JP2005028290A - Treatment method for soil polluted with heavy metal - Google Patents

Treatment method for soil polluted with heavy metal Download PDF

Info

Publication number
JP2005028290A
JP2005028290A JP2003196490A JP2003196490A JP2005028290A JP 2005028290 A JP2005028290 A JP 2005028290A JP 2003196490 A JP2003196490 A JP 2003196490A JP 2003196490 A JP2003196490 A JP 2003196490A JP 2005028290 A JP2005028290 A JP 2005028290A
Authority
JP
Japan
Prior art keywords
soil
particles
heavy metal
soil particles
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003196490A
Other languages
Japanese (ja)
Other versions
JP4350987B2 (en
Inventor
Tatsuya Futami
達也 二見
Shiro Nishide
四郎 西出
Ryozo Ushio
亮三 牛尾
Akiko Kitagawa
明子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Sumitomo Mitsui Construction Co Ltd
Sumikon Serutekku KK
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Mitsui Construction Co Ltd
Sumikon Serutekku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Mitsui Construction Co Ltd, Sumikon Serutekku KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003196490A priority Critical patent/JP4350987B2/en
Publication of JP2005028290A publication Critical patent/JP2005028290A/en
Application granted granted Critical
Publication of JP4350987B2 publication Critical patent/JP4350987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for heavy metal-polluted soil which is capable of efficiently separating and removing particles containing heavy metals in a high concentration in the soil and recovering a large amount of cleaned soil. <P>SOLUTION: Soil polluted with heavy metals is sieved and soil with a particle size in a prescribed range is introduced into an attrition tank 5 and mixed with an insolubilization agent. Particles are abraded one another to separate pollutants adhering to the surface. After that, the particles are sent to a liquid cyclone 7 to take out particles from which the pollutants are separated as clean soil and the remaining fine particles are led to a centrifugal jig type specific-gravity separator 8. The centrifugal jig type specific-gravity separator 8 has a layer of particles with a prescribed diameter and separates the particles into a high specific gravity fraction containing a much amount of heavy metals passing through the layer by the centrifugal force and a low specific gravity fraction containing a little amount of heavy metals, and the high specific gravity fraction and particles with 30 μm or smaller are discarded after dewatering with a dewatering means 10. The low specific gravity fraction is treated by a detoxification means 9 and turned back or discarded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、重金属汚染土壌を選別して、重金属の含有量が多い部分を除去するとともに、原地盤等への埋め戻しが可能な清浄土を回収する方法に関する。
【0002】
【従来の技術】
市街地再開発に伴う調査で、工場跡地等の重金属汚染が判明する事例が増加している。これに対し、環境庁の重金属等に係る土壌汚染対策指針において、鉛汚染に対する1996年現在の対策範囲設定基準は、溶出量が0.01mg/l、含有量参考値が600mg/kgとなっている。また、東京都の汚染土壌対策基準では、鉛の溶出量が0.01mg/l、含有量参考値が300mg/kgとなっている。さらに、平成15年2月15日に施行された「土壌汚染対策法」では、鉛の溶出量が0.01mg/l以下に、含有量が150mg/kg以下に規定されている。
【0003】
重金属汚染に対して、国内で現時点で行われている土壌汚染対策は、汚染物質の不溶化処理や遮水工事、覆土工事など、周辺環境から遮断する方法が一般的である。しかし、この方法は重金属そのものが現場に残り、前記工事などによる処置後も土地利用に制限がある。そこで、最近は、高濃度に汚染された土壌は廃棄して、汚染現場の土を入れ替える処置も行われている。しかし、産業廃棄物の最終処分場が近い将来不足することは明らかなため、欧米で実用化されてきている土壌洗浄法の導入が検討され始めている。
【0004】
土壌洗浄法とは、汚染物質を除去するために、水または適当な溶媒を用いて土壌から汚染物質を物理的・化学的に抽出分離する方法である。例えば、汚染された土壌の洗浄により、重金属を高濃度含有する粒子を除去し、それにより清浄となった土壌を汚染現場の埋め戻しに用いる。これによって、廃棄物となる汚染土壌、つまり、汚染物質の漏出や拡散が生じないように厳重な設備を施した処分場に廃棄される汚染土壌を減容化することができる。この場合、得られる清浄物(清浄となった土壌)の量の、供給された汚染物(汚染された土壌)の量に対する割合が高いほど、効果的な処理方法となる。
【0005】
重金属で汚染された土壌から、汚染物質を高濃度で含む部分又は汚染物質をほとんど含まない清浄な部分を選別する方法として、従来より、次のようなものが提案されている。
特許文献1に記載の浄化方法では、先ず、重金属類による汚染土壌を分級し、汚染元素を吸着する能力が高い小径や中径の粒子を分離するとともに、汚染されていない大径の粒子を清浄物として取り出す。次に、分離除去された粒子に対し、粒度別に、比重選別により重金属高含有粒子を濃縮除去する処理、重金属を酸溶液やキレート剤溶液などの溶媒によって溶脱する処理、又は電気浸透やイオン泳動によって重金属イオンを集積する電解処理等を行なう。
【0006】
また、特許文献2に記載の浄化方法では、重金属及び有機ハロゲン化合物や揮発性有機化合物等のカーボン質有機化合物を含む汚染土壌を壊砕・分級し、150μm以下の土壌粒子を含むスラリーから浮選手段によって気泡とともにカーボン質有機物を浮上させて除去する。次に、カーボン質有機物が除去されたスラリーを硫化処理して重金属を硫化物とし、浮選手段によって重金属を分離回収する。
【0007】
【特許文献1】
特開平10−296230号公報
【特許文献2】
特開2002−248459号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記のような従来の技術には次のような課題が残されている。
特許文献1に記載の浄化方法では、分級された450μm以下の土壌粒子については溶脱処理又は電解処理を行なって重金属を回収するが、土壌に含まれる重金属の形態等によって添加する薬剤や処理時間が異なり、効率良く清浄な部分を取り出すことが難しい。そして、かなりの量の土壌が汚染土壌として廃棄されることとなる。また、特許文献2に記載の浄化方法では、150μm以下に分級された土壌粒子について浮選手段によって重金属の回収を行なうが、pH調整や硫化処理を必要とするため処理が複雑となり、効率良く清浄な部分を取り出すことが難しい。
【0009】
この他、重金属を多く含む土壌粒子を分離する方法として比重選別法がある。この方法には、例えば自然重力場で土壌粒子に振動を与えることによって比重差別に層状に粒子を分離する振動式ジグ選別法や、緩傾斜面を流れる水の働きによって比重の異なる粒子を選別する薄流選別法等がある。このような比重選別法では、汚染土壌から重金属を多く含む部分を効率良く分離することができるが、粒径が小さい範囲、特に150μm以下の土壌粒子については効果的に選別することが難しい。このため、土壌粒子の小さい範囲では、上記従来技術のように溶脱処理、電解処理又は浮選処理等が行われている。しかし、これらの方法は、効率よく清浄な土壌を選別することができず、土壌の粒径が小さい範囲で、処分場に廃棄しなければならない汚染土壌が多量に発生している。特に日本の土壌は粘土化が進んでいるものが多く小粒径の土壌粒子を多量に含んでおり、埋め戻しが可能な清浄土を選別することが難しくなっている。つまり、浄化処理の対象となる土壌には70μmから30μmの土壌粒子が多く含まれ、これらが30%程度を占める場合もある。これらの土壌粒子については比重選別法を適用することができず、廃棄しなければならない土壌量が多くなる。
【0010】
一方、粒径がやや大きい土壌粒子、例えば100μmから5mm程度の土壌粒子では表面の一部に付着している汚染物質の処理が問題となる場合がある。このような重金属が付着している土壌粒子全体を処分場に廃棄処理すると、廃棄量が多くなって効率の良い処理ができない。また、重金属が一部に付着している土壌粒子は、汚染していない土壌粒子と比重に大きな差はなく、比重選別によって選別することも難しい。したがって、やや粒径が大きい土壌粒子の表面に重金属等の汚染物質が付着している場合の効率の良い処理方法が求められている。
【0011】
本願に係る発明は、上記のような事情に鑑みてなされたものであり、その目的は、重金属で汚染された土壌から、汚染物質の含有量が低い土壌を効率よく分離して、清浄土として扱うことができる土壌をより多く得ることである。
【0012】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、 多数の小孔が形成された円筒状の壁体を有する遠心分離槽内に、前記小孔の径より大きい径の粒状体を収容し、 前記遠心分離槽を、円筒状の壁体の軸線回りに回転駆動して、前記壁体の内面に沿って前記粒状体の層を形成し、 重金属で汚染した土壌に加水し、分級して粒径の最大値を前記小孔の径以下とした土壌を前記遠心分離槽内に導入し、 前記遠心分離槽の回転駆動時に、前記粒状体の層及び壁体の小孔を通過する土壌を、重金属分を多く含む土壌粒子として分離することを特徴とする重金属汚染土壌の処理方法を提供する。
【0013】
上記遠心分離槽内に分級後のスラリー状の土壌を導入し、該遠心分離槽を回転駆動することによって遠心力が生じ、この遠心力によって重金属を多く含む比重の大きい土壌粒子に遠心分離槽の壁体に向かう推進力が作用する。そして、重金属を多く含む土壌粒子は、壁体に沿って形成された粒状体の層に接触する。粒状体より比重の大きい粒子は徐々に粒状体層内に取り込まれ、この粒状体層及び壁体の小孔を通過し、汚染土壌として回収される。一方、重金属の含有量が少ない土壌は、重金属を多く含む土壌粒子との比重の差によって、水とともに遠心分離槽の上方に搬送され、該遠心分離槽から排出される。この処理方法では、土壌粒子の粒径を限定して、該土壌粒子に遠心力を作用させることによって、自然重力場では選別が難しい小径の土壌粒子を、重金属を多く含む部分と重金属の含有量が少ない部分とに効率良く分離することができる。また、あらかじめ遠心分離槽に投入しておく粒状体の比重を適切に選定しておくことによって、汚染物質の種類、汚染物質の含有量に応じた選別も可能となる。
【0014】
請求項2に係る発明は、 請求項1に記載の重金属汚染土壌の処理方法において、前記遠心分離槽に導入する土壌は、前記粒状体の径の1/10から1/4までの範囲で定められた値より小径の土壌粒子の一部又は大部分を分級により除去したものとする。
【0015】
遠心分離槽内に収容された粒状体の径の1/4程度より小さい粒径の土壌粒子は、上記遠心分離槽内で比重の大きさに関係なく粒状体層を通過し易くなる。つまり、各粒状体間に隙間が存在しており、粒径の小さい土壌粒子は、この隙間を容易に通過する。このため、粒状体の径と比較して所定の割合より小さい粒径の土壌粒子が多量に遠心分離槽内に投入されると、これらに対しては比重の大きさによる選別が行われず、選別の効率が低下してしまう。したがって、遠心分離槽内に投入する土壌から、あらかじめ小粒径の粒子を分級により除去しておくことによって比重選別の効率を向上させることができる。このとき、除外する土壌粒子の粒径は、土壌の粒度分布等に基づいて定めることができるが、粒状体の粒径の1/4から1/10の範囲で定めた値以下とすることにより、選別の効率が良好となる。
【0016】
請求項3に係る発明は、 請求項1に記載の重金属汚染土壌の処理方法において、前記小孔の径は100μm〜600μmであるものとする。
【0017】
遠心分離槽の壁体に設ける小孔の径を100μm〜600μmまでの範囲で定めた値とすることによって、この値以下の粒径の土壌粒子について比重選別を行うとができ、小粒径の土壌から重金属を高濃度で含む土壌粒子を効率よく分離することができる。
【0018】
請求項4に係る発明は、 請求項1に記載の重金属汚染土壌の処理方法において、前記遠心分離槽内に投入する粒状体は、重金属汚染土壌の内の、重金属分を多く含む土壌粒子より比重が小さく、重金属分の含有量が少ない土壌粒子より比重が大きい物質からなるものとする。
【0019】
上記遠心分離槽内に土壌を導入して該遠心分離槽を回転駆動すると、上記粒状体の比重より大きくて重金属分を多く含む土壌粒子が、粒状体の層と遠心分離槽の壁体の小孔とを通過して遠心分離槽外に排出される。一方、粒状体の比重より小さくて重金属分が少ない土壌粒子は、粒状体の層を通過することなく、この層の内側で水とともに上方に搬送され、重金属を多く含む部分と分離されて清浄な土壌として回収される。この処理方法では、適切な比重の粒状体を選択することによって、重金属分を多く含む土壌粒子と重金属分が少ない土壌粒子とに良好に分離することができる。
【0020】
請求項5に係る発明は、 請求項1に記載の重金属汚染土壌の処理方法において、前記遠心分離槽に導入する汚染土壌は、 粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を分級によって取り出す第1の分級工程と、 取り出された土壌粒子を攪拌し、土壌粒子相互間でこすり合わせて、該土壌粒子の表面に付着している重金属汚染物質を剥離する摩擦工程と、 前記摩擦工程で剥離された汚染物質を多く含む細粒分と、汚染物質が剥離された後の土壌粒子を多く含む粗粒分とを分離する第2の分級工程と、を行い、 前記第2の分級工程で分離された細粒分を含むものとする。
【0021】
分級により汚染土壌から粒径が所定の値の範囲である土壌粒子を分離し、これらを攪拌して互いにこすり合わせる。このときの粒径の範囲を適切に選定することによって、土壌粒子の表面に付着した汚染物質である重金属を多く含む部分が剥がれ落ちる。このような摩擦工程で剥離した粒子は、元の土壌粒子より粒径がかなり小さく、さらに分級して剥がれ落ちた部分を分離することができる。この小粒径の粒子には多くの重金属が含まれており、これを上記遠心分離槽内に導入し、比重選別を行うことによって、土壌粒子の表面に付着していた重金属を多く含む部分を効率良く分離・回収することができる。
【0022】
請求項6に係る発明は、 重金属で汚染された土壌から、粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を分級によって取り出す第1の分級工程と、 取り出された土壌粒子を攪拌し、土壌粒子相互間でこすり合わせて、該土壌粒子の表面に付着している重金属汚染物質を剥離する摩擦工程と、 前記摩擦工程で剥離された汚染物質を多く含む細粒分と、汚染物質が剥離された後の土壌粒子を多く含む粗粒分とを分離する第2の分級工程とを有し、 前記第2の分級工程で分離された粗粒分の土壌粒子を地盤に埋め戻し、細粒分を、汚染物質を多く含む汚染土としてその後の処理を行なうことを特徴とする重金属汚染土壌の処理方法を提供する。
【0023】
この処理方法では、分級によって粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を取り出し、この土壌粒子を攪拌し、粒子相互間でこすり合わせることによって、表面に付着している重金属汚染物質を剥離する。その後、第2の分級工程によって汚染物質が剥離された後の土壌粒子を多く含む粗粒分を取り出すと、汚染物質の含有量は低減されており、そのまま、あるいは簡単な処理後に地盤に埋め戻すことができる。一方、剥離された汚染物質を多く含む細粒分は、その汚染濃度及び重金属の溶出量等に応じてその後の処理を選択し、清浄な部分を取り出すことができる。
【0024】
請求項7に係る発明は、 請求項6に記載の重金属汚染土壌の処理方法において、前記摩擦工程の前又は該摩擦工程中に、汚染物質の不溶化剤を添加し、イオン化している重金属汚染物質を固体化する工程を含むものとする。
【0025】
摩擦工程の前又は該摩擦工程中に、汚染物質の不溶化剤を添加し、イオン化している重金属汚染物質を固体化することによって、この工程中に水に溶出する重金属の量が抑制される。このため、第2の分級工程において分離され、汚染物質が剥離された後の土壌粒子を多く含む粗粒分に、水に溶出していた重金属が多く残留するのを回避することができる。また、摩擦工程中に土壌粒子を攪拌し、粒子相互間でこすり合わせることによって、固体化された重金属が粒子の表面から剥離され、第2の分級工程において、重金属を多く含む部分を効率良く回収することができる。
【0026】
請求項8に係る発明は、 請求項6に記載の重金属汚染土壌の処理方法において、前記上限値が1mm〜5mmであり、前記下限値が100μm〜600μmであるものとする。
【0027】
攪拌によってこすり合わせる土壌粒子の径を上記値の範囲に限定することによって、表面に付着した重金属を効率良く剥離することができる。土壌粒子の粒径が小さ過ぎると付着している重金属分との体積比が小さくなり、重金属分が剥離しにくくなる。また、粒径が大きくなり過ぎると攪拌したときに互いに接触する表面積が減少し、効率の良い剥離が生じなくなる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
図1は、本願発明の一実施形態である重金属汚染土壌の処理方法を示すフロー図である。
この方法に用いる処理システムは、重金属によって汚染された土壌に加水し、攪拌及び混合して土壌塊を壊砕するドラム型攪拌器1と、網目が5mm〜10mmの第1の湿式振動篩2と、網目が2mmの第2の湿式振動篩3と、第1及び第2の湿式振動篩を通過した土壌を分級する第1のスパイラル分級器4と、第1のスパイラル分級器4で分級された粗粒分(粒径150μm以上)に不溶化剤を添加して不溶化反応を生じさせるとともに、攪拌及び混合によって土壌粒子を互いにこすり合わせるアトリション槽5と、アトリション槽5で攪拌及び混合を行った後の土壌を分級する第2のスパイラル分級器6と、第1及び第2のスパイラル分級器で分級された細粒分(粒径150μm以下)をさらに径の小さい部分(粒径 30μm以下)と分離する液体サイクロン7と、液体サイクロン7で分級された粗粒分(粒径150μm以下、30μm以上)を含むスラリーを、高比重分と低比重分とに分離する遠心ジグ式比重選別器8と、液体サイクロン7で分級された細粒分(粒径30μm以下)を含むスラリー及び遠心ジグ式比重選別器8で分離された低比重分を、汚染濃度に応じて処理を行う無害化処理手段9と、遠心ジグ式比重選別器8で分離された高比重分又は無害化処理手段9で分離され汚染物質を高濃度で含むスラリーを脱水するための沈殿槽、フィルタプレス器等を備える脱水手段10と、無害化処理手段9で分離され汚染物質の含有量が少ないスラリーを脱水処理する脱水手段11と、を備えるものである。
【0029】
なお、上記湿式振動篩2、3、スパイラル分級器4、6、液体サイクロン7による分級の規準とする径は、上記値に限らず適宜に設定することができる。特に、第1のスパイラル分級器4及び第2のスパイラル分級器6による分級は、100μm〜600μm程度までの範囲で定めた粒径を規準とし、この粒径以上を粗粒分として分離することができる。また、望ましくは100μm〜300μm程度までの範囲で規準とする粒径を定めるのがよい。そして、第2のスパイラル分級器6は、第1のスパイラル分級器4と同じ径を規準に分級するのが望ましいが、第2のスパイラル分級器6の規準となる径は、第1のスパイラル分級器4の規準となる径より、小さく設定してもよい。
【0030】
上記システムを用いた処理方法では、先ず、重金属で汚染している地盤を掘削し、採取した土壌をホッパーからドラム型攪拌器1に投入し、この土壌に加水するとともに、攪拌器を回転駆動して、土壌中に含まれる土塊を壊砕する。そして、土壌と水とが混合されたスラリーを第1の湿式振動篩2及び第2の湿式振動篩3に掛けて粒径が2mm以上の粗粒分を分離する。汚染物質である重金属は粗粒分にはほとんど付着せず、分離された粗粒分は、そのまま清浄分として原地盤等への埋め戻しが可能となる。一方、粗粒分と分離された粒径が2mm以下の細粒分を含むスラリーは、第1のスパイラル分級器4によって分級し、粒径がほぼ150μm以上の部分と150μm以下の部分とに分離する。そして、上記のように分離した粗粒分(粒径150μm以上)をアトリション槽5に送り込む。細粒分(粒径150μm以下)はさらに分級して処理を行うものであり、この処理については後述する。
【0031】
上記アトリション槽5は攪拌翼を有し、槽内に投入された粗粒分(粒径150μm以上2mm以下)を含むスラリーを攪拌翼によって攪拌及び混合して土壌粒子を互いにこすり合わせるものである。これにより、土壌粒子の表面に付着している汚染物質を剥離するものであり、汚染物質の効率の良い剥離を行うために土壌粒子の粒径を2mmから150μm程度に分級したものを投入している。
【0032】
アトリション槽5にスラリーを投入する前、又はアトリション槽5内でスラリーを攪拌及び混合中に、該スラリーに不溶化剤を添加して、水に溶融している汚染物質を固体化する。例えば、汚染物質が鉛である場合には、不溶化剤として硫化水素ナトリウムNaHSの溶液を添加すると、水溶性の硫化水素ナトリウムNaHSは鉛と反応し、不溶性のPbSが生成される。
PbS2+ + S2− → PbS↓
そして、アトリション槽内で土壌粒子が互いにこすり合わされることにより、上記処理で不溶化された汚染物質も、土壌粒子の表面から剥離され、ごく小さい粒子となってスラリーに含まれる。
【0033】
また、スラリーに不溶化剤を添加して、イオン化している重金属汚染物質を固体化することによって、水に溶出する重金属の量が抑制される。このため、第2のスパイラル分級器6によって分離された粗粒分、又はその後の工程で汚染物質の含有量が少ないものとして分離される土壌に、水に溶出していた重金属が多く残留するのを回避することができる。また、土壌の粒子から溶出した重金属が清浄となった土壌粒子に再び付着するのが防止され、重金属の含有量の多い部分と少ない部分とに効率良く分離することができる。
【0034】
上記アトリション槽5内で充分に攪拌され、互いにこすり合わされて表面に付着している汚染物質が剥離された土壌粒子は、その後、第2のスパイラル分級器6によって分級し、再び粒径が150μm以上の部分と150μm以下の部分とに分離する。
【0035】
粒径が150μm以上のものは、表面に付着していた汚染物質が除去され、汚染物質の含有量が少なくなっており、原地盤等への埋め戻しが可能な土壌として回収される。一方、150μm以下の細粒分は、土壌粒子の表面から剥離された汚染物質が含まれ、汚染物質の濃度が高くなっており、第1のスパイラル分級器4で分離された粒径150μm以下の細粒分とともに、次のような処理を行う。
【0036】
第1のスパイラル分級器4及び第2のスパイラル分級器6で分離された粒径が150μm以下の土壌粒子を含むスラリーは、液体サイクロン7に送り込み、さらに細粒分(粒径30μm以下)を分離するように分級を行う。この液体サイクロン7で分離された粗粒分、すなわち粒径がほぼ150μm以下で30μm以上の土壌粒子を含むスラリーは、後で詳述する遠心ジグ式比重選別器8に導入し比重選別を行う。
【0037】
一方、粒径が30μm以下の細粒分を含むスラリーは、汚染物質の含有量が多く、ここからは原地盤等へ埋め戻すことができる土壌を分離することは難しい。したがって、このスラリーは、沈殿槽及びフィルタプレス装置等を備えた脱水手段11によって脱水し、廃棄処理する。なお、スラリーにはアトリション槽で不溶化剤が添加されているが、脱水前に再度不溶化処理を行っても良い。このように充分な不溶化処理を行うことによって、分離水にはほとんど汚染物質が含まれなくなり、簡単な処理によって放流又は再利用が可能となる。
【0038】
上記液体サイクロン7で分級された粒径が150μmから30μmの土壌粒子を含むスラリーは遠心ジグ式比重選別器8に導入し、重金属分を多く含む高比重分と重金属分が少ない低比重分とに分離する。そして、高比重分は脱水手段10によって脱水し、汚染物質の漏出や拡散が生じないように管理された処分場に廃棄する。また、低比重分は無害化処理手段9によってさらに処理を行う。そして、溶脱処理又は電解処理によって汚染物質の含有量及び溶出量が所定値以下となった土壌は、原地盤へ埋め戻す。一方、汚染物質の含有量及び溶出量が所定値以下にできない土壌は、不溶化処理等を行った後、処分場へ廃棄処理する。
【0039】
上記遠心ジグ式比重選別器は、図2に示すように、支持部材28によって固定支持された円筒状の外槽21を備え、この内部に水平方向に回転可能に遠心分離槽22が支持されている。この遠心分離槽22は鉛直方向に支持された回転駆動軸27aを駆動装置27によって駆動することによって回転するものとなっている。また、遠心分離槽22の中心部には上方から水を供給する給水管23が設けられており、この外側には、遠心分離槽内にスラリーを供給するスラリー供給管24が、外槽21に支持されている。一方、外槽21の内側には、遠心分離槽22からオーバーフローした低比重分を含むスラリーを回収する第1の排出路25と、遠心分離槽22が有する壁体31の小孔31aを通過した高比重分を含むスラリーを回収する第2の排出路26とが設けられている。
【0040】
上記遠心分離槽22は、多数の小孔31aが形成された円筒状の壁体31を有し、この小孔31aの径は、遠心分離槽22内に供給されるスラリーに含まれる土壌粒子より大径であり、この土壌の粒径によって100μm〜600μm程度の範囲で定められるものである。また、壁体31の内側には、小孔31aより径の大きい粒状体32が投入されており、遠心分離槽22が回転することによる遠心力で壁体31の内周面に沿って層を形成するものとなっている。
【0041】
本実施形態の装置では、小孔31aの径は180μmとなっており、粒状体の径は200μmとなっている。そして、選別される土壌粒子の径は150μm以下に分級されており、上記小孔31aを通過し得るものとなっている。また、粒径が30μm以下の細粒分が分級によって除外されており、細粒分が比重に関係なく粒状体層を通過して効率の低下が生じるのを防止している。一方、粒状体32は重金属分を多く含む土壌粒子より比重が小さく、重金属分の含有量が少ない土壌粒子より比重が大きいものとするのが望ましく、マグネタイト、ガーネット等の鉱石の粒子を用いることができ、土壌粒子の比重及び粒径によって適切なものを選択する。
【0042】
この遠心ジグ式比重選別器8では、先ず、遠心分離槽22内に粒状体32を収容して該遠心分離槽22を回転駆動し、遠心力により壁体31の内面に沿って粒状体32の層を形成する。次に、遠心分離槽22内に、液体サイクロン7で分離された粗粒分(粒径30μm以上)を含むスラリーをスラリー供給管24から導入するとともに、給水管23から加水し、遠心分離槽22を回転駆動する。これにより、重金属を多く含む高比重分が遠心力によって、層状となった粒状体32に接触し、水流による粒状体の揺動等によって粒状体32の層の中に取り込まれ、通過する。そして、小孔31aを通過して第2の排出路26に送り込まれ、該第2の排出路26に設けられた第2の排出口26aから外部に排出される。一方、重金属分が少ない土壌粒子は、粒状体32の層を通過することなく、この層の内側で水の流動とともに上方から第1の排出路25に送り込まれ、該第1の排出路25に設けられた第2の排出口25aから外部に排出される。
【0043】
この遠心ジグ式比重選別器8では、土壌粒子の粒径を150μm〜30μmの範囲に限定し、その粒径に応じた回転速度等の条件下で遠心分離槽を回転駆動させることによって、自然重力場では選別が難しい小径の土壌粒子を、重金属を多く含む部分と重金属の含有量が少ない部分とに効率良く分離することができる。また、スラリーに含まれている重金属が不溶化処理によって不溶性の固形物として存在しているため、重金属を多く含む部分を多く回収することができる。
【0044】
【発明の効果】
以上説明したように、本願発明に係る重金属汚染土壌の処理方法では、遠心分離槽内に分級後のスラリー状の土壌を導入し、該遠心分離槽を回転駆動することによって、重金属を多く含む比重の大きい土壌粒子に遠心力が作用し、この土壌粒子があらかじめ壁体に沿って形成された粒状体の層及び壁体の小孔を通過し、汚染土壌として回収される。このように土壌粒子の粒径を限定して、該土壌粒子に遠心力を作用させることによって、自然重力場では選別が難しい小径の土壌粒子を、重金属を多く含む部分と重金属の含有量が少ない部分とに効率良く分離することができる。
【0045】
また、この重金属汚染土壌の処理方法では、分級によって粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を取り出し、この土壌粒子を攪拌し、粒子相互間でこすり合わせることによって、表面に付着している重金属汚染物質を剥離する。その後、第2の分級工程によって汚染物質が剥離された後の土壌粒子を多く含む粗粒分を取り出すと、汚染物質の含有量は低減されており、そのまま、あるいは簡単な処理後に地盤に埋め戻すことができる。
【図面の簡単な説明】
【図1】本願発明の一実施形態である重金属汚染土壌の処理方法を示すフロー図である。
【図2】図1に示す重金属汚染土壌の処理方法で用いられる遠心ジグ式比重選別器の概略構成図である。
【符号の説明】
1 ドラム型攪拌器
2 第1の湿式振動篩
3 第2の湿式振動篩
4 第1のスパイラル分級器
5 アトリション槽
6 第2のスパイラル分級器
7 液体サイクロン
8 遠心ジグ式比重選別器
9 無害化処理手段
10、11 脱水手段
21 外槽
22 遠心分離槽
23 給水管
24 スラリー供給管
25 第1の排出路
26 第2の排出路
27 駆動装置
28 支持部材
31 壁体
32 粒状体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for selecting heavy metal-contaminated soil, removing a portion with a high heavy metal content, and collecting clean soil that can be backfilled to the original ground.
[0002]
[Prior art]
There are an increasing number of cases where heavy metal contamination, such as factory sites, has been found in surveys associated with urban redevelopment. On the other hand, in the soil pollution countermeasure guidelines for heavy metals, etc. of the Environment Agency, the standard for setting the countermeasure range as of 1996 for lead contamination is an elution amount of 0.01 mg / l and a content reference value of 600 mg / kg. Yes. Moreover, according to the Tokyo standard for countermeasures against contaminated soil, the lead elution amount is 0.01 mg / l, and the content reference value is 300 mg / kg. Furthermore, the “Soil Contamination Countermeasures Law” enforced on February 15, 2003 stipulates that lead elution is 0.01 mg / l or less and the content is 150 mg / kg or less.
[0003]
The countermeasures against soil contamination currently taken in Japan against heavy metal contamination are generally methods of shielding from surrounding environment, such as insolubilization treatment of pollutants, water shielding work, and soil covering work. However, in this method, heavy metal itself remains on the site, and there is a limit to land use even after the treatment by the construction. Therefore, recently, the soil contaminated at a high concentration is discarded and the soil at the contaminated site is replaced. However, since it is clear that there will be a shortage of industrial waste final disposal sites in the near future, introduction of soil cleaning methods that have been put to practical use in Europe and the United States is beginning to be considered.
[0004]
The soil washing method is a method of physically and chemically extracting and separating contaminants from the soil using water or an appropriate solvent in order to remove the contaminants. For example, by washing contaminated soil, particles containing a high concentration of heavy metals are removed, and the soil thus cleaned is used for backfilling the contaminated site. As a result, it is possible to reduce the volume of contaminated soil that becomes waste, that is, the contaminated soil that is discarded in a disposal site that is provided with strict facilities so that leakage and diffusion of the contaminant do not occur. In this case, the higher the ratio of the amount of the obtained clean matter (cleaned soil) to the amount of the supplied contaminant (contaminated soil), the more effective the treatment method.
[0005]
Conventionally, the following has been proposed as a method for selecting a portion containing a high concentration of contaminants or a clean portion containing almost no contaminants from soil contaminated with heavy metals.
In the purification method described in Patent Document 1, firstly, contaminated soil with heavy metals is classified to separate small and medium-sized particles having a high ability to adsorb contaminating elements, and clean large particles that are not contaminated. Take it out as a thing. Next, the separated and removed particles are classified according to particle size by concentration and removal of heavy metal-rich particles by specific gravity sorting, heavy metal leaching with a solvent such as an acid solution or a chelating agent solution, or electroosmosis or iontophoresis. Perform electrolytic treatment to accumulate heavy metal ions.
[0006]
Further, in the purification method described in Patent Document 2, contaminated soil containing carbonaceous organic compounds such as heavy metals and organic halogen compounds and volatile organic compounds is crushed and classified, and is floated from a slurry containing soil particles of 150 μm or less. The carbonaceous organic matter is lifted and removed together with bubbles by means. Next, the slurry from which the carbonaceous organic substances have been removed is subjected to sulfidation treatment to convert the heavy metal into sulfide, and the heavy metal is separated and recovered by flotation means.
[0007]
[Patent Document 1]
JP-A-10-296230
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-248459
[0008]
[Problems to be solved by the invention]
However, the following problems remain in the conventional techniques as described above.
In the purification method described in Patent Literature 1, heavy metals are recovered by performing leaching treatment or electrolytic treatment on classified soil particles of 450 μm or less. However, chemicals and treatment time to be added depending on the form of heavy metals contained in the soil, etc. Unlikely, it is difficult to take out a clean part efficiently. A considerable amount of soil is discarded as contaminated soil. Further, in the purification method described in Patent Document 2, heavy metals are recovered by flotation means for soil particles classified to 150 μm or less. However, since pH adjustment and sulfidation treatment are required, the treatment becomes complicated and efficient cleaning is achieved. It is difficult to take out the correct part.
[0009]
In addition, there is a specific gravity sorting method as a method for separating soil particles containing a lot of heavy metals. In this method, for example, a vibrating jig sorting method in which particles are separated into layers by specific gravity discrimination by applying vibration to soil particles in a natural gravity field, or particles having different specific gravity are sorted by the action of water flowing on a gently inclined surface. There is a thin flow sorting method. Such a specific gravity sorting method can efficiently separate a portion containing a lot of heavy metals from the contaminated soil, but it is difficult to effectively sort a soil particle having a small particle size, particularly 150 μm or less. For this reason, the leaching process, the electrolytic process, the flotation process, etc. are performed like the said prior art in the range with a small soil particle. However, these methods cannot efficiently select clean soil, and a large amount of contaminated soil that must be discarded at a disposal site is generated in a range where the particle size of the soil is small. In particular, many Japanese soils are being crushed and contain a large amount of small soil particles, making it difficult to select clean soil that can be backfilled. That is, the soil to be subjected to the purification treatment contains many 70 μm to 30 μm soil particles, which may occupy about 30%. The specific gravity sorting method cannot be applied to these soil particles, and the amount of soil that must be discarded increases.
[0010]
On the other hand, in the case of soil particles having a slightly large particle size, for example, soil particles of about 100 μm to 5 mm, the treatment of contaminants adhering to a part of the surface may be a problem. When the entire soil particles to which such heavy metals are attached are disposed of in a disposal site, the amount of waste increases and efficient treatment cannot be performed. In addition, soil particles having heavy metals attached to a part thereof are not significantly different from specific soil particles in terms of specific gravity, and are difficult to sort by specific gravity sorting. Therefore, there is a need for an efficient treatment method in the case where contaminants such as heavy metals adhere to the surface of soil particles having a slightly larger particle size.
[0011]
The invention according to the present application has been made in view of the circumstances as described above, and its purpose is to efficiently separate soil having a low content of pollutants from soil contaminated with heavy metals as clean soil. To get more soil that can be handled.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a granular material having a diameter larger than the diameter of the small hole is accommodated in a centrifuge tank having a cylindrical wall body in which a large number of small holes are formed. And rotating the centrifuge tank around the axis of the cylindrical wall body to form a layer of the granular body along the inner surface of the wall body, adding water to the soil contaminated with heavy metal, and classifying it. The soil having a maximum particle size equal to or smaller than the diameter of the small hole is introduced into the centrifugal separation tank, and passes through the granular layer and the small hole in the wall body when the centrifugal separation tank is driven to rotate. Is separated as soil particles containing a large amount of heavy metals, and a method for treating heavy metal-contaminated soil is provided.
[0013]
The slurry-like soil after classification is introduced into the centrifuge tank, and centrifugal force is generated by rotationally driving the centrifuge tank. This centrifugal force causes the centrifuge tank to have a large specific gravity and a large specific gravity. The driving force toward the wall acts. And the soil particle containing many heavy metals contacts the layer of the granular material formed along the wall. Particles having a specific gravity greater than that of the granular material are gradually taken into the granular material layer, pass through the small holes in the granular material layer and the wall, and are recovered as contaminated soil. On the other hand, soil with a low content of heavy metals is transported above the centrifuge tank together with water and discharged from the centrifuge tank due to a difference in specific gravity with soil particles containing a lot of heavy metals. In this treatment method, by limiting the particle size of the soil particles and applying a centrifugal force to the soil particles, small-diameter soil particles that are difficult to sort in a natural gravitational field, a heavy metal content portion and a heavy metal content Can be efficiently separated into a portion having a small amount. In addition, by appropriately selecting the specific gravity of the granular material put in the centrifuge tank in advance, it becomes possible to sort according to the type of pollutant and the content of the pollutant.
[0014]
The invention according to claim 2 is the method for treating heavy metal-contaminated soil according to claim 1, wherein the soil introduced into the centrifuge tank is determined in a range from 1/10 to 1/4 of the diameter of the granular material. It is assumed that part or most of soil particles having a diameter smaller than the obtained value are removed by classification.
[0015]
Soil particles having a particle size smaller than about ¼ of the diameter of the granular material accommodated in the centrifugal separation tank can easily pass through the granular material layer in the centrifugal separation tank regardless of the specific gravity. In other words, there are gaps between the granular materials, and the soil particles having a small particle diameter easily pass through the gaps. For this reason, when a large amount of soil particles having a particle size smaller than a predetermined ratio compared with the diameter of the granular material is put into the centrifuge tank, the selection based on the size of the specific gravity is not performed on these. The efficiency of will decrease. Therefore, the efficiency of specific gravity sorting can be improved by previously removing particles having a small particle diameter from the soil put into the centrifuge tank. At this time, the particle size of the soil particles to be excluded can be determined based on the particle size distribution of the soil, but by setting the particle size to be equal to or less than the value determined in the range of 1/4 to 1/10 of the particle size of the granular material. , Sorting efficiency is good.
[0016]
According to a third aspect of the present invention, in the method for treating heavy metal-contaminated soil according to the first aspect, the diameter of the small holes is 100 μm to 600 μm.
[0017]
By setting the diameter of the small holes provided in the wall of the centrifuge tank to a value determined in the range of 100 μm to 600 μm, it is possible to perform specific gravity sorting for soil particles having a particle size less than this value. Soil particles containing high concentrations of heavy metals can be efficiently separated from the soil.
[0018]
The invention according to claim 4 is the method for treating heavy metal-contaminated soil according to claim 1, wherein the granular material charged into the centrifugal separation tank has a specific gravity higher than that of soil particles containing a heavy metal content in the heavy metal-contaminated soil. It is made of a substance having a small specific gravity and a larger specific gravity than soil particles having a small content of heavy metals.
[0019]
When soil is introduced into the centrifuge tank and the centrifuge tank is rotationally driven, soil particles larger than the specific gravity of the granule and containing a large amount of heavy metals are reduced in the size of the granule layer and the wall of the centrifuge tank. It passes through the hole and is discharged out of the centrifuge tank. On the other hand, soil particles that are smaller than the specific gravity of the granular material and have a small amount of heavy metal are not transported through the granular layer, but are transported upward together with water inside the layer, separated from the heavy metal-rich portion, and cleaned. It is collected as soil. In this treatment method, by selecting a granular material having an appropriate specific gravity, it is possible to satisfactorily separate into soil particles containing a large amount of heavy metal and soil particles containing a small amount of heavy metal.
[0020]
The invention according to claim 5 is the method for treating heavy metal-contaminated soil according to claim 1, wherein the contaminated soil introduced into the centrifugal separation tank is a soil whose particle size is included in a range from a predetermined upper limit value to a lower limit value. A first classification step of removing particles by classification, a friction step of stirring the extracted soil particles and rubbing them between the soil particles to separate heavy metal contaminants adhering to the surface of the soil particles; Performing a second classifying step of separating the fine particles containing a large amount of contaminants separated in the friction step and the coarse particles containing a large amount of soil particles after the contaminants are separated; The fine particles separated in the classification step are included.
[0021]
Soil particles having a particle size in a predetermined value range are separated from the contaminated soil by classification, and these are stirred and rubbed together. By appropriately selecting the range of the particle size at this time, a portion containing a lot of heavy metal that is a contaminant adhering to the surface of the soil particle is peeled off. Particles separated in such a friction process have a considerably smaller particle size than the original soil particles, and can be further classified and separated. This small particle size contains a lot of heavy metals. By introducing this into the centrifuge tank and performing specific gravity sorting, a portion containing a lot of heavy metals adhering to the surface of the soil particles is obtained. It can be separated and recovered efficiently.
[0022]
The invention according to claim 6 is a first classification step for classifying, by classification, soil particles whose particle size is in a range from a predetermined upper limit value to a lower limit value from soil contaminated with heavy metals, and the extracted soil particles And rubbing between the soil particles to separate the heavy metal contaminants adhering to the surface of the soil particles, and a fine fraction containing a large amount of contaminants separated in the friction step, A second classification step of separating the coarse particles containing a large amount of soil particles after the pollutants are peeled off, and the soil particles of the coarse particles separated in the second classification step are buried in the ground There is provided a method for treating heavy metal-contaminated soil, characterized in that after that, the fine particles are treated as contaminated soil containing a large amount of contaminants.
[0023]
In this treatment method, by removing the soil particles whose particle size is within the range from the predetermined upper limit value to the lower limit value by classification, the soil particles are agitated and adhered to the surface by rubbing between the particles. Strip heavy metal contaminants. After that, when the coarse particles containing a lot of soil particles after the pollutants are peeled off by the second classification process are taken out, the content of the pollutants is reduced and refilled in the ground as it is or after a simple treatment. be able to. On the other hand, the fine particles containing a large amount of the polluted substances can be removed by selecting the subsequent treatment according to the contamination concentration and the elution amount of heavy metal.
[0024]
The invention according to claim 7 is the heavy metal pollutant which is ionized by adding a pollutant insolubilizing agent before or during the friction process in the heavy metal contaminated soil treatment method according to claim 6. Is included in the solidification step.
[0025]
By adding a pollutant insolubilizer before or during the friction process to solidify the ionized heavy metal contaminant, the amount of heavy metal eluted into the water during this process is suppressed. For this reason, it can be avoided that a large amount of heavy metal eluted in water remains in the coarse particles containing a large amount of soil particles separated in the second classification step and after the pollutants are separated. Also, by stirring the soil particles during the friction process and rubbing them between the particles, the solidified heavy metal is peeled off from the surface of the particles, and in the second classification step, the portion containing a lot of heavy metals is efficiently recovered. can do.
[0026]
The invention according to claim 8 is the method for treating heavy metal-contaminated soil according to claim 6, wherein the upper limit value is 1 mm to 5 mm, and the lower limit value is 100 μm to 600 μm.
[0027]
By limiting the diameter of the soil particles to be rubbed by stirring to the range of the above values, heavy metals attached to the surface can be efficiently peeled off. If the particle size of the soil particles is too small, the volume ratio with the attached heavy metal component becomes small, and the heavy metal component becomes difficult to peel off. On the other hand, if the particle size becomes too large, the surface areas that come into contact with each other when stirring are reduced, and efficient peeling does not occur.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a method for treating heavy metal-contaminated soil, which is an embodiment of the present invention.
The treatment system used in this method includes a drum-type stirrer 1 that hydrolyzes and agitates and mixes the soil contaminated with heavy metals to break up the soil mass, and a first wet vibrating sieve 2 having a mesh size of 5 to 10 mm. The second wet vibrating sieve 3 having a mesh size of 2 mm, the first spiral classifier 4 for classifying the soil that has passed through the first and second wet vibrating sieves, and the first spiral classifier 4 An insolubilizing agent was added to the coarse particles (particle size of 150 μm or more) to cause an insolubilization reaction, and stirring and mixing were performed in the attrition tank 5 in which soil particles were rubbed against each other by stirring and mixing. A second spiral classifier 6 for classifying the later soil, and a finer particle size (particle size of 150 μm or less) classified by the first and second spiral classifiers, a portion having a smaller diameter (particle size of 30 μm or less) Separation And a centrifugal jig specific gravity separator 8 for separating a slurry containing coarse particles classified by the liquid cyclone 7 (particle size 150 μm or less, 30 μm or more) into a high specific gravity component and a low specific gravity component, Detoxification processing means 9 for processing the slurry containing fine particles classified by the hydrocyclone 7 (particle size of 30 μm or less) and the low specific gravity separated by the centrifugal jig specific gravity separator 8 according to the contamination concentration; A dehydrating means 10 comprising a settling tank, a filter press, etc. for dehydrating a high specific gravity separated by the centrifugal jig type specific gravity separator 8 or a slurry containing a high concentration of contaminants separated by the detoxifying means 9 And dehydrating means 11 for dehydrating the slurry separated by the detoxifying means 9 and containing a small amount of contaminants.
[0029]
In addition, the diameter used as the reference | standard of the classification | category by the said wet vibration sieves 2 and 3, the spiral classifiers 4 and 6, and the liquid cyclone 7 is not restricted to the said value, It can set suitably. In particular, the classification by the first spiral classifier 4 and the second spiral classifier 6 is based on a particle size determined in a range of about 100 μm to 600 μm as a standard, and the particle size or larger can be separated as a coarse particle fraction. it can. In addition, it is desirable to determine the standard particle size in the range of about 100 μm to 300 μm. The second spiral classifier 6 is preferably classified based on the same diameter as the first spiral classifier 4, but the standard diameter of the second spiral classifier 6 is the first spiral classifier. You may set smaller than the diameter used as the standard of the vessel 4.
[0030]
In the treatment method using the above system, first, the ground contaminated with heavy metal is excavated, and the collected soil is put into the drum stirrer 1 from the hopper, and is added to the soil, and the stirrer is driven to rotate. And crush the clod contained in the soil. Then, a slurry in which soil and water are mixed is applied to the first wet vibrating sieve 2 and the second wet vibrating sieve 3 to separate coarse particles having a particle diameter of 2 mm or more. The heavy metal that is a contaminant hardly adheres to the coarse particles, and the separated coarse particles can be refilled into the raw ground as a clean component. On the other hand, the slurry containing fine particles having a particle size of 2 mm or less separated from the coarse particles is classified by the first spiral classifier 4 and separated into a portion having a particle size of approximately 150 μm or more and a portion having a particle size of 150 μm or less. To do. The coarse particles (particle size of 150 μm or more) separated as described above are fed into the attrition tank 5. The fine particles (particle size of 150 μm or less) are further classified and processed, and this processing will be described later.
[0031]
The attrition tank 5 has a stirring blade, and a slurry containing coarse particles (particle size of 150 μm or more and 2 mm or less) charged in the tank is stirred and mixed by the stirring blade to rub the soil particles together. . As a result, the contaminants adhering to the surface of the soil particles are peeled off, and in order to remove the pollutants efficiently, a particle having a particle size of the soil particles of about 2 mm to 150 μm is added. Yes.
[0032]
Before injecting the slurry into the attrition tank 5 or while stirring and mixing the slurry in the attrition tank 5, an insolubilizing agent is added to the slurry to solidify the contaminants dissolved in water. For example, when the contaminant is lead, when a solution of sodium hydrogen sulfide NaHS is added as an insolubilizing agent, the water-soluble sodium hydrogen sulfide NaHS reacts with lead to produce insoluble PbS.
PbS 2+ + S 2- → PbS ↓
Then, when the soil particles are rubbed together in the attrition tank, the contaminants insolubilized by the above treatment are also peeled off from the surface of the soil particles and become very small particles and included in the slurry.
[0033]
Further, by adding an insolubilizing agent to the slurry to solidify the ionized heavy metal contaminant, the amount of heavy metal eluted in water is suppressed. For this reason, a large amount of heavy metal eluted in water remains in the coarse particles separated by the second spiral classifier 6 or the soil separated as a low content of contaminants in the subsequent process. Can be avoided. Further, heavy metals eluted from the soil particles are prevented from adhering again to the cleaned soil particles, and can be efficiently separated into a portion having a high heavy metal content and a portion having a low heavy metal content.
[0034]
The soil particles that have been sufficiently stirred in the attrition tank 5 and rubbed together to remove the contaminants adhering to the surface are then classified by the second spiral classifier 6 and again have a particle size of 150 μm. It separates into the above part and the part below 150 micrometers.
[0035]
When the particle size is 150 μm or more, the contaminants adhering to the surface are removed, the content of the contaminants is reduced, and the soil is recovered as soil that can be backfilled to the original ground. On the other hand, the fine particle fraction of 150 μm or less contains contaminants peeled off from the surface of the soil particles, the concentration of the contaminants is high, and the particle size of 150 μm or less separated by the first spiral classifier 4 The following treatment is performed along with the fine particles.
[0036]
The slurry containing soil particles having a particle size of 150 μm or less separated by the first spiral classifier 4 and the second spiral classifier 6 is sent to the hydrocyclone 7 to further separate fine particles (particle size of 30 μm or less). Classify as you do. The coarse particles separated by the hydrocyclone 7, that is, the slurry containing soil particles having a particle size of approximately 150 μm or less and 30 μm or more, are introduced into a centrifugal jig type specific gravity separator 8 which will be described in detail later and subjected to specific gravity selection.
[0037]
On the other hand, the slurry containing a fine particle having a particle size of 30 μm or less has a high content of contaminants, and from here it is difficult to separate the soil that can be backfilled into the ground. Therefore, this slurry is dehydrated by a dehydrating means 11 equipped with a sedimentation tank, a filter press device, and the like, and discarded. In addition, although the insolubilizing agent is added to the slurry in the attrition tank, insolubilization treatment may be performed again before dehydration. By carrying out sufficient insolubilization treatment in this way, the separated water hardly contains contaminants and can be discharged or reused by simple treatment.
[0038]
The slurry containing soil particles having a particle size of 150 μm to 30 μm classified by the hydrocyclone 7 is introduced into a centrifugal jig type specific gravity separator 8 into a high specific gravity containing a lot of heavy metals and a low specific gravity containing little heavy metals. To separate. Then, the high specific gravity is dehydrated by the dehydrating means 10 and discarded in a disposal site managed so as not to cause leakage and diffusion of pollutants. Further, the low specific gravity is further processed by the detoxification processing means 9. And the soil in which the content and elution amount of pollutants became below a predetermined value by the leaching process or the electrolytic process is backfilled to the original ground. On the other hand, soil whose content and elution amount of pollutants cannot be reduced below the predetermined value is subjected to insolubilization treatment and the like and then discarded to a disposal site.
[0039]
As shown in FIG. 2, the centrifugal jig type specific gravity sorter includes a cylindrical outer tub 21 fixedly supported by a support member 28, and a centrifuge tank 22 is supported in the inside so as to be rotatable in the horizontal direction. Yes. The centrifuge tank 22 is rotated by driving a rotary drive shaft 27 a supported in the vertical direction by a drive device 27. Further, a water supply pipe 23 for supplying water from above is provided at the center of the centrifugal separation tank 22, and a slurry supply pipe 24 for supplying slurry into the centrifugal separation tank is connected to the outer tank 21 on the outside thereof. It is supported. On the other hand, the inside of the outer tank 21 passed through the first discharge path 25 for collecting the slurry containing the low specific gravity overflowed from the centrifugal separation tank 22 and the small hole 31a of the wall 31 of the centrifugal separation tank 22. A second discharge path 26 is provided for collecting slurry containing a high specific gravity.
[0040]
The centrifuge tank 22 has a cylindrical wall body 31 in which a large number of small holes 31 a are formed. The diameter of the small holes 31 a is greater than that of soil particles contained in the slurry supplied into the centrifuge tank 22. It has a large diameter and is determined in a range of about 100 μm to 600 μm depending on the particle size of the soil. A granular body 32 having a diameter larger than that of the small hole 31a is placed inside the wall body 31, and a layer is formed along the inner peripheral surface of the wall body 31 by a centrifugal force generated by the rotation of the centrifugal separation tank 22. It is to be formed.
[0041]
In the apparatus of this embodiment, the diameter of the small hole 31a is 180 μm, and the diameter of the granular material is 200 μm. And the diameter of the soil particle selected is classified into 150 micrometers or less, and can pass the said small hole 31a. Further, fine particles having a particle size of 30 μm or less are excluded by classification, and the fine particles are prevented from passing through the granular material layer regardless of the specific gravity and causing a decrease in efficiency. On the other hand, it is desirable that the granular material 32 has a specific gravity smaller than that of soil particles containing a large amount of heavy metals and larger than that of soil particles having a low content of heavy metals, and particles of ores such as magnetite and garnet are used. A suitable one can be selected according to the specific gravity and particle size of the soil particles.
[0042]
In this centrifugal jig type specific gravity sorter 8, first, the granular material 32 is accommodated in the centrifugal separation tank 22, the centrifugal separation tank 22 is rotationally driven, and the granular material 32 is moved along the inner surface of the wall body 31 by centrifugal force. Form a layer. Next, a slurry containing coarse particles (particle size of 30 μm or more) separated by the hydrocyclone 7 is introduced into the centrifugal separation tank 22 from the slurry supply pipe 24, and is added with water from the water supply pipe 23. Is driven to rotate. As a result, the high specific gravity containing a large amount of heavy metal contacts the layered granular material 32 by centrifugal force, and is taken into and passed through the layer of the granular material 32 by the swinging of the granular material due to the water flow. Then, it passes through the small hole 31a, is sent to the second discharge path 26, and is discharged to the outside from the second discharge port 26a provided in the second discharge path 26. On the other hand, the soil particles having a small amount of heavy metal are sent to the first discharge path 25 from above along with the flow of water inside the layer 32 without passing through the layer of the granular material 32, and enter the first discharge path 25. It is discharged to the outside from the provided second discharge port 25a.
[0043]
In this centrifugal jig type specific gravity sorter 8, the particle size of the soil particles is limited to a range of 150 μm to 30 μm, and the centrifugal separation tank is driven to rotate under conditions such as a rotation speed according to the particle size, so that the natural gravity Small-sized soil particles that are difficult to sort on site can be efficiently separated into a portion containing a large amount of heavy metal and a portion containing a small amount of heavy metal. Moreover, since the heavy metals contained in the slurry are present as insoluble solids by the insolubilization treatment, a large portion containing heavy metals can be recovered.
[0044]
【The invention's effect】
As described above, in the method for treating heavy metal-contaminated soil according to the present invention, by introducing the slurry-like soil after classification into the centrifugal separation tank and rotating the centrifugal separation tank, the specific gravity containing a large amount of heavy metals. Centrifugal force acts on large soil particles, and the soil particles pass through the granular layer formed in advance along the wall and the small holes in the wall, and are collected as contaminated soil. By limiting the particle size of the soil particles in this way and applying a centrifugal force to the soil particles, small-sized soil particles that are difficult to sort in a natural gravitational field, a portion containing a large amount of heavy metals and a low content of heavy metals. It can be separated efficiently into parts.
[0045]
Moreover, in this heavy metal contaminated soil treatment method, by removing the soil particles whose particle size is included in the range from the predetermined upper limit value to the lower limit value by classification, stirring the soil particles, rubbing between the particles, Remove heavy metal contaminants adhering to the surface. After that, when the coarse particles containing a lot of soil particles after the pollutants are peeled off by the second classification process are taken out, the content of the pollutants is reduced and refilled in the ground as it is or after a simple treatment. be able to.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for treating heavy metal-contaminated soil according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a centrifugal jig type specific gravity sorter used in the method for treating heavy metal contaminated soil shown in FIG.
[Explanation of symbols]
1 Drum type stirrer
2 First wet vibrating sieve
3 Second wet vibrating sieve
4 First spiral classifier
5 Attrition tank
6 Second spiral classifier
7 Hydrocyclone
8 Centrifugal jig type gravity separator
9 Detoxification means
10, 11 Dehydration means
21 Outer tank
22 Centrifuge tank
23 Water supply pipe
24 Slurry supply pipe
25 First discharge channel
26 Second discharge channel
27 Drive unit
28 Support members
31 wall
32 Granules

Claims (8)

多数の小孔が形成された円筒状の壁体を有する遠心分離槽内に、前記小孔の径より大きい径の粒状体を収容し、
前記遠心分離槽を、円筒状の壁体の軸線回りに回転駆動して、前記壁体の内面に沿って前記粒状体の層を形成し、
重金属で汚染した土壌に加水し、分級して粒径の最大値を前記小孔の径以下とした土壌を前記遠心分離槽内に導入し、
前記遠心分離槽の回転駆動時に、前記粒状体の層及び壁体の小孔を通過する土壌を、重金属分を多く含む土壌粒子として分離することを特徴とする重金属汚染土壌の処理方法。
In a centrifuge tank having a cylindrical wall having a large number of small holes, a granular material having a diameter larger than the diameter of the small holes is accommodated,
The centrifuge tank is driven to rotate about the axis of a cylindrical wall body, and the granular body layer is formed along the inner surface of the wall body,
Water is added to the soil contaminated with heavy metal, classified and introduced into the centrifuge tank with a maximum particle size equal to or less than the diameter of the small pores.
A method for treating heavy metal-contaminated soil, characterized in that, when the centrifugal separation tank is driven to rotate, the soil passing through the granular layer and the small holes in the wall is separated as soil particles containing a large amount of heavy metal.
前記遠心分離槽に導入する土壌は、前記粒状体の径の1/10から1/4までの範囲で定められた値より小径の土壌粒子の一部又は大部分を分級により除去したものであることを特徴とする請求項1に記載の重金属汚染土壌の処理方法。The soil introduced into the centrifuge tank is obtained by classifying a part or most of soil particles having a smaller diameter than a value determined in a range of 1/10 to 1/4 of the diameter of the granular material. The method for treating heavy metal-contaminated soil according to claim 1. 前記小孔の径は100μm〜600μmであることを特徴とする請求項1に記載の重金属汚染土壌の処理方法。The method for treating heavy metal-contaminated soil according to claim 1, wherein the small holes have a diameter of 100 µm to 600 µm. 前記遠心分離槽内に投入する粒状体は、重金属汚染土壌の内の、重金属分を多く含む土壌粒子より比重が小さく、重金属分の含有量が少ない土壌粒子より比重が大きい物質からなるものであることを特徴とする請求項1に記載の重金属汚染土壌の処理方法。The granular material thrown into the centrifuge tank is made of a substance having a specific gravity smaller than that of soil particles containing a large amount of heavy metals and having a larger specific gravity than soil particles containing less heavy metals. The method for treating heavy metal-contaminated soil according to claim 1. 前記遠心分離槽に導入する汚染土壌は、
粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を分級によって取り出す第1の分級工程と、
取り出された土壌粒子を攪拌し、土壌粒子相互間でこすり合わせて、該土壌粒子の表面に付着している重金属汚染物質を剥離する摩擦工程と、
前記摩擦工程で剥離された汚染物質を多く含む細粒分と、汚染物質が剥離された後の土壌粒子を多く含む粗粒分とを分離する第2の分級工程と、を行い、
前記第2の分級工程で分離された細粒分を含むものであることを特徴とする請求項1に記載の重金属汚染土壌の処理方法。
The contaminated soil introduced into the centrifuge tank is
A first classification step in which soil particles whose particle size is included in a range from a predetermined upper limit value to a lower limit value are extracted by classification;
A friction process of stirring the removed soil particles and rubbing them between the soil particles to separate heavy metal contaminants adhering to the surface of the soil particles;
Performing a second classification step of separating fine particles containing a large amount of contaminants separated in the friction step and coarse particles containing a lot of soil particles after the contaminants are separated;
The method for treating heavy metal-contaminated soil according to claim 1, comprising the fine particles separated in the second classification step.
重金属で汚染された土壌から、粒径が所定の上限値から下限値までの範囲に含まれる土壌粒子を分級によって取り出す第1の分級工程と、
取り出された土壌粒子を攪拌し、土壌粒子相互間でこすり合わせて、該土壌粒子の表面に付着している重金属汚染物質を剥離する摩擦工程と、
前記摩擦工程で剥離された汚染物質を多く含む細粒分と、汚染物質が剥離された後の土壌粒子を多く含む粗粒分とを分離する第2の分級工程とを有し、
前記第2の分級工程で分離された粗粒分の土壌粒子を地盤に埋め戻し、細粒分を、汚染物質を多く含む汚染土としてその後の処理を行なうことを特徴とする重金属汚染土壌の処理方法。
A first classification step in which soil particles contained in a range from a predetermined upper limit value to a lower limit value are extracted by classification from soil contaminated with heavy metals;
A friction process of stirring the removed soil particles and rubbing them between the soil particles to separate heavy metal contaminants adhering to the surface of the soil particles;
A second classification step for separating fine particles containing a large amount of contaminants separated in the friction step and coarse particles containing a lot of soil particles after the contaminants have been separated;
Treatment of heavy metal-contaminated soil, wherein the soil particles separated in the second classification step are backfilled in the ground, and the subsequent treatment is performed with the fine particles as contaminated soil containing a large amount of contaminants. Method.
前記摩擦工程の前又は該摩擦工程中に、汚染物質の不溶化剤を添加し、イオン化している重金属汚染物質を固体化する工程を含むことを特徴とする請求項6に記載の重金属汚染土壌の処理方法。The heavy metal-contaminated soil according to claim 6, further comprising a step of solidifying ionized heavy metal contaminants by adding a pollutant insolubilizing agent before or during the friction step. Processing method. 前記上限値が1mm〜5mmであり、前記下限値が100μm〜600μmであることを特徴とする請求項6に記載の重金属汚染土壌の処理方法。The said upper limit is 1 mm-5 mm, and the said lower limit is 100 micrometers-600 micrometers, The processing method of the heavy metal contaminated soil of Claim 6 characterized by the above-mentioned.
JP2003196490A 2003-07-14 2003-07-14 Treatment method for heavy metal contaminated soil Expired - Fee Related JP4350987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196490A JP4350987B2 (en) 2003-07-14 2003-07-14 Treatment method for heavy metal contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196490A JP4350987B2 (en) 2003-07-14 2003-07-14 Treatment method for heavy metal contaminated soil

Publications (2)

Publication Number Publication Date
JP2005028290A true JP2005028290A (en) 2005-02-03
JP4350987B2 JP4350987B2 (en) 2009-10-28

Family

ID=34206961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196490A Expired - Fee Related JP4350987B2 (en) 2003-07-14 2003-07-14 Treatment method for heavy metal contaminated soil

Country Status (1)

Country Link
JP (1) JP4350987B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093509A (en) * 2006-10-06 2008-04-24 Mitsubishi Materials Corp Treatment method of display panel waste
JP2011230090A (en) * 2010-04-30 2011-11-17 Taisei Corp System for decontamination of cyanide-contaminated soil
KR101194925B1 (en) * 2012-03-22 2012-10-25 현대건설주식회사 Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation
KR101269212B1 (en) 2010-11-29 2013-05-30 주식회사 엠에스테크 Method for removing heavy metals from contaminated soil
JP2013188725A (en) * 2012-03-15 2013-09-26 Toshiba Corp Solid-liquid separation apparatus and solid-liquid separation method
JP2014069157A (en) * 2012-09-29 2014-04-21 Maeda Corp Volume reduction based processing method of contaminated soil
CN104014583A (en) * 2014-06-10 2014-09-03 苏州同和环保工程有限公司 Heavy metal polluted soil eluting and heavy metal concentrating method and equipment
JP2014180595A (en) * 2013-03-18 2014-09-29 Kajima Corp Contaminated soil treating method
CN104245143A (en) * 2013-03-28 2014-12-24 可隆科技特株式会社 Sorting method and sorting device for recycling filler included in artificial turf
CN104437837A (en) * 2014-12-24 2015-03-25 山西焦煤集团投资有限公司 Technology of refuse discharging with vibrating screen
CN114405985A (en) * 2022-01-06 2022-04-29 江苏伟恒土壤治理科技有限公司 Electro-catalysis spraying spinning polluted soil crushing and repairing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772497B (en) * 2016-04-12 2019-07-30 上海格林曼环境技术有限公司 A kind of soil heterotopic elution reparation complete set of equipments

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093509A (en) * 2006-10-06 2008-04-24 Mitsubishi Materials Corp Treatment method of display panel waste
JP2011230090A (en) * 2010-04-30 2011-11-17 Taisei Corp System for decontamination of cyanide-contaminated soil
KR101269212B1 (en) 2010-11-29 2013-05-30 주식회사 엠에스테크 Method for removing heavy metals from contaminated soil
JP2013188725A (en) * 2012-03-15 2013-09-26 Toshiba Corp Solid-liquid separation apparatus and solid-liquid separation method
JP2015512780A (en) * 2012-03-22 2015-04-30 ヒョンデ エンジニアリング アンド コンストラクション カンパニー リミテッド Selective purification system according to particle size of heavy metal contaminated soil by dry pulverization and purification method
KR101194925B1 (en) * 2012-03-22 2012-10-25 현대건설주식회사 Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation
WO2013141619A1 (en) * 2012-03-22 2013-09-26 Hyundai Engineering & Construction Co., Ltd. Particle size selective remediation system and method for heavy metals-contaminated soil by dry-disintegration and separation
US9649674B2 (en) 2012-03-22 2017-05-16 Hyundai Engineering & Construction Co., Ltd. Particle size selective remediation system and method for heavy metals-contaminated soil by dry-disintegration and separation
JP2014069157A (en) * 2012-09-29 2014-04-21 Maeda Corp Volume reduction based processing method of contaminated soil
JP2014180595A (en) * 2013-03-18 2014-09-29 Kajima Corp Contaminated soil treating method
CN104245143A (en) * 2013-03-28 2014-12-24 可隆科技特株式会社 Sorting method and sorting device for recycling filler included in artificial turf
JP2015520668A (en) * 2013-03-28 2015-07-23 コロングロテック.インコーポレーテッドKolonglotech.Inc. Sorting method and sorting apparatus for recycling filler contained in artificial turf
US9789491B2 (en) 2013-03-28 2017-10-17 Kolonglotech. Inc Sorting method and apparatus for recycling filler included in artificial turf
US10052638B2 (en) 2013-03-28 2018-08-21 Kolonglotech, Inc Sorting method and apparatus for recycling filler included in artificial turf
CN104014583A (en) * 2014-06-10 2014-09-03 苏州同和环保工程有限公司 Heavy metal polluted soil eluting and heavy metal concentrating method and equipment
CN104437837A (en) * 2014-12-24 2015-03-25 山西焦煤集团投资有限公司 Technology of refuse discharging with vibrating screen
CN114405985A (en) * 2022-01-06 2022-04-29 江苏伟恒土壤治理科技有限公司 Electro-catalysis spraying spinning polluted soil crushing and repairing equipment

Also Published As

Publication number Publication date
JP4350987B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
EP0460828B1 (en) Method and apparatus for treating contaminated particulate material
EP0707900A1 (en) Process for the remediation of contaminated particulate material
JP2006116397A (en) Washing method and washing apparatus of contaminated soil
JP2016140823A (en) Contaminated soil decontamination apparatus
JP4350987B2 (en) Treatment method for heavy metal contaminated soil
JP2013173085A (en) Treatment system of aqueous muddy material containing ferrous metals particle and heavy metals
JP2013164379A (en) Processor for radiation-contaminated soil
KR20210141429A (en) Method for purification of radioactive contaminated soil
TWI549764B (en) A treating method of removing heavy metals in soil grains with mobility
JP6027921B2 (en) Treatment method of contaminated soil
JP6411909B2 (en) Detoxification system for arsenic contaminated soil
JP4697719B2 (en) Method for purifying contaminated soil and separation apparatus used therefor
KR102099048B1 (en) Drum type heavy metal release reactor for compact type remediation system of complex contaminated soils
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
KR102068941B1 (en) Compact type remediation system of complex contaminated soils
JP2000197877A (en) Method and apparatus for treating particulate material to which pollutant is adhered
JP3664399B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP2005262076A (en) Method for cleaning soil contaminated with oil
JP3891372B2 (en) How to clean contaminated soil
JP2006000764A (en) Impurity removing method, impurity removing apparatus and soil washing treatment apparatus
JP6618039B2 (en) Decontamination soil treatment apparatus and method
JP4112276B2 (en) Washing and collecting method of fine soil particles in muddy water
JP2000288525A (en) Method and apparatus for treating polluted soil
JP4286990B2 (en) Processing equipment for particulate matter with contaminants
JP2000197878A (en) Apparatus for treating particulate material to which pollutant is adhered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees