JP2002326081A - Method for making contaminated soil harmless - Google Patents

Method for making contaminated soil harmless

Info

Publication number
JP2002326081A
JP2002326081A JP2002052892A JP2002052892A JP2002326081A JP 2002326081 A JP2002326081 A JP 2002326081A JP 2002052892 A JP2002052892 A JP 2002052892A JP 2002052892 A JP2002052892 A JP 2002052892A JP 2002326081 A JP2002326081 A JP 2002326081A
Authority
JP
Japan
Prior art keywords
soil
fluorine
slurry
aluminum
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002052892A
Other languages
Japanese (ja)
Other versions
JP3896444B2 (en
Inventor
Masaru Tomoguchi
勝 友口
Hitoshi Mikata
仁 三ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002052892A priority Critical patent/JP3896444B2/en
Publication of JP2002326081A publication Critical patent/JP2002326081A/en
Application granted granted Critical
Publication of JP3896444B2 publication Critical patent/JP3896444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical and efficient treating method which reduces the concentration of remaining fluorine and heavy metal in treated waste water and the elution value of fluorine and heavy metal of insolubilized soil to the environmental standard value or less by performing the collective treatment, as it is in the soil and without performing solid-liquid separation beforehand in the soil slurry, with respect to the soil and the soil slurry which are contaminated by fluorine and heavy metal. SOLUTION: A mineral acid is added as need to the soil and the soil slurry which are contaminated by fluorine and heavy metal, thereby, the pH is adjusted within a range of 2-4, aluminium or iron of 0.1-5.0 g/kg or aluminium salt or iron salt of 0.1-5.0 g/L is added and stirred, thereafter, alkali is added, the pH is adjusted within a range of 3-10 and, thereby, hydroxide is generated. Fluorine and heavy metal is subsumed and accompanied by the hydroxide which is generated and the insolubilized soil is produced. On the other hand, the slurry is subjected to the solid-liquid separation and is separated into deposit and treated waste water. This method for making contaminated soil harmless makes it possible to concurrently reduce the elution value of fluorine and heavy metal in the insolubilized soil and the concentration of remaining fluorine and heavy metal in the treated waste water to the environmental standard value or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弗素または弗素化
合物(両者を総称して弗素という。)で汚染された土壌
の無害化処理方法に関し、更に詳しくは、弗素でまたは
弗素と重金属とで汚染された土壌または土壌スラリーを
一括処理して、弗素または弗素と重金属との溶出値の低
い不溶化処理された土壌(不溶化土壌という。)と残留
弗素または残留弗素と重金属との濃度の低い処理排水
(処理排水という。)とを同時に得る無害化処理方法に
関するものである。
The present invention relates to a method for detoxifying soil contaminated with fluorine or a fluorine compound (both are collectively referred to as fluorine), and more particularly to a method for contaminating soil with fluorine or fluorine and heavy metals. The treated soil or soil slurry is subjected to batch treatment to obtain insolubilized soil having a low elution value of fluorine or fluorine and heavy metal (referred to as insolubilized soil) and treated wastewater having a low concentration of residual fluorine or residual fluorine and heavy metal ( And wastewater treatment).

【0002】[0002]

【従来の技術】近年、例えば都市部に位置した工場が移
転した跡地にマンションを建築する場合等において、そ
れまで長年土壌中に蓄積されてきた有害物質による土壌
汚染の問題が注目され、これら汚染土壌を「土壌環境基
準」に従って浄化する対策が必要となってきたが、弗素
に対する土壌環境基準は従来存在しなかった。しかし、
平成11年7月より環境庁長官から中央環境審議会に諮
問された「土壌の汚染に係る環境基準の追加項目等につ
いて」に関して、平成12年12月26日の中央環境審
議会土壌農薬部会において答申案が最終的に取りまとめ
られ、環境庁長官に答申がなされた。この中で土壌環境
基準の追加項目として弗素が挙げられており、環境庁で
は本答申を踏まえ、環境庁告示の改正等の所要の手続き
を進める運びである。従って、近い将来、弗素は土壌環
境基準として追加されることになる。弗素汚染土壌の浄
化法については前述のように新規の項目であるため、そ
の浄化事例は無く、浄化法の開発が極めて急務である。
また、弗素と重金属との複合汚染は多くあることが予測
され、両者を同時に無害化する方法が望まれている。重
金属汚染土壌を修復する方法としてはこれまで、化学的
処理を行った後に封じ込めする方法やコンクリートで固
化する方法があり、また、物理的な対策としては汚染さ
れた表層土壌をある深さにわたって排土し、次いで汚染
されていない土壌を客土する方法等が知られているが、
弗素により汚染された土壌を修復する方法は、公知の例
がない。
2. Description of the Related Art In recent years, for example, when constructing an apartment on a site where a factory located in an urban area has been relocated, attention has been paid to the problem of soil contamination due to harmful substances accumulated in the soil for many years. It has become necessary to take measures to purify the soil in accordance with the "Soil Environmental Standards", but no soil environmental standards exist for fluorine. But,
Regarding "Additional items of environmental standards related to soil pollution", which was consulted by the Secretary of the Environment Agency to the Central Environment Council in July 1999, the Central Environment Council Soil Agrochemicals Subcommittee on December 26, 2000 The proposal was finalized and submitted to the Commissioner for the Environment Agency. Among them, fluorine is mentioned as an additional item of the soil environmental standard, and the Environment Agency will carry out necessary procedures such as revision of the notification of the Environment Agency based on this report. Therefore, in the near future, fluorine will be added as a soil environmental standard. As described above, the method of purifying fluorine-contaminated soil is a new item, so there are no cases of purification, and the development of a purification method is extremely urgent.
In addition, it is expected that there is a large amount of complex contamination of fluorine and heavy metals, and a method for simultaneously rendering both harmless is desired. There have been methods to remediate heavy metal contaminated soil, including chemical treatment followed by containment and solidification with concrete, and physical measures include the removal of contaminated surface soil to a certain depth. There is a known method of soiling and then soil that is not contaminated.
There is no known method for repairing soil contaminated with fluorine.

【0003】[0003]

【発明が解決しようとする課題】本発明は弗素または弗
素と重金属とによって汚染された土壌または土壌スラリ
ーについて弗素または弗素と重金属との溶出値を環境基
準値以下に低減し、また、土壌スラリーについては予め
固液分離することなく一括処理して最後に固液分離して
処理排水についても残留弗素または残留弗素と重金属の
濃度を低減する経済的な処理方法を提案するものであ
る。
SUMMARY OF THE INVENTION The present invention reduces the elution value of fluorine or fluorine and heavy metals from soil or soil slurry contaminated with fluorine or fluorine and heavy metals to an environmental standard value or less. Proposes an economical treatment method in which batch treatment is carried out without solid-liquid separation in advance and solid-liquid separation is carried out at the end to reduce residual fluorine or the concentration of residual fluorine and heavy metals in treated wastewater.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究した結果、弗素でまたは弗素と
重金属とで汚染された土壌を浄化する方法として、金属
塩を添加し、弗素または弗素と重金属とを金属水酸化物
と同伴、共沈させることにより土壌中の弗素および重金
属の不溶化を、また土壌スラリーについては同時に処理
排水中の残留弗素または残留弗素と重金属の濃度の低下
を図ることができることを見出し、経済的、効率的な処
理方法を開発することができた。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, as a method of purifying soil contaminated with fluorine or fluorine and heavy metals, a metal salt is added, The insolubilization of fluorine and heavy metals in soil by entraining and coprecipitating fluorine or fluorine and heavy metals with metal hydroxides, and simultaneously reducing the concentration of residual fluorine or residual fluorine and heavy metals in treated wastewater for soil slurries And developed an economical and efficient treatment method.

【0005】すなわち、本発明は、第1に、弗素で汚染
された土壌または土壌スラリーへアルミニウム塩または
鉄塩のうちの少なくとも1種を添加し、次いで弱酸性域
ないしアルカリ性域に調節してアルミニウムまたは鉄の
水酸化物のうちの少なくとも1種の水酸化物を生成させ
ることにより該弗素を不溶化させることを特徴とする汚
染土壌の無害化処理方法;第2に、弗素と重金属とで汚
染された土壌または土壌スラリーへアルミニウム塩また
は鉄塩のうちの少なくとも1種を添加し、次いで弱酸性
域ないしアルカリ性域に調節してアルミニウムまたは鉄
の水酸化物のうちの少なくとも1種の水酸化物を生成さ
せることにより該弗素と重金属とを不溶化させることを
特徴とする汚染土壌の無害化処理方法;第3に、弗素で
または弗素と重金属とで汚染された土壌または土壌スラ
リーに対して鉱酸を加えて酸性域に調節する第1工程
と、次いでアルミニウム塩または鉄塩のうちの少なくと
も1種を添加して混合する第2工程と、その後アルカリ
を加えて弱酸性域ないしアルカリ性域に調節してアルミ
ニウムまたは鉄の水酸化物のうちの少なくとも1種の水
酸化物を生成させることにより該弗素または該弗素と重
金属とを不溶化させる第3工程と、を含むことを特徴と
する汚染土壌の無害化処理方法;第4に、弗素でまたは
弗素と重金属とで汚染された土壌または土壌スラリーに
対して鉱酸を加えて酸性域に調節する第1工程と、次い
でアルミニウム塩または鉄塩のうちの少なくとも1種を
添加して撹拌する第2工程と、その後アルカリを加えて
弱酸性域ないしアルカリ性域に調節して生成させたアル
ミニウムまたは鉄のうちの少なくとも1種の水酸化物に
該弗素または該弗素と重金属とを共沈させた共沈スラリ
ーを得る第3工程と、さらに該共沈スラリーを固液分離
して不溶化土壌と処理排水とに分別する第4工程と、を
含むことを特徴とする汚染土壌の無害化処理方法;第5
に、前記第1工程における調節された酸性域がpH2〜
4であり、前記第2工程におけるアルミニウム塩の添加
量がアルミニウムとして前記土壌の重量に対して0.1
〜5.0 g/kgまたは前記土壌スラリーの容積に対
して0.1〜5.0 g/Lであり、鉄塩の添加量が鉄
として前記土壌の重量に対して0.1〜5.0 g/k
gまたは前記土壌スラリーの容積に対して0.1〜5.
0 g/Lであり、前記第3工程における調節された弱
酸性域ないしアルカリ性域がpH3〜10である、第3
または4記載の方法;第6に、前記鉱酸が硫酸、硝酸ま
たは塩酸のうちの少なくとも1種であり、前記アルミニ
ウム塩が硫酸アルミニウムまたはポリ塩化アルミニウム
のうちの少なくとも1種であり、前記鉄塩が硫酸第一
鉄、塩化第一鉄、硫酸第二鉄または塩化第二鉄のうちの
少なくとも1種であり、前記アルカリが水酸化ナトリウ
ム、消石灰または炭酸カルシウムのうちの少なくとも1
種である、第3〜5のいずれかに記載の方法;第7に、
前記不溶化土壌を埋め戻し土壌または他の物質の製造原
料として使用する、第3〜6のいずれかに記載の方法;
第8に、前記汚染された土壌または土壌スラリーが軟弱
地盤から得られたものであり、前記アルミニウム塩また
は鉄塩のうちの少なくとも1種に代えて、または、該少
なくとも1種とともに、セメント剤を添加して得られた
不溶化土壌を埋め戻し土壌として使用することにより地
盤改良と不溶化とを行う、第3、5または6記載の方
法;第9に、前記第1工程の前に前記汚染された土壌ま
たは土壌スラリーを予め、水、アルカリ性水溶液または
酸性水溶液で洗浄および分級する、第3〜8のいずれか
に記載の方法;第10に、前記各工程を前記汚染された
土壌または土壌スラリーの発生現場で行う、第3〜9の
いずれかに記載の方法、である。
That is, the present invention firstly comprises adding at least one of an aluminum salt and an iron salt to fluorine-contaminated soil or soil slurry, and then adjusting the content of the aluminum or iron salt to a weakly acidic or alkaline range. Or a method for detoxifying contaminated soil, comprising insolubilizing the fluorine by generating at least one hydroxide of iron hydroxide; secondly, a method of contaminating soil contaminated with fluorine and heavy metals. At least one of aluminum salts or iron salts is added to the soil or soil slurry and then adjusted to a weakly acidic or alkaline range to remove at least one hydroxide of aluminum or iron hydroxide. Detoxification of contaminated soil, characterized by insolubilizing said fluorine and heavy metal by producing; third, fluorine or fluorine and heavy metal A step of adding a mineral acid to the soil or soil slurry contaminated with and adjusting the acid range to an acidic range, and then adding and mixing at least one of an aluminum salt or an iron salt, Then, an alkali is added to adjust the pH to a weakly acidic range or an alkaline range to generate at least one hydroxide of aluminum or iron hydroxide, thereby insolubilizing the fluorine or the fluorine and the heavy metal. And fourthly, adding a mineral acid to the soil or soil slurry contaminated with fluorine or with fluorine and heavy metals to adjust to an acidic region. A first step, and then a second step of adding and stirring at least one of an aluminum salt and an iron salt, and then adding an alkali to adjust to a weakly acidic range or an alkaline range. A third step of obtaining a coprecipitated slurry in which the fluorine or the fluorine and the heavy metal are coprecipitated with at least one hydroxide of the produced aluminum or iron, and further, the coprecipitated slurry is subjected to solid-liquid separation. And a fourth step of separating the wastewater into insolubilized soil and treated wastewater by a method of detoxifying contaminated soil;
The adjusted acidic region in the first step is adjusted to pH 2
4, the amount of the aluminum salt added in the second step is 0.1% with respect to the weight of the soil as aluminum.
To 5.0 g / kg or 0.1 to 5.0 g / L with respect to the volume of the soil slurry, and the amount of iron salt added is 0.1 to 5.0 g / kg with respect to the weight of the soil as iron. 0 g / k
g or 0.1-5.
0 g / L, and the adjusted weakly acidic or alkaline range in the third step is pH 3-10.
Or the method according to 4, wherein the mineral acid is at least one of sulfuric acid, nitric acid or hydrochloric acid, the aluminum salt is at least one of aluminum sulfate or polyaluminum chloride, and the iron salt is Is at least one of ferrous sulfate, ferrous chloride, ferric sulfate or ferric chloride, and the alkali is at least one of sodium hydroxide, slaked lime or calcium carbonate.
The method according to any of claims 3 to 5, which is a species;
7. The method according to any of claims 3 to 6, wherein the insolubilized soil is used as a backfill soil or a raw material for producing other substances;
Eighth, the contaminated soil or soil slurry is obtained from soft ground, and a cement agent is used in place of or together with at least one of the aluminum salt or the iron salt. 7. The method according to 3, 5, or 6, wherein soil improvement and insolubilization are performed by using the insolubilized soil obtained by the addition as backfill soil; ninth, the contaminated soil before the first step. The method according to any one of claims 3 to 8, wherein the soil or the soil slurry is previously washed and classified with water, an alkaline aqueous solution or an acidic aqueous solution; The method according to any one of the third to ninth methods, which is performed on site.

【0006】[0006]

【発明の実施の形態】本発明では、弗素でまたは弗素と
重金属とで汚染された土壌または土壌スラリーを一括同
時処理して土壌中の弗素または弗素と重金属とを不溶化
処理するとともに、土壌スラリーについては固液分離後
の処理排水中の残留弗素または弗素と重金属の濃度を低
減させることに特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, soil or soil slurry contaminated with fluorine or fluorine and heavy metals is simultaneously treated to insolubilize fluorine or fluorine and heavy metals in soil, Is characterized by reducing the concentration of residual fluorine or fluorine and heavy metals in the treated wastewater after solid-liquid separation.

【0007】本発明の処理方法を行うにあたり、第1工
程における酸性域はpH2〜4が好ましい。pHが4よ
り高いと土壌の不溶化処理が不充分となり、pHが2以
下では効果が飽和しかつ第3工程においてアルカリ使用
量が増加する。ここで、処理対象物である汚染された土
壌がアルミニウム塩または鉄塩のうちの少なくとも1種
が添加され加水分解されて酸性となる場合、またはこの
土壌が当初から酸性の場合は、第1工程は省略される。
第2工程におけるアルミニウム塩の添加量は土壌の重量
または土壌スラリーの容積に対してアルミニウムとして
それぞれ0.1〜5.0g/kgまたは0.1〜5.0
g/Lが好ましい。さらにこの範囲内でも、0.5g/
kg以上または0.5g/L以上が好ましく、1.0g
/kg以上または1.0g/L以上がさらに好ましい。
ただし、5.0g/kg以上または5.0g/L以上で
は効果が飽和する。0.1g/kg未満または0.1g
/L未満では土壌の不溶化処理、処理排水中の残留弗素
または弗素と重金属濃度低減、のいずれもが不充分とな
る。
In carrying out the treatment method of the present invention, the acidic region in the first step preferably has a pH of 2 to 4. When the pH is higher than 4, the insolubilization treatment of the soil becomes insufficient, and when the pH is 2 or lower, the effect is saturated and the amount of alkali used in the third step increases. Here, in the case where the contaminated soil to be treated is made acidic by adding at least one of aluminum salt or iron salt and hydrolyzed, or when the soil is acidic from the beginning, the first step Is omitted.
The amount of the aluminum salt added in the second step is 0.1 to 5.0 g / kg or 0.1 to 5.0 as aluminum with respect to the weight of the soil or the volume of the soil slurry, respectively.
g / L is preferred. Furthermore, even within this range, 0.5 g /
kg or more or 0.5 g / L or more, preferably 1.0 g
/ Kg or more or 1.0 g / L or more is more preferable.
However, the effect is saturated at 5.0 g / kg or more or 5.0 g / L or more. Less than 0.1 g / kg or 0.1 g
If it is less than / L, both the insolubilization treatment of the soil and the reduction of the residual fluorine or the concentration of fluorine and heavy metals in the treated wastewater will be insufficient.

【0008】また、第2工程における鉄塩の添加量は土
壌の重量または土壌スラリーの容積に対して鉄としてそ
れぞれ0.1〜5.0 g/kgまたは0.1〜5.0
g/Lが好ましい。より好ましくは0.5g/kg以上
または0.5g/L以上、さらに好ましくは1.0g/
kg以上または1.0g/L以上である。ただし、5.
0g/kg以上または5.0g/L以上では効果が飽和
する。0.1g/kg未満または0.1g/L未満では
土壌の不溶化処理、処理排水中の残留弗素または弗素と
重金属濃度低減、のいずれもが不充分となる。アルミニ
ウム塩と鉄塩との比較では、アルミニウム塩の方が添加
量および経済的な面において弗素の不溶化および排水中
の残留弗素低減の効果が高く、アルミニウム塩を選択す
ることが望ましい。
The amount of iron salt added in the second step is 0.1 to 5.0 g / kg or 0.1 to 5.0 as iron with respect to the weight of the soil or the volume of the soil slurry, respectively.
g / L is preferred. More preferably 0.5 g / kg or more or 0.5 g / L or more, further preferably 1.0 g / kg or more.
kg or more or 1.0 g / L or more. However, 5.
At 0 g / kg or more or 5.0 g / L or more, the effect is saturated. If it is less than 0.1 g / kg or less than 0.1 g / L, both the soil insolubilization treatment and the reduction of the residual fluorine or the concentration of fluorine and heavy metals in the treated wastewater will be insufficient. In comparison between aluminum salt and iron salt, aluminum salt is more effective in insolubilizing fluorine and reducing residual fluorine in wastewater in terms of the amount added and economical, and it is desirable to select aluminum salt.

【0009】また、第3工程における弱酸性域ないしア
ルカリ性域はpH3〜10が好ましい。より好ましくは
pH5〜10、さらに好ましくはpH6〜8の範囲であ
る。pHが3より低い、あるいは10より高いと土壌の
不溶化処理が、土壌スラリーについては処理排水中の残
留弗素または残留弗素と重金属濃度の低減と不溶化処理
がそれぞれ不充分となる。また、土壌の無害化処理とし
て中性域、具体的にはpH7〜8の範囲とするのが望ま
しい。
The pH of the weakly acidic region or alkaline region in the third step is preferably 3 to 10. The pH is more preferably in the range of 5 to 10, and even more preferably in the range of 6 to 8. If the pH is lower than 3 or higher than 10, the soil insolubilization treatment will be insufficient, and for soil slurry, the reduction of residual fluorine or the concentration of residual fluorine and heavy metals in the treated wastewater and the insolubilization treatment will be insufficient. Further, it is desirable that the soil is rendered harmless by setting it in a neutral range, specifically, in the range of pH 7 to 8.

【0010】反応性、取扱性、コスト等の点から、鉱酸
としては硫酸、硝酸または塩酸のうちの少なくとも1種
が好ましい。アルミニウム塩としては硫酸アルミニウム
またはポリ塩化アルミニウムのうちの少なくとも1種が
好ましく、鉄塩としては硫酸第一鉄、塩化第一鉄、硫酸
第二鉄または塩化第二鉄のうちの少なくとも1種が好ま
しい。アルカリとしては水酸化ナトリウム、炭酸カルシ
ウムまたは消石灰のうちの少なくとも1種が好ましい。
水酸化ナトリウムを使用すれば土壌中へのアルカリから
の反応生成物の混入が少なく、また、炭酸カルシウムあ
るいは消石灰によれば石膏沈殿時に弗素または弗素と重
金属の共沈が強化される。
From the viewpoints of reactivity, handling, cost and the like, the mineral acid is preferably at least one of sulfuric acid, nitric acid and hydrochloric acid. The aluminum salt is preferably at least one of aluminum sulfate and polyaluminum chloride, and the iron salt is preferably at least one of ferrous sulfate, ferrous chloride, ferric sulfate and ferric chloride. . As the alkali, at least one of sodium hydroxide, calcium carbonate and slaked lime is preferable.
The use of sodium hydroxide reduces the incorporation of reaction products from alkali into the soil, and the use of calcium carbonate or slaked lime enhances the coprecipitation of fluorine or fluorine and heavy metals during gypsum precipitation.

【0011】本発明の処理方法では、弗素によりまたは
弗素と重金属とにより汚染された土壌または土壌スラリ
ーを、前述のように必要に応じて鉱酸を加えて一旦酸性
とした後これにアルミニウム塩または鉄塩のうちの少な
くとも1種を添加し、さらにアルカリを加えて水酸化ア
ルミニウムまたは水酸化鉄のフロックを形成させ、弗素
をまたは弗素と重金属をこれらの水酸化アルミニウムま
たは水酸化鉄の表面、または内部に包含する包摂により
共沈させることによって不溶化土壌の弗素または弗素と
重金属の溶出値および、土壌スラリーについては処理排
水中の残留弗素または弗素と重金属の濃度を同時に環境
基準値以下に低減させるものである。特に、水酸化アル
ミニウムの特徴として溶解度積:[Al3+][OH-]3=1.9
2×10 −32(30℃)と非常に低く難溶性であるこ
と、さらに、水和時のゲル状のものは吸着性の強いこと
が知られており、これらの特徴が本発明処理方法におい
て有効に働いているものと考えられる。このように弗素
をまたは弗素と重金属とを水酸化アルミニウムまたは水
酸化鉄と共沈させることで同伴させ安定した形態の不溶
化土壌とする。
[0011] In the treatment method of the present invention, by fluorine or
Soil or soil slurry contaminated by fluorine and heavy metals
As described above, and add mineral acid as needed to
And then add a few of the aluminum or iron salts
At least one kind is added, alkali is further added, and
Fluorine or iron hydroxide flocs are formed
Or fluorine and heavy metals to these aluminum hydroxides.
Or by the inclusion included within or inside the iron hydroxide
By coprecipitation with fluorine or fluorine in the insolubilized soil
Heavy metal elution values and soil slurries
Simultaneously determine the concentration of residual fluorine or fluorine and heavy metals in water
It is to be reduced below the reference value. In particular, aluminum hydroxide
Solubility product as a feature of minium: [Al3+] [OH-]Three= 1.9
2 × 10 −32(30 ° C) and very low solubility
In addition, the gel-like substance at the time of hydration has strong adsorptivity
These characteristics are known in the processing method of the present invention.
Is considered to be working effectively. Like this
Or fluorine and heavy metals with aluminum hydroxide or water
Insoluble in a stable form entrained by co-precipitation with iron oxide
And liquefied soil.

【0012】以下の実施例においては弗素と重金属とし
て主に砒素および六価クロムについて記載するが、重金
属類では鉛、カドミウム、水銀等についても砒素および
六価クロムと同様に、土壌にあっては不溶化され、土壌
スラリーの処理排水にあっては残留弗素と重金属の濃度
が低減される。以下の実施例によって本発明を更に詳細
に説明するが、本発明の技術的範囲はこれらの実施例の
記載に限定されるものではない。
In the following examples, arsenic and hexavalent chromium are mainly described as fluorine and heavy metals. However, for heavy metals such as lead, cadmium and mercury, as in arsenic and hexavalent chromium, the same applies to soil. It is insolubilized and the concentration of residual fluorine and heavy metals is reduced in the wastewater for treatment of soil slurry. The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to the description of these examples.

【0013】[0013]

【実施例】[実施例1] A地区の弗素汚染土壌(以下
土壌Aという)について本発明の処理方法を行った。土
壌A(−2mm)の弗素含有量は420mg/kg、弗
素溶出値は2.1mg/Lである。本発明の処理方法に
よって得られた不溶化土壌について環境庁告示第46号
(平成3年8月23日付)に示された方法に従って溶出
試験を行った。
[Example 1] The treatment method of the present invention was applied to a fluorine-contaminated soil (hereinafter referred to as soil A) in an area A. The fluorine content of soil A (-2 mm) is 420 mg / kg, and the fluorine elution value is 2.1 mg / L. The insolubilized soil obtained by the treatment method of the present invention was subjected to a dissolution test according to the method shown in the notification of the Environment Agency No. 46 (August 23, 1991).

【0014】本発明の処理方法を、図1のフローに従っ
て行った。先ず有姿土壌100g(水分15%)を50
0mLの容器に入れ、所定量のポリ塩化アルミニウム
(アルミニウムとして0.3g/kg、0.6g/kg
および1.2g/kgの3水準)あるいは硫酸第二鉄
(鉄として0.85g/kg、1.7g/kgおよび
3.4g/kgの3水準)を添加し、撹拌棒で混合撹拌
した。pHはpH試験紙を土壌付着水分に接触させるこ
とによりpH3になることを確認した(pH3以上の場
合には10%硫酸水溶液を滴下してpH3とした)。次
に炭酸カルシウムを加えて3分間混合撹拌してpH7と
し、不溶化土壌とした。これを環境庁告示第46号(平
成3年8月23日付)に示された方法に従って弗素の溶
出試験に供した結果を図2に示す。
The processing method of the present invention was performed according to the flow shown in FIG. First, 50g of 100g of soil (15% moisture)
In a 0 mL container, a predetermined amount of polyaluminum chloride (0.3 g / kg, 0.6 g / kg as aluminum)
And ferric sulfate (three levels of 0.85 g / kg, 1.7 g / kg and 3.4 g / kg as iron) and mixed and stirred with a stirring rod. It was confirmed that the pH was brought to pH 3 by bringing the pH test paper into contact with the moisture adhering to the soil (in the case of pH 3 or more, a 10% aqueous sulfuric acid solution was dropped to pH 3). Next, calcium carbonate was added and mixed and stirred for 3 minutes to adjust the pH to 7 to obtain an insolubilized soil. FIG. 2 shows the results of subjecting this to a fluorine elution test according to the method disclosed in the Environment Agency Notification No. 46 (August 23, 1991).

【0015】図2から明らかなように、アルミニウム塩
あるいは鉄塩の添加量の増加にともない弗素溶出値は低
下した。また、鉄塩よりもアルミニウム塩の方が弗素溶
出値の低減効果が高いことが分かる。
As is apparent from FIG. 2, the fluorine elution value decreased with an increase in the amount of the aluminum salt or iron salt added. Further, it can be seen that the aluminum salt has a higher effect of reducing the fluorine elution value than the iron salt.

【0016】以上の結果から、土壌Aの場合、鉄塩添加
によっても弗素溶出値を低下させることができたが、ア
ルミニウム塩添加の方が効果的であり、少なくともアル
ミニウムとして1.0g/kgのアルミニウム塩を添加
すれば弗素溶出値を環境基準値(0.8 mg/L)以
下にすることができることが分かる。
From the above results, in the case of soil A, the fluorine elution value could be reduced by the addition of an iron salt, but the addition of an aluminum salt was more effective, and at least 1.0 g / kg of aluminum was added. It can be seen that the fluorine elution value can be reduced to the environmental standard value (0.8 mg / L) or less by adding the aluminum salt.

【0017】[実施例2] B地区の弗素、六価クロ
ム、砒素汚染土壌(以下土壌Bという)について、実施
例1におけるアルミニウム塩添加の条件と同様の処理方
法を行った。アルミニウム塩添加量の水準はアルミニウ
ムとして1.2および2.4g/kgとした。土壌B
(−2mm)の各汚染物質含有量は弗素426mg/k
g、六価クロム984mg/kg、砒素2mg/kgで
あった。各汚染物質の溶出値は弗素3.5mg/L、六
価クロム0.04mg/L、砒素0.022mg/Lで
あった。試験結果を表1に示す。
Example 2 A soil, fluorine, hexavalent chromium, and arsenic-contaminated soil (hereinafter referred to as soil B) in a district B was treated in the same manner as in Example 1 with the addition of an aluminum salt. The level of the amount of aluminum salt added was 1.2 and 2.4 g / kg as aluminum. Soil B
(−2 mm) is 426 mg / k of fluorine.
g, hexavalent chromium 984 mg / kg and arsenic 2 mg / kg. The elution value of each contaminant was 3.5 mg / L of fluorine, 0.04 mg / L of hexavalent chromium, and 0.022 mg / L of arsenic. Table 1 shows the test results.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の結果から、土壌Bについては、アル
ミニウム塩添加量を少なくともアルミニウムとして1.
2g/kgで弗素溶出値を基準値以下にすることができ
た。このときの他の重金属の溶出値は、砒素について
0.001 mg/L、六価クロムについて0.02m
g/L 未満であり、充分に低いものであった。
From the results shown in Table 1, with respect to soil B, the amount of aluminum salt added was at least 1.
At 2 g / kg, the fluorine elution value could be reduced below the reference value. At this time, the elution values of other heavy metals were 0.001 mg / L for arsenic and 0.02 m for hexavalent chromium.
g / L 2, which was sufficiently low.

【0020】[実施例3] C地区の汚染土壌(以下土
壌Cという)を含むスラリーについて本発明の処理方法
を行った。土壌C(−150μm)の弗素含有量は72
0mg/kg、弗素溶出値は1.5mg/Lである。ま
た、土壌Cを含むスラリーの液中弗素濃度は2.7mg
/Lであった。本発明の処理方法によって得られた不溶
化土壌について実施例1、2と同様に溶出試験を実施し
た。
Example 3 The treatment method of the present invention was performed on a slurry containing contaminated soil in the C area (hereinafter referred to as soil C). The fluorine content of soil C (-150 μm) is 72
0 mg / kg and the fluorine elution value is 1.5 mg / L. The fluorine concentration in the slurry containing the soil C was 2.7 mg.
/ L. The dissolution test was performed on the insolubilized soil obtained by the treatment method of the present invention in the same manner as in Examples 1 and 2.

【0021】本発明の処理方法を図3に示すフローに従
って行った。まず土壌Cを含むスラリー500mL(ス
ラリー濃度50g/500mL)を1000mLの容器
に入れ、撹拌機で撹拌しながらスラリーのpHが3にな
るまで10%硫酸水溶液を滴下した。次に所定量の塩化
アルミニウム(アルミニウムとして0.1g/L、0.
5g/Lおよび1.0g/Lの3水準)または硫酸第二
鉄(鉄として0.1g/L、0.5g/Lおよび1.0
g/Lの3水準)を加えて10分間撹拌を続けた。次に
10%消石灰懸濁液を加えて所定のpH(pH 7、8
および9の3水準)とし、10分間撹拌した後、高分子
凝集剤の0.1%水溶液を適宜添加してフロックを形成
させた。引き続き、凝集したスラリーをヌッチェで真空
ろ過し、ケーキ(不溶化土壌)と濾液(処理排水)とに
分別した。処理排水の残留弗素濃度をアルミニウム塩に
ついて図4のa、鉄塩について図4のbにそれぞれ示
す。さらに得られた不溶化土壌について弗素の溶出試験
を行い、その結果をアルミニウム塩について図5のaお
よび鉄塩について図5のbにそれぞれ示す。
The processing method of the present invention was performed according to the flow shown in FIG. First, 500 mL of slurry containing soil C (slurry concentration 50 g / 500 mL) was put into a 1000 mL container, and a 10% aqueous sulfuric acid solution was added dropwise while stirring with a stirrer until the pH of the slurry became 3. Next, a predetermined amount of aluminum chloride (0.1 g / L as aluminum, 0.1.
3 g of 5 g / L and 1.0 g / L) or ferric sulfate (0.1 g / L, 0.5 g / L and 1.0 g as iron)
g / L) and stirring was continued for 10 minutes. Next, a 10% slaked lime suspension is added to the mixture to a predetermined pH (pH 7, 8
After stirring for 10 minutes, a 0.1% aqueous solution of a polymer flocculant was appropriately added to form flocs. Subsequently, the agglomerated slurry was vacuum-filtered by Nutsche to separate into cake (insolubilized soil) and filtrate (processed wastewater). The residual fluorine concentration of the treated wastewater is shown in FIG. 4A for the aluminum salt and FIG. 4B for the iron salt. Further, a fluorine elution test was performed on the obtained insolubilized soil, and the results are shown in FIG. 5A for the aluminum salt and FIG. 5B for the iron salt, respectively.

【0022】図4のaおよびbから明らかなように、ア
ルミニウム塩または鉄塩の添加によって処理排水の残留
弗素濃度は著しく減少し、いずれもpHが7.0に近い
ほどその効果は顕著である。不溶化土壌の弗素溶出値に
ついては、図5のaおよびbに見られるように、アルミ
ニウム塩または鉄塩の添加によって不溶化土壌の弗素溶
出値が著しく低下している。アルミニウム塩と鉄塩との
比較では不溶化土壌および処理排水ともにアルミニウム
塩の方が弗素溶出値および残留弗素濃度の低減効果が高
かった。
As is apparent from FIGS. 4a and 4b, the addition of aluminum salt or iron salt significantly reduces the residual fluorine concentration in the treated wastewater, and the effect is more remarkable as the pH becomes closer to 7.0. . Regarding the fluorine elution value of the insolubilized soil, as can be seen from FIGS. 5A and 5B, the fluorine elution value of the insolubilized soil is significantly reduced by the addition of the aluminum salt or the iron salt. In comparison between the aluminum salt and the iron salt, the aluminum salt was more effective in reducing the fluorine elution value and the residual fluorine concentration in both the insolubilized soil and the treated wastewater.

【0023】以上の結果から、土壌Cの場合、処理排水
の残留弗素濃度と不溶化土壌の弗素溶出値を環境基準値
(いずれも0.8mg/L)以下にするには、少なくと
もアルミニウムとして0.5g/Lのアルミニウム塩を
添加し、その後のpHを少なくとも7.0〜9.0に調
節すれば目標が達成されることが分かる。
From the above results, in the case of soil C, in order to keep the residual fluorine concentration of the treated wastewater and the fluorine elution value of the insolubilized soil at or below the environmental standard value (all at 0.8 mg / L), at least 0.1% of aluminum is used. It can be seen that the goal is achieved by adding 5 g / L aluminum salt and subsequently adjusting the pH to at least 7.0-9.0.

【0024】[実施例4] D地区の弗素汚染土壌(以
下土壌Dという)について本発明の処理方法を行った。
土壌D(−2mm)は軟弱地盤を形成するため、セメン
ト剤の混合を実施した。土壌Dの弗素含有量は420m
g/kg、弗素溶出値は3.5mg/Lである。前記と
同様に本発明の処理方法によって得られた不溶化土壌に
ついて環境庁告示第46号(平成3年8月23日付)に
示された方法に従って溶出試験を行った。
Example 4 The treatment method of the present invention was performed on a fluorine-contaminated soil in the D area (hereinafter referred to as soil D).
The soil D (-2 mm) was mixed with a cement agent to form soft ground. The fluorine content of soil D is 420m
g / kg, the fluorine elution value is 3.5 mg / L. In the same manner as described above, the insolubilized soil obtained by the treatment method of the present invention was subjected to a dissolution test according to the method shown in the notification of the Environment Agency No. 46 (August 23, 1991).

【0025】本発明の処理方法は、ポルトランドセメン
トを所定量混合するほかは、図1のフローに従って行っ
た。先ず有姿土壌100g(水分15%)を500mL
の容器に入れ、所定量のポリ塩化アルミニウム(アルミ
ニウムとして1.2g/kg、2.4g/kgの2水
準)を添加し、撹拌棒で混合撹拌した。pHはpH試験
紙を土壌付着水分に接触させることによりpH3以下に
調節した。次に所定量のセメント剤(ポルトランドセメ
ント、重量比で5、10%の2水準)を添加し、炭酸カ
ルシウムでpH7に調節した。これを公定法に従って弗
素の溶出試験に供した結果を図6に示す。
The processing method of the present invention was carried out according to the flow of FIG. 1 except that a predetermined amount of Portland cement was mixed. First, 500 mL of 100 g of soil (15% moisture)
, A predetermined amount of polyaluminum chloride (aluminum, 1.2 g / kg, 2.4 g / kg, two levels) was added, and the mixture was stirred with a stirring rod. The pH was adjusted to pH 3 or less by bringing the pH test paper into contact with moisture attached to the soil. Next, a predetermined amount of cement (Portland cement, two levels of 5, 10% by weight) was added, and the pH was adjusted to 7 with calcium carbonate. FIG. 6 shows the result of subjecting this to a fluorine elution test according to the official method.

【0026】図6から明らかなように、アルミニウム塩
を添加することなくセメント剤のみの添加でもその添加
量の増加にともない弗素溶出値は低下する傾向を示し
た。これにアルミニウム塩を添加することによって劇的
に弗素溶出値が低減されることが分かる。また、アルニ
ウム塩単独よりもセメント剤も添加した方が弗素溶出値
は低減される傾向を示し、セメント剤が不溶化助剤とし
て作用していることが明らかである。
As is apparent from FIG. 6, even when the cement alone was added without adding the aluminum salt, the fluorine elution value tended to decrease with an increase in the addition amount. It can be seen that the addition of an aluminum salt dramatically reduces the fluorine elution value. Further, when the cement agent was added, the fluorine elution value tended to be reduced as compared with the case of using the aluminum salt alone, and it is clear that the cement agent acts as an insolubilizing aid.

【0027】以上の結果から、土壌Dの場合、弗素溶出
値を環境基準値(0.8mg/L)以下にするには、セ
メント剤のみを10%添加する条件、あるいはアルミニ
ウム塩をアルミニウムとして1.2g/kg以上とセメ
ントを5%以上添加した条件で目標が達成されることが
分かる。また、セメント剤の添加により得られた不溶化
土壌を埋め戻し土壌として繰り返し使用することによ
り、土壌Dからなる軟弱地盤の改良と弗素の不溶化の2
つの処理目標が同時に満たされる。
From the above results, in the case of soil D, in order to reduce the fluorine elution value to the environmental standard value (0.8 mg / L) or less, a condition in which only a cement agent is added at 10% or an aluminum salt is converted to aluminum by 1%. It can be seen that the target is achieved under the condition of adding 0.2 g / kg or more and cement at 5% or more. Further, by repeatedly using the insolubilized soil obtained by adding the cement agent as backfill soil, it is possible to improve the soft ground composed of soil D and to insolubilize fluorine.
Two processing goals are met simultaneously.

【0028】[実施例5] 実施例1記載の土壌Aに対
して前処理として洗浄および分級処理を実施した後、本
発明法を適用した。前記と同様に本発明の処理方法によ
って得られた不溶化土壌について環境庁告示第46号
(平成3年8月23日付)に示された方法に従って溶出
試験を行った。
Example 5 The soil A described in Example 1 was washed and classified as a pretreatment, and then the method of the present invention was applied. In the same manner as described above, the insolubilized soil obtained by the treatment method of the present invention was subjected to a dissolution test according to the method shown in the notification of the Environment Agency No. 46 (August 23, 1991).

【0029】本発明の処理方法は、洗浄、分級処理を施
す以外は、図1のフローに従って行った。洗浄、分級は
以下に記載の方法で実施した。土壌A500gを水1L
(スラリー濃度33%程度)とともに直径210mmの
ポットミル(内容積4L)に入れて密栓し、20分間ポ
ットミル回転台上で56rpmで回転させ、洗浄処理し
た。引き続き、スラリーを目開き10mm、2mm、6
00μm、150μm、75μm、38μmの標準篩で
分級した。分級産物として粒度区分10mm〜2mm、
2mm〜600μm、600μm〜150μm、150
μm〜75μm、75μm〜38μm、38μm以下の
6産物が得られた。各分級産物の重量分布率と弗素溶出
値を表2に示す。
The processing method of the present invention was performed in accordance with the flow chart of FIG. 1 except that the cleaning and classification treatments were performed. Washing and classification were performed by the methods described below. 500 g of soil A and 1 L of water
(Slurry concentration: about 33%) and placed in a pot mill (internal volume: 4 L) having a diameter of 210 mm, sealed and rotated for 20 minutes at 56 rpm on a pot mill rotating table to perform a washing treatment. Subsequently, the slurry was meshed with openings of 10 mm, 2 mm, and 6 mm.
Classification was performed using a standard sieve of 00 μm, 150 μm, 75 μm, and 38 μm. Particle size classification 10mm ~ 2mm as classification product,
2 mm to 600 μm, 600 μm to 150 μm, 150
Six products of μm to 75 μm, 75 μm to 38 μm, and 38 μm or less were obtained. Table 2 shows the weight distribution ratio and fluorine elution value of each classified product.

【0030】[0030]

【表2】 [Table 2]

【0031】表2の結果から、土壌Aは−2mmで弗素
溶出値2.1mg/Lであったが、分級により、比較的
弗素溶出値の低い区分(+38μmの区分)と高い区分
(−38μmの区分)に分別することができた。−38
μmは重量分布率として9.9wt%であり、全体の1
0分の1に満たない量である。各区分で薬剤の添加量を
制御することにより、より経済的に処理が可能であるこ
とが考えられる。
From the results shown in Table 2, the soil A had a fluorine elution value of 2.1 mg / L at -2 mm. However, depending on the classification, the classification with relatively low fluorine elution value (+38 μm) and the high fluoride elution value (−38 μm) Classification). −38
μm is 9.9 wt% as a weight distribution ratio,
It is less than 1/0. It is conceivable that the treatment can be performed more economically by controlling the amount of drug added in each section.

【0032】全土壌量の約90wt%に当たる+38μ
mの区分に対して本発明の方法を図1のフローに従って
行った。得られた不溶化土壌について溶出試験を実施し
た。試験結果を図7に示す。図7より、本区分の弗素溶
出値を基準値以下とするためには少なくともアルミニウ
ムとして0.2g/kgのアルミニウム塩を添加すれば
目標が達成されることが分かる。
+38 μ corresponding to about 90 wt% of the total soil amount
The method of the present invention was performed according to the flow of FIG. A dissolution test was performed on the obtained insolubilized soil. The test results are shown in FIG. From FIG. 7, it can be seen that the target can be achieved by adding at least 0.2 g / kg of aluminum salt as aluminum in order to make the fluorine elution value of this category equal to or less than the reference value.

【0033】上記の洗浄、分級処理後の−38μm区分
はスラリーとして発生する。このときのスラリー液中の
弗素濃度は1.2mg/L、スラリー濃度は10%程度
であった。本スラリーに対して本発明の方法を図3のフ
ローに従って行った。ただし、最終pHは7.0に調整
した。得られた不溶化土壌について溶出試験を実施し
た。不溶化土壌の弗素溶出値を図8に示す。また、得ら
れた処理排水の残留弗素濃度を図9に示す。図8、9よ
り、処理排水の残留弗素濃度と不溶化土壌の弗素溶出値
をいずれも基準値以下にするには少なくともアルミニウ
ムとして0.2g/L(対土壌量換算で2.0g/k
g)のアルミニウム塩を添加すれば目標が達成されるこ
とが分かる。
The -38 μm section after the above-mentioned washing and classification treatment is generated as a slurry. At this time, the fluorine concentration in the slurry liquid was 1.2 mg / L, and the slurry concentration was about 10%. The method of the present invention was performed on the slurry according to the flow shown in FIG. However, the final pH was adjusted to 7.0. A dissolution test was performed on the obtained insolubilized soil. FIG. 8 shows the fluorine elution value of the insolubilized soil. FIG. 9 shows the residual fluorine concentration in the obtained treated wastewater. 8 and 9, in order to make the residual fluorine concentration of the treated wastewater and the fluorine elution value of the insolubilized soil both below the reference value, at least 0.2 g / L of aluminum (2.0 g / k in terms of soil amount) in order to make the values below the reference values.
It can be seen that the target is achieved by adding the aluminum salt of g).

【0034】以上の結果より、土壌Aを洗浄、分級処理
して、弗素低溶出区分と弗素高溶出区分とを分別するこ
とにより、少なくともアルミニウムとして総量0.38
g/kgのアルミニウム塩の添加で処理目標が達せられ
た。この添加量は土壌Aをそのまま図1のフローで処理
した結果1.0g/kg(実施例1)と比較して、試薬
添加量62.0%の減である。すなわち、本発明を実施
する前処理として洗浄、分級工程を適用することで経済
的にかつ効率的に土壌Aを処理することができた。
Based on the above results, the soil A was washed and classified, and the low-fluorine-eluting section and the high-fluorine-eluting section were separated.
The processing goal was achieved with the addition of g / kg of aluminum salt. This addition amount is 62.0% smaller than the addition amount of the reagent as compared with 1.0 g / kg (Example 1) as a result of treating the soil A as it is by the flow of FIG. That is, the soil A could be economically and efficiently treated by applying the washing and classification steps as the pretreatment for implementing the present invention.

【0035】[0035]

【発明の効果】以上述べたように、弗素でまたは弗素と
重金属類で汚染された土壌または土壌スラリーを本発明
の方法によって処理することにより、土壌については不
溶化土壌の弗素または弗素と重金属類の溶出値を、土壌
スラリーについては処理排水中の残留弗素または残留重
金属と弗素濃度および沈殿物として得られた不溶化土壌
の弗素溶出値または重金属と弗素溶出値とを同時に環境
基準値以下に低減することが可能になった。この方法に
よれば、土壌または土壌スラリーのような水分の異なる
形態で現地から掘り出される比較的扱いにくい土壌に対
しても対処可能であり、加熱、冷却工程や繰り返し工程
も要せず、広大なスペースを必要とすることもなく、低
コストで弗素または弗素と重金属による汚染土壌を経済
的、効率的に処理することができる。また、弗素汚染土
壌を特別な湿式処理工程で処理した後に発生するスラッ
ジについても適用可能であるという利点を持つ。
As described above, by treating a soil or a soil slurry contaminated with fluorine or fluorine and heavy metals by the method of the present invention, the soil can be treated with fluorine or fluorine and heavy metals in an insolubilized soil. For soil slurries, the concentration of residual fluorine or heavy metal and fluorine in treated wastewater and the concentration of fluorine and the elution value of fluoride in insolubilized soil obtained as sediment, or the elution value of heavy metal and fluorine in soil slurries should be reduced below the environmental standard value at the same time. Is now possible. According to this method, it is possible to cope with relatively unwieldy soil excavated from the site in different forms of water such as soil or soil slurry. Thus, it is possible to economically and efficiently treat soil contaminated with fluorine or fluorine and heavy metals at low cost without requiring a large space. Further, there is an advantage that the present invention can be applied to sludge generated after treating fluorine-contaminated soil in a special wet treatment step.

【0036】また、現在、産業廃棄物の最終処分場の不
足が問題になっているが、本発明の処理方法はいわば一
種の土壌洗浄方法でもありこれによって回収される不溶
化土壌は化学的に安定しているので、従来の土壌処理法
のように封じ込めやコンクリート固化して廃棄処理する
必要はなく、また土壌を廃棄して新たに客土を求める必
要もなくなり、本発明の処理によって得られる不溶化土
壌は環境基準を満たした土壌として埋め戻し等をはじめ
各種の用途に再利用することができトータルとして大幅
な処理コストの低減をはかることができる。また、セメ
ント剤の添加により得られた不溶化土壌を埋め戻し土壌
として繰り返し使用することにより、軟弱地盤の改良と
弗素の不溶化の2つの処理目標が同時に満たされる。
At present, the shortage of the final disposal site for industrial waste is a problem. However, the treatment method of the present invention is a kind of soil washing method, and the insolubilized soil recovered by this method is chemically stable. Therefore, unlike the conventional soil treatment method, there is no need to confine or solidify concrete and dispose of it, and there is no need to dispose of soil and seek new soil, and the insolubilization obtained by the treatment of the present invention. The soil can be reused for various uses such as backfilling as soil meeting environmental standards, and the total treatment cost can be greatly reduced. Further, by repeatedly using the insolubilized soil obtained by adding the cement agent as backfill soil, the two treatment goals of improving the soft ground and insolubilizing fluorine are simultaneously satisfied.

【0037】さらに、本発明の処理方法によれば同時
に、処理排水中の残留弗素および重金属濃度も環境基準
値を満たすことが可能であり、別途排水処理設備を追加
設置しなくても汚染土壌の現場で本発明の処理方法を行
うことができ、これによれば、汚染土壌の搬入、搬出コ
ストも大幅に削減することができる。また、環境基準値
を満たした処理排水以外には排煙等の排出物もなく、二
次汚染の発生を防止することができる。
Further, according to the treatment method of the present invention, the concentration of residual fluorine and heavy metals in the treated wastewater can also meet the environmental standard values, and the contaminated soil can be removed without additional wastewater treatment equipment. The treatment method of the present invention can be performed on site, and according to this, the cost of loading and unloading contaminated soil can be significantly reduced. In addition, there is no emission of smoke and the like other than the treated wastewater that satisfies the environmental standard value, and the occurrence of secondary pollution can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における本発明の処理方法による低水分
土壌の処理フローを示す図である。
FIG. 1 is a diagram showing a processing flow of low moisture soil by a processing method of the present invention in an example.

【図2】土壌Aをアルミニウム塩添加系または鉄塩添加
系で処理したときのアルミニウムまたは鉄としての添加
量と不溶化土壌の弗素溶出値との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the amount of aluminum or iron added when soil A is treated with an aluminum salt addition system or an iron salt addition system and the fluorine elution value of the insolubilized soil.

【図3】実施例における本発明の処理方法による土壌ス
ラリーの処理フローを示す図である。
FIG. 3 is a view showing a processing flow of a soil slurry by a processing method of the present invention in an example.

【図4】aは土壌Cを含むスラリーをアルミニウム塩添
加系で処理したときのpH、アルミニウム塩添加量と処
理排水中の残留弗素濃度との関係を示すグラフであり、
bは土壌Cを含むスラリーを鉄塩添加系で処理したとき
のpH、鉄塩添加量と処理排水中の残留弗素濃度との関
係を示すグラフである。
FIG. 4A is a graph showing the relationship between the pH when the slurry containing soil C is treated with the aluminum salt addition system, the amount of aluminum salt added, and the concentration of residual fluorine in the treated wastewater;
b is a graph showing the relationship between the pH, the amount of iron salt added, and the concentration of residual fluorine in the treated wastewater when the slurry containing soil C was treated with the iron salt addition system.

【図5】aは土壌Cを含むスラリーをアルミニウム塩添
加系で処理したときのpH、アルミニウム塩添加量と不
溶化土壌の弗素溶出値との関係を示すグラフであり、b
は土壌Cを含むスラリーを鉄塩添加系で処理したときの
pH、鉄塩添加量と不溶化土壌の弗素溶出値との関係を
示すグラフである。
FIG. 5A is a graph showing the relationship between the pH, the amount of aluminum salt added, and the fluorine elution value of the insolubilized soil when the slurry containing soil C is treated with the aluminum salt addition system,
Is a graph showing the relationship between the pH, the amount of iron salt added, and the fluorine elution value of the insolubilized soil when the slurry containing soil C was treated with the iron salt addition system.

【図6】アルミニウム塩、セメント剤添加量と土壌Dの
不溶化処理後の弗素溶出値との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the amounts of aluminum salt and cement added and the fluorine elution value after the insolubilization treatment of soil D.

【図7】アルミニウム塩添加量と土壌Aの洗浄分級産物
(+38μm)不溶化処理後の弗素溶出値との関係を示
すグラフである。
FIG. 7 is a graph showing the relationship between the amount of aluminum salt added and the fluorine elution value after insolubilizing the washed and classified product (+38 μm) of soil A.

【図8】アルミニウム塩添加量と土壌Aの洗浄分級スラ
リー(−38μm)不溶化処理後の弗素溶出値との関係
を示すグラフである。
FIG. 8 is a graph showing the relationship between the amount of aluminum salt added and the fluorine elution value after the insolubilizing treatment of the washed and classified slurry (-38 μm) of soil A.

【図9】アルミニウム塩添加量と土壌Aの洗浄分級スラ
リー(−38μm)不溶化処理後の残留弗素濃度との関
係を示すグラフである。
FIG. 9 is a graph showing the relationship between the amount of aluminum salt added and the concentration of residual fluorine after the insolubilization treatment of the washed and classified slurry of soil A (-38 μm).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D004 AA41 AB03 AB08 AC07 BA02 CA10 CA13 CA15 CA34 CA35 CA40 CC11 CC12 CC13 DA02 DA03 DA10 DA20 4D059 AA11 AA18 BG00 BK05 BK30 DA01 DA03 DA05 DA16 DA17 DA22 DA23 DA24 DA31 DA32 DA33 DA38 DA66 EB05 EB11 ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D004 AA41 AB03 AB08 AC07 BA02 CA10 CA13 CA15 CA34 CA35 CA40 CC11 CC12 CC13 DA02 DA03 DA10 DA20 4D059 AA11 AA11 AA18 BG00 BK05 BK30 DA01 DA03 DA05 DA16 DA17 DA22 DA23 DA24 DA31 DA32 DA33 DA38 DA66 EB05 EB11

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 弗素で汚染された土壌または土壌スラリ
ーへアルミニウム塩または鉄塩のうちの少なくとも1種
を添加し、次いで弱酸性域ないしアルカリ性域に調節し
てアルミニウムまたは鉄の水酸化物のうちの少なくとも
1種の水酸化物を生成させることにより該弗素を不溶化
させることを特徴とする汚染土壌の無害化処理方法。
At least one of an aluminum salt and an iron salt is added to a soil or a soil slurry contaminated with fluorine, and then adjusted to a weakly acidic range or an alkaline range to thereby control the aluminum or iron hydroxide. A method for detoxifying contaminated soil, comprising insolubilizing the fluorine by generating at least one hydroxide of the above.
【請求項2】 弗素と重金属とで汚染された土壌または
土壌スラリーへアルミニウム塩または鉄塩のうちの少な
くとも1種を添加し、次いで弱酸性域ないしアルカリ性
域に調節してアルミニウムまたは鉄の水酸化物のうちの
少なくとも1種の水酸化物を生成させることにより該弗
素と重金属とを不溶化させることを特徴とする汚染土壌
の無害化処理方法。
2. Addition of at least one of aluminum salt and iron salt to soil or soil slurry contaminated with fluorine and heavy metal, and then adjusting the pH to a weakly acidic range or an alkaline range to hydroxylate aluminum or iron. A method for detoxifying contaminated soil, comprising insolubilizing the fluorine and heavy metal by generating at least one hydroxide of the substances.
【請求項3】 弗素でまたは弗素と重金属とで汚染され
た土壌または土壌スラリーに対して鉱酸を加えて酸性域
に調節する第1工程と、次いでアルミニウム塩または鉄
塩のうちの少なくとも1種を添加して混合する第2工程
と、その後アルカリを加えて弱酸性域ないしアルカリ性
域に調節してアルミニウムまたは鉄の水酸化物のうちの
少なくとも1種の水酸化物を生成させることにより該弗
素または該弗素と重金属とを不溶化させる第3工程と、
を含むことを特徴とする汚染土壌の無害化処理方法。
3. A first step of adding a mineral acid to a soil or a soil slurry contaminated with fluorine or fluorine and heavy metals to adjust to an acidic range, and then at least one of an aluminum salt or an iron salt. A second step of adding and mixing, and then adding an alkali to adjust the pH to a weakly acidic range or an alkaline range to form at least one hydroxide of aluminum or iron hydroxide to thereby form the fluorine. Or a third step of insolubilizing the fluorine and heavy metal;
A method for detoxifying contaminated soil, comprising:
【請求項4】 弗素でまたは弗素と重金属とで汚染され
た土壌または土壌スラリーに対して鉱酸を加えて酸性域
に調節する第1工程と、次いでアルミニウム塩または鉄
塩のうちの少なくとも1種を添加して撹拌する第2工程
と、その後アルカリを加えて弱酸性域ないしアルカリ性
域に調節して生成させたアルミニウムまたは鉄のうちの
少なくとも1種の水酸化物に該弗素または該弗素と重金
属とを共沈させた共沈スラリーを得る第3工程と、さら
に該共沈スラリーを固液分離して不溶化土壌と処理排水
とに分別する第4工程と、を含むことを特徴とする汚染
土壌の無害化処理方法。
4. A first step of adding a mineral acid to a soil or a soil slurry contaminated with fluorine or fluorine and heavy metals to adjust to an acidic range, and then at least one of an aluminum salt and an iron salt. A second step of adding and stirring, and then adding alkali to a hydroxide or at least one of aluminum or iron produced by adjusting to a weakly acidic area or an alkaline area, to the fluorine or the fluorine and heavy metal. A contaminated soil, comprising: a third step of obtaining a coprecipitated slurry obtained by coprecipitating the above, and a fourth step of solid-liquid separation of the coprecipitated slurry to separate it into insolubilized soil and treated wastewater. Detoxification method.
【請求項5】 前記第1工程における調節された酸性域
がpH2〜4であり、前記第2工程におけるアルミニウ
ム塩の添加量がアルミニウムとして前記土壌の重量に対
して0.1〜5.0 g/kgまたは前記土壌スラリー
の容積に対して0.1〜5.0 g/Lであり、鉄塩の
添加量が鉄として前記土壌の重量に対して0.1〜5.
0 g/kgまたは前記土壌スラリーの容積に対して
0.1〜5.0 g/Lであり、前記第3工程における
調節された弱酸性域ないしアルカリ性域がpH3〜10
である、請求項3または4記載の方法。
5. The adjusted acidic range in the first step is pH 2-4, and the amount of aluminum salt added in the second step is 0.1-5.0 g as aluminum based on the weight of the soil. / Kg or 0.1 to 5.0 g / L based on the volume of the soil slurry, and the amount of iron salt added is 0.1 to 5.0 g / L based on the weight of the soil as iron.
0 g / kg or 0.1 to 5.0 g / L based on the volume of the soil slurry, and the adjusted weakly acidic or alkaline range in the third step is pH 3 to 10.
The method according to claim 3 or 4, wherein
【請求項6】 前記鉱酸が硫酸、硝酸または塩酸のうち
の少なくとも1種であり、前記アルミニウム塩が硫酸ア
ルミニウムまたはポリ塩化アルミニウムのうちの少なく
とも1種であり、前記鉄塩が硫酸第一鉄、塩化第一鉄、
硫酸第二鉄または塩化第二鉄のうちの少なくとも1種で
あり、前記アルカリが水酸化ナトリウム、消石灰または
炭酸カルシウムのうちの少なくとも1種である、請求項
3〜5のいずれかに記載の方法。
6. The mineral acid is at least one of sulfuric acid, nitric acid or hydrochloric acid, the aluminum salt is at least one of aluminum sulfate or polyaluminum chloride, and the iron salt is ferrous sulfate. , Ferrous chloride,
The method according to any one of claims 3 to 5, wherein the alkali is at least one of ferric sulfate and ferric chloride, and the alkali is at least one of sodium hydroxide, slaked lime and calcium carbonate. .
【請求項7】 前記不溶化土壌を埋め戻し土壌または他
の物質の製造原料として使用する、請求項3〜6のいず
れかに記載の方法。
7. The method according to claim 3, wherein the insolubilized soil is used as a raw material for producing backfill soil or other substances.
【請求項8】 前記汚染された土壌または土壌スラリー
が軟弱地盤から得られたものであり、前記アルミニウム
塩または鉄塩のうちの少なくとも1種に代えて、また
は、該少なくとも1種とともに、セメント剤を添加して
得られた不溶化土壌を埋め戻し土壌として使用すること
により地盤改良と不溶化とを行う、請求項3、5または
6記載の方法。
8. The cement according to claim 1, wherein said contaminated soil or soil slurry is obtained from soft ground, and is used in place of or together with at least one of said aluminum salts or iron salts. 7. The method according to claim 3, 5 or 6, wherein the soil improvement and insolubilization are performed by using the insolubilized soil obtained by adding as backfill soil.
【請求項9】 前記第1工程の前に前記汚染された土壌
または土壌スラリーを予め、水、アルカリ性水溶液また
は酸性水溶液で洗浄および分級する、請求項3〜8のい
ずれかに記載の方法。
9. The method according to claim 3, wherein the contaminated soil or soil slurry is previously washed and classified with water, an alkaline aqueous solution or an acidic aqueous solution before the first step.
【請求項10】 前記各工程を前記汚染された土壌また
は土壌スラリーの発生現場で行う、請求項3〜9のいず
れかに記載の方法。
10. The method according to claim 3, wherein each of the steps is performed at a site where the contaminated soil or soil slurry is generated.
JP2002052892A 2001-03-01 2002-02-28 Detoxification method for contaminated soil Expired - Fee Related JP3896444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052892A JP3896444B2 (en) 2001-03-01 2002-02-28 Detoxification method for contaminated soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-56785 2001-03-01
JP2001056785 2001-03-01
JP2002052892A JP3896444B2 (en) 2001-03-01 2002-02-28 Detoxification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2002326081A true JP2002326081A (en) 2002-11-12
JP3896444B2 JP3896444B2 (en) 2007-03-22

Family

ID=26610433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052892A Expired - Fee Related JP3896444B2 (en) 2001-03-01 2002-02-28 Detoxification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP3896444B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026472A (en) * 2004-07-13 2006-02-02 Asahi Kagaku Kogyo Co Ltd Method for neutralizing alkali soil and leachate from the soil
JP2007021417A (en) * 2005-07-19 2007-02-01 Ishihara Sangyo Kaisha Ltd Soil treating material and soil decontaminating method using the same
JP2009066471A (en) * 2007-09-10 2009-04-02 Kajima Corp Construction sludge-treated soil preparation system and method
WO2009116184A1 (en) * 2008-03-19 2009-09-24 株式会社 環境開発 Method of reclaiming incinerated ash from solidified fuel from refuse, woody biomass fuel, solidified fuel from sludge, etc. as well as other waste and contaminated soil incinerated ash
JP2011255269A (en) * 2010-06-07 2011-12-22 Kajima Corp Method of insolubilizing hexavalent chromium, and method of detoxifying the same
CN101578935B (en) * 2008-05-14 2012-06-06 王彤 Saline-sodic land reclamation and control method
CN102601108A (en) * 2012-03-06 2012-07-25 合肥市吴山固体废物处置有限责任公司 Method for treating arsenic polluted soil
JP2013193055A (en) * 2012-03-22 2013-09-30 Taiheiyo Cement Corp Method of suppressing elution of fluorine
JP2013227553A (en) * 2012-03-30 2013-11-07 Yoshino Gypsum Co Ltd Insolubilizing and solidifying agent for specific toxic substance containing gypsum and soil improvement method using the same
JP2014033988A (en) * 2012-08-08 2014-02-24 Takenaka Doboku Co Ltd Method for reducing heavy metal content in heavy metal polluted soil, using ferritization treatment
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil
JP2015206205A (en) * 2014-04-21 2015-11-19 株式会社大林組 Foaming material for foam shield method, and foam shield method
JP2016097380A (en) * 2014-11-25 2016-05-30 清水建設株式会社 Insolubilization method of arsenic
JP2017013067A (en) * 2016-10-06 2017-01-19 太平洋セメント株式会社 Method of suppressing elution of fluorine
JP2018058071A (en) * 2017-11-02 2018-04-12 株式会社オメガ Method for purifying contaminated soil
KR20180097263A (en) * 2017-02-23 2018-08-31 한승케미칼 주식회사 Waste water treatment method of removing fluorine and cyanides
JP2020104035A (en) * 2018-12-26 2020-07-09 株式会社鴻池組 Detoxification treatment method of fluorine-contaminated soil
US10850256B2 (en) 2012-03-30 2020-12-01 Yoshino Gypsum Co., Ltd. Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improving method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531013B2 (en) 2015-09-09 2019-06-12 株式会社神戸製鋼所 Purification method and purification agent
CN108273833B (en) * 2018-03-13 2020-07-31 上海市园林科学规划研究院 In-situ layered utilization of building solid waste and application of building solid waste in reducing soil saline-alkali

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026472A (en) * 2004-07-13 2006-02-02 Asahi Kagaku Kogyo Co Ltd Method for neutralizing alkali soil and leachate from the soil
JP4590222B2 (en) * 2004-07-13 2010-12-01 朝日化学工業株式会社 Method for neutralizing alkaline soil and leachate from the soil
JP2007021417A (en) * 2005-07-19 2007-02-01 Ishihara Sangyo Kaisha Ltd Soil treating material and soil decontaminating method using the same
JP2009066471A (en) * 2007-09-10 2009-04-02 Kajima Corp Construction sludge-treated soil preparation system and method
WO2009116184A1 (en) * 2008-03-19 2009-09-24 株式会社 環境開発 Method of reclaiming incinerated ash from solidified fuel from refuse, woody biomass fuel, solidified fuel from sludge, etc. as well as other waste and contaminated soil incinerated ash
JP2009226385A (en) * 2008-03-19 2009-10-08 Kankyo Kaihatsu:Kk Method for recycling waste solidified fuel, woody biomass fuel, incineration ashes such as sludge solidified fuel, and contaminated soil
CN101578935B (en) * 2008-05-14 2012-06-06 王彤 Saline-sodic land reclamation and control method
JP2011255269A (en) * 2010-06-07 2011-12-22 Kajima Corp Method of insolubilizing hexavalent chromium, and method of detoxifying the same
CN102601108A (en) * 2012-03-06 2012-07-25 合肥市吴山固体废物处置有限责任公司 Method for treating arsenic polluted soil
JP2013193055A (en) * 2012-03-22 2013-09-30 Taiheiyo Cement Corp Method of suppressing elution of fluorine
JP2013227553A (en) * 2012-03-30 2013-11-07 Yoshino Gypsum Co Ltd Insolubilizing and solidifying agent for specific toxic substance containing gypsum and soil improvement method using the same
US10850256B2 (en) 2012-03-30 2020-12-01 Yoshino Gypsum Co., Ltd. Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improving method
JP2014033988A (en) * 2012-08-08 2014-02-24 Takenaka Doboku Co Ltd Method for reducing heavy metal content in heavy metal polluted soil, using ferritization treatment
JP2015112580A (en) * 2013-12-13 2015-06-22 株式会社オメガ Method for purifying contaminated soil
JP2015206205A (en) * 2014-04-21 2015-11-19 株式会社大林組 Foaming material for foam shield method, and foam shield method
JP2016097380A (en) * 2014-11-25 2016-05-30 清水建設株式会社 Insolubilization method of arsenic
JP2017013067A (en) * 2016-10-06 2017-01-19 太平洋セメント株式会社 Method of suppressing elution of fluorine
KR20180097263A (en) * 2017-02-23 2018-08-31 한승케미칼 주식회사 Waste water treatment method of removing fluorine and cyanides
KR102116420B1 (en) * 2017-02-23 2020-05-28 한승케미칼 주식회사 Waste water treatment method of removing fluorine and cyanides
JP2018058071A (en) * 2017-11-02 2018-04-12 株式会社オメガ Method for purifying contaminated soil
JP2020104035A (en) * 2018-12-26 2020-07-09 株式会社鴻池組 Detoxification treatment method of fluorine-contaminated soil
JP7130336B2 (en) 2018-12-26 2022-09-05 株式会社鴻池組 Detoxification treatment method for fluorine-contaminated soil

Also Published As

Publication number Publication date
JP3896444B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2002326081A (en) Method for making contaminated soil harmless
JP5757613B2 (en) Processing materials such as heavy metals
KR101835067B1 (en) Insolubilizing material for hazardous substances, and treatment method using same
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
JP6031271B2 (en) Hazardous element reducing material and method for reducing harmful element
JP2005238207A (en) Engineering method for cleaning contaminated soil
JP2011240325A (en) Agent for eliminating heavy metal ion and phosphate ion in wastewater, and method for eliminating heavy metal ion and phosphate ion using the same
JP5306524B1 (en) Hazardous material insolubilizing material and treatment method using the same
JP2016022406A (en) Method for treating heavy metal-contaminated water
JP2009066570A (en) Method for reducing cement-based turbid water-derived chromium
JP2006289306A (en) Method of suppressing elution of fluorine and heavy metal from waste and stabilizing agent
JP2003340426A (en) Method for decontaminating soil
JPH10137716A (en) Waste treating material and treatment of waste
JP3867002B2 (en) Detoxification method for contaminated soil
JP2002233858A (en) Detoxification method for heavy metal contaminated soil
JP4712290B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
JP2001121132A (en) Insolubilizing method of soil and industrial waste containing cyan compound and soluble heavy metals
JP2007203135A (en) Treatment method of waste liquid containing boron fluoride ion
JP2005028343A (en) Method for preventing elution of harmful metal from harmful metal contaminated waste product
JP2002320954A (en) Heavy metal elution inhibitor of heavy metal contaminated soil and method for inhibiting elution of heavy metal
JP5938784B2 (en) Heavy metal contaminated water treatment method, solid heavy metal contaminated treatment method, and heavy metal removal composition
JP6031270B2 (en) Methods for reducing harmful elements
JP2001121109A (en) Detoxicating method for construction waste containing soluble 6-valent chromium
JP4146260B2 (en) Treatment of selenium contaminated soil
JP3700667B2 (en) Soil purification method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Ref document number: 3896444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees