JP2005274236A - パスマッチ経路型干渉計装置 - Google Patents

パスマッチ経路型干渉計装置 Download PDF

Info

Publication number
JP2005274236A
JP2005274236A JP2004085422A JP2004085422A JP2005274236A JP 2005274236 A JP2005274236 A JP 2005274236A JP 2004085422 A JP2004085422 A JP 2004085422A JP 2004085422 A JP2004085422 A JP 2004085422A JP 2005274236 A JP2005274236 A JP 2005274236A
Authority
JP
Japan
Prior art keywords
path
subject
light
optical
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085422A
Other languages
English (en)
Inventor
Nobuaki Ueki
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2004085422A priority Critical patent/JP2005274236A/ja
Publication of JP2005274236A publication Critical patent/JP2005274236A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】パスマッチ経路部の迂回経路上に分散補償板を配置することにより、被検体内部を照射光束が透過する際に生じる分散の影響を低減し、被検体の厚みが大きい場合においても得られる干渉縞のコントラストを高めることができるようにする。
【解決手段】分散補償板35は、被検体20の透過光が被検光とされる測定の際に、パスマッチ経路部4の第1の経路上に挿入配置される。この第1の経路は、透過型基準板19の基準面19aで反射される参照光の通過光路にあたり、分散補償板35が挿入配置されることにより、被検光が被検体20を透過する際に生じる分散の影響が低減される。
【選択図】 図1

Description

本発明は光波干渉計装置に関し、特に発光ダイオード(LED),スーパー・ルミネッセント・ダイオード(SLD),ハロゲンランプ,高圧水銀ランプ等の低可干渉性光源を使用して各種被検体の表裏面形状や屈折率分布等を計測するために、光源から射出された光束を2光束に分岐し、この2光束の一方を他方に対して所定の光学光路長分だけ迂回させた後に再び合波して照射光束とするパスマッチ経路型干渉計装置に関するものである。
従来、レーザ光源等の可干渉距離の長い光源を搭載したフィゾー型干渉計は、透過型基準板と被検体との間に使用光源の可干渉距離に応じた間隔を空けることが可能となり、ワークスペースが十分にとれるため、使い易い干渉計として広く用いられている。
しかし、一般にレーザ光源は高価でありサイズも大きいことから、干渉計装置の高価格化と大型化が避けられないものとなっている。
また、平行平面ガラスのように、照射光束に対して透明で表裏面が互いに略平行となっている被検体を測定解析する場合には、使用光源の可干渉距離が長いことによって、次のような問題を生じることがある。例えば、被検体の表面形状を測定したい場合には、透過型基準板の基準面で反射された参照光と、被検体の表面(基準面と対向配置される側の面をいう)で反射された被検光とを干渉させ、これにより生じる干渉縞を得る必要がある。しかし、可干渉距離が長いために、被検体の内部に入射し被検体の裏面で反射された光と、参照光や被検光との干渉も生じてしまい、これが本来必要な干渉縞にノイズとして重畳するという問題である。
このようなフィゾー型干渉計における問題点を解決する技術として、本願出願人は、下記特許文献1に記載されているようなパスマッチ経路型干渉計装置を既に開示している。このパスマッチ経路型干渉計装置では、光源から射出された光束を2光束に分岐し、この2光束を光学光路長(以下、単に「光路長」と称する場合がある)が互いに異なる2つの経路を別々に経由させた後に再び合波して照射光束として出力する。また、光路長が短い方の経路を経た光束の被検面からの反射光の光路長と、光路長が長い方の経路を経た光束の基準面からの反射光の光路長との差が、光源の可干渉距離以内となるように被検体を設置する。これにより、可干渉距離が短い光源を用いても2つの経路の光路長の設定の仕方により基準面と被検面の間に十分なワークスペースをとることができるため、使い勝手を損なうことがなく、干渉計装置の低価格化および小型化が達成できる。
また、平行平面ガラスのような被検体の表面形状を測定したい場合でも、光源光束の可干渉距離を被検体の厚みの光学距離の2倍よりも短く設定することで、光路長が短い方の経路を経た光束の被検体表面からの反射光と、光路長が長い方の経路を経た光束の基準面からの反射光とによる場合以外は干渉が生じないようにできるため、極めて簡易な構成でノイズのない明瞭な干渉縞画像を得ることが可能となる。
特開平9−21606号公報
ところで、フィゾー型干渉計を用いて光学硝材等の屈折率分布を測定する技術も知られている。屈折率分布を測定する場合には、被検体の裏面側に反射基準面を配置しておき、被検体を透過した後に反射基準面で反射され再び被検体を透過した光を、透過型基準板の基準面から反射された参照光と干渉させることにより被検体の透過波面情報を得るようにしている。
このような屈折率分布の測定においても、光源がレーザで被検体が平行平板形状をしている場合には、被検体の表裏面からの反射光との間の干渉によるノイズ重畳の問題が生じるため、上述したパスマッチ経路型干渉計装置を用いることは有効となる。
しかしながら、パスマッチ経路型干渉計装置で用いられる低可干渉性光源から出力される光は、いわゆる単色光ではなく、複数の波長成分を含んでいるために、屈折率分布を測定する場合には次のような問題を生じる。すなわち、屈折率分布の測定に際しては、被検体の厚みをある程度確保して被検体の内部における照射光束の光路長を長くすることが、測定精度を高める上で好ましいとされているが、照射光束が複数の波長成分を含んでいるパスマッチ経路型干渉計装置においては、被検体の厚みが増すにつれて、照射光束が被検体を透過する際に生じる分散の影響が大きくなり、得られる干渉縞のコントラストが低下してしまうという問題である。
本発明は、このような事情に鑑みなされたもので、屈折率分布等を測定するために厚みの大きな被検体を測定する場合においても、複数の波長成分を含む照射光束が被検体を透過する際に生じる分散の影響を低減することができ、コントラストの高い干渉縞を得ることが可能なパスマッチ経路型干渉計装置を提供することを目的とする。
本発明に係るパスマッチ経路型干渉計装置は、光源から射出された光束を2光束に分岐するとともに、該2光束の一方を他方に対して所定の光学光路長分だけ迂回させた後に1光束に再合波し照射光束として出力するパスマッチ経路部と、
前記照射光束を干渉計の透過型基準板を透過させて被検体に照射するとともに、前記透過型基準板の基準面で反射された参照光と前記被検体から戻る被検光とを干渉させて前記被検体の所定の波面情報を担持した干渉縞を得る干渉光学系とを備えたパスマッチ経路型干渉計装置において、
前記被検体は、前記照射光束に対して透明な物質であり、
前記光源は、射出光束が複数の波長成分を含む、前記被検体の厚みの光学距離の2倍よりも短い可干渉距離を有する低可干渉光源であり、
前記所定の光学光路長は、前記干渉光学系内における前記参照光と前記被検光との光学光路長差に対して、前記可干渉距離の範囲内で一致するように調整されるものであり、
前記パスマッチ経路部において前記2光束のうちの前記一方が通過する第1の経路上に、分散に関して前記被検体と略同質な分散補償板が配置可能に構成されていることを特徴とするものである。
上記低可干渉光源としては、発光ダイオード(LED),スーパー・ルミネッセント・ダイオード(SLD),ハロゲンランプ,高圧水銀ランプ等を用いることができるが、可視光領域以外の光を出力するものを用いてもよい。したがって、上記「透明な物質」とは、可視光に対して透明であるという意味に限定されるものではない。
上記「分散に関して前記被検体と略同質」とは、上記光源から出力された光束が上記被検体を透過する際に生じる分散現象と、同光束が上記分散補償板を透過する際に生じる分散現象とが物理的に略同等となることを意味する。なお、上記分散補償板として、被検体と同じ物質で形成されるものを用いてもよい。
上記「所定の波面情報」とは、被検体の表面形状情報や裏面形状情報、または被検体の厚みむら情報や応力歪、屈折率分布等の情報およびこれらが複合された情報を意味する。
本発明に係るパスマッチ経路型干渉計装置は、前記被検光が前記被検体の表面で反射されたものとされる第1の測定と、前記被検光が前記被検体の前記表面から該被検体の内部に入射し該被検体の裏面で反射されたものとされる第2の測定と、前記被検光が前記被検体を透過した後に該被検体の裏面側に配置された反射基準面で反射され再び該被検体を透過したものとされる第3の測定とを行なうように構成することができる。その場合、前記分散補償板は、前記第2および第3の測定時に前記第1の経路上に挿入され、前記第1の測定時には前記第1の経路上から退出されるように構成してもよい。
また、前記被検体の前記厚みに応じて、前記分散補償板の光束通過領域の厚みを可変に構成することが好ましい。その場合の分散補償板の具体的構成としては、2つの楔型部材を互いの斜面が接するように組み合わせ、該2つの楔型部材を前記斜面に沿って摺動させることにより、前記光束通過領域の前記厚みを調整するようにしたものを挙げることができる。
なお、本発明において、反射基準面や透過型基準板の基準面(透過基準面)に対して被検体を近接して配置する場合には、透過基準面と被検体表面との間および反射基準面と被検体裏面との間の光学距離を、被検体の厚みの光学距離よりも長くなるように設定することが、不要な干渉が生じないようにする上で望ましい。
本発明に係るパスマッチ経路型干渉計装置によれば、第1の経路上に配置された分散補償板により、被検体内部を照射光束が透過する際に生じる分散の影響を相殺または低減することが可能となる。このため、被検体の厚みが大きい場合においてもコントラストの高い干渉縞を得ることができ、高精度な光干渉計測を行なうことが可能となる。
以下、本発明の実施形態について図面を用いて説明する。図1は本発明の一実施形態に係るパスマッチ経路型干渉計装置の概略構成図である。
図1に示すパスマッチ経路型干渉計装置(以下、「本実施形態装置」と称することがある)2は、パスマッチ経路部4,干渉光学系6および制御部8を備えている。
上記パスマッチ経路部4は、光源11から出力された光束の光路上に配置されたビームスプリッタ12と、このビームスプリッタ12から分岐する2つの経路上にそれぞれ配置されたミラー13,14とを備えている。このパスマッチ経路部4においては、光源11から出力された光束が、ビームスプリッタ12のハーフミラー面12aにおいて、図中左方に直角反射する光束と図中下方に透過する光束とに分岐される。分岐された2光束は、ミラー13,14においてそれぞれ逆向きに反射されてビームスプリッタ12に戻り、ハーフミラー面12aにおいてそれぞれの一部が1光束に合波され、照射光束として上記干渉光学系6に向けて射出される。
上記パスマッチ経路部4におけるビームスプリッタ12および2つのミラー13,14の配置は、マイケルソン型干渉計の光学系配置と類似したものであるが、ハーフミラー面12a上の分岐点から各ミラー13,14に至る経路の光学距離が所定長分だけ互いに異なるように設定されている点において、マイケルソン型干渉計とは異なっている。すなわち本実施形態装置2では、ハーフミラー面12a上の分岐点とミラー14との間の往復経路が第1の経路、この分岐点とミラー13との間の往復経路が第2の経路とされ、上記2光束のうち第1の経路を通過する一方の光束は、第2の経路を通過する他方の光束に対して所定の光学光路長分だけ迂回(遠回り)するように構成されている。
なお、上記光源11としては、LED,SLD,ハロゲンランプ,高圧水銀ランプ等の可干渉距離の短い低可干渉光源、あるいは干渉縞の像を撮像素子で取り込んだ際に、上記低可干渉光源が有する可干渉距離と等価の可干渉距離となるように調整された波長変調光源を用いることができる。この種の波長変調光源は、撮像素子の応答時間(光蓄積時間)よりも短い時間内で、光源(一般的には半導体レーザ光源(LD)が用いられる)から射出される光の波長を変調し、撮像素子の応答時間において時間平均的に干渉縞を撮像することにより、スペクトル幅が広く可干渉距離が短い光を出射する光源を用いた場合と等価の結果が得られるようにしたもので、例えば、1995年5月光波センシング予稿集75〜82頁にコヒーレンス関数を合成する手法が示されている。また、本願出願人により、その手法を改良した技術も開示されている(特願2002−192619号明細書)。
上記干渉光学系6は、パスマッチ経路部4から射出された照射光束の進む順に配置された、ビームエキスパンダ15,収束レンズ16,ビームスプリッタ17,コリメータレンズ18,透過型基準板19および反射型基準板21と、ビームスプリッタ17の図中下方に配置された結像レンズ22とを備えており、上記透過型基準板19と上記反射型基準板21との間に被検体20が設置されるようになっている。この干渉光学系6は、フィゾー型干渉計と同様の光学系配置を有しており、透過型基準板19の基準面(透過基準面)19aで反射された参照光と、基準面19aを透過した後に被検体20から戻る被検光との光干渉により生じる干渉縞を、ビームスプリッタ17のハーフミラー面17aおよび結像レンズ22を介して撮像カメラ23内のCCD,CMOS等のイメージセンサ(撮像素子)24上に結像させるように構成されている。
なお、上記被検体20は、上記照射光束に対して透明な物質で構成されており、また上記透過型基準板19の基準面19aと対向する表面20aと、上記反射型基準板21の反射基準面21aと対向する裏面20bとが互いに略平行となる平行平板状に形成されている。このため、被検体20から上記基準面19aに戻る光には、この基準面19aを透過した後に被検体20の表面20aで反射される第1の戻り光と、この表面20aから被検体20の内部に入射した後に裏面20bで反射される第2の戻り光と、被検体20を透過して上記反射型基準板21の反射基準面21aで反射された後に再び被検体20を透過する第3の戻り光とが含まれることになる。
後述するように本実施形態装置2では、上記第1の戻り光を被検光とする第1の測定,上記第2の戻り光を被検光とする第2の測定および上記第3の戻り光を被検光とする第3の測定が行なわれる。その際、例えば第1の測定において必要となるのは、第1の戻り光と参照光との干渉により生じる干渉縞情報である。参照光と第2,第3の戻り光との間や各戻り光同士の間で干渉が生じた場合には、それらがノイズとなり測定精度に悪影響を及ぼすことになる。本実施形態装置2においては、光源11から出力される光束の可干渉距離が被検体20の厚みの光学距離の2倍よりも短くなるように設定されている。また、上記各測定を行なう際に、上記パスマッチ経路部4において、第1の経路と第2の経路との光学光路長差が、上記干渉光学系6内における参照光と被検光との光学光路長差に対して、光源11の有する可干渉距離の範囲内で一致するように調整される。これにより、必要となる干渉のみが生じ、不要な干渉は生じないようにしている。なお、上記各測定の際に行なわれる経路調整の詳細については、後述する。
上記制御部8は、コンピュータ25,画像モニタ26,キーボードや切換スイッチ等の入力手段27およびステージコントローラ28を備えている。上記コンピュータ25は、撮像カメラ23から出力された画像信号に基づき、得られた干渉縞の解析を行なってその解析結果を画像モニタ26に表示するとともに、オペレータ等により操作される入力手段27からの指示信号に基づき、ステージコントローラ28に制御信号を出力するように構成されている。
また、上記ステージコントローラ28は、コンピュータ25からの制御信号に基づき2つの駆動ドライバ29,30に対して駆動信号を出力し、この駆動信号に基づき2つの駆動ドライバ29,30から2つのアクチュエータ31,32に対してそれぞれ出力される所定の駆動電流により、2つの1軸ステージ33,34の各移動量を制御するように構成されている。
上記1軸ステージ33は分散補償板35を保持しており、この分散補償板35が上記パスマッチ経路部4の上記第1の経路内に挿入される位置と、この第1の経路から退出する位置との間を往復移動するように構成されている。この1軸ステージ33に保持された上記分散補償板35は、上記第1の経路内に挿入される部分(光束通過領域)の厚みを、被検体20の厚みに応じて変えられるように構成されている。すなわち、この分散補償板35は、いわゆるバビネ補償板のように、互いの斜面が接するように組み合わされた2つの楔型部材35a,35bからなり、これらを斜面に沿って摺動させることにより、上記光束通過領域の厚みを連続的に変えられるようになっている。なお、本実施形態装置2では、上記分散補償板35における光束通過領域の厚みの調整は、手動により行なわれる。
本実施形態装置2において上記分散補償板35は、後述する第2および第3の測定時すなわち被検体20を透過した光を被検光とする際に、上記第1の経路内に挿入される。また、分散補償板35の厚みは、分散に関して被検体20と略同質となるように、すなわち光源11からの出力光束が被検体20を透過する際に生じる分散現象と、同光束が分散補償板35を透過する際に生じる分散現象とが物理的に略同等となるように調整される。この分散補償板35を第1の経路上に配置することにより、被検体20の内部を照射光束が透過する際に生じる分散の影響を相殺または低減することが可能となる。このため、後述する第2および第3の測定において、被検体20の厚みが大きい場合においてもコントラストの高い干渉縞を得ることができ、高精度な干渉計測を行なうことが可能となる。
なお、上記2つの楔型部材35a,35bが被検体20と同じ物質で構成される場合には、分散補償板35の厚みを被検体20の厚みと略同等に調整することが好ましい。ただし、これらの厚みが互いに異なる場合でも、分散補償板35としての効果が十分得られることもあり、厚みを揃えることは必要条件ではない。
以下、本実施形態装置を用いて行なわれる第1〜第3の測定について、図2〜図4を用いて説明する。図2は第1の測定時における本実施形態装置の光学系配置を概略的に示す図、図3および図4は第2および第3の測定時における本実施形態装置の光学系配置をそれぞれ概略的に示す図である。なお、図2〜図4では、干渉関係を説明するのに必要な光学系配置のみを示す。また、光源11からの出力光束を太い実線で示すとともに、パスマッチ経路部4において、ビームスプリッタ12のハーフミラー面12aで分岐された2光束のうち、ビームスプリッタ12とミラー14との間を往復する第1の経路を通過する光束を細い実線で、ビームスプリッタ12とミラー13との間を往復する第2の経路を通過する光束を細い破線でそれぞれ示す。
図2に示すように第1の測定においては、分散補償板35は第1の経路から退出した位置に配置される。また、パスマッチ経路部4において、第1の経路の光学光路長(La)と第2の経路の光学光路長(Lb)との差(La−Lb)が、干渉光学系6における透過型基準板19の基準面19aと被検体20の表面20aとの間の光学距離(Lc)の2倍と略等しくなるようにミラー14の位置調整がなされる。前述したように光源11からの出力光束の可干渉距離は被検体20の厚みの光学距離(Ld)の2倍よりも短く設定されている。また、透過型基準板19の基準面19aと被検体20の表面20aとの間の光学距離(Lc)、および反射型基準板21の反射基準面21aと被検体20の裏面20bとの間の光学距離(Le)を、それぞれ被検体20の厚みの光学距離(Ld)よりも長い距離に設定することにより、この第1の測定においては、上記第1の経路を経由して上記基準面19aで反射された参照光と、上記第2の経路を経由し上記基準面19aを透過した後に被検体20の表面20aで反射された被検光とのみが干渉し、該表面20aの形状情報を担持した干渉縞が得られる。
一方、図3に示すように第2の測定においては、分散補償板35は第1の経路内に配置される。また、パスマッチ経路部4において、第1の経路の光学光路長(La)と第2の経路の光学光路長(Lb)との差(La−Lb)が、干渉光学系6における透過型基準板19の基準面19aと被検体20の裏面20bとの間の光学距離(Lc+Ld)の2倍と略等しくなるようにミラー14の位置調整がなされる。これにより、この第2の測定においては、上記第1の経路を通過して上記基準面19aで反射された参照光と、上記第2の経路を経由して上記基準面19aを透過し、さらに被検体20内に入射してその裏面20bで反射された被検光とのみが干渉し、それにより生じる干渉縞が得られる。
また、図4に示すように第3の測定においても、分散補償板35は第1の経路内に配置される。ただし、パスマッチ経路部4において、第1の経路の光学光路長(La)と第2の経路の光学光路長(Lb)との差(La−Lb)が、干渉光学系6における透過型基準板19の基準面19aと反射型基準板21の反射基準面21aとの間の光学距離(Lc+Ld+Le)の2倍と略等しくなるようにミラー14の位置調整がなされる。これにより、この第3の測定においては、上記第1の経路を通過して上記基準面19aで反射された参照光と、上記第2の経路を経由して上記基準面19aおよび被検体20を透過し、さらに反射基準面21aで反射され再び被検体20を透過する被検光とのみが干渉し、該被検体20の表裏面20a,20bの形状情報を含んだ透過波面情報の干渉縞が得られる。
このような第1〜第3の測定により得られた干渉縞情報に基づき、被検体20の表裏面20a,20bの形状や屈折率分布を求めることが可能となる。以下にその手順を示す。
透過型基準板19の基準面19aの形状をR(x,y)、被検体20の表面20aの形状をA(x,y)とし、上記第1の測定結果をΦ(x,y)とすると、Φは下式(1)で表される。
Φ=R+A…(1)
一方、被検体20の裏面20bの形状をB(x,y)、被検体20の表裏面形状を除いた厚みをt、その屈折率分布をn(x,y)とし、空気の屈折率を1とする。また、被検体20の表面形状A(x,y)の座標の正の向きを被検体20から基準面19aに向かう向きに、被検体20の裏面形状B(x,y)の座標の正の向きを被検体20から反射基準面21aに向かう向きにそれぞれとり、上記第2の測定結果をΦ(x,y)とすると、Φはこれら各パラメータと上記光学距離Lcとを用いて下式(2)で表される。
Φ=R+(Lc−A)+n(t+A+B)…(2)
また、反射型基準板21の反射基準面21aの形状をS(x,y)とし、上記第3の測定結果をΦ(x,y)とすると、Φは上記各パラメータと上記光学距離Leとを用いて下式(3)で表される。
Φ=R+S+(Lc−A)+(Ld−B)+n(t+A+B)…(3)
ここで、上記LcおよびLeをDC成分として無視し、上式(1)〜(3)を整理すると、上記各測定結果Φ2およびΦ3は、それぞれ下式(4)および(5)で表される。
Φ=R+(n−1)A+nB+nt…(4)
Φ=R+S+(n−1)A+(n−1)B+nt…(5)
この式(4)および(5)を辺々引くことにより、下式(6)が得られる。
Φ−Φ=B−S…(6)
ここで、反射基準面21aの形状Sを既知とすれば、この式(6)に基づき、被検体20の裏面20bの形状Bを求めることができる。また、透過型基準板19の基準面19aの形状Rを既知とすれば、上式(1)に基づき、被検体20の表面20aの形状Aを求めることができる。
また、被検体20の厚みtに依存した屈折率分布ntは、R,Sを既知のDC成分として無視すれば、上式(1),(4),(5)に基づき、下式(7)で表される。
nt=(1−n)(Φ+Φ)+nΦ…(7)
ここでnを、被検体20を構成する物質の所定波長に対する平均的な屈折率nと、被検体20においてこの平均的な屈折率nとの差の屈折率分布Δn(x,y)との和であるとすれば、上式(7)は下式(8)のように変形される。
nt=(1−n)(Φ+Φ)+nΦ−(Φ+Φ−Φ)Δn…(8)
ここで、(Φ+Φ−Φ)Δnは高次の微小項として無視し、nを既知とすれば、この式(8)から被検体20の厚みtに依存した屈折率分布ntを求めることができる。なお、求められた屈折率分布ntは、光源11からの出力光束の中心波長に対する屈折率分布と考えることができる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態の態様に限定されるものではなく、種々に態様を変更することができる。
例えば、上記実施形態においてパスマッチ経路部の光学系配置は、マイケルソン干渉計の光学系配置と類似したものとされているが、前掲の特許文献1に記載されているような、一方の経路が他方の経路に対してコの字状に迂回するような態様とすることも可能である。
また、上記実施形態の分散補償板は2つの楔型部材から構成されており、これらをその斜面に沿って摺動させることにより、厚みを自在に変えられるようになっているが、互いに厚みが異なる複数の分散補償板を用意し(これらを直線上または円周上に配置する保持手段を用いてもよい)、被検体の厚みに応じてそれに適合した厚みの分散補償板を光路上に配置するようにしてもよい。なお、被検体の厚みに大きな変化がないような場合には、所定の厚みの分散補償板を光路に対して出し入れするように構成してもよい。
また、上記実施形態装置では、干渉光学系の配置がフィゾー型干渉計の光学系配置とされているが、本発明は、アブラムソン型射入射干渉計等の他の光学系配置を有する干渉計装置にも適用することが可能である。
本発明の一実施形態に係るパスマッチ経路型干渉計装置の概略構成図 第1の測定時における光学系配置を概略的に示す図 第2の測定時における光学系配置を概略的に示す図 第3の測定時における光学系配置を概略的に示す図
符号の説明
2 パスマッチ経路型干渉計装置(本実施形態装置)
4 パスマッチ経路部
6 干渉光学系
8 制御部
11 光源
12,17 ビームスプリッタ
12a,17a ハーフミラー面
13,14 ミラー
15 ビームエキスパンダ
16 収束レンズ
18 コリメータレンズ
19 透過型基準板
19a 基準面(透過基準面)
20 被検体
20a (被検体の)表面
20b (被検体の)裏面
21 反射型基準板
21a 反射基準面
22 結像レンズ
23 撮像カメラ
24 イメージセンサ(撮像素子)
25 コンピュータ
26 画像モニタ
27 入力手段
28 ステージコントローラ
29,30 駆動ドライバ
31,32 アクチュエータ
33,34 1軸ステージ
35 分散補償板
35a,35b 楔型部材
La〜La 第1の経路の光学光路長
Lb 第2の経路の光学光路長
Lc 透過基準面と被検体表面との間の光学距離
Ld 被検体表裏面間の光学距離
Le 反射基準面と被検体裏面との間の光学距離


Claims (5)

  1. 光源から射出された光束を2光束に分岐するとともに、該2光束の一方を他方に対して所定の光学光路長分だけ迂回させた後に1光束に再合波し照射光束として出力するパスマッチ経路部と、
    前記照射光束を干渉計の透過型基準板を透過させて被検体に照射するとともに、前記透過型基準板の基準面で反射された参照光と前記被検体から戻る被検光とを干渉させて前記被検体の所定の波面情報を担持した干渉縞を得る干渉光学系とを備えたパスマッチ経路型干渉計装置において、
    前記被検体は、前記照射光束に対して透明な物質であり、
    前記光源は、射出光束が複数の波長成分を含む、前記被検体の厚みの光学距離の2倍よりも短い可干渉距離を有する低可干渉光源であり、
    前記所定の光学光路長は、前記干渉光学系内における前記参照光と前記被検光との光学光路長差に対して、前記可干渉距離の範囲内で一致するように調整されるものであり、
    前記パスマッチ経路部において前記2光束のうちの前記一方が通過する第1の経路上に、分散に関して前記被検体と略同質な分散補償板が配置可能に構成されていることを特徴とするパスマッチ経路型干渉計装置。
  2. 前記被検光が前記被検体の表面で反射されたものとされる第1の測定と、前記被検光が前記被検体の前記表面から該被検体の内部に入射し該被検体の裏面で反射されたものとされる第2の測定と、前記被検光が前記被検体を透過した後に該被検体の裏面側に配置された反射基準面で反射され再び該被検体を透過したものとされる第3の測定とを行なうように構成されており、
    前記分散補償板は、前記第2および第3の測定時に前記第1の経路上に挿入され、前記第1の測定時には前記第1の経路上から退出されるように構成されていることを特徴とする請求項1記載のパスマッチ経路型干渉計装置。
  3. 前記被検体の前記厚みに応じて、前記分散補償板の光束通過領域の厚みを可変に構成されていることを特徴とする請求項1または2記載のパスマッチ経路型干渉計装置。
  4. 前記分散補償板は、2つの楔型部材を互いの斜面が接するように組み合わせてなり、該2つの楔型部材を前記斜面に沿って摺動させることにより、前記光束通過領域の前記厚みを調整するものであることを特徴とする請求項3記載のパスマッチ経路型干渉計装置。
  5. 前記所定の波面情報が、前記被検体の屈折率分布情報を含むものであることを特徴とする請求項1〜4のうちいずれか1項記載のパスマッチ経路型干渉計装置。

JP2004085422A 2004-03-23 2004-03-23 パスマッチ経路型干渉計装置 Pending JP2005274236A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085422A JP2005274236A (ja) 2004-03-23 2004-03-23 パスマッチ経路型干渉計装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085422A JP2005274236A (ja) 2004-03-23 2004-03-23 パスマッチ経路型干渉計装置

Publications (1)

Publication Number Publication Date
JP2005274236A true JP2005274236A (ja) 2005-10-06

Family

ID=35174083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085422A Pending JP2005274236A (ja) 2004-03-23 2004-03-23 パスマッチ経路型干渉計装置

Country Status (1)

Country Link
JP (1) JP2005274236A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271435A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd 応力測定方法及び装置
JP2008196901A (ja) * 2007-02-09 2008-08-28 Fujinon Corp 光波干渉測定装置
JP2009079933A (ja) * 2007-09-25 2009-04-16 Fujinon Corp 大型サンプル測定用干渉計装置
JP2010145161A (ja) * 2008-12-17 2010-07-01 Konica Minolta Opto Inc 形状測定装置
JP2013009734A (ja) * 2011-06-28 2013-01-17 Canon Inc 光干渉断層装置および方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271435A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd 応力測定方法及び装置
JP2008196901A (ja) * 2007-02-09 2008-08-28 Fujinon Corp 光波干渉測定装置
JP2009079933A (ja) * 2007-09-25 2009-04-16 Fujinon Corp 大型サンプル測定用干渉計装置
JP2010145161A (ja) * 2008-12-17 2010-07-01 Konica Minolta Opto Inc 形状測定装置
JP2013009734A (ja) * 2011-06-28 2013-01-17 Canon Inc 光干渉断層装置および方法

Similar Documents

Publication Publication Date Title
JP4062606B2 (ja) 低可干渉測定/高可干渉測定共用干渉計装置およびその測定方法
KR102456213B1 (ko) 이미징 기반 오버레이 계측을 위한 포커스 최적화를 위한 시스템 및 방법
KR20120029329A (ko) 굴절률의 계측방법 및 계측장치
WO2013084557A1 (ja) 形状測定装置
US20070146724A1 (en) Vibration-resistant interferometer apparatus
KR101251292B1 (ko) 편광을 이용한 3차원 형상 및 두께 측정 장치
JP4780330B2 (ja) 低コヒーレンス光干渉計及びそれを用いた低コヒーレンス光干渉方法
WO2012170275A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP2005274236A (ja) パスマッチ経路型干渉計装置
JP5282929B2 (ja) 多波長干渉計
US7545506B2 (en) Interferometric measuring device
JP2009180554A (ja) 干渉計、測定方法及び光学素子の製造方法
JP4810693B2 (ja) 光波干渉測定装置
JP2010008328A (ja) 光干渉計及びそれを用いた膜厚測定方法
JP2002286409A (ja) 干渉計装置
JP5233643B2 (ja) 形状測定装置
TWI420072B (zh) 具有虛位參考面之干涉儀
JP3916545B2 (ja) 干渉計
JP2005106706A (ja) 屈折率及び厚さの測定装置ならびに測定方法
JP4634884B2 (ja) 表面性状測定装置
JP2004340901A (ja) パスマッチ経路型干渉計装置
JP5009709B2 (ja) 厚み測定用光干渉測定装置
KR20180068372A (ko) Visar 또는 orvis를 이용한 이동 물체의 속도 측정장치
Buchta et al. Light source for low-coherence interferometry combining LED and single mode optical fiber
JP2003035508A (ja) 画像計測ヘッドおよび画像計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090305