JP2012061374A - Method and device of remediating contaminated soil - Google Patents

Method and device of remediating contaminated soil Download PDF

Info

Publication number
JP2012061374A
JP2012061374A JP2010205101A JP2010205101A JP2012061374A JP 2012061374 A JP2012061374 A JP 2012061374A JP 2010205101 A JP2010205101 A JP 2010205101A JP 2010205101 A JP2010205101 A JP 2010205101A JP 2012061374 A JP2012061374 A JP 2012061374A
Authority
JP
Japan
Prior art keywords
soil
particles
slurry
soil particles
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010205101A
Other languages
Japanese (ja)
Other versions
JP5702567B2 (en
Inventor
Toshisuke Yoshi
俊輔 吉
Masaru Tomoguchi
勝 友口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2010205101A priority Critical patent/JP5702567B2/en
Publication of JP2012061374A publication Critical patent/JP2012061374A/en
Application granted granted Critical
Publication of JP5702567B2 publication Critical patent/JP5702567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device of remediating contaminated soil capable of collecting contamination substance at a high yield.SOLUTION: Soil particles 8, containing contamination substance and constituted of coarse soil particles having particle diameters of 0.075 mm or more and fine soil particles having particle diameters less than 0.075 mm, are subjected to grinding treatment for converting 2 to 40 mass% of the coarse soil particles to the fine soil particles. Water is added to the coarse soil particles and the fine soil particles after the grinding treatment to form soil slurry 9. The soil slurry 9 is supplied into a remediation tank (columnar separation collection machine) 4. Some of the soil particles 8 together with bubbles 10 are floated and collected by supplying air from a lower part of the remediation tank 4 toward the soil slurry 9. The residue of the fine soil particles and the coarse soil particles included in the soil particles 8 is settled in the remediation tank 4.

Description

本発明は、重金属や油などで汚染された土壌を浄化するための浄化方法および浄化装置に関する。   The present invention relates to a purification method and a purification device for purifying soil contaminated with heavy metals or oil.

従来、土壌と重金属との選別には、浮遊選鉱の原理を応用した泡沫浮上法が行われている。その装置としては、鉱山設備を流用できることから、インペラの回転を利用した一般的な浮選機が利用されてきた(例えば特許文献1)。ところが、建設費や操業費が高いうえ、大きな設置床面積を必要とするという課題があった。   Conventionally, a foam flotation method that applies the principle of flotation is used to select soil and heavy metals. As the apparatus, since a mine facility can be used, a general flotation machine using the rotation of an impeller has been used (for example, Patent Document 1). However, there is a problem that the construction cost and the operation cost are high and a large installation floor area is required.

そのため、選鉱分野では、近年、反応塔内で鉱石パルプと空気とを向流接触させるカラム浮選機が導入されている。カラム浮選機は、円筒または角柱状の外形を有し、底部に気泡発生装置、中間部に給鉱部、最上部に浮鉱排出口を備えている。最上部からは洗浄水がスプレーされ、尾鉱は底部から排出される。カラム浮選機は、給鉱部よりも上側に、スプレー水により洗われて土壌の精選が進行するクリーニングゾーン(精選域)、給鉱部よりも下側に、給鉱中の浮き易い粒子を気泡で捕集して上部へ送るリカバリーゾーン(捕集域)を有している。   For this reason, in the field of beneficiation, column flotation machines have been introduced in recent years, in which ore pulp and air are brought into countercurrent contact in a reaction tower. The column flotation machine has a cylindrical or prismatic outer shape, and is equipped with a bubble generating device at the bottom, a feed section at the middle, and a float discharge at the top. Wash water is sprayed from the top and tailings are discharged from the bottom. The column flotation machine has a cleaning zone (selection zone) where soil is carefully cleaned by spraying water on the upper side of the supply section, and particles that are likely to float in the supply area on the lower side of the supply section. It has a recovery zone (collection area) that collects with bubbles and sends it to the top.

特開2005−186056号公報Japanese Patent Laid-Open No. 2005-186056

ところが、カラム浮選機は、得られる精鉱品位が向上する反面、収率は従来型浮選機より劣るため、主に精選工程に導入されてきた。しかし、鉱山設備を土壌浄化装置として用いる場合には、精鉱の濃縮効果は重要ではなく、汚染物質の収率を上げることが要求される。また、一般的に、細粒化するほど精選効率が向上するため、カラム浮選機は、鉱石がよく細粒化されたスラリー、例えば50%分級点が130μm程度まで摩砕されたスラリーを対象に使用されている。   However, the column flotation machine is improved mainly in the refinement process because the yield of the concentrate is improved but the yield is inferior to that of the conventional flotation machine. However, when the mine facility is used as a soil purification device, the concentrate concentration effect is not important, and it is required to increase the yield of pollutants. In general, the finer the finer, the higher the efficiency of the selection, so the column flotation machine is intended for slurries in which the ore is finely divided, for example, slurries with a 50% classification point of about 130 μm. Is used.

本発明は上記課題を鑑みてなされたものであり、本発明の目的は、汚染物質をより高い収率で回収できる汚染土壌の浄化方法および浄化装置を提供することにある。   This invention is made | formed in view of the said subject, The objective of this invention is providing the purification method and purification apparatus of the contaminated soil which can collect | recover a pollutant with a higher yield.

本発明においては、摩砕機にて粉砕媒体を用いて、汚染物質を含有している所定粒度範囲の土壌粒子の表面を強く研磨して細粒化し、スラリー原料である汚染土壌を、比較的細かい汚染物質粒子と、汚染物質が剥離された比較的粗い土壌粒子とに分ける。また、高さを有する浄化槽を用い、土壌スラリー中の粗粒土壌粒子と細粒土壌粒子との沈降分離スピードの差を利用することで、汚染物質が濃縮している細粒土壌粒子を上部から越流させ、分級する機能を有する。さらに、浄化槽に気泡を導入することによって、界面活性化させた細粒土壌粒子および粗粒土壌粒子の一部を気泡に付着させ越流させることにより、分級効果のみでは粗粒に分級される粗粒土壌粒子までも効果的に浮上させて回収する。あるいは、浄化対象とする土壌の汚染物質が油あるいはその他の疎水性化学物質のみに限られる場合は、摩砕機を用いずに分離回収機のみを用いてもよい。   In the present invention, the surface of the soil particles having a predetermined particle size range containing the pollutant is strongly ground and pulverized by using a grinding medium in an attritor, and the contaminated soil as the slurry raw material is relatively fine. Divide into pollutant particles and relatively coarse soil particles from which the pollutants have been stripped. In addition, by using a septic tank with a height, and using the difference in sedimentation speed between coarse and fine soil particles in the soil slurry, fine soil particles that are enriched in pollutants from the top. It has the function of overflowing and classifying. Furthermore, by introducing air bubbles into the septic tank, the surface-activated fine soil particles and a part of the coarse soil particles are attached to the air bubbles and allowed to overflow, so that the coarse effect is classified into coarse particles only by the classification effect. Even soil particles are effectively levitated and recovered. Or when the pollutant of the soil made into purification object is restricted only to oil or another hydrophobic chemical substance, you may use only a separation collection machine without using a grinder.

すなわち、本発明は、汚染物質を含み且つ粒子径0.075mm以上の粗粒土壌粒子と粒子径0.075mm未満の細粒土壌粒子とで構成される土壌粒子を、前記粗粒土壌粒子の2〜40質量%を前記細粒土壌粒子に移行する摩砕処理を行い、前記摩砕処理後の粗粒土壌粒子と細粒土壌粒子に水を加えて土壌スラリーとし、前記土壌スラリーを浄化槽内に供給し、この浄化槽の下部から前記土壌スラリーに向けて空気を供給して、前記土壌粒子の一部を泡沫とともに浮上させて回収し、前記土壌粒子に含まれる細粒土壌粒子および粗粒土壌粒子の残部を前記浄化槽に沈降させることを特徴とする汚染土壌の浄化方法を提供する。   That is, the present invention provides soil particles composed of coarse soil particles containing a contaminant and having a particle size of 0.075 mm or more and fine soil particles having a particle size of less than 0.075 mm. ~ 40% by mass is transferred to the fine-grained soil particles, water is added to the coarse-grained and fine-grained soil particles after the grinding treatment to form a soil slurry, and the soil slurry is placed in the septic tank. Supplying air from the lower part of this septic tank toward the soil slurry, and collecting and recovering a part of the soil particles together with foam, fine soil particles and coarse soil particles contained in the soil particles A method for purifying contaminated soil is provided, wherein the remaining portion is settled in the septic tank.

この浄化方法において、前記土壌スラリーを前記浄化槽の上部から前記浄化槽内に供給し、沈降した土壌スラリーを前記浄化槽の下部より排出し、このときの前記土壌スラリーの供給速度を排出速度よりも大きくして越流を発生させてもよい。   In this purification method, the soil slurry is supplied from the upper part of the septic tank into the septic tank, the settled soil slurry is discharged from the lower part of the septic tank, and the supply rate of the soil slurry at this time is made larger than the discharge rate. Overflow may be generated.

前記土壌スラリーにおいて、土壌粒子の濃度を10〜70質量%に調整することが好ましい。さらに、前記摩砕処理で、前記粗粒土壌粒子の5〜30質量%を前記細粒土壌粒子に移行することが好ましい。前記汚染物質が重金属でもよい。   In the soil slurry, it is preferable to adjust the concentration of soil particles to 10 to 70% by mass. Furthermore, it is preferable that 5 to 30% by mass of the coarse soil particles are transferred to the fine soil particles by the grinding treatment. The contaminant may be a heavy metal.

さらに、本発明は、摩砕手段と、土壌スラリー貯留槽と、浄化槽とが順次連結された汚染土壌の浄化装置であって、前記浄化槽は、スラリー供給手段と、空気供給手段と、上部排出手段と、下部排出手段を備え、前記摩砕手段では、汚染物質を含む土壌粒子が摩砕処理され、前記土壌スラリー貯留槽では、摩砕された前記土壌粒子に水を加えた土壌スラリーが貯留され、前記浄化槽では、前記スラリー供給手段から前記土壌スラリーが供給され、前記空気供給手段から空気が供給され、前記上部排出手段から泡沫及び/又は越流水が排出され、前記下部排出手段から沈降物が排出されることを特徴とする汚染土壌の浄化装置を提供する。   Furthermore, the present invention is a contaminated soil purification apparatus in which a grinding means, a soil slurry storage tank, and a septic tank are sequentially connected, the septic tank comprising a slurry supply means, an air supply means, and an upper discharge means. And a lower discharge means, wherein the grinding means grinds soil particles containing contaminants, and the soil slurry storage tank stores soil slurry obtained by adding water to the ground soil particles. In the septic tank, the soil slurry is supplied from the slurry supply means, air is supplied from the air supply means, foam and / or overflow water is discharged from the upper discharge means, and sediment is generated from the lower discharge means. Disclosed is a contaminated soil purification apparatus characterized by being discharged.

前記空気供給手段は、孔径0.005mm〜50mmの孔を複数有する散気装置でもよい。また、前記空気供給手段による空気の散気速度が、前記浄化槽の断面積に対して1〜400m/m/hでもよい。 The air supply means may be an air diffuser having a plurality of holes having a hole diameter of 0.005 mm to 50 mm. Moreover, 1 to 400 m < 3 > / m < 2 > / h may be sufficient as the air diffusion speed by the said air supply means with respect to the cross-sectional area of the said septic tank.

本発明によれば、汚染土壌の一部を一定粒度まで摩砕処理することで、汚染物質と土壌粒子とが効率よく分離され、効果的な浄化が可能となる。また、粗粒を含む汚染土壌であっても、汚染物質粒子を高い収率で回収できるため、粗粒粒子を含む大容量のスラリー状汚染土壌を、小面積のスペースで浄化処理することが可能となる。   According to the present invention, a part of contaminated soil is ground to a certain particle size, so that pollutants and soil particles are efficiently separated, and effective purification becomes possible. In addition, even in contaminated soil containing coarse particles, pollutant particles can be recovered with a high yield, so it is possible to purify large volumes of slurry-like contaminated soil containing coarse particles in a small area. It becomes.

さらに、本発明によれば、柱状分離回収機には、大型の回転インペラ等の駆動や広い設置床面積が必要ではなく、低コストで実現可能であり、しかも汚染物質粒子の分離回収能力が優れている。   Furthermore, according to the present invention, the columnar separation and recovery machine does not require a large rotary impeller drive or a large installation floor area, can be realized at a low cost, and has an excellent ability to separate and recover contaminant particles. ing.

本発明による汚染土壌の浄化装置の概略図である。It is the schematic of the purification apparatus of the contaminated soil by this invention. 実施例1における処理バランスを示す図である。It is a figure which shows the processing balance in Example 1. FIG. 実施例2〜5、比較例1における粗流土壌の移行率を示すグラフである。It is a graph which shows the transfer rate of the rough flow soil in Examples 2-5 and the comparative example 1. FIG.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は、鉛等の重金属や油などで汚染された土壌を浄化する方法であって、使用場所を問わず広く実施することができる。本発明では、汚染物質を含んだ土壌を、予め水を加えてスラリー化した状態で浄化装置へ供給することを原則とする。   The present invention is a method for purifying soil contaminated with heavy metals such as lead or oil, and can be widely implemented regardless of the place of use. The principle of the present invention is that the soil containing the pollutant is supplied to the purification device in a state in which water is added in advance to form a slurry.

図1は本発明にかかる浄化装置1の例であり、汚染物質を含む土壌粒子8を摩砕する摩砕機2、土壌粒子8を摩砕処理した後に水を加えてスラリー状にした土壌スラリー9を一時的に貯留する土壌スラリー貯留槽3、土壌スラリー9を浄化する浄化槽として用いられる柱状分離回収機4、柱状分離回収機4へ空気を供給する空気供給装置5を備えている。   FIG. 1 shows an example of a purification apparatus 1 according to the present invention, a grinder 2 for grinding soil particles 8 containing pollutants, and a soil slurry 9 which is slurried by adding water after grinding the soil particles 8. Is provided with an air supply device 5 for supplying air to the columnar separation / recovery machine 4 and a columnar separation / recovery machine 4 used as a purification tank for purifying the soil slurry 9.

図1では省略しているが、摩砕機2に入れる前の土壌粒子は、粒子径0.075mm未満の細粒土壌粒子と、それよりも大きい粒子径の粗粒土壌粒子とを含む。これら土壌粒子としては、例えば、最大粒子同士の粒径差が25〜30倍となるものが使用できる。   Although omitted in FIG. 1, the soil particles before entering the grinder 2 include fine soil particles having a particle size of less than 0.075 mm and coarse soil particles having a larger particle size. As these soil particles, for example, particles having a particle size difference between the largest particles of 25 to 30 times can be used.

摩砕機2では、粉砕媒体12を用いて、粗粒土壌粒子の2〜40質量%が細粒土壌粒子に移行するように摩砕する。汚染物質の除去効率をより高める点からは、細粒土壌粒子への移行率を5〜30質量%とすることが好ましい。例えば2mm〜0.075mmの粒度範囲内の粗粒土壌粒子は、摩砕することで、汚染物質粒子と、汚染物質粒子が剥離された清浄土壌粒子とに分離される。このように摩砕処理をすることで汚染物質が効率に除去でき、処理後の土壌粒子の再利用が可能となる。なお、各粒度範囲に含まれる土壌質量の比率は、JIS規格‐標準ふるい (公称目開き0.075mm,0.15mm,0.3mm,0.5mm,1.0mm,2.0mm,5.0mm,10.0mmを使用)を使用して求める。分級装置は、例えば、湿式サイクロンやハイメッシュセパレーターなどを使用できる。   In the grinder 2, the grinding medium 12 is used for grinding so that 2 to 40% by mass of the coarse soil particles are transferred to the fine soil particles. From the viewpoint of further improving the removal efficiency of pollutants, it is preferable that the rate of transfer to fine soil particles is 5 to 30% by mass. For example, coarse soil particles within a particle size range of 2 mm to 0.075 mm are ground to be separated into contaminant particles and clean soil particles from which the contaminant particles have been separated. By performing the grinding treatment in this way, contaminants can be efficiently removed, and the treated soil particles can be reused. In addition, the ratio of the soil mass contained in each particle size range is JIS standard-standard sieve (nominal mesh 0.075mm, 0.15mm, 0.3mm, 0.5mm, 1.0mm, 2.0mm, 5.0mm , 10.0 mm is used). As the classifier, for example, a wet cyclone or a high mesh separator can be used.

摩砕機2は、例えば円筒形状の回転体からなる摩砕機本体11の内部に、所要量の粉砕媒体12を入れたものであり、汚染土壌粒子8を摩砕する機構を有する装置として一般的な各種ミルやスクラバー等の湿式摩鉱機を用いることができる。粉砕媒体12としては、例えば、直径10mm〜300mm(好ましくは15mm〜150mm)の金属製(好ましくは鉄製)のボールや、直径20mm〜300mm(好ましくは30mm〜200mm)の金属製(好ましくは鉄製)のロッドが用いられる。摩砕機2に入れる粉砕媒体12の量は、例えば500kg〜150000kgとする。なお、摩砕機2は、複数台を組み合わせて使用してもよく、使用する粉砕媒体12の種類や大きさは、対象とする汚染土壌に応じて決定するのが好ましい。また、状況に応じて、湿式サイクロンを併用することで閉回路を用いることもできる。   The grinder 2 is a grinder main body 11 made of, for example, a cylindrical rotating body, in which a required amount of grinding media 12 is placed, and is a general apparatus having a mechanism for grinding contaminated soil particles 8. Wet mills such as various mills and scrubbers can be used. Examples of the grinding medium 12 include metal (preferably iron) balls having a diameter of 10 mm to 300 mm (preferably 15 mm to 150 mm), and metal (preferably iron) having a diameter of 20 mm to 300 mm (preferably 30 mm to 200 mm). The rod is used. The amount of the grinding medium 12 put into the grinder 2 is, for example, 500 kg to 150,000 kg. In addition, you may use the grinder 2 combining several units | sets, and it is preferable to determine the kind and magnitude | size of the grinding medium 12 to be used according to the contaminated soil made into object. Further, depending on the situation, a closed circuit can be used by using a wet cyclone in combination.

土壌スラリー貯留槽3は、土壌スラリー9を一時的に溜めることができる機能を有していれば、その形状や材質は問わない。土壌スラリー貯留槽3内には、一般的な攪拌機能を有するインペラや水中ミキサ等の攪拌手段を用いたスラリー攪拌機を備えることが好ましい。   The shape and material of the soil slurry storage tank 3 are not limited as long as the soil slurry storage tank 3 has a function of temporarily storing the soil slurry 9. The soil slurry storage tank 3 is preferably provided with a slurry stirrer using stirring means such as an impeller having a general stirring function and an underwater mixer.

さらに、土壌スラリー貯留槽3には、柱状分離回収機4へ土壌スラリー9を供給するための供給ポンプ13と、土壌スラリー9の移送経路となるスラリー供給配管14が設けられている。   Further, the soil slurry storage tank 3 is provided with a supply pump 13 for supplying the soil slurry 9 to the columnar separation and recovery machine 4 and a slurry supply pipe 14 serving as a transfer path for the soil slurry 9.

柱状分離回収機4は、本体21が好ましくは高さ1m以上(さらに好ましくは3m〜15m)の柱状であり、形状は円筒や四角柱、その他の任意の形状の柱状で構わない。柱状分離回収機4の本体21に、スラリー供給配管14を移送されてきた土壌スラリー9を柱状分離回収機4内へ供給するためのスラリー供給口25が設けられている。スラリー供給口25は、本体21の中間よりも上部に設けることが、効率的な分離回収を行うために好ましい。本体21の下方には、柱状分離回収機4の底部から一定量のスラリー状沈降産物を排出する機能を有する引き抜きポンプ22が設けられ、さらに本体21の底部に散気装置23が配置される。また、柱状分離回収機4の最上端には、汚染物質を捕集した泡沫10を越流回収する泡沫排出口24が設けられている。これらの基本的な構造に加えて、本体21の下方の側面から、例えば0.5mm以下程度の所定粒度の粒子を含む土壌スラリー9を抜き出し、再度柱状分離回収機4内の上方へ導入するための閉回路システム26を設けてもよい。   In the columnar separation and recovery machine 4, the main body 21 is preferably a column having a height of 1 m or more (more preferably 3 m to 15 m), and the shape may be a cylinder, a square column, or any other column shape. The main body 21 of the columnar separation and recovery machine 4 is provided with a slurry supply port 25 for supplying the soil slurry 9 transferred through the slurry supply pipe 14 into the columnar separation and recovery machine 4. The slurry supply port 25 is preferably provided above the middle of the main body 21 in order to perform efficient separation and recovery. Below the main body 21, a drawing pump 22 having a function of discharging a certain amount of slurry-like sedimentation product from the bottom of the columnar separation and recovery machine 4 is provided, and an aeration device 23 is disposed at the bottom of the main body 21. In addition, a foam discharge port 24 is provided at the uppermost end of the columnar separation and recovery machine 4 to overflow and collect the foam 10 that has collected the contaminant. In addition to these basic structures, the soil slurry 9 containing particles of a predetermined particle size of, for example, about 0.5 mm or less is extracted from the lower side surface of the main body 21 and introduced again into the columnar separation and recovery machine 4 above. A closed circuit system 26 may be provided.

空気供給装置5としては、一般的な散気装置であるコンプレッサやルーツブロアを用いることができるが、これらの形式に限定されることはない。空気供給量は、柱状分離回収機4の断面積1m当り1〜400m/h(好ましくは10m/m/h〜300m/m/h)とする。空気供給装置5からの空気は、散気装置23へ供給される他、スラリー供給配管14や閉回路システム26へも供給可能であり、配置位置は図1の例に限らない。 As the air supply device 5, a compressor or a roots blower, which is a general air diffuser, can be used, but is not limited to these types. Air supply amount, per cross-sectional area 1 m 2 of the columnar separation and recovery device 4 1~400m 3 / h (preferably 10m 3 / m 2 / h~300m 3 / m 2 / h) and. In addition to being supplied to the air diffuser 23, the air from the air supply device 5 can be supplied to the slurry supply pipe 14 and the closed circuit system 26, and the arrangement position is not limited to the example of FIG.

散気装置23としては、孔径0.005mm〜50mmの複数の孔を有する散気管、メンブレン等のディフューザ、または、空気あるいは空気と水のジェット式エアレータ等が用いられ、気泡径5μm〜50mm(好ましくは0.1mm〜20mm)の気泡を発生させる。散気装置23は、上記のうちいずれか一種類ではなく、複数の装置を組み合わせて用いてもよい。   As the air diffuser 23, an air diffuser having a plurality of holes having a hole diameter of 0.005 mm to 50 mm, a diffuser such as a membrane, or a jet aerator of air or air and water is used, and a bubble diameter of 5 μm to 50 mm (preferably Generates bubbles of 0.1 mm to 20 mm). The air diffuser 23 is not limited to any one of the above, and a plurality of devices may be used in combination.

さらに、柱状分離回収機4の最上端において、汚染物質粒子を付着した泡沫10の泡沫排出口24への越流性を助長するために、回転式のパドル等を設けてもよい。   Further, a rotary paddle or the like may be provided at the uppermost end of the columnar separation / recovery machine 4 in order to promote the overflow property of the foam 10 attached with contaminant particles to the foam outlet 24.

以上の構成を有する浄化装置1による汚染土壌の浄化方法について説明する。   The purification method of the contaminated soil by the purification apparatus 1 having the above configuration will be described.

例えば鉛等の重金属による汚染物質を含む例えば2mm〜0.075mmの粒度範囲内の粗粒土壌粒子8を、摩砕機2に供給する。摩砕機2では、粉砕媒体12によって土壌粒子8が摩砕され、摩砕処理された土壌が土壌スラリー貯留槽3へ送られる。なお、汚染物質の種類によって、土壌スラリー貯留槽3へは、粒子が10mm以下(好ましくは2mm以下)となるように分級で粗粒を除去するか、摩砕機2によって粗粒の粉砕を行ってから、土壌を供給する。   For example, coarse soil particles 8 having a particle size range of 2 mm to 0.075 mm, for example, containing contaminants due to heavy metals such as lead are supplied to the grinder 2. In the grinder 2, the soil particles 8 are ground by the grinding medium 12, and the ground soil is sent to the soil slurry storage tank 3. Depending on the type of pollutant, coarse particles are removed by classification so that the particles become 10 mm or less (preferably 2 mm or less) in the soil slurry storage tank 3, or coarse particles are pulverized by the grinder 2. From the soil.

土壌スラリー貯留槽3内において、土壌は、必要に応じて水で希釈され、スラリー濃度10%〜70質量%に調整された土壌スラリー9となって、供給ポンプ13、スラリー供給配管14を介して、柱状分離回収機4へ移送される。また、土壌スラリー貯留槽3では、土壌スラリー9に気泡剤の添加が行われる。使用する気泡剤は、一般的な気泡剤でよく、必要に応じて、条件剤、活性剤、捕集剤、抑制剤などを添加してもよい。   In the soil slurry storage tank 3, the soil is diluted with water as necessary to become a soil slurry 9 adjusted to a slurry concentration of 10% to 70% by mass, via a supply pump 13 and a slurry supply pipe 14. Then, it is transferred to the columnar separation and recovery machine 4. In the soil slurry storage tank 3, the foaming agent is added to the soil slurry 9. The foaming agent to be used may be a general foaming agent, and a conditioner, an activator, a scavenger, an inhibitor and the like may be added as necessary.

柱状分離回収機4の中間よりも上部に設けられたスラリー供給口25から、土壌スラリー9が供給されるとともに、柱状分離回収機4の下部の散気装置23から気泡が吹き付けられ、土壌スラリー9と気泡が接触する。これにより、汚染物質を含む細粒土壌粒子、例えば、疎水性あるいは疎水化した汚染物質を含む細粒土壌粒子、コロイドが、泡沫とともに柱状分離回収機4の上方へ浮上する。この汚染物質を含む泡沫10を泡沫排出口24から排出させ、フロスとして回収する。一方、土壌スラリー9中の粗粒土壌粒子は徐々に沈降し、柱状分離回収機4の底部から、引き抜きポンプ22を介して、沈降産物として排出される。なお、ここで、フロスとは、洗浄液中に浮遊する汚染物質、またはこれを含んだ土砂の細粒分等が気泡剤に吸着(捕集)された絹綿状の浮遊物を示す。   The soil slurry 9 is supplied from a slurry supply port 25 provided above the middle of the columnar separation and recovery machine 4, and bubbles are blown from the diffuser 23 at the lower part of the columnar separation and recovery machine 4, so that the soil slurry 9 And bubbles come into contact. Thereby, fine soil particles containing contaminants, for example, fine soil particles containing hydrophobic or hydrophobicized contaminants, and colloids float above the columnar separation and recovery machine 4 together with foam. The foam 10 containing this pollutant is discharged from the foam outlet 24 and recovered as a floss. On the other hand, coarse soil particles in the soil slurry 9 gradually settle and are discharged from the bottom of the columnar separation / recovery machine 4 as a sedimentation product via the extraction pump 22. Here, the floss refers to a silky floating substance in which contaminants floating in the cleaning liquid or fine particles of earth and sand containing the same are adsorbed (collected) by the foaming agent.

なお、供給ポンプ13による土壌スラリー9の供給量と、引き抜きポンプ22による沈降産物の引き抜き量を調整管理することにより、柱状分離回収機4内の水位を一定に保つようにする。あるいは、引き抜きポンプ22による沈降産物の引き抜き量よりも、供給ポンプ13による土壌スラリー9の供給量を多くして、沈降速度が速い粗粒土壌粒子を急速に沈降させ、沈降速度の遅い細粒土壌粒子を越流水とともに回収することによって、土壌スラリー9中の粒子から剥離された汚染物質の細粒粒子を除去することもできる。   In addition, the water level in the columnar separation and recovery machine 4 is kept constant by adjusting and managing the supply amount of the soil slurry 9 by the supply pump 13 and the extraction amount of the sediment product by the extraction pump 22. Alternatively, the amount of the soil slurry 9 supplied by the supply pump 13 is increased more than the amount of the sedimentation product extracted by the extraction pump 22, so that the coarse soil particles having a high settling rate are rapidly settled, and the fine soil having a low settling rate is set. By collecting the particles together with the overflow water, the fine particles of the contaminants separated from the particles in the soil slurry 9 can be removed.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

(実施例1)
以上述べた条件に基づいて、本発明にかかる浄化装置により、汚染土壌の浄化処理を実施した。
Example 1
Based on the conditions described above, the contaminated soil was purified by the purification apparatus according to the present invention.

先ず、汚染土壌に分級処理を施して2mm超の礫石を除いた。摩砕処理に用いる摩砕機2として、直径40mm以下の鉄球を1750kg充填した直径1800mm、長さ4000mmの第一のスクラバーと、直径40mm以下の鉄球を4000kg充填した直径1800mm、長さ4300mmの第二のスクラバーを直列に配置した。この摩砕機によって、スラリー濃度50%の汚染土壌粒子を、25m/hで摩砕処理した。摩砕処理は、0.075mm〜2mmの粒度範囲内の粗粒土壌粒子の0.075mm未満への移行率が16質量%となるように行った。 First, classification treatment was applied to the contaminated soil to remove over 2 mm of gravel. As the grinder 2 used for the grinding treatment, a first scrubber having a diameter of 1800 mm and a length of 4000 mm filled with 1750 kg of iron balls having a diameter of 40 mm or less, and a diameter of 1800 mm and a length of 4300 mm filled with 4000 kg of iron balls having a diameter of 40 mm or less. A second scrubber was placed in series. With this mill, contaminated soil particles with a slurry concentration of 50% were ground at 25 m 3 / h. The grinding treatment was performed such that the migration rate of coarse soil particles within a particle size range of 0.075 mm to 2 mm to less than 0.075 mm was 16% by mass.

摩砕処理後、土壌スラリー貯留槽3で、捕集剤および気泡剤と18m/hの希釈水を添加し、スラリー濃度32%の汚染土壌スラリーとして、柱状分離回収機4へ45m/hで供給した。柱状分離回収機4は、1辺が2200mm、高さ5800mmの四角柱とし、高さ5400mmの位置にスラリー供給口25を設け、本体21内へ土壌スラリーを供給するとともに、引き抜きポンプ22による沈降産物の引き抜き量を37m/h、泡沫排出口24からのフロスの回収量を8m/hとした。この条件において、鉛含有量618mg/kgの汚染土壌の処理を実施した。柱状分離回収機4に供給された汚染土壌スラリーと、フロスとして回収された浮上回収汚染物質ならびに沈降産物のマテリアルバランスを図2に示す。 After the grinding treatment, in the soil slurry storage tank 3, a trapping agent and a foaming agent and 18 m 3 / h of diluted water are added to the columnar separation and recovery machine 4 as a contaminated soil slurry having a slurry concentration of 32%, 45 m 3 / h. Supplied with. The columnar separation / recovery machine 4 is a square column having a side of 2200 mm and a height of 5800 mm, and a slurry supply port 25 is provided at a position of 5400 mm in height to supply soil slurry into the main body 21, and a sedimentation product by the extraction pump 22. The amount of the drawn material was 37 m 3 / h, and the amount of floss collected from the foam outlet 24 was 8 m 3 / h. Under these conditions, a contaminated soil having a lead content of 618 mg / kg was treated. FIG. 2 shows the material balance of the contaminated soil slurry supplied to the columnar separation and recovery machine 4 and the floating recovered contaminants and sedimentation products recovered as floss.

図2に示すように、供給した2mm以下の土壌粒子のうち、5.8質量%が泡沫とともに分離回収され、94.2質量%が沈降粒子として得られた。得られた沈降粒子の鉛含有量は294mg/kg、浮上粒子の鉛含有量は5913mg/kgとなり、55.2%の鉛を汚染土壌スラリーから分離回収することができた。   As shown in FIG. 2, 5.8% by mass of the supplied soil particles of 2 mm or less was separated and recovered together with foam, and 94.2% by mass was obtained as precipitated particles. The resulting precipitated particles had a lead content of 294 mg / kg, and the floating particles had a lead content of 5913 mg / kg, and 55.2% of lead could be separated and recovered from the contaminated soil slurry.

浮上回収により分離回収された55.2%の鉛のうち、0.075mm未満の細粒粒子が43.8%と約80%を占め、摩砕機において細粒化された鉛粒子を効果的に回収することができた。0.075mm以上の粗粒粒子の浮上回収重量は、供給重量の約1%と少ないが、8800mg/kgの鉛高含有量粒子を選択的に分離回収することができた。   Of 55.2% of the lead separated and recovered by levitation recovery, fine particles less than 0.075 mm account for 43.8% and about 80%, and the finely divided lead particles are effectively used in the grinder. It was possible to recover. Although the levitated recovery weight of coarse particles of 0.075 mm or more is as small as about 1% of the supplied weight, 8800 mg / kg lead-rich particles could be selectively separated and recovered.

土壌浄化の装置として優れていると評価される基準は、鉛粒子の濃縮性(精選)ではなく、単純に、より多くの鉛を分離回収することである。本実施例の浄化方法で浮上回収された鉛粒子は、図2に示すように、0.075mm未満の細粒粒子からの回収率が特に高いだけでなく、0.075mm〜2mm範囲の粗粒粒子からも効果的に鉛含有粒子を回収できている。これより、本発明の浄化装置は、粒度範囲によらず、効果的に重金属粒子の回収性が可能であり、土壌の浄化装置として優れていると言える。   The standard that is evaluated as an excellent soil purification device is not the concentration (selection) of lead particles, but simply the separation and recovery of more lead. As shown in FIG. 2, the lead particles levitated and collected by the purification method of this example not only have a particularly high recovery rate from fine particles of less than 0.075 mm, but also coarse particles in the range of 0.075 mm to 2 mm. Lead-containing particles can also be effectively recovered from the particles. Thus, the purification device of the present invention can effectively recover heavy metal particles regardless of the particle size range, and can be said to be excellent as a soil purification device.

また、本発明で用いられる柱状分離回収機は、大型の回転インペラ等の駆動を必要とせず、また、設置床面積も縮小できることから、従来型浮選機の課題であった建設と運転に要するコストを低減できる。したがって、汚染物質粒子の分離回収能力向上とコスト削減の両立を果たすことができる。   In addition, the columnar separation and recovery machine used in the present invention does not require driving of a large-sized rotary impeller or the like, and can reduce the installation floor area, so that it is necessary for construction and operation, which has been a problem of conventional flotation machines. Cost can be reduced. Therefore, it is possible to achieve both the improvement in the ability to separate and recover the contaminant particles and the cost reduction.

(実施例2〜5、比較例1)
実施例1で用いた土壌粒子を摩砕処理するにあたり、摩砕機2における運転条件を替えることで、0.075mm〜2mmの粒度範囲内の粗粒土壌粒子の0.075mm未満への移行率を、0質量%(比較例1)、2質量%(実施例2)、7質量%(実施例3)、16質量%(実施例4)、38質量%(実施例5)となるように調整した。その他は実施例1と同様の条件により汚染土壌の処理を行った。
(Examples 2 to 5, Comparative Example 1)
In grinding the soil particles used in Example 1, by changing the operating conditions in the grinding machine 2, the transition rate of coarse soil particles within a particle size range of 0.075 mm to 2 mm to less than 0.075 mm is obtained. 0% by mass (Comparative Example 1), 2% by mass (Example 2), 7% by mass (Example 3), 16% by mass (Example 4), and 38% by mass (Example 5). did. Otherwise, the contaminated soil was treated under the same conditions as in Example 1.

これらの処理における、供給土壌からの鉛含有量の低減率を図3のグラフに示す。なお、鉛含有量の低減率は、次式
(鉛含有量低減率)=[(供給土壌の鉛含有量−処理後土壌の鉛含有量)/(供給土壌の鉛含有量)]×100
より求めた。この低減率が大きいほど、処理に伴う土壌からの鉛除去効果が高いことを示す。
The reduction rate of the lead content from the supply soil in these treatments is shown in the graph of FIG. In addition, the reduction rate of lead content is the following formula (lead content reduction rate) = [(lead content of supplied soil−lead content of treated soil) / (lead content of supplied soil)] × 100
I asked more. It shows that the lead removal effect from the soil accompanying a process is so high that this reduction rate is large.

図3に示すように、比較例1(移行率0質量%)では、処理土壌の全粒度範囲に対する鉛含有量の低減率では20%に達するものの、0.075mm以上の粗粒土壌のみに対しては、鉛含有量の低減率が3%と殆ど鉛が除去されなかった。これに対し、実施例2〜5(移行率2質量%以上)では、0.075mm以上の粗粒土壌からも鉛含有量の低減が可能となった。言い換えれば、粗粒土壌を細粒土壌とする摩砕処理を行わない場合は、柱状分離回収機4にて回収される鉛粒子は0.075mm以下の細粒粒子に限られてしまうと言える。   As shown in FIG. 3, in Comparative Example 1 (migration rate 0% by mass), the reduction rate of lead content with respect to the entire particle size range of the treated soil reaches 20%, but only for coarse soil of 0.075 mm or more. As a result, the lead content was reduced by 3% and almost no lead was removed. On the other hand, in Examples 2 to 5 (migration rate of 2% by mass or more), it was possible to reduce the lead content even from coarse soil of 0.075 mm or more. In other words, it can be said that the lead particles recovered by the columnar separation and recovery machine 4 are limited to fine particles of 0.075 mm or less when the grinding treatment using the coarse-grained soil as the fine-grained soil is not performed.

本発明は、汚染土壌の浄化装置として広く利用され、特に高濃度の重金属汚染土壌や油汚染土壌に対する経済的な土壌浄化装置として適用できる。   INDUSTRIAL APPLICABILITY The present invention is widely used as a contaminated soil purification device, and can be applied as an economical soil purification device particularly for high-concentration heavy metal-contaminated soil and oil-contaminated soil.

1 浄化装置
2 摩砕機
3 土壌スラリー貯留槽
4 柱状分離回収機
5 空気供給装置
8 土壌粒子
9 土壌スラリー
10 泡沫
11 摩砕機本体
12 粉砕媒体
13 供給ポンプ
14 スラリー供給配管
21 本体
22 引き抜きポンプ
23 散気装置
24 泡沫排出口
25 スラリー供給口
26 閉回路システム
DESCRIPTION OF SYMBOLS 1 Purification apparatus 2 Grinding machine 3 Soil slurry storage tank 4 Columnar separation collection | recovery machine 5 Air supply apparatus 8 Soil particle 9 Soil slurry 10 Foam 11 Grinding machine main body 12 Grinding medium 13 Supply pump 14 Slurry supply piping 21 Main body 22 Extraction pump 23 Aeration Device 24 Foam discharge port 25 Slurry supply port 26 Closed circuit system

Claims (8)

汚染物質を含み且つ粒子径0.075mm以上の粗粒土壌粒子と粒子径0.075mm未満の細粒土壌粒子とで構成される土壌粒子を、前記粗粒土壌粒子の2〜40質量%を前記細粒土壌粒子に移行させる摩砕処理を行い、前記摩砕処理後の粗粒土壌粒子と細粒土壌粒子に水を加えて土壌スラリーとし、
前記土壌スラリーを浄化槽内に供給し、この浄化槽の下部から前記土壌スラリーに向けて空気を供給して、前記土壌粒子の一部を泡沫とともに浮上させて回収し、前記土壌粒子に含まれる細粒土壌粒子および粗粒土壌粒子の残部を前記浄化槽に沈降させることを特徴とする、汚染土壌の浄化方法。
Soil particles composed of coarse soil particles containing a pollutant and having a particle size of 0.075 mm or more and fine soil particles having a particle size of less than 0.075 mm, 2 to 40% by mass of the coarse soil particles are Performing the grinding treatment to transfer to fine soil particles, adding water to the coarse soil particles and fine soil particles after the grinding treatment to make a soil slurry,
The soil slurry is supplied into a septic tank, air is supplied from the lower part of the septic tank toward the soil slurry, and a part of the soil particles are levitated and collected together with foam, and the fine particles contained in the soil particles A method for purifying contaminated soil, wherein the remainder of soil particles and coarse soil particles are allowed to settle in the septic tank.
前記土壌スラリーを前記浄化槽の上部から前記浄化槽内に供給し、沈降した土壌スラリーを前記浄化槽の下部より排出し、
このときの前記土壌スラリーの供給速度を排出速度よりも大きくして越流を発生させることを特徴とする、請求項1に記載の汚染土壌の浄化方法。
The soil slurry is supplied into the septic tank from the upper part of the septic tank, and the settled soil slurry is discharged from the lower part of the septic tank,
The method for purifying contaminated soil according to claim 1, wherein the supply rate of the soil slurry at this time is made larger than the discharge rate to generate overflow.
前記土壌スラリーにおいて、土壌粒子の濃度を10〜70質量%に調整することを特徴とする、請求項1または2に記載の汚染土壌の浄化方法。   3. The method for purifying contaminated soil according to claim 1, wherein a concentration of soil particles is adjusted to 10 to 70 mass% in the soil slurry. 前記摩砕処理で、前記粗粒土壌粒子の5〜30質量%を前記細粒土壌粒子に移行することを特徴とする、請求項1〜3のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 3, wherein 5 to 30% by mass of the coarse soil particles are transferred to the fine soil particles in the grinding treatment. 前記汚染物質が重金属であることを特徴とする、請求項1〜4のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 4, wherein the pollutant is a heavy metal. 摩砕手段と、土壌スラリー貯留槽と、浄化槽とが順次連結された汚染土壌の浄化装置であって、
前記浄化槽は、スラリー供給手段と、空気供給手段と、上部排出手段と、下部排出手段を備え、
前記摩砕手段では、汚染物質を含む土壌粒子が摩砕処理され、
前記土壌スラリー貯留槽では、摩砕された前記土壌粒子に水を加えた土壌スラリーが貯留され、
前記浄化槽では、前記スラリー供給手段から前記土壌スラリーが供給され、前記空気供給手段から空気が供給され、前記上部排出手段から泡沫及び/又は越流水が排出され、前記下部排出手段から沈降物が排出されることを特徴とする汚染土壌の浄化装置。
A device for purifying contaminated soil in which grinding means, a soil slurry storage tank, and a septic tank are sequentially connected,
The septic tank comprises a slurry supply means, an air supply means, an upper discharge means, and a lower discharge means,
In the grinding means, soil particles containing pollutants are ground,
In the soil slurry storage tank, soil slurry obtained by adding water to the ground soil particles is stored,
In the septic tank, the soil slurry is supplied from the slurry supply means, air is supplied from the air supply means, foam and / or overflow water is discharged from the upper discharge means, and sediment is discharged from the lower discharge means. A device for purifying contaminated soil.
前記空気供給手段は、孔径0.005mm〜50mmの孔を複数有する散気装置であることを特徴とする、請求項6に記載の汚染土壌の浄化装置。   The contaminated soil purification apparatus according to claim 6, wherein the air supply means is an air diffuser having a plurality of holes having a hole diameter of 0.005 mm to 50 mm. 前記空気供給手段による空気の散気速度が、前記浄化槽の断面積に対して1〜400m/m/hであることを特徴とする、請求項6または7に記載の汚染土壌の浄化装置。 The apparatus for purifying contaminated soil according to claim 6 or 7, wherein an air diffusing speed by the air supply means is 1 to 400 m 3 / m 2 / h with respect to a cross-sectional area of the septic tank. .
JP2010205101A 2010-09-14 2010-09-14 Method and apparatus for purifying contaminated soil Active JP5702567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205101A JP5702567B2 (en) 2010-09-14 2010-09-14 Method and apparatus for purifying contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205101A JP5702567B2 (en) 2010-09-14 2010-09-14 Method and apparatus for purifying contaminated soil

Publications (2)

Publication Number Publication Date
JP2012061374A true JP2012061374A (en) 2012-03-29
JP5702567B2 JP5702567B2 (en) 2015-04-15

Family

ID=46057682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205101A Active JP5702567B2 (en) 2010-09-14 2010-09-14 Method and apparatus for purifying contaminated soil

Country Status (1)

Country Link
JP (1) JP5702567B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238577A (en) * 2012-05-11 2013-11-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Soil radioactive decontamination process by dispersed air flotation foam and foam thereof
JP2015027642A (en) * 2013-07-30 2015-02-12 株式会社オメガ Sorting classifier for contaminated soil
CN105478441A (en) * 2015-12-02 2016-04-13 合肥合大环境工程研究院有限公司 Food waste treatment device
CN111229816A (en) * 2020-02-19 2020-06-05 苏州晨霞美合智能科技有限公司 Soil restoration agent sprinkler for soil restoration
KR20210023046A (en) * 2019-08-21 2021-03-04 지에스건설 주식회사 Soil remediation apparatus
CN113443798A (en) * 2020-03-27 2021-09-28 宝峨资源有限公司 Method and treatment device for cleaning contaminated material
CN115156274A (en) * 2022-06-29 2022-10-11 井冈山大学 Soil remediation equipment capable of restoring polluted soil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502424A (en) * 1988-02-08 1991-06-06 バイオトロール、インコーポレイテッド How to treat contaminated soil
JPH1110131A (en) * 1997-06-20 1999-01-19 Dowa Mining Co Ltd Method for recovery of heavy metals from soil
JP2002248459A (en) * 2001-02-26 2002-09-03 Dowa Mining Co Ltd Method for cleaning contaminated soil and apparatus for the same
JP2003103248A (en) * 2001-09-28 2003-04-08 Dowa Mining Co Ltd Method for treating contaminated soil
JP2003251222A (en) * 2002-02-28 2003-09-09 Showa Denko Kk Method of manufacturing cubic boron nitride
JP2005279531A (en) * 2004-03-30 2005-10-13 Jfe Engineering Kk Method for cleaning lead polluted soil
JP2006088056A (en) * 2004-09-24 2006-04-06 Sumikon Serutekku Kk Method and apparatus for cleaning soil polluted with pcb

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502424A (en) * 1988-02-08 1991-06-06 バイオトロール、インコーポレイテッド How to treat contaminated soil
JPH1110131A (en) * 1997-06-20 1999-01-19 Dowa Mining Co Ltd Method for recovery of heavy metals from soil
JP2002248459A (en) * 2001-02-26 2002-09-03 Dowa Mining Co Ltd Method for cleaning contaminated soil and apparatus for the same
JP2003103248A (en) * 2001-09-28 2003-04-08 Dowa Mining Co Ltd Method for treating contaminated soil
JP2003251222A (en) * 2002-02-28 2003-09-09 Showa Denko Kk Method of manufacturing cubic boron nitride
JP2005279531A (en) * 2004-03-30 2005-10-13 Jfe Engineering Kk Method for cleaning lead polluted soil
JP2006088056A (en) * 2004-09-24 2006-04-06 Sumikon Serutekku Kk Method and apparatus for cleaning soil polluted with pcb

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238577A (en) * 2012-05-11 2013-11-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Soil radioactive decontamination process by dispersed air flotation foam and foam thereof
JP2015027642A (en) * 2013-07-30 2015-02-12 株式会社オメガ Sorting classifier for contaminated soil
CN105478441A (en) * 2015-12-02 2016-04-13 合肥合大环境工程研究院有限公司 Food waste treatment device
KR20210023046A (en) * 2019-08-21 2021-03-04 지에스건설 주식회사 Soil remediation apparatus
KR102329745B1 (en) * 2019-08-21 2021-11-22 지에스건설 주식회사 Soil remediation apparatus
CN111229816A (en) * 2020-02-19 2020-06-05 苏州晨霞美合智能科技有限公司 Soil restoration agent sprinkler for soil restoration
CN113443798A (en) * 2020-03-27 2021-09-28 宝峨资源有限公司 Method and treatment device for cleaning contaminated material
CN115156274A (en) * 2022-06-29 2022-10-11 井冈山大学 Soil remediation equipment capable of restoring polluted soil
CN115156274B (en) * 2022-06-29 2023-10-20 井冈山大学 Soil restoration device for restoring contaminated soil

Also Published As

Publication number Publication date
JP5702567B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5702567B2 (en) Method and apparatus for purifying contaminated soil
KR101281514B1 (en) A pressure float type polluted water treatment method using microbubble unit and slanted plate sturcture
WO2015137484A1 (en) Micro bubble cleaning method using liquid containing micro bubbles, apparatus therefor, and dissolved air floatation apparatus
JP2011020025A (en) Oil-water separator
CA2298122A1 (en) Water and wastewater treatment system and process for contaminant removal
US20140190897A1 (en) Enhanced separation of nuisance materials from wastewater
US8524089B2 (en) Combined sedimentation and pressure floatation wastewater treatment tank
JP2016087578A (en) Contaminant separation volume reduction system and method
CN2936380Y (en) Unpowered waste water filtering and sterilizing treating device
JP2007144390A (en) Sand separating and washing device
KR101693575B1 (en) Apparatus for washing soils contaminated by heavy metals and method therefor
CN109502834A (en) A kind of processing method of the beneficiation wastewater containing dodecyl sodium sulfate
CN213315611U (en) Flotation cell
JP2008173572A (en) Turbid water treatment method
CN217700633U (en) Module type cleaning device for soil purification
JP5094151B2 (en) Solid-liquid separator
KR200396223Y1 (en) Dissolved airfloatation system
JP2010234217A (en) Powdery particle material treatment system, and powdery particle material treatment method
JP6159495B2 (en) Floating separator
JP2011189288A (en) Phosphorus recovery device
JP5286201B2 (en) Bottom sediment purification method by resuspension
KR101773378B1 (en) Horizontal induced gas flotation for clarifying oily water including a demister and the method thereof
JP3973150B2 (en) Sludge separation device, sludge recovery device, and sludge separation method
KR102457070B1 (en) Device for floating screen of fluorine-copntaminated soil
CN111003831B (en) Pretreatment equipment and method for oil stains and SS in grinding wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5702567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250