JP2005257772A - オプティカルクロスコネクト装置、及び光路変更装置 - Google Patents

オプティカルクロスコネクト装置、及び光路変更装置 Download PDF

Info

Publication number
JP2005257772A
JP2005257772A JP2004065833A JP2004065833A JP2005257772A JP 2005257772 A JP2005257772 A JP 2005257772A JP 2004065833 A JP2004065833 A JP 2004065833A JP 2004065833 A JP2004065833 A JP 2004065833A JP 2005257772 A JP2005257772 A JP 2005257772A
Authority
JP
Japan
Prior art keywords
light
path changing
optical path
optical system
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065833A
Other languages
English (en)
Inventor
Atsushi Katsunuma
淳 勝沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004065833A priority Critical patent/JP2005257772A/ja
Publication of JP2005257772A publication Critical patent/JP2005257772A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】 グレーティング及びマイクロミラーアレイユニットを備えているオプティカルクロスコネクト装置で、特定波長域の光の出力ポートを変える際に、他のポートに特定波長域の光が入射しないようにする。
【解決手段】 グレーティング32により分波された各波長域の光を結像させる集光レンズ33と、集光レンズ33により結像された各波長域の光をマイクロミラーアレイユニット60のマイクロミラー61の位置で結像させるリレー光学系50と、集光レンズ33の結像位置に配置され各波長域の光を個別に遮蔽できるシャッターアレイユニット40とを備えている。リレー光学系50は、放物面鏡51と平面鏡52とを有して構成される。
【選択図】 図1

Description

本発明は、1以上の入力ポートからの光を分波又は合波し、分波又は合波された各波長域の光が向う方向を変えるオプティカルクロスコネクト装置、このオプティカルクロスコネクト装置等に用いられる光路変更装置に関する。
従来のオプティカルクロスコネクト装置としては、例えば、以下の特許文献1に記載されているものがある。
このオプティカルクロスコネクト装置は、1つの入力ポートと、複数の出力ポートと、入力ポートからの光を各波長域毎の光に分波するグレーティングと、グレーティングで各波長域毎の光に分波された光のうちの特定の波長域の光を、複数の出力ポートのうちの特定の出力ポートに導くためのマイクロミラーアレイユニットと、を備えている。
この装置において、特定の波長域の光の出力ポートを他の出力ポートに変える場合には、マイクロミラーアレイユニットの複数のマイクロミラーのうち、特定の波長域の光を反射しているミラーの向きを1軸回転で変えている。
US6,657,770 B2
しかしながら、特許文献1に記載の技術では、特定の波長域の光の出力ポートを他の出力ポートに変える場合、前述したように、特定の波長域の光を反射しているマイクロミラーの向きを1軸回転で変えている過程で、この特定の波長域の光が目的の出力ポート以外の出力ポートに入射してしまうことがあるという問題点がある。例えば、出力ポートがNo.1〜No.3まである場合に、当初、No.1出力ポートに入射させていた波長域aの光をNo.3出力ポートに入射させようとして、マイクロミラーの向きを変えると、この波長域aの光はNo.2出力ポートを横切ってしまい、一瞬であるものの、No.2出力ポートに波長域aの光が入射してしまう。
そこで、波長域aの光が、目的のNo.3出力ポート以外の出力ポートに入射してしまうことを防ぐ方法として、入力ポートからの光の出射を遮断する方法がある。しかし、この方法では、仮に、グレーティングで分波した各波長域毎の光のうち、波長域aをNo.1出力ポートに導いていると共に、波長域bの光をNo.2出力ポートに導いている場合には、出力先をNo.3出力ポートに変える波長域a以外の波長域bの光も遮断されてしまう。オプティカルクロスコネクト装置は、多くの場合、光通信機器として利用されるため、動作の継続性が要求されにも関わらず、遮断する必要のない波長域bの光まで遮断すると、オプティカルクロスコネクト装置の動作継続性を損ねてしまうという問題点が発生してしまう。
本発明は、このような従来技術の問題点に着目し、出力ポートを変える場合に、目的のポート以外に光が入射してしまうのを防ぎつつ、動作の継続性を損ねないオプティカルクロスコネクト装置、及び光路変更装置を提供することを目的とする。
前記問題点を解決するための請求項1に係る発明のオプティカルクロスコネクト装置は、
1以上の入力ポートからの光を分波又は合波する分光手段と、該分光手段を経てきた各波長域の光が向う方向を変える光路変更手段と、を備えているオプティカルクロスコネクト装置において、
前記分光手段を経てきた各波長域毎の前記入力ポートの像を結像させる結像光学系と、前記結像光学系による結像位置又は該結像位置の近傍で、前記分光手段を経てきた各波長域の光をそれぞれ個別に遮蔽する遮蔽状態と、該各波長域の光を前記光路変更手段側へ通す非遮蔽状態とに変態可能な遮蔽手段と、少なくとも1枚の凹面鏡を有し、前記非遮蔽状態の前記遮蔽手段を通過してきた各波長域の光を、前記光路変更手段の光入射面又は該光入射面の近傍で結像させるリレー光学系と、を備えていることを特徴とする。
請求項2に係る発明のオプティカルクロスコネクト装置は、
請求項1に記載のオプティカルクロスコネクト装置において、
請求項1に記載のオプティカルクロスコネクト装置において、
前記リレー光学系は、前記非遮蔽状態の前記遮蔽手段を通過してきた各波長域の光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された各波長域の光による前記入力ポートの像を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた各波長域の光を前記光路変更手段の前記光入射面又は該光入射面の近傍で結像させることを特徴とする。
請求項3に係る発明のオプティカルクロスコネクト装置は、
請求項1及び2のいずれか一項に記載のオプティカルクロスコネクト装置において、
外部からの信号に応じて、前記光路変更手段の動作に先立って前記遮蔽手段が動作するよう、該光路変更手段の動作及び該遮蔽手段の動作を制御する制御手段を備えていることを特徴とする。
前記問題点を解決するための請求項4に係る発明の光路変更装置は、
複数のマイクロミラーを有し、各ミラーの向きを個別に変えるマイクロミラーアレイユニットを備えている光路変更装置において、
複数の前記マイクロミラーのそれぞれへ入射する各光を個別に遮蔽する遮蔽状態と、該各光を複数の該マイクロミラー側へ通す非遮蔽状態とに変態可能な遮蔽手段と、少なくとも1枚の凹面鏡を有し、複数の前記マイクロミラーの共役像を前記遮蔽手段の位置又はその近傍に形成し、前記非遮蔽状態の前記遮蔽手段を通過した各光を複数の前記マイクロミラーのいずれかに向わせると共に、複数の該マイクロミラーに至って反射した光を前記遮蔽手段へ向わせるリレー光学系と、を備えていることを特徴とする。
請求項5に係る発明の光路変更装置は、
請求項4に記載の光路変更装置において、
前記リレー光学系は、複数の前記マイクロミラーのそれぞれで反射された各光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された各波長域の光を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた各光を複数の前記マイクロミラーの反射面又は該反射面近傍で結像させることを特徴とする。
請求項6に係る発明の光路変更装置は、
請求項4及び5のいずれか一項に記載の光路変更装置において、
外部からの信号に応じて、複数の前記マイクロミラーのいずれかの駆動に先立って前記遮蔽手段が動作するよう、複数の該マイクロミラーの駆動及び該遮蔽手段の動作を制御する制御手段を備えていることを特徴とする。
請求項7に係る発明の光路変更装置は、
請求項4から6のいずれか一項に記載の光路変更装置において、
前記凹面鏡は、放物面鏡であることを特徴とする。
請求項8に係る発明のオプティカルクロスコネクト装置は、
請求項4から6のいずれか一項に光路変更装置と、1以上の入力ポートからの光を分波又は合波する分光手段と、前記分光手段を経てきた各波長域の前記入力ポートの像を結像させる結像光学系と、を備え、
前記光路変更装置の前記遮蔽手段は、前記リレー光学系による複数の前記マイクロミラーの共役像を形成する位置又は該位置の近傍、且つ前記結像光学系による結像位置又は該結像位置の近傍で、前記分光手段を経てきた各波長域の光をそれぞれ個別に遮蔽できる位置に配置されていることを特徴する。
また、前記課題を解決するための他の発明に係るオプティカルクロスコネクト装置は、
1以上の入力ポートからの光を分波又は合波する分光手段と、該分光手段を経てきた各波長域の光が向う方向を変える光路変更手段と、を備えているオプティカルクロスコネクト装置において、
前記分光手段を経てきた各波長域の光による前記入力ポートの像を、前記光路変更手段に達する前に結像させる結像光学系と、前記結像光学系による結像位置又は該結像位置の近傍で、前記分光手段を経てきた各波長域の光をそれぞれ個別に遮蔽する遮蔽状態と、該各波長域の光を前記光路変更手段側へ通す非遮蔽状態とに変態可能な遮蔽手段と、を備えていることを特徴とする。
ここで、前記オプティカルクロスコネクト装置は、
外部からの信号に応じて、前記光路変更手段の動作に先立って前記遮蔽手段が動作するよう、該光路変更手段の動作及び該遮蔽手段の動作を制御する制御手段を備えていてもよい。
また、前記オプティカルクロスコネクト装置は、
前記結像光学系により前記結像位置で結像された各波長域の光による前記入力ポートの像を、前記光路変更手段の光入射面で再び結像させるリレー光学系を備え、
前記リレー光学系は、前記非遮蔽状態の前記遮蔽手段を通過してきた各波長域の光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された各波長域の光を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた各波長域の光を前記光路変更手段の光入射位置で結像させる、ものであってもよい。
前記課題を解決するための他の発明に係る光路変更装置は、
複数のマイクロミラーを有し、各ミラーの向きを個別に変えるマイクロミラーアレイユニットを備えている光路変更装置において、
複数のマイクロミラーのそれぞれで反射された各光による前記マイクロミラーの像を結像させるリレー光学系と、前記リレー光学系で各光が結像する結像位置、又は該結像位置の近傍で、複数のマイクロミラーのそれぞれへ入射する各光を個別に遮蔽する遮蔽状態と、該各光を複数の該マイクロミラー側へ通す非遮蔽状態とに変態可能な遮蔽手段と、を備えていることを特徴とする。
ここで、前記リレー光学系は、前記非遮蔽状態の前記遮蔽手段を通過してきた光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された光を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた光を前記マイクロミラーの反射面又は該反射面の近傍で結像させる、ものであってもよい。
また、前記課題を解決するための発明に係る光路変更方法は、
1以上の入力ポートからの光を分波又は合波する分光手段と、該分光手段を経てきた各波長域の光が向う方向を変える光路変更手段と、を備えているオプティカルクロスコネクト装置における光路変更方法おいて、
前記分光手段を経てきた各波長域の光による前記入力ポートの像を、前記光路変更手段に達する前に結像光学系で結像させ、
外部から特定の波長域の光の光路を変える旨の信号を受信すると、前記分光手段を経てきた各波長域の光のうちの該特定の波長域の光を、前記結像光学系による結像位置又は該結像位置の近傍で遮蔽し、
前記特定の波長域の光が遮断された状態で、該特定の波長域の光が目的の光路に向うよう、前記光路変更手段を動作させ、
前記光路変更手段による光路変更動作が終了すると、前記特定の波長域の光の遮蔽を解除する、ことを特徴とする。
本発明によれば、分光手段により分波又は合波された各波長域の光をそれぞれ個別に遮蔽する遮蔽手段を設けたので、特定の波長域の光の出力ポートを変えている際中、特定の波長域の光が通るところを遮断手段により遮断すれば、動作の継続性を損ねることなく、目的のポート以外に光が入射してしまうのを防ぐことができる。また、リレー光学系として、反射鏡を用いているので、レンズを用いる場合よりも極めて簡単で且つ低コストな構成で収差を抑えることができる。さらに、本発明では、光路変更手段と遮蔽手段との間にリレー光学系を介在させ、空間を開けて両者を配置しているので、装置設計及び製作が行い易くなる。
以下、本発明に係るオプティカルクロスコネクト装置の一実施形態について、図面を用いて説明する。
本実施形態のオプティカルクロスコネクト装置は、図1に示すように、複数の光ファイバ11を有するファイバブロック10と、各光ファイバ11のポート12からの光を有限距離の同一位置に結像させるポート像合成光学系20と、このポート像合成光学系20を経た各光ファイバ11から光をそれぞれ各波長域の光に分波する分光光学系30と、各波長域毎の光を個別に遮蔽するシャッターアレイユニット(遮蔽手段)40と、シャッターアレイユニット40を通過してきた各光を結像させるリレー光学系50と、このリレー光学系50の結像位置に配置されているMEMS(Mycro Electro Mechanical System、光路変更手段又はマイクロミラーアレイユニット)60と、シャッターアレイユニット40及びMEMS60の動作を制御する制御装置70と、を備えている。
ポート像合成光学系20は、複数の光ファイバ11毎に配置されているマイクロレンズ21と、各マイクロレンズ21を通過した光を有限距離の同一位置に結像させる集光レンズ22と、を有している。
分光光学系30は、ポート像合成光学系20を経た光を平行光にするコリメートレンズ31と、このコリメートレンズ31を経た光を分波する透過型グレーティング(分光手段)32と、この透過型グレーティング32を経た光を結像させる集光レンズ(結像手段)33と、を有している。なお、グレーティングとしては、透過型グレーティング32の替わりに反射型グレーティングを用いてもよいことは言うまでもない。また、以上では、各光ファイバ11からの光をポート像合成光学系20の集光レンズ22で有限距離の位置に結像させ、分光光学系30のコリメートレンズ31で平行光にしているが、ポート像合成光学系20から集光レンズ22を省き、さらに分光光学系30からコリメートレンズ31を省いて、ポート像合成光学系20の各マイクロレンズ21からの光を直接グレーティング32に導くようにしてもよい。この場合、ポート像合成光学系は、各光ファイバ11からの光を無限遠の同一位置に像を形成することになる。
シャッターアレイユニット40は、各波長域毎の光を個別に遮蔽するために複数のシャッター41と、各シャッター41を変位可能に支持するシャッターフレーム43と、各シャッター41を個別に駆動するシャッタードライバ42と、を有している。各シャッター41は、分光光学系30の集光レンズ33による入力ポート像の結像位置であって、グレーティング32で分波された各波長域毎の光を個別に遮蔽できる位置に配置されている。各シャッター41は、その位置に至った光を遮蔽する遮蔽状態と、その位置に至った光を通過させる非遮蔽状態とに変位可能に設けられており、シャッタードライバ42は、各シャッター41を遮蔽状態と非遮蔽状態とに変位させる。
リレー光学系50は、シャッターアレイユニット40を通過してきた光を反射する放物面鏡51と、この放物面鏡51で反射された光を再び放物面鏡51に戻す平面鏡52と、を有している。放物面鏡51は、シャッターアレイユニット40を通過してきた光を平行光にするコリメータ51aとしての役割と、平面鏡52から反射されてきた平行光を結像させる集光レンズ51bとしての役割とを担っている。
MEMS60は、1次元的に並んでいる複数のマイクロミラー61と、このマイクロミラー61を個別に駆動させるミラードライバ62と、を有している。各マイクロミラー61は、全てほぼ同じ大きさの平面鏡である。なお、各マイクロミラー61の大きさは、一辺が、10μm〜数100μm程度の長方形である。このMEMS60は、ビームステアリング機構として機能し、制御装置70からの制御信号に応じて、マイクロミラー61の向きを変える。
このMEMS60の各マイクロミラー61の反射面と、シャッターアレイユニット40の複数のシャッター41とは、リレー光学系50に対して、共役な位置に配置されている。したがって、シャッターアレイユニット40の複数のシャッター41の位置は、リレー光学系50の結像位置でもあり、分光光学系30の結像位置でもある。
図2に示すように、シャッターアレイユニット40のシャッターフレーム43には、各波長域の光が通るルートに開口44が形成されている。この複数の開口44は、グレーティング32の溝34が伸びている方向に対して垂直なX方向に並んでいる。このシャッターフレーム43は、シャッター41が開口44を塞ぐ前述の遮蔽状態と、この開口44を塞いでいない前述の非遮蔽状態とに、例えばスライド可能に、シャッター41を支持している。
また、MEMS60の複数のマイクロミラー61も、シャッターアレイユニット40の複数の開口44が並んでいる方向と同じX方向に、並んでいる。
シャッターアレイユニット40の一番端の第1開口44からの光は、リレー光学系50の放物面鏡51及び平面鏡52を経て、MEMS60の一番端の第1マイクロミラー61によって反射される。また、シャッターアレイユニット40の一番端から二番目の第2開口44からの光は、リレー光学系50の放物面鏡51及び平面鏡52を経て、MEMS60の一番端から二番目の第2マイクロミラー61によって反射される。すなわち、シャッターアレイユニット40の各開口44,44,…を通過した光は、これと対応する位置のマイクロミラー61,61,…に至る。このため、放物面鏡51と平面鏡52で構成したリレー光学系50は、シャッターアレイユニット40の各シャッター41とMEMS60の各マイクロミラー61との連係制御に適した光学系と言える。また、このリレー光学系50は、反射光学系なので、色収差がなく、さらに、極めて簡単な構成で諸収差を抑えられる。このため、レンズを用いたリレー光学系よりも、遥かに製造コストを抑えることができる。なお、収差の観点から、シャッターアレイ40の各シャッター41が並んでいる方向とMEMS60の各マイクロミラー61が並んでいる方向とを、放物面鏡51の中心軸を挟んで互いに平行にすることが好ましい。
制御装置70は、前述したように、外部からの信号に応じて、シャッターアレイユニット40及びMEMS60の動作を制御する。外部からの信号は、制御すべき波長域の光と、この波長域の光を入射させる光ファイバ11のポート番号とを示す信号である。制御装置70は、この信号に基づいて、シャッターアレイユニット40の複数のシャッター41のうちのいずれのシャッター41を駆動させるべきか、さらに、MEMS60の複数のマイクロミラー61のうちのいずれのマイクロミラー61を駆動させるべきかを判断し、シャッターアレイユニット40及びMEMS60に制御信号を出力する。
次に、以上で説明したオプティカルクロスコネクトの動作及び作用について説明する。
仮に、図3に示すように、シャッターアレイユニット40の全てのシャッター41は、非遮蔽状態で、光ファイバブロック10の複数の光ファイバ11のうちの一番端の第1光ファイバ11のポート(以下、第1ポートとする)12から光が出射したとする。また、第1ポート12からの光は、分光光学系30のグレーティング32により各波長域の光に分波され、各波長域の光のうち、波長域aの光が一番端から三番目の光ファイバ11のポート(以下、第3ポートとする)12に入射し、波長域bの光が一番端から二番目の光ファイバ11のポート(以下、第2ポートとする)12に入射したとする。
その上で、第2ポート12に入射していた波長域bの光を、図4に示すように、一番端から四番目の光ファイバ11のポート(以下、第4ポートとする)12に入射させる場合の動作について、以下で説明する。
まず、図3に示す当初の状態における各波長域a,bの光路について説明する。
第1ポート12からの光は、前述したように、グレーティング32により各波長域の光に分波される。各波長域の光のうちの波長域aの光は、シャッターアレイユニットの一番端からの四番目の第4開口44を通過して、リレー光学系50を経て、MEMS60の一番端から四番目の第4マイクロミラー61で反射される。第4マイクロミラー61で反射された波長域aの光は、再び、リレー光学系50を経て、第4開口44を通過し、分光光学系30及びポート像合成光学系20を経て、第3ポート12に入射する。また、各波長域の光のうちの波長域bの光は、シャッターアレイユニット40の一番端から六番目の第6開口44を通過して、リレー光学系50を経て、MEMS60の第6マイクロミラー61で反射される。第6マイクロミラー61で反射された波長域bの光は、再び、リレー光学系50を経て、一番端から六番目の第6開口44を通過し、分光光学系30及びポート像合成光学系20を経て、第2ポート12に入射する。
以上の当初状態から波長域bの光を入射先を変える場合の動作について、図5に示すフローチャートに従って説明する。
当初状態のときに、外部から制御装置70に、波長域bの光を第4ポート12に入射させる旨の信号が入ると(ステップ1)、制御装置70は、分光光学系30からリレー光学系50に向う波長域bの光が通過しているシャッターアレイユニット40の開口44の番号を把握すると共に、波長域bの光を反射しているマイクロミラー61の番号を把握する(ステップ2)。
次に、制御装置70は、シャッターアレイユニット60のシャッタードライバ42に対して、分光光学系30からリレー光学系50に向う波長域bの光が通過する第6開口44を遮蔽状態にするよう、制御信号を出力する(ステップ3)。この結果、第6シャッター41は第6開口44を遮蔽して、波長域bの光はシャッターアレイユニット40よりも先に進まなくなる。続いて、制御装置70は、波長域bの光を第4ポート12に向わせるため、今まで、波長域bの光を反射していた第6マイクロミラー61の駆動量を演算し、この駆動量をMEMS60のミラードライバー62に出力する(ステップ4)。この結果、第6マイクロミラー61は、ここで反射する波長域bの光が第4ポート12に向う方向に傾く。第6マイクロミラー61の向きが目的の方向を向くと、シャッターアレイユニット40のシャッタードライバ42に対して、波長域bの光の進行を止めていた第6シャッター41を非遮蔽状態に戻すよう、制御信号を出力する(ステップ5)。この結果、分光光学系30からの波長域bの光は、図4に示すように、当初の状態と同様、第6開口44を通過して、リレー光学系50を経て、向きの変わった第6マイクロミラー61で反射される。第6マイクロミラー61で反射された波長域bの光は、リレー光学系50を経て、第6開口44を通過し、分光光学系30及びポート像合成光学系20を経て、第4ポート12に入射する。
以上のように、本実施形態では、波長域bの光の入射先を変えるために、マイクロミラー61の向きを変えている際中には、この波長域bの光の通過のみをシャッター41で遮断しているので、この間、この波長域bが目的のポート12以外に入射してしまうのを防ぐことができると共に、他の波長域aの光に関しては、継続して第3ポート12に入射させることができる。
なお、以上では、複数のポート12のうち、入力ポートが1つで出力ポートが2つの例を示したが、出力ポートは3以上であってもよいし、入力ポートが複数であってもよい。また、以上では、入力ポートからの光をグレーティング32により各波長域の光に分波し、各波長域の光を複数の出力ポートに入射させる例であるが、逆に、複数の入力ポートのそれぞれから各波長域の光を出射し、各波長域の光をグレーティング32により合波し、合波された光を出力ポートに入射させるようにしてもよい。この場合、基本的には、図3及び図4の入力ポート12が出力ポートとなり、出力ポート12,12又は12が入力ポートとなる。このように、各波長域の光を合波させる場合でも、入力ポートは3以上であってもよいし、出力ポートは複数であってもよい。
また、以上の実施形態では、分光光学系30及びリレー光学系50の結像位置に複数のシャッター41を配置したが、シャッター41は、これら光学系30,50の結像位置に正確に配置する必要はなく、ほぼ結像位置であればよい。
本発明に係る一実施形態におけるオプティカルクロスコネクト装置の構成を示す説明図である。 本発明に係る一実施形態におけるシャッターアレイユニット、リレー光学系及びMEMSの斜視図である。 本発明に係る一実施形態におけるオプティカルクロスコネクト装置内の光路を示す説明図である。 本発明に係る一実施形態におけるオプティカルクロスコネクト装置の光路変更後の光路を示す説明図である。 本発明に係る一実施形態における制御装置の動作を示すフローチャートである。
符号の説明
10:光ファイバアレイ 11:光ファイバ
12:ポート 20:ポート像合成光学系
30:分光光学系 31:コリメートレンズ
32:透過型グレーティング 33:集光レンズ
40:シャッターアレイユニット 41:シャッター
44:開口 50:リレー光学系
51:方物面鏡 51:平面鏡
60:MEMS 61:マイクロミラー
70:制御装置

Claims (8)

  1. 1以上の入力ポートからの光を分波又は合波する分光手段と、該分光手段を経てきた各波長域の光が向う方向を変える光路変更手段と、を備えているオプティカルクロスコネクト装置において、
    前記分光手段を経てきた各波長域毎の前記入力ポートの像を結像させる結像光学系と、
    前記結像光学系による結像位置又は該結像位置の近傍で、前記分光手段を経てきた各波長域の光をそれぞれ個別に遮蔽する遮蔽状態と、該各波長域の光を前記光路変更手段側へ通す非遮蔽状態とに変態可能な遮蔽手段と、
    少なくとも1枚の凹面鏡を有し、前記非遮蔽状態の前記遮蔽手段を通過してきた各波長域の光を、前記光路変更手段の光入射面又は該光入射面の近傍で結像させるリレー光学系と、
    を備えていることを特徴とするオプティカルクロスコネクト装置。
  2. 請求項1に記載のオプティカルクロスコネクト装置において、
    前記リレー光学系は、前記非遮蔽状態の前記遮蔽手段を通過してきた各波長域の光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された各波長域の光による前記入力ポートの像を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた各波長域の光を前記光路変更手段の前記光入射面又は該光入射面の近傍で結像させる、
    ことを特徴とするオプティカルクロスコネクト装置。
  3. 請求項1及び2のいずれか一項に記載のオプティカルクロスコネクト装置において、
    外部からの信号に応じて、前記光路変更手段の動作に先立って前記遮蔽手段が動作するよう、該光路変更手段の動作及び該遮蔽手段の動作を制御する制御手段を備えている、
    ことを特徴とするオプティカルクロスコネクト装置。
  4. 複数のマイクロミラーを有し、各ミラーの向きを個別に変えるマイクロミラーアレイユニットを備えている光路変更装置において、
    複数の前記マイクロミラーのそれぞれへ入射する各光を個別に遮蔽する遮蔽状態と、該各光を複数の該マイクロミラー側へ通す非遮蔽状態とに変態可能な遮蔽手段と、
    少なくとも1枚の凹面鏡を有し、複数の前記マイクロミラーの共役像を前記遮蔽手段の位置又はその近傍に形成し、前記非遮蔽状態の前記遮蔽手段を通過した各光を複数の前記マイクロミラーのいずれかに向わせると共に、複数の該マイクロミラーに至って反射した光を前記遮蔽手段へ向わせるリレー光学系と、
    を備えていることを特徴とする光路変更装置。
  5. 請求項4に記載の光路変更装置において、
    前記リレー光学系は、複数の前記マイクロミラーのそれぞれで反射された各光を反射する凹面鏡と、該凹面鏡の焦点の位置に配置され、該凹面鏡で反射された各波長域の光を該凹面鏡に戻す平面鏡とを有し、該凹面鏡は、該平面鏡により戻ってきた各光を複数の前記マイクロミラーの反射面又は該反射面近傍で結像させる、
    ことを特徴とする光路変更装置。
  6. 請求項4及び5のいずれか一項に記載の光路変更装置において、
    外部からの信号に応じて、複数の前記マイクロミラーのいずれかの駆動に先立って前記遮蔽手段が動作するよう、複数の該マイクロミラーの駆動及び該遮蔽手段の動作を制御する制御手段を備えている、
    ことを特徴とする光路変更装置。
  7. 請求項4から6のいずれか一項に記載の光路変更装置において、
    前記凹面鏡は、放物面鏡である、
    ことを特徴とする光路変更装置。
  8. 請求項4から6のいずれか一項に光路変更装置と、
    1以上の入力ポートからの光を分波又は合波する分光手段と、
    前記分光手段を経てきた各波長域の前記入力ポートの像を結像させる結像光学系と、
    を備え、
    前記光路変更装置の前記遮蔽手段は、前記リレー光学系による複数の前記マイクロミラーの共役像を形成する位置又は該位置の近傍、且つ前記結像光学系による結像位置又は該結像位置の近傍で、前記分光手段を経てきた各波長域の光をそれぞれ個別に遮蔽できる位置に配置されている、
    ことを特徴するオプティカルクロスコネクト装置。
JP2004065833A 2004-03-09 2004-03-09 オプティカルクロスコネクト装置、及び光路変更装置 Pending JP2005257772A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065833A JP2005257772A (ja) 2004-03-09 2004-03-09 オプティカルクロスコネクト装置、及び光路変更装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065833A JP2005257772A (ja) 2004-03-09 2004-03-09 オプティカルクロスコネクト装置、及び光路変更装置

Publications (1)

Publication Number Publication Date
JP2005257772A true JP2005257772A (ja) 2005-09-22

Family

ID=35083589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065833A Pending JP2005257772A (ja) 2004-03-09 2004-03-09 オプティカルクロスコネクト装置、及び光路変更装置

Country Status (1)

Country Link
JP (1) JP2005257772A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201346A (ja) * 2005-01-19 2006-08-03 Olympus Corp 光スイッチ
WO2010001734A1 (ja) * 2008-07-04 2010-01-07 Nttエレクトロニクス株式会社 波長選択スイッチ
JP2010204643A (ja) * 2009-03-02 2010-09-16 Samsung Electronics Co Ltd 単位シャッタ機構、単位シャッタ機構を含むシャッタ構造物、及びシャッタ構造物を含む露光装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201346A (ja) * 2005-01-19 2006-08-03 Olympus Corp 光スイッチ
WO2010001734A1 (ja) * 2008-07-04 2010-01-07 Nttエレクトロニクス株式会社 波長選択スイッチ
US8391654B2 (en) 2008-07-04 2013-03-05 Ntt Electronics Corporation Wavelength selection switch
JP5184637B2 (ja) * 2008-07-04 2013-04-17 Nttエレクトロニクス株式会社 波長選択スイッチ
JP2010204643A (ja) * 2009-03-02 2010-09-16 Samsung Electronics Co Ltd 単位シャッタ機構、単位シャッタ機構を含むシャッタ構造物、及びシャッタ構造物を含む露光装置

Similar Documents

Publication Publication Date Title
US6704476B2 (en) Optical MEMS switch with imaging system
JP5953230B2 (ja) 空間的な色分離による可変フィルタリングを用いたスペクトル検出器又はレーザ走査顕微鏡
US7239384B2 (en) Laser-scanning fluoroscopy apparatus
JP2006276216A (ja) 光スイッチ
CN103163642B (zh) 采用数字微镜器件(dmd)并具有降低的波长相关损失的光学处理设备
JP2010156680A (ja) 温度補償されている分光器及び光学機器
US20170038573A1 (en) System for confocal illumination of a sample
JP2008040500A (ja) プレーナ光波回路に基づく波長選択スイッチ
JP7344281B2 (ja) 共焦点顕微鏡ユニット及び共焦点顕微鏡
JP4443553B2 (ja) レンズ調節方法、レンズ調節装置および光スイッチ
JP2007500368A (ja) 走査型顕微鏡
JP5242042B2 (ja) ステレオ顕微鏡
EP2570831B1 (en) Optical processing device
JP2005257772A (ja) オプティカルクロスコネクト装置、及び光路変更装置
US9454002B2 (en) Wavelength selection switch
US6766081B2 (en) Focal length dispersion compensation for field curvature
JP4232781B2 (ja) アッテネータ装置および光スイッチング装置
JP2010134027A (ja) 波長選択スイッチ
JP4407382B2 (ja) 光フィルタ装置
CN115542528A (zh) 用于扫描显微镜的射束操纵的设备和显微镜
JP4414696B2 (ja) 照明を伴う対物レンズ
JP2010134027A5 (ja)
JP2006039304A (ja) 光スイッチ
JP6258901B2 (ja) 光処理デバイス
JP2006178207A (ja) アッテネータ装置および光スイッチング装置