a plurality of types of soils having different specific gravities.
重液Lとしては、土壌Sを比重分離できるものであれば、特に制限なく用いることができる。重液Lとしては、有機液体、塩類の溶液等、公知のものを用いることができる。重液Lとして用いられる有機液体としては、例えば、アセトン、ブロモホルム、ジブロモメタン(CH2Br2)、テトラブロモエタン(Br2CHCHBr2)、ヨウ化メチル(CH3I)、ヨウ化メチレン(CH2I2)、四臭化炭素(CBr4)などが挙げられる。 The heavy liquid L can be used without any particular limitation as long as the soil S can be separated from the specific gravity. As the heavy liquid L, a known liquid such as an organic liquid or a salt solution can be used. Examples of the organic liquid used as the heavy liquid L include acetone, bromoform, dibromomethane (CH 2 Br 2 ), tetrabromoethane (Br 2 CHCHBr 2 ), methyl iodide (CH 3 I), and methylene iodide (CH 2 I 2), and the like carbon tetrabromide (CBr 4).
重液Lとして塩類の溶液を用いる場合、溶媒は、塩類を溶解させるものであれば特に限定されず、エタノール、アセトン、ベンゼン、四塩化炭素、クロロホルム等の有機溶媒、水等を用いることができる。塩類の溶液としては、四塩化スズ(SnCl4)、六フッ化モリブデン(MoF6)、塩化アンチモン(SbCl3)、四臭化バリウム水銀(BaHgBr4)、四臭化スズ(SnBr4)、フッ化タングステン(WF6)、ヨウ化スズ(SnI4)、四酸化オスミウム(OsO4)、マロン酸タリウム、ギ酸タリウム(HCO2Tl)、ポリタングステン酸ナトリウム(SPT)、ヘテロポリタングステン酸リチウム(LST)、メタタングステン酸リチウム(LMT)等の溶液、ツーレ液(K2HgI4の水溶液)、クレリチ溶液(ギ酸タリウムとマロン酸タリウムの混合水溶液)、クライン液(Cd(OH)2・B2O3・9WOの水溶液)等が挙げられる。 When a salt solution is used as the heavy liquid L, the solvent is not particularly limited as long as it dissolves the salt, and an organic solvent such as ethanol, acetone, benzene, carbon tetrachloride, chloroform, water, or the like can be used. . Examples of the salt solution include tin tetrachloride (SnCl 4 ), molybdenum hexafluoride (MoF 6 ), antimony chloride (SbCl 3 ), barium mercury tetrabromide (BaHgBr 4 ), tin tetrabromide (SnBr 4 ), and fluorine fluoride. Tungsten iodide (WF 6 ), tin iodide (SnI 4 ), osmium tetroxide (OsO 4 ), thallium malonate, thallium formate (HCO 2 Tl), sodium polytungstate (SPT), lithium heteropolytungstate (LST) , A solution of lithium metatungstate (LMT) or the like, a tool solution (aqueous solution of K 2 HgI 4 ), a crerich solution (a mixed aqueous solution of thallium formate and thallium malonate), a Klein solution (Cd (OH) 2 .B 2 O 3) • 9WO aqueous solution).
重液Lとしては、上記したなかでも、入手のし易さ、廃棄物発生量低減の観点から、アセトン、ブロモホルムを用いることが好ましい。 As the heavy liquid L, among the above, it is preferable to use acetone and bromoform from the viewpoint of availability and reduction of the amount of waste generated.
重液Lを用いた比重分離は、具体的に例えば、次のように行うことができる。土壌Sに重液Lを添加して、混合し、重液L中に土壌Sを分散させる。この際の、重液Lと土壌Sの液固比(重液L(mL)/土壌S(g))は、例えば60mL/g以上程度であることが好ましく、30mL/g以上程度であってもよい。その後、重液Lを静置して、重液Lの比重以上の比重の土壌Sからなる沈殿物と、重液Lよりも比重の小さい土壌Sを含む上澄み液に分離する。その後、必要に応じてフィルタ等によって沈殿物である土壌Sから重液Lを取り除く。また、同様に、必要に応じてフィルタ等を用い、上澄み液中に含まれる土壌Sを重液Lと分離する。これにより、比重の異なる2種類の土壌Sに分離することができる。さらに、比重の異なる複数の重液Lを用い、上記と同様に、各重液Lについて重液Lと土壌Sの混合、沈殿した土壌Sと上澄み液に含まれる土壌Sの分離、分離した土壌Sからの重液Lの除去、の操作を繰り返すことで、比重の異なる複数種の土壌Sに分離することができる。 Specific gravity separation using the heavy liquid L can be specifically performed, for example, as follows. The heavy liquid L is added to and mixed with the soil S, and the soil S is dispersed in the heavy liquid L. At this time, the liquid-solid ratio of the heavy liquid L to the soil S (heavy liquid L (mL) / soil S (g)) is preferably, for example, about 60 mL / g or more, and about 30 mL / g or more. Is also good. Thereafter, the heavy liquid L is allowed to stand still, and is separated into a sediment consisting of the soil S having a specific gravity equal to or higher than the specific gravity of the heavy liquid L, and a supernatant liquid containing the soil S having a lower specific gravity than the heavy liquid L. Thereafter, the heavy liquid L is removed from the soil S, which is the sediment, by a filter or the like as necessary. Similarly, the soil S contained in the supernatant liquid is separated from the heavy liquid L by using a filter or the like as necessary. Thereby, it can be separated into two types of soil S having different specific gravities. Furthermore, using a plurality of heavy liquids L having different specific gravities, in the same manner as described above, for each heavy liquid L, mixing the heavy liquid L and the soil S, separating the precipitated soil S and the soil S contained in the supernatant, and separating the separated soil S By repeating the operation of removing the heavy liquid L from S, it is possible to separate the soil into a plurality of types of soil S having different specific gravities.
重液Lの比重は、比重分離対象である土壌Sの比重によって適宜選択することができる。重液Lの比重としては例えば、処理対象である土壌S全体の比重を略中心として2種類以上の比重、好ましくは4種類以上、より好ましくは5種類以上の比重を選択することができる。具体的に例えば、比重2.0g/mLを中心とした場合、比重1.7g/mL、1.8g/mL、1.9g/mL、2.0g/mL、2.3g/mL等、0.1〜0.3g/mL刻みの比重の重液Lを用いることができる。なお、重液Lの比重の調節は、2種以上の重液Lを混合して行うことができる。また、重液Lとして塩類の溶液を用いる場合、その濃度を変更して、重液Lの比重を調節することができる。 The specific gravity of the heavy liquid L can be appropriately selected according to the specific gravity of the soil S to be subjected to specific gravity separation. As the specific gravity of the heavy liquid L, for example, two or more specific gravities, preferably four or more, more preferably five or more specific gravities can be selected with the specific gravity of the whole soil S to be treated as a center. Specifically, for example, when the specific gravity is 2.0 g / mL, the specific gravity is 1.7 g / mL, 1.8 g / mL, 1.9 g / mL, 2.0 g / mL, 2.3 g / mL, and the like. Heavy liquid L having a specific gravity of 0.1 to 0.3 g / mL can be used. The specific gravity of the heavy liquid L can be adjusted by mixing two or more heavy liquids L. When a salt solution is used as the heavy liquid L, the specific gravity of the heavy liquid L can be adjusted by changing its concentration.
上記で比重分離された土壌Sは、各比重によって、土壌S中の放射性セシウム濃度が異なる。そのため、比重分離された土壌Sは、放射性セシウム濃度が高い土壌Sと低い土壌Sに分類することができる。したがって、例えば、放射性セシウム濃度が通常廃棄物として処理できる濃度(例えば、8000Bq/kg以下)である土壌Sを除いて、続くセシウム除去工程S2を行うことができ、これにより、土壌Sの処理を効率的に行うことができる。 The concentration of radioactive cesium in the soil S differs depending on the specific gravity of the soil S separated as described above. Therefore, the soil S separated by specific gravity can be classified into a soil S having a high radiocesium concentration and a soil S having a low radiocesium concentration. Therefore, for example, the following cesium removal step S2 can be performed except for the soil S whose radioactive cesium concentration is a concentration (for example, 8000 Bq / kg or less) that can be treated as normal waste, whereby the treatment of the soil S can be performed. It can be done efficiently.
また、比重分離によって分離された土壌Sのうち放射性セシウム濃度が低い土壌Sはセシウムが除去され易く、放射性セシウム濃度が高い土壌Sは、セシウムが除去され難い傾向がある。したがって、セシウムの除去され難い、放射線セシウム濃度の高い土壌Sを取り除いた後に、放射性セシウム濃度が低い土壌Sに対して続くセシウム除去工程S2を行うことで、放射性セシウムの除去を効率的に行うことができる。 Further, among the soils S separated by the specific gravity separation, the soil S having a low radioactive cesium concentration tends to easily remove cesium, and the soil S having a high radioactive cesium concentration tends to be difficult to remove cesium. Therefore, after removing the soil S having a high radiocesium concentration that is difficult to remove cesium, and performing a cesium removal step S2 following the soil S having a low radiocesium concentration, the radioactive cesium can be efficiently removed. Can be.
なお、比重の異なる土壌Sにおいて、放射性セシウム濃度及びセシウムの除去され易さが異なるのは、次のような理由によると考えられる。土壌Sは、例えば、Si、Al、Fe、Ca、Na、K、Mg及び残部からなる。これらの元素は酸化物や所定の塩として土壌S中に存在するのが通常であり、上記残部には、動植物が作り出した有機物等が含まれる。土壌Sは、例えば上記した元素の酸化物で構成される積層構造を有しており、セシウムの多くはこの積層構造の中に取り込まれた形で存在している。比重の異なる土壌Sでは、土性が異なり、そのために土壌Sを構成する成分の種類や構成、土壌Sの構造等が異なる。これにより土壌Sに取り込まれるセシウムの量や、土壌S中に取り込まれたセシウムの除去され易さが異なると考えられる。 The reason why the radioactive cesium concentration and the easiness of removal of cesium differ in the soils S having different specific gravities is as follows. The soil S is composed of, for example, Si, Al, Fe, Ca, Na, K, Mg and the balance. These elements are usually present in the soil S as oxides or predetermined salts, and the rest includes organic substances produced by animals and plants. The soil S has a laminated structure composed of, for example, oxides of the above-described elements, and most of cesium exists in a form incorporated in the laminated structure. The soils S having different specific gravities have different soil properties, and therefore, the types and configurations of the components constituting the soil S, the structure of the soil S, and the like are different. It is considered that the amount of cesium taken into the soil S and the easiness of removal of the cesium taken into the soil S are different.
比重分離工程S1の後、必要に応じて、比重分離された土壌Sを洗浄する洗浄工程を行ってもよい。洗浄工程は、土壌Sを洗浄液に混合して洗浄した後、土壌Sから洗浄液を除去することで行うことができる。洗浄液としては、エタノール、アセトン、ベンゼン、四塩化炭素、クロロホルム等の有機溶媒、水等を用いることができる。洗浄液としては、廃棄物発生量の低減の点から、重液Lの溶媒と同じ有機溶媒又は水を用いることが好ましく、これらの中でも水を用いることが特に好ましい。 After the specific gravity separation step S1, a washing step of washing the soil S subjected to the specific gravity separation may be performed as necessary. The washing step can be performed by mixing the soil S with the washing liquid, washing, and then removing the washing liquid from the soil S. As the cleaning liquid, an organic solvent such as ethanol, acetone, benzene, carbon tetrachloride, chloroform, water, or the like can be used. As the washing liquid, it is preferable to use the same organic solvent or water as the solvent of the heavy liquid L from the viewpoint of reducing the amount of generated waste, and among them, water is particularly preferable.
また、比重分離工程S1の前に、分級工程S3を行ってもよい。分級工程S3では、湿式分級などによって、土壌Sを複数の粒径の土壌Sに分級する。このように複数の粒径に分級された土壌Sは、粒径によって放射性セシウム濃度が異なる。したがって、放射性セシウム濃度の高い土壌Sと放射性セシウム濃度の低い土壌Sに選別することができる。そのため、放射性セシウム濃度の低い土壌S、例えば、通常廃棄物として処理できる放射性セシウム濃度の土壌Sを除いて、比重分離工程S1及びセシウム除去工程S2を行うことができ、これにより、土壌Sの除染を効率的に行うことができる。 Before the specific gravity separation step S1, a classification step S3 may be performed. In the classification step S3, the soil S is classified into soil S having a plurality of particle sizes by wet classification or the like. The soil S classified into a plurality of particle sizes in this way has a different radiocesium concentration depending on the particle size. Therefore, it is possible to sort the soil S having a high radioactive cesium concentration and the soil S having a low radioactive cesium concentration. Therefore, except for the soil S having a low radioactive cesium concentration, for example, the soil S having a radioactive cesium concentration that can be treated as normal waste, the specific gravity separation step S1 and the cesium removal step S2 can be performed, thereby removing the soil S. Dyeing can be performed efficiently.
次いで、セシウム除去工程S2において、比重分離された土壌Sに含まれるセシウムを除去することで除染する。セシウムを除去する方法としては、土壌Sの放射性セシウム濃度を例えば、通常廃棄物として処理できる濃度にまで低減できる方法であれば特に限定されない。 Next, in the cesium removal step S2, decontamination is performed by removing cesium contained in the soil S that has been subjected to the specific gravity separation. The method of removing cesium is not particularly limited as long as the method can reduce the radioactive cesium concentration of the soil S to, for example, a concentration that can be treated as normal waste.
セシウム除去工程S2における土壌S中のセシウムの除去は、例えば、次のように、溶離液を用いて行うことができる。先ず、セシウムを含有する土壌Sを、溶離液に浸漬する。この際の溶離液の量は、溶離を促進する観点から、溶離液(mL)/土壌S(g)で示される液固比で50(mL/g)以上であることが好ましい。次いで、溶離液を必要に応じて撹拌する。これにより、土壌Sに含まれるセシウムを溶離液中に溶離させる。 The removal of cesium in the soil S in the cesium removal step S2 can be performed using, for example, an eluent as follows. First, the soil S containing cesium is immersed in the eluent. The amount of the eluent at this time is preferably 50 (mL / g) or more in terms of a liquid-solid ratio represented by eluent (mL) / soil S (g) from the viewpoint of promoting elution. The eluent is then agitated as needed. Thereby, the cesium contained in the soil S is eluted in the eluent.
溶離を行う際には、溶離液を加熱することが好ましい。加熱温度は、60℃以上100℃以下であることが好ましく、90℃以上100℃以下であることがより好ましく、95℃程度であることが特に好ましい。これにより、溶離を促進させ、セシウムの溶離を効率的に行うことができる。 When performing elution, it is preferable to heat the eluent. The heating temperature is preferably from 60 ° C to 100 ° C, more preferably from 90 ° C to 100 ° C, and particularly preferably about 95 ° C. Thereby, elution is promoted and cesium can be efficiently eluted.
溶離液としては、土壌S中のセシウム成分を溶解するものであれば特に制限なく用いることができる。溶離液として、例えば、塩酸、硫酸、硝酸、シュウ酸等の酸の水溶液等を用いることができる。また、溶離液として上記した酸の塩の水溶液を用いてもよい。溶離液の濃度は、土壌Sの種類に応じて適宜設定することができる。また、溶離液としては、1種を単独で用いてもよく、2種以上を併用してもよい。 Any eluent can be used without particular limitation as long as it dissolves the cesium component in the soil S. As the eluent, for example, an aqueous solution of an acid such as hydrochloric acid, sulfuric acid, nitric acid, and oxalic acid can be used. Further, an aqueous solution of the above-mentioned acid salt may be used as the eluent. The concentration of the eluent can be appropriately set according to the type of the soil S. As the eluent, one type may be used alone, or two or more types may be used in combination.
溶離液としては、上記したなかでも、溶離性能が高い点で、シュウ酸の水溶液を用いることが好ましい。溶離液としてシュウ酸水溶液を用いる場合、土壌Sを構成する成分を溶解させて溶離を促進する点で、その濃度は、0.05mol/L以上1.0mol/L以下であることが好ましく、0.5mol/L以上1.0mol/L以下であることがより好ましい。 As the eluent, among the above, it is preferable to use an aqueous solution of oxalic acid from the viewpoint of high elution performance. When an oxalic acid aqueous solution is used as the eluent, the concentration thereof is preferably 0.05 mol / L or more and 1.0 mol / L or less in that the components constituting the soil S are dissolved to promote elution. More preferably, it is not less than 0.5 mol / L and not more than 1.0 mol / L.
溶離後の土壌Sは、フィルタなどによって溶離液と分離する。その後、必要に応じて水等による洗浄を行う。これにより、除染された土壌Sを得ることができる。 The eluted soil S is separated from the eluent by a filter or the like. Thereafter, washing with water or the like is performed as necessary. Thus, decontaminated soil S can be obtained.
以上、本実施形態の放射性セシウム含有土壌の処理方法によれば、放射性セシウムを含有する土壌を異なる比重の複数種の土壌に分類することで、セシウム除去処理に先立ち、処理対象の土壌を選別することができる。これにより、セシウム除去効率を向上させるとともに、廃棄物発生量を低減することができる。 As described above, according to the method for treating radioactive cesium-containing soil of the present embodiment, by sorting the radioactive cesium-containing soil into a plurality of types of soils having different specific gravities, prior to the cesium removal treatment, the soil to be treated is selected. be able to. Thereby, the cesium removal efficiency can be improved, and the amount of waste generated can be reduced.
(実施例1)
本実施例では、重液で比重分離した土壌中の放射性セシウム濃度分布と、比重の関係を調べた。
(Example 1)
In this example, the relationship between the concentration of radioactive cesium in soil separated from the specific gravity by heavy liquid and the specific gravity was examined.
(重液の調整)
アセトンとブロモホルムを混合して次に示す各比重の重液を調整した。例えば、比重1.7g/mLの重液は、アセトン11.8gとブロモホルム39.2gを混合して調製した。その他の比重の重液についてもアセトンとブロモホルムをそれぞれ下記の各量で混合して調製した。
比重1.7g/mL:アセトン11.8g、ブロモホルム39.2g
比重1.8g/mL:アセトン10.5g、ブロモホルム43.6g
比重1.9g/mL:アセトン9.2g、ブロモホルム47.9g
比重2.0g/mL:アセトン7.8g、ブロモホルム52.4g
比重2.3g/mL:アセトン4g、ブロモホルム69g
(Adjustment of heavy liquid)
Acetone and bromoform were mixed to prepare heavy liquids having the following specific gravities. For example, a heavy solution having a specific gravity of 1.7 g / mL was prepared by mixing 11.8 g of acetone and 39.2 g of bromoform. A heavy solution having another specific gravity was prepared by mixing acetone and bromoform in the following amounts.
Specific gravity 1.7 g / mL: acetone 11.8 g, bromoform 39.2 g
Specific gravity 1.8 g / mL: acetone 10.5 g, bromoform 43.6 g
Specific gravity 1.9 g / mL: acetone 9.2 g, bromoform 47.9 g
Specific gravity 2.0 g / mL: acetone 7.8 g, bromoform 52.4 g
Specific gravity 2.3 g / mL: acetone 4 g, bromoform 69 g
(比重分離)
まず、比重1.7g/mLの重液30mLに、放射性セシウムを含有する土壌1g(液固比30mL/g)を添加し、軽く振り混ぜた後、超音波により1分間振動を与えて撹拌した。次いで、撹拌した重液を室温で1.5時間、静置した。これにより、重液中に、重液の比重以上の比重の土壌を沈降させた。その後、重液の上澄み液を回収することで、沈降した土壌を分離した。沈降した土壌をフィルタによって重液から分離し、分離された土壌を水で洗浄した後、乾燥させた。上澄み液に含まれる土壌についても同様に、重液から分離した後、水による洗浄を行い、その後乾燥した。沈降した土壌を比重1.7g/mL以上の土壌、上澄み液に含まれる土壌を比重1.7g/mL未満の土壌として分類した。
(Specific gravity separation)
First, 1 g of radioactive cesium-containing soil (30 mL / g of liquid-solid ratio) was added to 30 mL of a heavy liquid having a specific gravity of 1.7 g / mL, and the mixture was shaken gently. . Next, the stirred heavy liquid was allowed to stand at room temperature for 1.5 hours. Thereby, the soil having a specific gravity equal to or higher than the specific gravity of the heavy liquid was settled in the heavy liquid. Then, the settled soil was separated by collecting the supernatant of the heavy liquid. The sedimented soil was separated from heavy liquid by a filter, and the separated soil was washed with water and dried. Similarly, the soil contained in the supernatant was separated from the heavy solution, washed with water, and then dried. The sedimented soil was classified as a soil having a specific gravity of 1.7 g / mL or more, and the soil contained in the supernatant was classified as a soil having a specific gravity of less than 1.7 g / mL.
次いで、上記で比重分離した比重1.7g/mL以上の土壌に、比重1.8g/mLの重液30mLを加え、上記と同様の操作を行った。比重1.8g/mLの重液に沈降した土壌を比重1.8g/mL以上の土壌、上澄み液に含まれる土壌を比重1.8g/mL未満の土壌として分類した。 Next, 30 mL of a heavy liquid having a specific gravity of 1.8 g / mL was added to the soil having a specific gravity of 1.7 g / mL or more, and the same operation as described above was performed. The soil settled in the heavy liquid having a specific gravity of 1.8 g / mL was classified as a soil having a specific gravity of 1.8 g / mL or more, and the soil contained in the supernatant was classified as a soil having a specific gravity of less than 1.8 g / mL.
同様の操作を、上記各比重の重液を用いて、比重の小さい順に行い、土壌を、比重1.7g/mL未満、比重1.7g/mL以上2.0g/mL未満、比重2.0g/mL以上2.3g/mL未満、比重2.3g/mL以上の4種類の比重の土壌に分けた。 The same operation is performed in the order of smaller specific gravity using the above-mentioned heavy liquid of each specific gravity, and the soil is subjected to specific gravity of less than 1.7 g / mL, specific gravity of 1.7 g / mL or more and less than 2.0 g / mL, and specific gravity of 2.0 g. / ML or more and less than 2.3 g / mL, and divided into four types of soils having a specific gravity of 2.3 g / mL or more.
比重分離後、各比重の土壌中の放射性セシウム濃度を、NaI(ヨウ化ナトリウム)シンチレーション検出器を用いて測定した。測定結果を用いて、放射性セシウム濃度の分布を、各比重の土壌の放射性セシウム濃度(Bq/kg)の、全土壌の放射性セシウム濃度(Bq/kg)に対する百分率(%)によって算出した。結果を、土壌の比重を横軸、放射性セシウム濃度分布を縦軸として図2のグラフに示す After the specific gravity separation, the radioactive cesium concentration in the soil of each specific gravity was measured using a NaI (sodium iodide) scintillation detector. Using the measurement results, the distribution of the radioactive cesium concentration was calculated as a percentage (%) of the radioactive cesium concentration (Bq / kg) of the soil of each specific gravity with respect to the radioactive cesium concentration (Bq / kg) of the whole soil. The results are shown in the graph of FIG. 2 with the specific gravity of the soil as the horizontal axis and the radioactive cesium concentration distribution as the vertical axis.
図2に示されるように、比重によって分離された土壌は、各比重によって、放射性セシウム濃度が異なり、放射性セシウム濃度が高い土壌(比重1.7g/mL以上2.0g/mL未満)と低い土壌(前記以外)があることが分かる。したがって、処理対象である土壌をサンプルリングし、比重と放射性セシウム濃度分布の関係を予め測定し、放射性セシウム濃度分布の高い土壌についてセシウム除去工程を行えば、効率的に土壌の除染を行うことができることが分かる。 As shown in FIG. 2, the soil separated by specific gravity has different concentrations of radioactive cesium depending on the specific gravity, and the soil with high radioactive cesium concentration (specific gravity of 1.7 g / mL or more and less than 2.0 g / mL) and low soil (Other than the above). Therefore, if the soil to be treated is sampled, the relationship between the specific gravity and the radioactive cesium concentration distribution is measured in advance, and the cesium removal process is performed on the soil with a high radioactive cesium concentration distribution, the soil can be decontaminated efficiently. You can see that it can be done.
次いで、上記で比重分離した各比重の土壌について、シュウ酸を用いた溶離処理を行い、比重と、放射性セシウム除去率の関係を調べた。 Next, an elution treatment using oxalic acid was performed on the soil of each specific gravity separated as described above, and the relationship between the specific gravity and the removal rate of radioactive cesium was examined.
溶離処理は次のように行った。溶離液として0.5mol/Lのシュウ酸水溶液を用いた。シュウ酸水溶液を95℃に加熱し、その後、土壌を、液固比50mL/gとなるように添加した。約1時間、溶離液を、攪拌しながら、温度が90℃以上に維持されるように加熱した。その後、土壌と溶離液を分離して、分離した土壌中の放射性セシウム濃度を測定した。 The elution treatment was performed as follows. A 0.5 mol / L oxalic acid aqueous solution was used as an eluent. The oxalic acid aqueous solution was heated to 95 ° C., and then the soil was added so as to have a liquid-solid ratio of 50 mL / g. The eluent was heated with stirring to maintain the temperature above 90 ° C. for about 1 hour. Thereafter, the soil and the eluent were separated, and the radioactive cesium concentration in the separated soil was measured.
溶離前後の放射性セシウム濃度の測定結果から、放射性セシウム除去率(={(溶離前の土壌中の放射性セシウム濃度−溶離後の土壌中の放射性セシウム濃度)/(溶離前の土壌中の放射性セシウム濃度)}×100(%))を算出した。結果を、比重を横軸、放射性セシウム除去率を縦軸として図3のグラフに示す。 From the measurement results of the radioactive cesium concentration before and after elution, the radioactive cesium removal rate (= {(radioactive cesium concentration in soil before elution-radioactive cesium concentration in soil after elution) / (radioactive cesium concentration in soil before elution) )} × 100 (%)) was calculated. The results are shown in the graph of FIG. 3 with the specific gravity on the horizontal axis and the radioactive cesium removal rate on the vertical axis.
図3より、溶離前の放射性セシウム濃度が高い土壌(比重1.7g/mL以上2.0g/mL未満)は、溶離によって放射性セシウムが除去され難く、溶離前の放射性セシウム濃度が低い土壌(上記以外の比重)は溶離によって放射性セシウムが除去され易いことが分かる。したがって、放射性セシウム濃度の低い土壌を取り除いた後にセシウム除去工程を行うことで、放射性セシウムの除去を効率的に行うことができることが分かる。 According to FIG. 3, the soil with a high radioactive cesium concentration before elution (specific gravity of 1.7 g / mL or more and less than 2.0 g / mL) is difficult to remove radioactive cesium by elution, and the soil with low radioactive cesium concentration before elution (see above). It can be seen that the radioactive cesium is easily removed by elution. Therefore, it can be seen that the removal of radioactive cesium can be performed efficiently by performing the cesium removal step after removing the soil having a low concentration of radioactive cesium.
(実施例2)
放射性セシウムを含有する土壌を湿式分級し、2μm未満、2μm以上20μm未満、20μm以上212μm未満、212μm以上1000μm未満の4種類の粒径の土壌に分級した。分級後の各粒径の土壌中の放射性セシウム濃度を、NaIシンチレーション検出器を用いて測定した。結果を、粒径を横軸、放射性セシウム濃度を縦軸として、図4のグラフに示す。
(Example 2)
The soil containing radioactive cesium was wet classified and classified into four types of soil having a particle size of less than 2 μm, 2 μm or more and less than 20 μm, 20 μm or more and less than 212 μm, or 212 μm or more and less than 1000 μm. The radioactive cesium concentration in the soil of each particle size after the classification was measured using a NaI scintillation detector. The results are shown in the graph of FIG. 4 with the particle diameter on the horizontal axis and the radioactive cesium concentration on the vertical axis.
図4より、粒径により土壌中の放射性セシウム濃度が異なることが分かった。本実施例で用いた土壌では、粒径2μm以上で放射性セシウム濃度が8000Bq/kg以下となったため、粒径2μm以上の土壌は比重分離工程及びセシウム除去工程を行わずに通常廃棄物として処理することができることが分かる。 From FIG. 4, it was found that the radioactive cesium concentration in the soil differs depending on the particle size. In the soil used in this example, since the radioactive cesium concentration was 8000 Bq / kg or less at a particle size of 2 μm or more, the soil having a particle size of 2 μm or more is treated as ordinary waste without performing a specific gravity separation step and a cesium removal step. We can see that we can do it.
粒径2μm未満の土壌では、8000Bq/kgを超えたため、比重分離工程及び溶離液(シュウ酸水溶液)を用いたセシウム除去工程を行った。比重分離工程において、重液は、アセトンとブロモホルムを混合することで、比重1.7g/mlから2.0g/mLまで0.1mg/mL刻みの4種類の重液を調整した。これにより、粒径2μm未満の土壌を、比重1.7g/mL未満、比重1.7g/mL以上1.8g/mL未満、比重1.8g/mL以上1.9g/mL未満、比重1.9g/mL以上2.0g/mL未満、の4種の土壌に比重分離した。 In the case of soil having a particle diameter of less than 2 μm, the density exceeded 8000 Bq / kg, so that a specific gravity separation step and a cesium removal step using an eluent (aqueous oxalic acid solution) were performed. In the specific gravity separation step, four types of heavy liquids were prepared from 1.7 g / ml to 2.0 g / mL in 0.1 mg / mL increments by mixing acetone and bromoform. As a result, soil having a particle size of less than 2 μm can be used to convert soil having a specific gravity of less than 1.7 g / mL, a specific gravity of 1.7 g / mL or more and less than 1.8 g / mL, a specific gravity of 1.8 g / mL or more and less than 1.9 g / mL, or a specific gravity of 1. The specific gravity was separated into four types of soil of 9 g / mL or more and less than 2.0 g / mL.
比重分離後、各比重の土壌について、付着した重液を水洗する洗浄工程を行い、乾燥した後、NaIシンチレーション検出器を用いて各比重の土壌中の放射性セシウム濃度を測定した。その結果を、比重を横軸、放射性セシウム濃度を縦軸として図5に示す。図5より、比重が異なる土壌では、土壌中の放射性セシウム濃度が異なることが分かる。 After the specific gravity separation, the soil of each specific gravity was subjected to a washing step of washing the attached heavy liquid with water, and after drying, the radioactive cesium concentration in the soil at each specific gravity was measured using a NaI scintillation detector. The results are shown in FIG. 5 with the specific gravity on the horizontal axis and the radioactive cesium concentration on the vertical axis. From FIG. 5, it can be seen that the radioactive cesium concentration in the soil is different in the soils having different specific gravities.
次いで、各比重の土壌について、実施例1と同様に、0.5mol/Lのシュウ酸水溶液を用いて、95℃で1時間溶離することで、セシウム除去工程を行った。溶離後の土壌について、NaIシンチレーション検出器を用いて土壌中の放射性セシウム濃度を測定し、上記と同様に放射性セシウム除去率を算出した。 Next, a cesium removal step was performed on the soil of each specific gravity by eluting with a 0.5 mol / L oxalic acid aqueous solution at 95 ° C. for 1 hour, as in Example 1. For the soil after elution, the radioactive cesium concentration in the soil was measured using a NaI scintillation detector, and the radioactive cesium removal rate was calculated as described above.
図6に、溶離後の土壌中の放射性セシウム濃度、及び放射性セシウム除去率の測定結果を、溶離後の土壌中の放射性セシウム濃度及び放射性セシウム除去率を、それぞれ縦軸、土壌の比重を横軸として示す。図6において、白四角は放射性セシウム濃度、黒丸は放射性セシウム除去率をそれぞれ示す。図6より、溶離前の放射性セシウム濃度の高い比重1.7g/mL以上1.8g/mL未満の土壌では放射性セシウム除去率が低く、土壌中の放射性セシウム濃度が高いが、その他の比重の土壌では、土壌中の放射性セシウム濃度を通常廃棄物として処理できる濃度(8000Bq/Kg)以下に低減できたことが分かる。 FIG. 6 shows the measurement results of the radioactive cesium concentration in the soil after elution and the radioactive cesium removal rate, the radioactive cesium concentration and the radioactive cesium removal rate in the soil after elution, the vertical axis, and the specific gravity of the soil, horizontal axis. As shown. In FIG. 6, a white square indicates the radioactive cesium concentration, and a black circle indicates the radioactive cesium removal rate. From FIG. 6, the soil with a high specific gravity of 1.7 g / mL or more and less than 1.8 g / mL before the elution has a low radiocesium removal rate and a high radioactive cesium concentration in the soil, but has a high specific gravity of other soils. It can be seen that the concentration of radioactive cesium in the soil was reduced to a level (8000 Bq / Kg) or less that can be treated as ordinary waste.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are shown as examples and are not intended to limit the scope of the invention. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.
L…重液、S…土壌、S1…比重分離工程、S2…セシウム除去工程、S3…分級工程。 L: heavy liquid, S: soil, S1: specific gravity separation step, S2: cesium removal step, S3: classification step.
Claims (6)
前記土壌を重液によって異なる比重の複数種の土壌に分離する比重分離工程と、
前記比重分離された土壌に含まれるセシウムを除去するセシウム除去工程と
を備え、
前記重液は、アセトン及びブロモホルムから選ばれる1種以上であることを特徴とする放射性セシウム含有土壌の処理方法。 A method for treating radioactive cesium-containing soil for decontaminating soil containing radioactive cesium,
A specific gravity separation step of separating the soil into a plurality of types of soil having different specific gravities by heavy liquid,
E Bei and cesium removal step of removing the cesium contained in the gravity separation soil,
The method for treating radioactive cesium-containing soil, wherein the heavy liquid is at least one selected from acetone and bromoform .
前記洗浄された前記土壌を前記セシウム除去工程に供することを特徴とする請求項1又は2記載の放射性セシウム含有土壌の処理方法。 Further comprising a cleaning step of washing the front Symbol soil that is gravity separation in the gravity separation step,
3. The method for treating radioactive cesium-containing soil according to claim 1, wherein the washed soil is subjected to the cesium removal step.
前記分級された土壌を前記比重分離工程に供することを特徴とする請求項1乃至4のいずれか1項記載の放射性セシウム含有土壌の処理方法。 Further, a classification step of classifying the soil into a plurality of types of soil having different particle sizes,
The method for treating radioactive cesium-containing soil according to any one of claims 1 to 4, wherein the classified soil is subjected to the specific gravity separation step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015079005A JP6671856B2 (en) | 2015-04-08 | 2015-04-08 | Treatment method for soil containing radioactive cesium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015079005A JP6671856B2 (en) | 2015-04-08 | 2015-04-08 | Treatment method for soil containing radioactive cesium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016200437A JP2016200437A (en) | 2016-12-01 |
JP6671856B2 true JP6671856B2 (en) | 2020-03-25 |
Family
ID=57424157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015079005A Active JP6671856B2 (en) | 2015-04-08 | 2015-04-08 | Treatment method for soil containing radioactive cesium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6671856B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7410812B2 (en) * | 2020-07-08 | 2024-01-10 | 鹿島建設株式会社 | Drilling system and ground excavation method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128068A (en) * | 1990-05-25 | 1992-07-07 | Westinghouse Electric Corp. | Method and apparatus for cleaning contaminated particulate material |
JP5769082B2 (en) * | 2011-10-25 | 2015-08-26 | 清水建設株式会社 | Cleaning treatment method for radioactive material contaminated soil |
JP2013178177A (en) * | 2012-02-28 | 2013-09-09 | Takenaka Komuten Co Ltd | Soil decontamination treatment method |
JP6025409B2 (en) * | 2012-05-01 | 2016-11-16 | 旭化成エンジニアリング株式会社 | Cleaning method for radioactive cesium contaminated soil |
JP2014070997A (en) * | 2012-09-28 | 2014-04-21 | Ihi Corp | Soil continuous processing system |
-
2015
- 2015-04-08 JP JP2015079005A patent/JP6671856B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016200437A (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Valsala et al. | Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger | |
JP6083591B2 (en) | Decontamination method to improve the classification and cleaning effect of radioactive cesium contaminated soil | |
JP2013178221A (en) | Decontamination device and decontamination method of solid matter contaminated with radioactive material | |
JP2015511316A (en) | Decontamination method for radioactive contamination materials | |
Oh et al. | Chemical precipitation–based treatment of acidic wastewater generated by chemical decontamination of radioactive concrete | |
JP2013178149A (en) | Separation method of radioactive substance contained in soil | |
JP6671856B2 (en) | Treatment method for soil containing radioactive cesium | |
JP5684102B2 (en) | Method and apparatus for treating radioactive cesium-containing material | |
JP6343760B2 (en) | Method for separating / removing radioactive elements from liquid | |
JP2012229998A (en) | Radioactive substance decontamination device and decontamination method, from radioactively contaminated water incorporating salt such as seawater | |
CN108671901A (en) | A kind of water body removes the preparation method and application of caesium surface modified membrane | |
Sengupta et al. | Uptake of hazardous radionuclides within layered chalcogenide for environmental protection | |
JP6114136B2 (en) | Classification equipment for contaminated soil | |
Ueda et al. | Removal of radioactive Cs from gravel conglomerate using water containing air bubbles | |
Gatea et al. | Review on decontamination manners of radioactive liquids | |
JP6180838B2 (en) | Soil decontamination method and apparatus | |
JP2014001991A (en) | Radioactive nuclide removing system and radioactive nuclide removing method | |
JP6137887B2 (en) | Method for decontamination of soil containing radioactive material | |
JP6025409B2 (en) | Cleaning method for radioactive cesium contaminated soil | |
JP6178116B2 (en) | Soil decontamination apparatus and method | |
Piscureanu et al. | Aspects concerning the selection of ion exchange resin for low level radwaste waters decontamination | |
JP5875076B2 (en) | Method and apparatus for incineration fly ash treatment of radioactively contaminated waste | |
RU2388085C1 (en) | Method purifying sand from radioactive nuclides | |
JP6213710B2 (en) | Purification of soil and wastewater contaminated with hazardous substances | |
JP2015206775A (en) | Radioactive substance remover and removal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20171201 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200304 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6671856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |