JP5184637B2 - 波長選択スイッチ - Google Patents

波長選択スイッチ Download PDF

Info

Publication number
JP5184637B2
JP5184637B2 JP2010518989A JP2010518989A JP5184637B2 JP 5184637 B2 JP5184637 B2 JP 5184637B2 JP 2010518989 A JP2010518989 A JP 2010518989A JP 2010518989 A JP2010518989 A JP 2010518989A JP 5184637 B2 JP5184637 B2 JP 5184637B2
Authority
JP
Japan
Prior art keywords
lens
light
input
output
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010518989A
Other languages
English (en)
Other versions
JPWO2010001734A1 (ja
Inventor
寿樹 西澤
功雄 西
祐司 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Original Assignee
NTT Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp filed Critical NTT Electronics Corp
Priority to JP2010518989A priority Critical patent/JP5184637B2/ja
Publication of JPWO2010001734A1 publication Critical patent/JPWO2010001734A1/ja
Application granted granted Critical
Publication of JP5184637B2 publication Critical patent/JP5184637B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

本発明は、光波長多重通信において、異なる波長の光を分岐し又は結合することが可能な波長選択スイッチに関する。
光波長多重通信の普及に伴い、波長毎に光信号を合波又は分波する波長選択スイッチが光通信のキーデバイスとなっている。
図1は従来の波長選択スイッチの概略構成図である。入出力ポート101とは、入出力端100にある全ての入出力ポート(図1及び図2では入出力ポート101a〜101e)を示すものとする。また、導波路14は、ファイバアレイ140にある全ての導波路(図1及び図2では導波路14a〜14e)を示すものとする。
図1の波長選択スイッチ200は、焦点位置に配置された入出力端100の入出力ポート101から出力される光を平行光にするレンズアレイ102と、レンズアレイ102からの光を収束させる高開口数の第一レンズ103と、第一レンズ103と焦点位置を共通に配置された第二レンズ104と、第二レンズ104からの光を波長ごとに異なる角度に反射する分光素子105と、第二レンズ104の焦点位置に配置され分光素子105から第二レンズ104を透過した光を第二レンズ104に向けて任意の角度で反射するミラーアレイ106と、を備える(例えば、特許文献1〜3を参照。)。
これにより、ミラーアレイ106において任意の角度で反射された光は、ミラーアレイ106の個々のマイクロミラーの傾斜角度に応じて波長ごとに異なる入出力ポートに収束する。このように、第一レンズ103は、ミラーアレイ106で反射した光のうち分光素子105で再び反射して第二レンズ104を透過した光の角度を変えるとともに入出力ポート101からの光の光軸にオフセットを付与する機能を有している。
図2は、図1の反射型の分光素子105を透過型の分光素子105’に置き換えた波長選択スイッチ200’の概略構成図である。図2(a)は、x−z面での波長選択スイッチ200’を示し、図3(b)は、y−z面での波長選択スイッチ200’を示している。但し、図2では作図の都合で透過型分光素子105の入射角及び回折角が共に0度に近い状態に表現されているが、実際は入射角及び回折角共に45度に近い値である。図1の波長選択スイッチ200と同じ機能を有する部品には同じ符号が付されている。また、図2の第三レンズ104’は、分光素子105’からミラーアレイ106までの光に対して図1の第二レンズ104と同じ機能を持つ。
N入力1出力(Add型)波長選択光スイッチの場合、図2の波長選択スイッチ200’の入出力ポートの1つを出力ポートとし、他を入力ポートとすればよい。以下の説明では、出力ポート101c、入力ポート101a、入力ポート101b、入力ポート101d、入力ポート101eとして説明する。
ファイバアレイ140内の導波路14を波長多重化された光信号が入力ポート101から発散光として出射される。例えば入力ポート101bから発散光として出射された入力光(一点鎖線)は、レンズアレイ102に入射し平行光に変換され、第一レンズ103に入射する。第一レンズ103に入力光は集束光に変換され、第一結像位置Aで結像され、再び発散光となって第二レンズ104に入射し、再び平行光に変換され分光素子105に入射する。分光素子105に入力光は波長ごと分波され第三レンズ104’に入射し、集束光に変換されミラーアレイ106で波長ごとに結像される。例えば、マイクロミラー106cは、出力光を出力ポート101cに入射させるために必要な傾斜角度θmに傾斜し、出力光(実線)となって第三レンズ104’に発散光として入射する。第三レンズ104’で出力光は平行光に変換され分光素子105を透過し、第二レンズ104に入射して集束光に変換され、第一結像位置Aで結像される。第一結像位置Aで結像された出力光は発散光となって、第一レンズ103に入射し、平行光に変換されてレンズアレイ102に入射し、集束光に変換されて出力ポート101cに結合され、ファイバアレイ101を経由し伝送される。
従来の波長選択スイッチは2つの共焦点光学系から成っている。レンズアレイ102及び第一レンズ103から構成される共焦点光学系Iと、その後段の共焦点光学系IIである。共焦点光学系IIは、図1の場合、第二レンズ104及び分光素子105で構成されており、図2の場合、第二レンズ、分光素子105及び第三レンズ104’で構成されている。レンズアレイ102の焦点距離をfo、第一レンズ103の焦点距離をf1としたとき共焦点光学系Iの像倍率M1はf1/foとなる。ここで像倍率とは横倍率の絶対値である。ファイバのモードフィールド径をωoとすると、第一結像位置Aでのビームスポットサイズω1は数式1となる。
ω1=ωo・fl/fo (1)
図1の場合光が同一レンズを通過し、図2の場合光がレンズ特性が同じ2枚のレンズを通過するので共焦点光学系IIの像倍率=1となり、第一結像位置Aとミラーアレイ106でのビームスポットサイズは同じになる。すなわち、ミラーアレイ106上のビームスポットサイズωmは数式1’で表される。
ωm=ωo・f1/fo (1’)
更に分光素子105上でのビームサイズωgは数式1と下記のガウシアンビームの公式より数式2となる。
ωg=λ・f2/(π・ω1) (ガウシアンビームの公式)
ωg=λ・f2・fo/(π・f1・ωo) (2)
ここで、f2:第二レンズ104及び第三レンズ104’の焦点距離である。
特開2003−101479号公報 特開2006−276216号公報 特開2006−284740号公報
このような波長選択スイッチは、第一レンズ103及び第二レンズ104の焦点距離を短くすることで小型化を図ることができる。ここで、焦点距離を短くすることについて検討する。
(第一レンズ103の焦点距離)
ミラーアレイ106で反射された光はマイクロミラー106cの傾斜角度θmに対し、2θmの角度となって図1では第二レンズ104に入射し、図2では第三レンズ104’に入射する。この光はコリメート光に変換され図1では分光素子105で反射され再び第二レンズ104に入射し、図2では分光素子105を透過して第二レンズ104に入射する。図1では光が同じ第二レンズ104を透過しているため、また、図2では第二レンズ104と第三レンズ104は同じレンズであり焦点距離が同じであるため、光が第一結像位置Aに向かう角度も2θmとなる。更に第一レンズ103に向かう角度も2θmとなる。マイクロミラー106cの傾斜角度θmで隣接ポートヘ切り替えようとした場合、ファイバアレイ140及びレンズアレイ102のピッチPfは数式3となる。
Pf=tan(2θm)・f1 (3)
第一レンズ103の焦点距離f1を短くすればピッチPfが小さくなる。しかし、ファイバアレイ140及びレンズアレイ102のピッチPfを小さくすることは製造が難しくなる。一方、数式3では、マイクロミラーの傾斜角度θmを大きくすることで、ピッチPfを維持して焦点距離f1を短くすることができるが、傾斜角度θmには限度があるため、ピッチPfを維持して焦点距離f1を短くすることは困難である。このため、第一レンズ103の焦点距離f1を所定の長さ以上にしておく必要があった。
(第二レンズ104の焦点距離)
ここで、XZ面から見た波長選択スイッチ200’を図2(a)に示す。分光素子105に所定の角度で入射した入力光(一点鎖線)は回折され、各波長間隔dλに分波され、それぞれ所定の回折角度で第三レンズ104’に入射し、ミラーアレイ106上で結像する。図2(a)では出力光を省略している。中心波長をλo、波長間隔をdλとすれば、隣接波長はλo+dλ、λo−dλと表現できる。ミラーアレイ106のマイクロミラー106cのピッチPmは、λoとλo−dλの回折角度差dβとし、第三レンズ104’の焦点距離f2とした場合、数式4で表すことができる。
Pm=tan(dβ)・f2 (4)
ピッチPmを縮小することは、波長選択スイッチとして波長透過帯域特性の悪化及びポート間クロストークの悪化に影響を及ぼす上、マイクロミラー106cのピッチPmを縮小するのは製造上困難である。このため、ピッチPmを一定以上にしておく必要がある。このため、第二レンズ104の焦点距離f2を小さくしようとすれば、tan(dβ)の値を大きくする必要がある。
回折方程式を下に示す。
g(sinα+sinβ)=m・λ (回折格子方程式)
ここで、g:格子ピッチ、m:回折次数、α:入射角、β:回折角である。
回折方程式から、β=arcsin(m・λ/g−sinα)、dβ=m・dλ/(g・cosβ)であるから、格子ピッチgを縮小することで回折角変化dβを拡大することができる。
しかし、回折格子の格子ピッチgを縮小することは製造困難であり歩留り低下や高価格化を招く。また、格子ピッチgを縮小しても、回折格子方程式の関係より、光は回折格子への入射角度及び回折角度が格子面の法線から大きく傾斜して回折面に近づいた入出射角度となり、回折効率の低下と偏波依存性を招く。このため、格子ピッチgを縮小して回折角度βを拡大することは困難である。
一方、分光素子を複数使用する方法もあるが、光軸調整が難しく、偏波依存損失及び挿入損失が大きくなり、回折角度βを拡大することは困難である。
このように、dβまたはtan(dβ)を大きくすることが困難であるため、第二レンズ104の焦点距離f2を縮小することは難しい。以上の説明のように、第一レンズ103の焦点距離f1及び第二レンズ104の焦点距離f2を短くすることは困難のため、波長選択スイッチを小型化することが困難という課題があった。
(他の課題)
第一レンズ103の焦点距離f1を短くすると第一結像位置A及びミラーアレイ106でのビームスポットサイズが大きくなる。このため、マイクロミラーの面積を拡大しなければならず、ミラーアレイ106が大きくなり、波長選択スイッチを小型化することが困難という課題もある。また第二レンズ104の焦点距離f2を縮小すると、数式2より分光素子105上を照射するビームサイズが縮小する。これにより波長分解能が低下するため、波長選択スイッチを小型化することが困難という課題もあった。更に、第一結像位置Aのビームスポットサイズω1を変えずに第二レンズ104の焦点距離f2を縮小すると、ミラーアレイ106上の線分散は比例して縮小する。このため、隣接波長間隔を維持するためにミラーアレイ106の間隔を比例して縮小する必要があった。一方で、ミラーアレイ106上のビームスポットサイズωmは第一結像位置Aのビームスポットサイズω1と同じなので、ミラーアレイ106の間隔が縮小した場合、通過帯域特性及び遮断特性急峻度が劣化するという問題があり、波長選択スイッチを小型化することが困難であるという課題があった。
そこで、本発明は、上記の課題を解決し、小型の波長選択スイッチを提供することを目的とする。
上記目的を達成するために、本発明に係る波長選択スイッチは、第一レンズ及び第二レンズの焦点距離を短縮する光路調整用光学部品を配置することとした。
具体的には、本発明に係る波長選択スイッチは、一以上の波長を含む入力光が入力される複数の入力ポート及び出力光が出力される少なくとも一つの出力ポートが横並び直線状に設けられた入出力端と、前記入出力端に対向して配置され、前記入力ポートからのそれぞれの入力光を平行光にし、出力光を前記出力ポートに結合させるレンズアレイと、前記レンズアレイを間にして前記入出力端の反対側に配置され、前記レンズアレイからのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にして前記レンズアレイに結合する第一レンズと、前記第一レンズを間にして前記レンズアレイの反対側に配置され、前記第一レンズからのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して前記第一レンズに結合する第二レンズと、前記第二レンズを間にして前記第一レンズの反対側に配置され、入力光を受ける面上に前記入出力端の前記入力ポート及び前記出力ポートの配列方向に平行な複数の格子が形成された格子面でそれぞれの入力光を波長ごと異なる角度で反射回折させて再び前記第二レンズに結合し、出力光を入力光と同様に波長ごとに異なる角度で反射回折させて前記第二レンズに結合する分光素子と、前記第二レンズを間にして前記分光素子の反対側であり、前記第一レンズと前記第二レンズとを結ぶ中心軸を外して配置され、前記分光素子で反射されて前記第二レンズで波長毎に収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、前記第二レンズ、前記分光素子、再度前記第二レンズ、前記第一レンズ、前記レンズアレイの順で経由させて前記出力ポートへ結合させるミラーアレイと、前記第二レンズから前記ミラーアレイへの入力光及び前記ミラーアレイから前記第二レンズへの出力光の共通の光路に配置され、前記第一レンズ及び前記第二レンズの焦点距離を短縮する光路調整用光学部品と、を備える。
本発明に係る波長選択スイッチの他の構成は、一以上の波長を含む入力光が入力される複数の入力ポート及び出力光が出力される少なくとも一つの出力ポートが横並び直線状に設けられた入出力端と、前記入出力端に対向して配置され、前記入力ポートからのそれぞれの入力光を平行光にし、出力光を前記出力ポートに結合させるレンズアレイと、前記レンズアレイを間にして前記入出力端の反対側に配置され、前記レンズアレイからのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にして前記レンズアレイに結合する第一レンズと、前記第一レンズを間にして前記レンズアレイの反対側に配置され、前記第一レンズからのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して前記第一レンズに結合する第二レンズと、前記第二レンズを間にして前記第一レンズの反対側に配置され、入力光を受ける面上に前記入出力端の前記入力ポート及び前記出力ポートの配列方向に平行な複数の格子が形成された格子面でそれぞれの入力光を波長ごとに異なる角度で透過回折させ、出力光を入力光と同様に波長ごと異なる角度で透過回折させて前記第二レンズに結合する分光素子と、前記分光素子を間にして前記第二レンズの反対側に配置され、波長毎に分離された前記分光素子からのそれぞれの入力光を波長毎に収束させ、出力光を平行光にして前記分光素子へ結合する第三レンズと、前記第三レンズを間にして前記分光素子の反対側に配置され、前記第三レンズで収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、前記第三レンズ、前記分光素子、前記第二レンズ、前記第一レンズ、前記レンズアレイの順で経由させて前記出力ポートへ結合させるミラーアレイと、前記第三レンズから前記ミラーアレイへの入力光及び前記ミラーアレイから前記第三レンズへの出力光の共通の光路に配置され、前記第一レンズ及び前記第二レンズの焦点距離を短縮する光路調整用光学部品と、を備える。
像倍率M倍の光路調整用光学部品を第二レンズ又は第三レンズとミラーアレイとの間に配置することで、分光素子、ファイバアレイ、ミラーアレイのピッチを既存のままで第一レンズ及び第二レンズの焦点距離を1/Mに縮小できる。従って、光路長を縮小でき、小型の波長選択光スイッチを提供できる。さらに光路長が縮小したことにより、光路変換に用いる反射ミラー類の減少及び筐体の小型化による低コスト化が実現できる。
本発明に係る波長選択スイッチの前記光路調整用光学部品は、前記入力光が入射する側から順に光路調整用第一レンズ及び光路調整用第二レンズを有しており、前記光路調整用第一レンズ及び前記光路調整用第二レンズで共焦点光学系を構成している。2枚のレンズの焦点距離で像倍率Mを調整できる。
本発明に係る波長選択スイッチの前記光路調整用第二レンズは、前記光路調整用第一レンズより長焦点である。像倍率M>1とすることができる。また、前記光路調整用第一レンズは凸レンズまたは凹レンズとすることができる。
ここで、入出力端において入力ポートが中心にあり、出力ポートがその両側に並んでいる場合、入力ポートから最外郭の出力ポートまでの距離Pnは数式4’となる。
Pn=tan(2θm)・f1 (4’)
n本の出力ポートは中心付近の入力ポートから所定の間隔で配置されているため、出力ポート数を増やすためには数式4’から分かるようにミラーアレイのマイクロミラーの最大傾斜角度を増やすか、第1レンズの焦点距離を長くする必要がある。しかし、マイクロミラーの傾斜角度には限度がある。また、第1レンズの焦点距離を長くすると波長選択スイッチが大型化する。一方、各ポート間ピッチを縮小して出力ポート数を増加させれることもできるが、ファイバアレイ及びレンズアレイを狭ピッチ化することが困難であり、歩留り低下やコストアップも考えられる。このため、小型化した波長選択スイッチの出力ポート数を増やすことも課題となっていた。
そこで、本発明に係る波長選択スイッチは、像倍率をMの光路調整用光学部品の挿入により1/Mにした第一レンズの焦点距離を元に戻し、レンズアレイの焦点距離をM倍にすることとした。ここで、M>1とする。
通常レンズアレイ及び第一レンズの焦点距離は、第二レンズの焦点距離に対して非常に短い。このため、レンズアレイの焦点距離がM倍になっても第二レンズの焦点距離を1/Mにする効果で波長選択スイッチを小型化できる。また、1/Mにした第一レンズの焦点距離を元に戻しても、第二レンズの焦点距離を1/Mにする効果で波長選択スイッチを小型化できる。従って、本発明は、出力ポート数の多い小型の波長選択スイッチを提供することができる。
本発明は、低コストで小型の波長選択スイッチを提供することができる。
従来の波長選択スイッチの概略構成図である。 従来の波長選択スイッチの概略構成図である。(a)はx−z面における概略構成図であり、(b)はy−z面における概略構成図である。 本発明に係る波長選択スイッチの概略構成図である。(a)はx−z面における概略構成図であり、(b)はy−z面における概略構成図である。 本発明に係る波長選択スイッチの概略構成図である。(a)はx−z面における概略構成図であり、(b)はy−z面における概略構成図である。 本発明に係る波長選択スイッチの概略構成図である。(a)はx−z面における概略構成図であり、(b)はy−z面における概略構成図である。 本発明に係る波長選択スイッチの概略構成図である。(a)はx−z面における概略構成図であり、(b)はy−z面における概略構成図である。
以下、具体的に実施形態を示して本発明を詳細に説明するが、本願の発明は以下の記載に限定して解釈されない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(第1実施形態)
図3に、第一実施形態の波長選択スイッチ301の概略構成図を示す。図3(a)は、x−z面での波長選択スイッチ301を示し、図3(b)は、y−z面での波長選択スイッチ301を示している。また、以下の説明で、入出力ポート11とは、入出力端10にある全ての入出力ポート(図3及び図4では入出力ポート11a〜11c)を示すものとする。また、導波路14とは、ファイバアレイ140にある全ての導波路(図3及び図4では導波路14a〜14c)を示すものとする。なお、本実施例では、入出力ポート11のうち、11a及び11cを入力光が入力される入力ポートとし、入出力ポート11bを出力光が出力される出力ポートとして説明する。
波長選択スイッチ301は、反射型の構成、つまり、分光素子60で光を反射回折する構成である。波長選択スイッチ301は、一以上の波長を含む入力光が入力される複数の入出力ポート11a、入出力ポート11c及び出力光が出力される少なくとも一つの入出力ポート11bが横並び直線状に設けられた入出力端10と、入出力端10に対向して配置され、入出力ポート11a及び入出力ポート11cからのそれぞれの入力光を平行光にし、出力光を入出力ポート11bに結合させるレンズアレイ20と、レンズアレイ20を間にして入出力端10の反対側に配置され、レンズアレイ20からのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にしてレンズアレイ20に結合する第一レンズ30と、第一レンズ30を間にしてレンズアレイ20の反対側に配置され、第一レンズ30からのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して第一レンズ30に結合する第二レンズ50と、第二レンズ50を間にして第一レンズ30の反対側に配置され、入力光を受ける面上に入出力端10の入出力ポート11の配列方向に平行な複数の格子が形成された格子面でそれぞれの入力光を波長ごと異なる角度で反射回折させて再び第二レンズ50に結合し、出力光を入力光と同様に波長ごとに異なる角度で反射回折させて第二レンズ50に結合する分光素子60と、第二レンズ50を間にして分光素子60の反対側であり、第一レンズ30と第二レンズ50とを結ぶ中心軸を外して配置され、分光素子60で反射されて第二レンズ50で波長毎に収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、第二レンズ50、分光素子60、再度第二レンズ50、第一レンズ30、レンズアレイ20の順で経由させて入出力ポート11bへ結合させるミラーアレイ80と、第二レンズ50からミラーアレイ20への入力光及びミラーアレイ20から第二レンズ50への出力光の共通の光路に配置され、第一レンズ30及び第二レンズ50の焦点距離を短縮する光路調整用光学部品90と、を備える。
入出力端10は、ファイバアレイ140の入出力ポート11が設けられた端面である。図3では、入力光が入力される入出力ポート11a及び入出力ポート11cと2つ記載しているが、これ以上又はこれ以下の任意の数で配置可能である。同様に入出力ポート11bも1つに限らず複数であってもよい。入出力ポート11には、例えば、ポートごとに導波路14a〜14cが接続される。また、入出力ポート11a及び入出力ポート11cは、それぞれ導波路14を伝搬する一以上の波長を含む光を入力する。入出力ポート11bは、導波路14bへ光を出力する。また、入出力ポート11bは、横並び直線状に設けられる。
レンズアレイ20としては、例えば、マイクロレンズアレイがある。
第一レンズ30及び第二レンズ50としては、例えば、凸レンズ、光学収差を低減させるために適切な凸レンズと凹レンズを接着して組み合わせたダブレットレンズ、及び、トリプレットレンズのように複数のレンズを組み合わせたレンズがある。
分光素子60は、例えば、反射型回折格子である。分光素子60は、y軸方向の格子がx軸方向に平行に複数形成された格子面62を持つ。例えば、格子面62は形成された複数の凹凸形状の溝であってもよいし、光を反射する部分と吸収する部分とを交互に配置してもよい。これにより、図3(a)に示すように、第二レンズ50を透過した光は、分光素子60で反射回折する。すなわち、当該光は分光素子60の格子面62からxz面内で波長ごとに異なる回折角度で出射する。なお、当該光はz軸方向にはそのまま反射される。図3では簡単のため分光素子60の格子面62は、第二レンズ50に正対しているが、一般的には格子面62の法線がxz面内にあるように光軸(z軸)に対して傾斜している。
ミラーアレイ80は、マイクロミラー80a〜80cを有する。入力光に含まれる波長数に応じて波長ごとに複数配置するとよい。ミラーアレイ80は、マイクロミラー毎に傾斜角度θmを変えることができる。マイクロミラーとしては、例えば、MEMS(Micro Electro Mechanical Systems)ミラーを適用できる。マイクロミラー80a〜80cはミラーピッチPmでX方向に配列されている。
レンズアレイ20及び第一レンズ30で入出力端10から第一結像位置Aまでの共焦点光学系Iが構成される。また、第二レンズ50及び分光素子60で第一結像位置Aから第二結像位置Bまでの共焦点光学系IIが構成される。
光路調整用光学部品90は、第二レンズ50からミラーアレイ80への入力光及びミラーアレイ80から第二レンズ50への出力光の共通の光路に配置される。光路調整用光学部品90の像倍率Mは入力光に対して1以上である。また、光路調整用光学部品90は、入力光が入射する側から順に光路調整用第一レンズ91及び光路調整用第二レンズ92を有しており、光路調整用第一レンズ91及び光路調整用第二レンズ92で第二結像位置Bからミラーアレイ80までの共焦点光学系IIIを構成している。
次に、波長選択スイッチ301の動作を図3(a)、図3(b)で説明する。入力光を一点鎖線で示し、出力光を実線で示す。なお、図3(a)では、出力光を省略している。また、図3(b)では、ミラーアレイ80から分光素子60までの入力光を破線で示し、出力光を点線で示している。導波路14を伝搬する波長多重された光は、入力ポート11aから入力光として出射され、レンズアレイ20で平行光になり、第一レンズ30によって収束され、第一結像位置Aで結像され、再び発散光となって第二レンズ50に入射し、再び平行光に変換され分光素子60に入射する。それぞれの入力光は、分光素子60で回折反射される。すなわち、当該光は分光素子60の回折面62でxz面内に波長毎に異なる角度で反射回折する。図3(a)で、分光素子60で波長毎に分波された光を点線、一点鎖線、長破線で示している。分光素子60で反射回折され、所定の波長ごと分波された光は第二レンズ50で収束され、第二結像位置Bに結像する。
第二結像位置Bを通過した入力光は再び拡散光となって光路調整用第一レンズ91に入射し平行光に変換され光路調整用第二レンズ92に入射する。このとき、x軸方向において短波長の光路と長波長の光路が逆転する。さらに入射光は光路調整用第二レンズ92で収束光に変換され、ミラーアレイ80のX方向に所定間隔で配置されるマイクロミラー80a〜80c上で結像する。
すなわち、入出力ポート11からのいずれの入力光も、分光素子60で波長毎に分光され、それぞれマイクロミラー80a〜80cのいずれかに入射する。例えば、入力光は3つの波長(λ1、λ2、λ3)が波長多重された光である場合、入出力ポート11aからの入力光のうち波長λ1の光はマイクロミラー80aに入射し、波長λ2の光はマイクロミラー80bに入射し、波長λ3の光はマイクロミラー80cに入射する。
いずれかの波長の反射光が入出力ポート11bへ結合されるようにマイクロミラー80a〜80cの傾斜角度θmを変え、反射光の方向を調整する。反射光の角度はマイクロミラー80a〜80cの傾斜角度θmの2倍の角度(2θm)である。反射光は、拡散光となって再び光路調整用第二レンズ92に入射し平行光に変換され光路調整用第一レンズ91に入射する。ここで、再びx軸方向において短波長と長波長の光路が逆転し、収束光となって第二結像位置Bで結像する。第二結像位置Bに結像した反射光は拡散光となって第二レンズ50に入射し、平行光に変換され分光素子60に入射し、反射回折されて合波され、第二レンズ50に入射し収束光となって第一結像位置Aに結像する。第一結像位置Aに結像した光信号は再び拡散光となって第一レンズ30に入射し平行光に変換され、入出力ポート11bに対応するレンズアレイ20に入射し、入出力端10で結像し、導波路14bを伝送していく。
(第一レンズ及び第二レンズの焦点距離)
光路調整用光学部品90が光路調整用第一レンズ91及び光路調整用第二レンズ92で構成される場合、光路調整用光学部品90の像倍率Mは数式5となる。
M=f4/f3 (5)
ここで、f3:光路調整用第一レンズ91の焦点距離、f4:光路調整用第二レンズ92の焦点距離である。
像倍率MはM>1となるように、光路調整用第二レンズ92は、光路調整用第一レンズ91より長焦点とする。すなわちf4>f3という関係になるように光路調整用第一レンズ91及び光路調整用第二レンズ92を選択する必要がある。像倍率Mの光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置することで、第一レンズ30の焦点距離f1及び第二レンズ50の焦点距離f2をそれぞれ1/Mに縮小できる。すなわち、第一レンズ焦点距離がf1/M、第二レンズ焦点距離がf2/Mとなるため、波長選択スイッチ301を小型化することができる。
(ミラーアレイ上のビームスポットサイズ)
共焦点光学系Iのレンズアレイ20の焦点距離をfo、第一レンズの焦点距離をf1/Mとした場合、共焦点光学系Iの像倍率M1は、M1=f1/(M・fo)となる。ファイバのモードフィールド径をωoとすると、第一結像位置Aでのビームスポットサイズω1は数式6となる。
ω1=ωo・f1/(M・fo) (6)
更に、共焦点光学系IIは同一レンズを通過するため像倍率は1倍なので、第二結像位置Bでのビームスポットサイズω2は第一結像位置Aでのビームスポットサイズω1と同じである。次に、ミラーアレイ上のビームスポットサイズωmは光路調整用光学部品90によりM倍に像倍されるので数式7となる。
ωm=M・ωo・f1/(M・fo)=ωo・f1/fo (7)
数式7は従来例の数式(1’)と同じになる。像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置して第一レンズ30及び第二レンズ50の焦点距離を1/Mに縮小してもミラーアレイ80上のビームスポットサイズは変化せず、マイクロミラー80a〜80cを大きくする必要がない。従って、ミラーアレイ80の大きさを保ったまま、光路調整用光学部品90で第一レンズ30及び第二レンズ50の焦点距離を短くし、波長選択スイッチ301を小型化することができる。
(分光素子上のビームスポットサイズ)
第一結像位置Aでのビームスポットサイズは数式6であり、前述のガウシアンビームの公式により分光素子上のビームサイズωgは数式8となる。
ωg=λ・fo・M・f2/(π・f1・ωo・M)
=λ・fo・f2/(π・f1・ωo) (8)
数式8は従来例の数式2と同じになる。像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置しても分光素子60上のビームスポットサイズは変化せず、波長分解能も変化しない。従って、波長分解能を保ったまま、光路調整用光学部品90で第一レンズ30及び第二レンズ50の焦点距離を短くし、波長選択スイッチ301を小型化することができる。
(ファイバアレイ及びレンズアレイのピッチ)
図3(b)のように、反射光を出力するポートを切り替えるときのミラーアレイ80のマイクロミラーの傾斜角度θmとする。反射光の光軸は入射光の光軸に対して2θmの角度を持つ。反射光は光路調整用第二レンズ92でコリメート光に変換される。光路調整用第二レンズ92で入射光の光軸から反射光の光軸までのY軸方向距離をdY、光路調整用第二レンズ92の焦点距離をf4とすると、Y軸方向距離dYは数式9のようになる。
dY=tan(2θm)・f4 (9)
また、第一レンズ30の光線画角θ1、ならびにファイバアレイ140及びレンズアレイ20のピッチPfは数式10となる。
Pf=tanθ1・(f1/M)
θ1=arctan(Pf・M/f1) (10)
光線画角θ1、第二レンズ50の光線画角θ2、第三レンズ70の光線画角θ2’、光路調整用第一レンズ91の光線画角θ3は同位角なので数式10は以下のようになる。
θ3=arctan(Pf・M/f1) (10’)
更に距離dYは光路調整用第一レンズ91の焦点距離をf3とすると次式となる。
dY=tan{arctan(Pf・M/f1)}・f3 (11)
数式9及び数式11より
tan{arctan(Pf・M/f1)}・f3=tan(2θm)・f4
Pf=tan(2θm)・f1・f4/(f3・M) (12)
数式12に数式5を代入するとピッチPfは次式となる。
Pf=tan(2θm)・f1 (13)
数式13は従来例の数式3と同じになる。像倍率M倍の第三共焦点光学系を第二共焦点光学系とミラーアレイの間に配置してもファイバアレイ140及びレンズアレイ20のピッチPfは変化しない。従って、ファイバアレイ140及びレンズアレイ20の大きさを保ったまま、光路調整用光学部品90で第一レンズ30及び第二レンズ50の焦点距離を短くし、波長選択スイッチ301を小型化することができる。
(ミラーアレイのピッチ)
図3(a)のように、分光素子60に所定の角度で入射した入力光は回折され、波長間隔dλに分波され所定の回折角度となり第二レンズ50に入射し第二結像位置Bに結像する。この第二結像位置Bは共焦点光学系IIIによりミラーアレイ80が映し出される実像位置である。
ここで、分波された入力光の中心波長をλo、波長間隔をdλとすれば、隣接波長はλo+dλ、λo−dλと表現できる。図3(a)では、中心波長λoの入力光を一点鎖線で示し、隣接波長λo+dλ及び隣接波長λo−dλの入力光をそれぞれ点線及び長破線で示している。例えば、中心波長λoの入力光と隣接波長λo−dλの入力光との回折角度差をdβとすると、実像のミラーアレイ80’のピッチPm’は数式14で表すことができる。
Pm’=tan(dβ)・f2/M (14)
一方、ミラーアレイ80のピッチPmは共焦点光学系IIIによりM倍に変換されるため、数式15のようになる。
Pm=M・Pm’=tan(dβ)・f2 (15)
数式15は従来例の数式4と同じになる。像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置して第一レンズ30及び第二レンズ50の焦点距離を1/Mに縮小しても、ミラーアレイ80に求められるピッチPmは変化しない。従って、ミラーアレイ80のピッチPmを狭くせず、光路調整用光学部品90で第一レンズ30及び第二レンズ50の焦点距離を短くし、波長選択スイッチ301を小型化することができる。
以上のように、像倍率M倍の光路調整用光学部品90を第二結像位置Bとミラーアレイ80の間に配置することで、第一レンズ30及び第二レンズ50の焦点距離を1/Mに縮小でき、光路長が縮小された小型波長選択光スイッチ301を提供できる。また、光路長が縮小したことにより、所定の筐体内に実装する際必要になる光路変換用ミラー部品類の減少及び筐体の小型化による部材コストの低減が実現できる。更に、従来使用していた分光素子、ファイバアレイ、レンズアレイ、ミラーアレイの各ピッチを縮小せずに小型化が図れるため、低コスト化が実現できる。さらに光路長が縮小したことにより、光路変換に用いる反射ミラー類の減少及び筐体の小型化による低コスト化が実現できる。
(第2実施形態)
図4に、第2実施形態の波長選択スイッチ302の概略構成図を示す。図4(a)は、x−z面での波長選択スイッチ302を示し、図4(b)は、y−z面での波長選択スイッチ302を示している。図4において図3と同じ符号のものは相互に同じものであるため、その部分の説明は省略する。なお、本実施例では、入出力ポート11のうち、11a及び11cを入力光が入力される入力ポートとし、入出力ポート11bを出力光が出力される出力ポートとして説明する。
波長選択スイッチ302は、透過型の構成、つまり、分光素子65が光を透過回折する構成である。第2実施形態の波長選択スイッチ302は、一以上の波長を含む入力光が入力される複数の入出力ポート11a、入出力ポート11c及び出力光が出力される少なくとも一つの入出力ポート11bが横並び直線状に設けられた入出力端10と、入出力端10に対向して配置され、入出力ポート11a及び入出力ポート11cからのそれぞれの入力光を平行光にし、出力光を入出力ポート11bに結合させるレンズアレイ20と、レンズアレイ20を間にして入出力端10の反対側に配置され、レンズアレイ20からのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にしてレンズアレイ20に結合する第一レンズ30と、第一レンズ30を間にしてレンズアレイ20の反対側に配置され、第一レンズ30からのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して第一レンズ30に結合する第二レンズ50と、第二レンズ50を間にして第一レンズ50の反対側に配置され、入力光を受ける面上に入出力端10の入出力ポート11の配列方向に平行な複数の格子が形成された格子面67でそれぞれの入力光を波長ごとに異なる角度で透過回折させ、出力光を入力光と同様に波長ごと異なる角度で透過回折させて第二レンズ50に結合する分光素子65と、分光素子65を間にして第二レンズ50の反対側に配置され、波長毎に分離された分光素子65からのそれぞれの入力光を波長毎に収束させ、出力光を平行光にして分光素子65へ結合する第三レンズ70と、第三レンズ70を間にして分光素子65の反対側に配置され、第三レンズ70で収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、第三レンズ70、分光素子65、第二レンズ50、第一レンズ30、レンズアレイ20の順で経由させて入出力ポート11bへ結合させるミラーアレイ80と、第三レンズ70からミラーアレイ80への入力光及びミラーアレイ80から第三レンズ70への出力光の共通の光路に配置され、第一レンズ30及び第二レンズ50の焦点距離を短縮する光路調整用光学部品90と、を備える。
分光素子65は、例えば、透過型回折格子である。分光素子65の格子面67は図3の格子面62と同様である。そのため、図4(a)に示すように、第二レンズ50を透過した入力光は、分光素子65で透過回折する。すなわち、入力光は分光素子65の格子面67からxz面内で波長ごとに異なる回折角度で出射する。
波長選択スイッチ302は、第二レンズ50と第三レンズ70が共焦点光学系IIを構成する。第三レンズ70は第二レンズ50と同じ特性を持っており、第二レンズ50と分光素子65との距離と等しい距離に配置される。
次に、波長選択スイッチ302の動作を図4(a)、図4(b)で説明する。入力光を一点鎖線で示し、出力光を実線で示す。なお、図4(a)では、出力光を省略している。入力光が分光素子65に入射するまで及び出力光が入出力ポート11bに結合するまでは図3の波長選択スイッチ301と同様である。それぞれの入力光は分光素子65の回折面62でxz面内に波長ごと異なる角度で透過回折され、所定の波長間隔で分波される。分波されたそれぞれの光は第三レンズ70で収束され、光路調整用光学部品90を経由して波長毎にミラーアレイ80のマイクロミラー80a〜80cに入射する。
ミラーアレイ80の動作及び光路調整用光学部品90の機能は図3の波長選択スイッチ301と同様である。従って、図3の波長選択スイッチ301で説明したように、像倍率M倍の光路調整用光学部品90を第二結像位置Bとミラーアレイ80の間に配置することで、第一レンズ30及び第二レンズ50の焦点距離を1/Mに縮小でき、光路長が縮小された小型波長選択光スイッチ302を提供できる。また、図3の波長選択スイッチ301で説明と同様に低コスト化が実現できる。
(第3実施形態)
図5に第3実施形態の波長選択スイッチ303の概略構成図を示す。図4の波長選択スイッチ302との違いは、光路調整用第一レンズ91の代替として光路調整用第一レンズ96を用いている点である。そのため全体構成の詳細と全体動作の説明は省略し光路調整用光学部品90の構成と動作について説明する。
図4の光路調整用第一レンズ91は凸レンズであるが、図5の光路調整用第一レンズ96は凹レンズである。光路調整用第二レンズ92は図4の第2実施形態と同様に凸レンズである。光路調整用光学部品90の像倍率は数式16となる。
M=f4/|f3| (16)
ここでf3:光路調整用第一レンズ96の焦点距離(凹レンズのため負値)、f4:光路調整用第二レンズ92の焦点距離である。
像倍率MがM>1となるように、光路調整用第二レンズ92の焦点距離は光路調整用第一レンズ96の焦点距離の絶対値より大とする。すなわちf4>|f3|の等位関係になるように光路調整用第一レンズ96および光路調整用第二レンズ92を選択する必要がある。光路調整用第一レンズ96は第二結像点Bと第三レンズ70の間であり、第二結像点Bから光路調整用第一レンズ96の焦点距離f3の絶対値分だけ離れた場所に設置される。また光路調整用第二レンズ92は光路調整用第一レンズ96とミラーアレイ80の間であり、光路調整用第一レンズ96よりf4−|f3|だけ離れて設置される。これにより第二結像点BのM倍の正立像がミラーアレイ80上に結像する。
図4の波長選択スイッチ302では第二結像点BのM倍の倒立像がミラーアレイ80上に結像するが、この点を除けば波長選択スイッチ302と波長選択スイッチ303の全体動作は同じである。
(実施例)
従来の波長選択スイッチと第2実施形態で説明した波長選択スイッチ302とを比較する。従来の波長選択光スイッチは、レンズアレイ焦点距離fo=1mm、第一レンズ焦点距離f1=10mm、第二レンズ焦点距離f2=150mmとした場合、ファイバアレイ入出射端からミラーアレイまでの光路長L=622mmとなる。それに対し、波長選択光スイッチ302は、共焦点光学系IIIの光路調整用第一レンズ91の焦点距離f3=5mm、光路調整用第二レンズ92の焦点距離f4=10mm、すなわち像倍率M=2倍とした場合、第一レンズ30及び第二レンズ50焦点距離が1/2に縮小されるので、第一レンズ30の焦点距離f1’=5mm、第二レンズ50の焦点距離f2’=75mmとなり、ファイバアレイ140の入出射端10からミラーアレイ80までの光路長L’=342mmとなる。よって、光路長を45%短縮することができ、波長選択光スイッチを小型化することができた。
(第4実施形態)
図6に、第4実施形態の波長選択スイッチ304の概略構成図を示す。図6(a)は、x−z面での波長選択スイッチ304を示し、図6(b)は、y−z面での波長選択スイッチ304を示している。図6において図3及び図4と同じ符号のものは相互に同じものであるため、その部分の説明は省略する。波長選択スイッチ304と図4の波長選択スイッチ302との違いは、波長選択スイッチ304が入出力端10、レンズアレイ20、及び第一レンズ30の代替として入出力端15、レンズアレイ25、及び第一レンズ35を備えている点である。
入出力端15は、入出力端10より入出力ポート数が多い。具体的には、入出力端15は、中心に入力ポート11lがあり、その両側に出力ポート(11h〜11k)と出力ポート(11m〜11p)がある。このため、レンズアレイ25もレンズアレイ20に比べてレンズ数が多い。また、レンズアレイ25の焦点距離はレンズアレイ20の焦点距離のM倍、すなわちfo・Mである。
第一レンズ35は幅の広がった出力ポート(11h〜11k、11m〜11p)に出力光を結合するため第一レンズ30より径が大きい。また、第一レンズ35の焦点距離は第一レンズ30の焦点距離のM倍、すなわち(f1/M)・M=f1である。なお、像倍率Mは数式5のように光路調整用第一レンズ91及び光路調整用第二レンズ92で調整することができる。
(マイクロミラーの傾斜角度と多ポート化との関係)
図6(b)よりマイクロミラーの最大傾斜角度をθmとすると、ミラーアレイ80での反射角度(出力光の出射角度)は2θmとなる。更に光路調整用第二レンズ92でコリメート光に変換される出力光のY方向の位置をdY、光路調整用第二レンズ92の焦点距離をf4とすると、以下の関係式になる。
dY=tan(2θm)・f4 (17)
また光路調整用第一レンズ91に入射する光線画角をθ3、光路調整用第一レンズ91の焦点距離をf3とすると、出力光のY方向の位置dYは以下の関係式になる。
dY=tan(θ3)・f3 (18)
数式17及び数式18から
tan(2θm)・f4=tan(θ3)・f3
θ3=2θm・f4/f3 (19)
数式19及び数式5から
θ3=2θm・M (20)
を導くことができる。光線画角θ1、θ2、θ2’、θ3は同位角なので数式20は以下のようになる。
θ1=2θm・M (21)
第1レンズ焦点距離をf1とすると、ポート切替可能な最外郭出力ポート距離Pnは 数式21から以下のようになる。
Pn=tan(2θm・M)・f1 (22)
数式22と数式4’とを比較すると、マイクロミラーの最大傾斜角度が同じでも、ポート切替可能な最外郭出力ポート距離PnがおよそM倍増す。従って、波長選択スイッチ304は第2実施形態の波長選択スイッチ302と比べてポートピッチやマイクロミラーの最大傾斜角度を変更せずに多ポート化が可能となる。
(ミラーアレイ上のビームスポットサイズ)
共焦点光学系Iのレンズアレイ21の焦点距離をfo・M、第1レンズ35の焦点距離をf1とした場合、共焦点光学系Iの像倍率M1は、M1=f1/(fo・M)となる。また、導波路14のモードフィールド径をωoとすると、第一結像位置Aでのビームスポットサイズω1は次式となる。
ω1=ωo・f1/(fo・M) (23)
更に、共焦点光学系IIは同じレンズの構成のため像倍率は1倍なので、第二結像位置Bでのビームスポットサイズω2は第一結像位置Aでのビームスポットサイズω1と同じになる。
次に、ミラーアレイ80上のビームスポットサイズωmは光路調整用光学部品90によりM倍の像に変換されるので次式となる。
ωm=M・ωo・f1/(fo・M)=ωo・f1/fo (24)
よって、数式24は数式1’と等価となる。これは、像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置し、レンズアレイ25の焦点距離を図4のレンズアレイ20の焦点距離のM倍に、第一レンズ35の焦点距離を図4の第一レンズ30の焦点距離のM倍にしてもミラーアレイ上のビームスポットサイズは変化しないことを意味する。従って、波長選択スイッチ304は、ミラーアレイ80のマイクロミラーを大きくする必要がなく、第2実施形態の波長選択スイッチ302の大きさを維持したまま入出力ポートを増やすことができる。
(分光素子上のビームスポットサイズ)
第一結像位置Aでのビームスポットサイズである数式23と第二レンズ50の焦点距離f2/Mをガウシアンビームの公式に代入すると、分光素子60上のビームサイズωgは次式となる。
ωg=λ・f2・fo・M/(π・ωo・f1・M)
=λ・fo・f2/(π・ωo・f1) (25)
数式25は数式2と等価となる。像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置し、レンズアレイ25の焦点距離を図4のレンズアレイ20の焦点距離のM倍に、第一レンズ35の焦点距離を図4の第一レンズ30の焦点距離のM倍にしても分光素子60上のビームサイズは変化しない。従って、波長選択スイッチ304は、第2実施形態の波長選択スイッチ302の波長分解能を維持したまま入出力ポートを増やすことができる。
(ミラーアレイのピッチ)
図6(a)のように、分光素子60に所定の角度で入射した入力光は回折され、波長間隔dλに分波され所定の回折角度となり第二レンズ50に入射し第二焦点位置Bに結像する。この第二焦点位置Bは共焦点光学系IIIによりミラーアレイ80が映し出される実像位置である。
ここで、分波された光信号の中心波長をλo、波長間隔をdλとすれば、隣接波長はλo+dλ、λo−dλと表現できる。図3(a)で説明したように、実像のミラーアレイ80’のピッチPm’は次式で表すことができる。
Pm’=tan(dβ)・f2/M (26)
また、ミラーアレイ80のピッチPmは共焦点光学系IIIによりM倍に変換されるため、次式で表すことができる。
Pm=M・Pm’=tan(dβ)・f2 (27)
数式27は数式15と等価となる。これは、像倍率M倍の光路調整用光学部品90を共焦点光学系IIとミラーアレイ80の間に配置し、レンズアレイ25の焦点距離を図4のレンズアレイ20の焦点距離のM倍に、第一レンズ35の焦点距離を図4の第一レンズ30の焦点距離のM倍にしてもミラーアレイのピッチは変化しないことを意味する。従って、波長選択スイッチ304は、ミラーアレイ80を大きくする必要がなく、第2実施形態の波長選択スイッチ302の大きさを維持したまま入出力ポートを増やすことができる。
なお、第4実施形態の波長選択スイッチ304も第2実施形態の波長選択スイッチ302に対する第1実施形態の波長選択スイッチ301と同様に分光素子で光路を折り返した構造とすることができる。
(実施例)
従来の波長選択スイッチと第4実施形態で説明した波長選択スイッチ304とを比較する。従来の波長選択光スイッチは、レンズアレイ焦点距離fo=0.5mm、第一レンズ焦点距離f1=25mm、第二レンズ焦点距離f2=150mm、ミラーアレイのマイクロミラーの最大傾斜角度±1.5degとした場合、ファイバアレイ入出射端からミラーアレイまでの光路長L=651mmとなる。また、中心の入力ポートから、最外郭出力ポート配置可能な位置までの距離Pn=1.31mmである。例えば、ポート間隔を0.25mmピッチとした場合、10の出力ポートを配置することができる。
一方、波長選択スイッチ304は、共焦点光学系IIIの光路調整用第一レンズ91の焦点距離f3=5mm、光路調整用第二レンズ92の焦点距離f4=10mm、すなわち像倍率M=2倍とした場合、レンズアレイの焦点距離がM倍され、第2レンズ焦点距離が1/Mに縮小されるので、レンズアレイ焦点距離fo’=1mm、第2レンズ焦点距離f2’=75mmとなり、ファイバアレイ140の入出射端10からミラーアレイ80までの光路長L’=382mmとなる。この光路長は、第2実施形態の波長選択スイッチ302の光路長L’=342より40mm長いだけであり、従来の波長選択スイッチの光路長を41%短縮でき、波長選択スイッチ304を小型化することができる。
さらに、中心の入力ポートから、最外郭出力ポート配置可能な位置までの距離Pn=2.62mmである。例えば、ポート間隔を0.25mmピッチとした場合、波長選択スイッチ304は20の出力ポートを配置することができ、小型で多ポート切換可能となる。
本発明の波長選択スイッチは、異なる波長の光を分岐することができ、光波長多重通信ネットワーク実現の際の波長多重用の光合分波回路や波長再配置型のadd−drop波長多重回路として適用できる。
200、200’、301、302、303、304:波長選択スイッチ
10、100:入出力端
20、102:レンズアレイ
30、103:第一レンズ
50、104:第二レンズ
60、65、105、105’:分光素子
62、67:格子面
70、104’:第三レンズ
80、106:ミラーアレイ
80’:実像のミラーアレイ
80a〜80c、80h〜80p、106a〜106c:マイクロミラー
90:光路調整用光学部品
91、96:光路調整用第一レンズ
92:光路調整用第二レンズ
101、101a〜101g:入出力ポート
11、11a〜11c、11h〜11p:入出力ポート
140:ファイバアレイ
14、14a〜14e、14h〜14p:導波路
A:第一結像位置
B:第二結像位置
I、II、III:共焦点光学系

Claims (6)

  1. 一以上の波長を含む入力光が入力される複数の入力ポート及び出力光が出力される少なくとも一つの出力ポートが横並び直線状に設けられた入出力端と、
    前記入出力端に対向して配置され、前記入力ポートからのそれぞれの入力光を平行光にし、出力光を前記出力ポートに結合させるレンズアレイと、
    前記レンズアレイを間にして前記入出力端の反対側に配置され、前記レンズアレイからのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にして前記レンズアレイに結合する第一レンズと、
    前記第一レンズを間にして前記レンズアレイの反対側に配置され、前記第一レンズからのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して前記第一レンズに結合する第二レンズと、
    前記第二レンズを間にして前記第一レンズの反対側に配置され、入力光を受ける面上に前記入出力端の前記入力ポート及び前記出力ポートの配列方向に平行な複数の格子が形成された格子面でそれぞれの入力光を波長ごと異なる角度で反射回折させて再び前記第二レンズに結合し、出力光を入力光と同様に波長ごとに異なる角度で反射回折させて前記第二レンズに結合する分光素子と、
    前記第二レンズを間にして前記分光素子の反対側であり、前記第一レンズと前記第二レンズとを結ぶ中心軸を外して配置され、前記分光素子で反射されて前記第二レンズで波長毎に収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、前記第二レンズ、前記分光素子、再度前記第二レンズ、前記第一レンズ、前記レンズアレイの順で経由させて前記出力ポートへ結合させるミラーアレイと、
    前記第二レンズから前記ミラーアレイへの入力光及び前記ミラーアレイから前記第二レンズへの出力光の共通の光路に配置され、前記第一レンズ及び前記第二レンズの焦点距離を短縮する光路調整用光学部品と、
    を備える波長選択スイッチ。
  2. 一以上の波長を含む入力光が入力される複数の入力ポート及び出力光が出力される少なくとも一つの出力ポートが横並び直線状に設けられた入出力端と、
    前記入出力端に対向して配置され、前記入力ポートからのそれぞれの入力光を平行光にし、出力光を前記出力ポートに結合させるレンズアレイと、
    前記レンズアレイを間にして前記入出力端の反対側に配置され、前記レンズアレイからのそれぞれの入力光を焦点に収束させて拡散し、出力光を平行光にして前記レンズアレイに結合する第一レンズと、
    前記第一レンズを間にして前記レンズアレイの反対側に配置され、前記第一レンズからのそれぞれの入力光を平行光にし、出力光を焦点に収束させた後に拡散して前記第一レンズに結合する第二レンズと、
    前記第二レンズを間にして前記第一レンズの反対側に配置され、入力光を受ける面上に前記入出力端の前記入力ポート及び前記出力ポートの配列方向に平行な複数の格子が形成された格子面でそれぞれの入力光を波長ごとに異なる角度で透過回折させ、出力光を入力光と同様に波長ごと異なる角度で透過回折させて前記第二レンズに結合する分光素子と、
    前記分光素子を間にして前記第二レンズの反対側に配置され、波長毎に分離された前記分光素子からのそれぞれの入力光を波長毎に収束させ、出力光を平行光にして前記分光素子へ結合する第三レンズと、
    前記第三レンズを間にして前記分光素子の反対側に配置され、前記第三レンズで収束された入力光が波長毎に入射し、それぞれの入力光が共用する波長毎のマイクロミラーを有しており、所望の入力光の所望の波長の光を出力光として反射し、前記第三レンズ、前記分光素子、前記第二レンズ、前記第一レンズ、前記レンズアレイの順で経由させて前記出力ポートへ結合させるミラーアレイと、
    前記第三レンズから前記ミラーアレイへの入力光及び前記ミラーアレイから前記第三レンズへの出力光の共通の光路に配置され、前記第一レンズ及び前記第二レンズの焦点距離を短縮する光路調整用光学部品と、
    を備える波長選択スイッチ。
  3. 前記光路調整用光学部品は、前記入力光が入射する側から順に光路調整用第一レンズ及び光路調整用第二レンズを有しており、前記光路調整用第一レンズ及び前記光路調整用第二レンズで共焦点光学系を構成していることを特徴とする請求項1又は2に記載の波長選択スイッチ。
  4. 前記光路調整用第二レンズは、前記光路調整用第一レンズより長焦点であることを特徴とする請求項3に記載の波長選択スイッチ。
  5. 前記光路調整用第一レンズは凸レンズまたは凹レンズであることを特徴とする請求項4に記載の波長選択スイッチ。
  6. 前記光路調整用光学部品の像倍率をMとしたとき、
    前記レンズアレイ及び前記第一レンズのそれぞれの焦点距離が、請求項1から5のいずれかに記載の前記レンズアレイ及び前記第一レンズの焦点距離のM倍であることを特徴とする請求項1から5のいずれかに記載の波長選択スイッチ。
JP2010518989A 2008-07-04 2009-06-18 波長選択スイッチ Expired - Fee Related JP5184637B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518989A JP5184637B2 (ja) 2008-07-04 2009-06-18 波長選択スイッチ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008175386 2008-07-04
JP2008175386 2008-07-04
PCT/JP2009/061117 WO2010001734A1 (ja) 2008-07-04 2009-06-18 波長選択スイッチ
JP2010518989A JP5184637B2 (ja) 2008-07-04 2009-06-18 波長選択スイッチ

Publications (2)

Publication Number Publication Date
JPWO2010001734A1 JPWO2010001734A1 (ja) 2011-12-15
JP5184637B2 true JP5184637B2 (ja) 2013-04-17

Family

ID=41465835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010518989A Expired - Fee Related JP5184637B2 (ja) 2008-07-04 2009-06-18 波長選択スイッチ

Country Status (5)

Country Link
US (1) US8391654B2 (ja)
EP (1) EP2299309B1 (ja)
JP (1) JP5184637B2 (ja)
CN (1) CN102077129B (ja)
WO (1) WO2010001734A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117714A1 (ja) * 2011-03-02 2012-09-07 オリンパス株式会社 波長選択スイッチ用光学ユニットおよび波長選択スイッチ
KR101858306B1 (ko) * 2011-06-17 2018-05-15 스미토모 덴키 고교 가부시키가이샤 광학 장치
US8693818B2 (en) 2011-09-15 2014-04-08 Nistica, Inc. Optical processing device
US8531756B2 (en) * 2011-09-15 2013-09-10 Nistica, Inc. Optical processing device
WO2013088586A1 (ja) * 2011-12-13 2013-06-20 オリンパス株式会社 波長選択スイッチ
CN102608710B (zh) * 2012-04-20 2014-06-04 武汉邮电科学研究院 基于lcos的波长选择开关及降低端口间串扰的方法
WO2014085748A1 (en) * 2012-11-28 2014-06-05 The Penn State Research Foundation Z-microscopy
US9319757B2 (en) * 2012-12-24 2016-04-19 Alcatel Lucent Optical wavelength-selective switch with a bank of wavelength convertors
ES2663239T3 (es) 2013-08-22 2018-04-11 Huawei Technologies Co., Ltd. Conmutador selectivo de longitud de onda
WO2017008208A1 (zh) * 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
CN114002197B (zh) * 2016-02-22 2024-07-19 株式会社日立高新技术 发光检测装置
JP6822319B2 (ja) * 2017-05-26 2021-01-27 三菱電機株式会社 波長多重光送信モジュール
US20190045174A1 (en) * 2018-03-29 2019-02-07 Intel Corporation Extended depth of focus integral displays
CN113766097A (zh) * 2020-06-05 2021-12-07 中兴通讯股份有限公司 摄像头、摄像头控制方法、终端、电子设备及存储介质
CN113031293A (zh) * 2021-03-17 2021-06-25 武汉光迅科技股份有限公司 一种波长选择系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257772A (ja) * 2004-03-09 2005-09-22 Nikon Corp オプティカルクロスコネクト装置、及び光路変更装置
JP2006133298A (ja) * 2004-11-02 2006-05-25 Nikon Corp 波長選択スイッチ
JP2006178207A (ja) * 2004-12-22 2006-07-06 Nikon Corp アッテネータ装置および光スイッチング装置
JP2007183370A (ja) * 2006-01-05 2007-07-19 Fujitsu Ltd 波長選択デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097859A (en) * 1998-02-12 2000-08-01 The Regents Of The University Of California Multi-wavelength cross-connect optical switch
US6657770B2 (en) 2001-06-22 2003-12-02 Lucent Technologies Inc. Programmable optical multiplexer/demultiplexer
US7164859B2 (en) * 2001-08-29 2007-01-16 Capella Photonics, Inc. Free-space dynamic wavelength routing systems with interleaved channels for enhanced performance
JP2006276216A (ja) 2005-03-28 2006-10-12 Fujitsu Ltd 光スイッチ
JP4493538B2 (ja) 2005-03-31 2010-06-30 富士通株式会社 波長選択スイッチ
JP2008224824A (ja) * 2007-03-09 2008-09-25 Ntt Electornics Corp 波長選択スイッチ
US8045854B2 (en) * 2008-02-07 2011-10-25 Jds Uniphase Corporation M×N wavelength selective optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257772A (ja) * 2004-03-09 2005-09-22 Nikon Corp オプティカルクロスコネクト装置、及び光路変更装置
JP2006133298A (ja) * 2004-11-02 2006-05-25 Nikon Corp 波長選択スイッチ
JP2006178207A (ja) * 2004-12-22 2006-07-06 Nikon Corp アッテネータ装置および光スイッチング装置
JP2007183370A (ja) * 2006-01-05 2007-07-19 Fujitsu Ltd 波長選択デバイス

Also Published As

Publication number Publication date
US20110103739A1 (en) 2011-05-05
JPWO2010001734A1 (ja) 2011-12-15
EP2299309B1 (en) 2013-12-11
EP2299309A1 (en) 2011-03-23
EP2299309A4 (en) 2012-11-14
WO2010001734A1 (ja) 2010-01-07
CN102077129A (zh) 2011-05-25
CN102077129B (zh) 2013-05-15
US8391654B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
JP5184637B2 (ja) 波長選択スイッチ
US7233716B2 (en) Optical switch
JP5726407B2 (ja) 特徴的な動作面を有する波長選択スイッチ
JP4394713B2 (ja) 波長選択スイッチ
WO2013038713A1 (ja) 光スイッチ
US10126556B2 (en) Light operation device
CN113740971B (zh) 光交换装置、重定向方法、可重构光分插复用器及系统
JP6172928B2 (ja) デジタルマイクロミラーデバイス(dmd)を用い、波長依存損失が低減した光学処理デバイス
JP2008224824A (ja) 波長選択スイッチ
US20050249458A1 (en) Wavelength selection device
JP6251202B2 (ja) 波長選択スイッチ
JP2009009073A (ja) 波長選択スイッチ
JP2011179979A (ja) ダブルパスモノクロメータ、波長選択光スイッチ、および光チャンネルモニタ
JP5192501B2 (ja) 波長選択スイッチ
US7161739B2 (en) Optical system, optical device including the same, and optical device designing method
US6798951B2 (en) Wavelength router with a transmissive dispersive element
WO2013088586A1 (ja) 波長選択スイッチ
JP4407382B2 (ja) 光フィルタ装置
JP2010134027A (ja) 波長選択スイッチ
JP4833932B2 (ja) 波長選択スイッチ
JP5508368B2 (ja) 波長選択スイッチ
KR101832874B1 (ko) 광 교차연결 장치
JP6225075B2 (ja) 波長選択スイッチ
CN115085815A (zh) 波长选择交换装置以及相关方法
JP2012173720A (ja) 波長選択スイッチ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5184637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees