JP2005249678A - Sensor for sensing conductor defective in electric wire - Google Patents

Sensor for sensing conductor defective in electric wire Download PDF

Info

Publication number
JP2005249678A
JP2005249678A JP2004062700A JP2004062700A JP2005249678A JP 2005249678 A JP2005249678 A JP 2005249678A JP 2004062700 A JP2004062700 A JP 2004062700A JP 2004062700 A JP2004062700 A JP 2004062700A JP 2005249678 A JP2005249678 A JP 2005249678A
Authority
JP
Japan
Prior art keywords
electric wire
magneto
impedance effect
magnetic field
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004062700A
Other languages
Japanese (ja)
Other versions
JP4286686B2 (en
Inventor
Kazumi Toyoda
一実 豊田
Kazuyuki Izawa
和幸 井澤
Sakae Takagi
佐加枝 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Uchihashi Estec Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2004062700A priority Critical patent/JP4286686B2/en
Publication of JP2005249678A publication Critical patent/JP2005249678A/en
Application granted granted Critical
Publication of JP4286686B2 publication Critical patent/JP4286686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a simple operation by which a defect is sensed from changes in a round circuit magnetic field distribution within a substantially narrow range, in the case a conductor element defective in one of twisted conductors in an electric wire is sensed from the changes in the round circuit magnetic field distribution on the basis of current flowing the twisted conductors, with respect to the round circuit magnetic field distribution of nondefective conductor elements. <P>SOLUTION: A change in the round circuit magnetic field distribution of a region isolated from a defective region, or a change in the round circuit magnetic field distribution in a range of approximate one pitch of twists in the twisted conductors is detected. In a sensor to be used, for example, two magnetic impedance effect elements are arranged around the electric wire at equal distances from the center of the electric wire so as to be spaced from each other through 180 degrees and connected in series so that their polarities become reverse to each other in their magnetically sensitive directions and so that their magnetically sensitive directions are perpendicular to a circumference being concentric with the electric wire. Sensor outputs are output from the magnetic impedance effect elements connected in series. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電線の撚線導体の欠陥を検知するのに使用するセンサに関し、通電・活線状態で断線、傷、不導体化並びに応力腐食割れ等の劣化といった不良を検知するのに有用なセンサである。   The present invention relates to a sensor used to detect a defect in a stranded conductor of an electric wire, and a sensor useful for detecting defects such as disconnection, scratches, non-conductors, and deterioration due to stress corrosion cracking in an energized / hot line state. It is.

断線、傷、不導体化並びに応力腐食割れ等の劣化といった不良(欠陥)を検知する方法の一つとして、実際に流されている負荷電流が欠陥部分で乱れを生じ、それによって発生する磁場の変化を検出する方法が知られている。
電線の撚線導体に欠陥が発生すると、その箇所の導体断面の輪郭が非円形化され、同断面の電流路中心がずれる結果、導体電流に基づく周回路磁界の分布が変化する。
そこで、この周回路磁界分布の変化や電流路断面の中心変位を検出して前記撚線導体の欠陥を検知することが提案されている。(特許文献1、非特許文献1)
As one of the methods for detecting defects (defects) such as disconnection, scratches, non-conductivity, and deterioration such as stress corrosion cracking, the actual load current is disturbed in the defective part, and the magnetic field generated thereby Methods for detecting changes are known.
When a defect occurs in the stranded conductor of the electric wire, the contour of the conductor cross section at that point is made non-circular, and the current path center of the cross section is shifted. As a result, the distribution of the circumferential circuit magnetic field based on the conductor current changes.
In view of this, it has been proposed to detect a defect in the stranded conductor by detecting the change in the circumferential circuit magnetic field distribution and the center displacement of the current path cross section. (Patent Document 1, Non-Patent Document 1)

特開平10−73631号公報Japanese Patent Laid-Open No. 10-73631 野中崇、他2名,「配電線の非破壊磁気探傷に関する基礎的検討」T,IEEjapan,Vol,121−A,No.3,2001,p282−287Takashi Nonaka and two others, “Fundamental study on non-destructive magnetic flaw detection of distribution lines” T, IEEEjapan, Vol, 121-A, No. 3,2001, p282-287

特許文献1では、図11に示す、電線の周囲にサーチコイル1o,1o’を180°隔てた対の複数対にて電線中心から等距離の位置に配設し、サーチコイルのコア方向と電線同心円の接線方向とを一致させ、各対の両サーチコイルの出力の差をセンサ出力としている。
図11において、撚線導体の電流路断面の中心の変位がゼロ、すなわち周回路磁界分布変化が無い場合、両コイルの出力が等しくセンサ出力が0となり欠陥無しと評価される。周回路磁界分布変化が生じている場合、両コイルの出力が等しくならずにセンサ出力が発生し、欠陥有りと判定される。
In Patent Document 1, as shown in FIG. 11, search coils 1o and 1o ′ are arranged around the electric wire at a position equidistant from the center of the electric wire by a plurality of pairs separated by 180 °, and the search coil core direction and the electric wire are arranged. The tangential direction of the concentric circles is matched, and the difference between the outputs of both search coils of each pair is used as the sensor output.
In FIG. 11, when the displacement of the center of the current path cross section of the stranded wire conductor is zero, that is, there is no change in the circumferential circuit magnetic field distribution, the outputs of both coils are equal and the sensor output is 0, and it is evaluated that there is no defect. When the peripheral circuit magnetic field distribution change occurs, the outputs of both coils are not equal and a sensor output is generated, and it is determined that there is a defect.

非特許文献1では、図12に示すように電流路断面の中心C1(Cx1,Cy1)が任意座標点p1(x1,y1)及びp2(x2,y2)とそれら任意座標点p1(x1,y1)及びp2(x2,y2)での磁束密度(Bx1,By1)及び(Bx2,By2)から次式で与えられることから
すなわち、図12に示すように電流路断面の中心C1(Cx1,Cy1)が任意座標点p1(x1,y1)及びp2(x1,y1)とそれら任意座標点p1(x1,y1)及びp2(x2,y2)での磁束密度(Bx1,By1)及び(Bx2,By2)から次式で与えられることから

Figure 2005249678
任意座標点p1(x1,y1)における磁束密度(Bx1,By1)及びp1(x2,y2)における磁束密度(Bx2,By2)をサーチコイルにより測定し、これらの測定値から電流路断面の中心座標C1(Cx1,Cy1)を計算し、この中心座標の変位から撚線導体の欠陥を評価しようとしている。 In Non-Patent Document 1, as shown in FIG. 12, the center C1 (Cx1, Cy1) of the current path cross section has arbitrary coordinate points p1 (x1, y1) and p2 (x2, y2) and these arbitrary coordinate points p1 (x1, y1). ) And p2 (x2, y2) and magnetic flux densities (Bx1, By1) and (Bx2, By2) are given by the following equation, that is, the center C1 (Cx1, Cy1) of the current path cross section as shown in FIG. Are arbitrary coordinate points p1 (x1, y1) and p2 (x1, y1) and magnetic flux densities (Bx1, By1) and (Bx2, By2) at these arbitrary coordinate points p1 (x1, y1) and p2 (x2, y2). From that given by
Figure 2005249678
The magnetic flux density (Bx1, By1) at the arbitrary coordinate point p1 (x1, y1) and the magnetic flux density (Bx2, By2) at p1 (x2, y2) are measured by the search coil, and the center coordinates of the current path cross section are obtained from these measured values. C1 (Cx1, Cy1) is calculated, and the defect of the stranded conductor is to be evaluated from the displacement of the central coordinates.

導体電流をIとすると、導体中心から距離rにおける磁束密度Bは、
B=μI/(2πr)
で与えられ、導体中心のずれ距離をΔLとすれば、磁束密度変化ΔBはΔB∝BΔL/rとなる。
架線された電線には、数10A〜数100Aの電流が通電されており、電線外周上での磁束密度は極めて高い。例えば、電流値を150A、電線半径を15mmとすると、電線表面での磁束密度は1600A/mもの高磁束密度となる。サーチコイル等の磁界センサには、測定限度があり1600A/mもの高磁界を測定することは困難である。
When the conductor current is I, the magnetic flux density B at a distance r from the conductor center is
B = μ 0 I / (2πr)
If the deviation distance of the conductor center is ΔL, the magnetic flux density change ΔB is ΔB∝BΔL / r.
A current of several tens of A to several hundreds of A is passed through the wired wire, and the magnetic flux density on the outer periphery of the wire is extremely high. For example, if the current value is 150 A and the wire radius is 15 mm, the magnetic flux density on the wire surface is as high as 1600 A / m. A magnetic field sensor such as a search coil has a measurement limit, and it is difficult to measure a magnetic field as high as 1600 A / m.

しかるに、上記従来例では、サーチコイルをその感磁方向を電線の周回路磁界の方向に向けて配設しており、150Aもの高導体電流に対しては、レンジ上、サーチコイルを電線中心からかなり隔てた位置に配置する必要があり、センサの大型化が避けられない。
更に、特許文献1記載の従来例では、電線の周囲にサーチコイルを180°隔てた対で電線中心から等距離を隔てた位置に2箇配設し、撚線導体の導電路断面の電流中心がずれたときの両サーチコイルの出力差をセンサ出力としているが、前記のΔB∝BΔL/rから理解できる通り、サーチコイルを電線中心からかなり隔てた位置に配置してrを大きくすると、それだけ両サーチコイルの出力差が小さくなってセンサ出力が低減し、充分な検出感度を保証し難い。
However, in the above-described conventional example, the search coil is arranged with its magnetic sensing direction directed to the direction of the circumferential circuit magnetic field of the electric wire. It is necessary to arrange them at positions that are considerably separated, and an increase in the size of the sensor is inevitable.
Furthermore, in the conventional example described in Patent Document 1, two search coils are arranged around the electric wire at positions spaced equidistant from the center of the electric wire in pairs separated by 180 °, and the current center of the conductor path cross section of the stranded wire conductor is arranged. The output difference between the two search coils at the time of deviation is used as the sensor output. As can be understood from the above ΔBΔBΔL / r, if the search coil is arranged at a position far away from the center of the wire and r is increased, only that The output difference between the two search coils is reduced, the sensor output is reduced, and it is difficult to guarantee sufficient detection sensitivity.

近来、高い磁界検出分解能、微小寸法の磁界センサ素子として磁気インピーダンス効果素子が開発されている。   Recently, magneto-impedance effect elements have been developed as magnetic field sensor elements with high magnetic field detection resolution and micro dimensions.

本発明の目的は、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法に使用するセンサにおいて、センサ素子に磁気インピーダンス効果素子を用いてセンサの検出精度の向上及び小型化を図ることにある。   An object of the present invention is to provide a sensor used in a method for detecting a defect in a conductor of a wire from a change in distribution of a peripheral circuit magnetic field based on the conductor current of the wire with respect to a reference peripheral circuit magnetic field when there is no conductor defect. The purpose is to improve the detection accuracy and miniaturization of the sensor using an impedance effect element.

請求項1に係る電線の導体欠陥検知用センサは、電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、対をなす磁気インピーダンス効果素子を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を加算若しくは重畳してセンサ出力とするようにしたことを特徴とする。   The sensor for detecting a defect in a conductor of an electric wire according to claim 1 is configured such that a defect in any conductor wire of a twisted conductor in an electric wire is detected when there is no wire defect in a peripheral circuit magnetic field based on an energization current of the twisted conductor. A sensor used in a method for detecting a change in distribution with respect to a circuit magnetic field, spaced at an angle of 180 ° around the wire and equidistant from the center of the wire, and the direction of magnetic sensing is perpendicular to the circumference concentric with the wire. Two pairs of magneto-impedance effect elements were arranged at a predetermined angle in the circumferential direction of the electric wire, and the paired magneto-impedance effect elements were connected in series so that the magnetosensitive direction was opposite in polarity. The sensor output is characterized by adding or superimposing outputs from the series-connected magneto-impedance effect elements.

請求項2に係る電線の導体欠陥検知用センサは、電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、対をなす磁気インピーダンス効果素子を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を減算または差動増幅してセンサ出力とするようにしたことを特徴とする。   The sensor for detecting a conductor defect of an electric wire according to claim 2 is configured to detect a defect of any conductor wire of the twisted conductor in the electric wire when there is no wire defect of a peripheral circuit magnetic field based on an energization current of the twisted conductor. A sensor used in a method for detecting a change in distribution with respect to a circuit magnetic field, spaced at an angle of 180 ° around the wire and equidistant from the center of the wire, and the direction of magnetic sensing is perpendicular to the circumference concentric with the wire. Two pairs of magneto-impedance effect elements were arranged at a predetermined angle in the circumferential direction of the electric wire, and the paired magneto-impedance effect elements were connected in series so that the magnetosensitive direction was opposite in polarity. The output from the series-connected magneto-impedance effect element is subtracted or differentially amplified to obtain a sensor output.

請求項3に係る電線の導体欠陥検知用センサは、電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、異なる対の一方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、同じく他方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、しかも両直列接続磁気インピーダンス効果素子を逆極性となるようにし、両直列接続磁気インピーダンス効果素子による出力を加算若しくは重畳してセンサ出力とするようにしたことを特徴とする。   According to a third aspect of the present invention, there is provided a sensor for detecting a conductor defect of an electric wire, wherein a defect of any conductor wire of the twisted conductor in the electric wire is detected when there is no wire defect of a peripheral circuit magnetic field based on an energization current of the twisted conductor. A sensor used in a method for detecting a change in distribution with respect to a circuit magnetic field, spaced at an angle of 180 ° around the wire and equidistant from the center of the wire, and the direction of magnetic sensing is perpendicular to the circumference concentric with the wire. Two pairs of magneto-impedance effect elements are arranged at a predetermined angle in the circumferential direction of the wire, and one of the magneto-impedance effect elements of a different pair is connected in series so as to have the same polarity or opposite polarity, Similarly, the other magneto-impedance effect element is connected in series so as to have the same polarity or opposite polarity, and both the series-connected magneto-impedance effect elements are set to have opposite polarities. The output of scan effect element addition or superposition to is characterized in that as a sensor output.

請求項4に係る電線の導体欠陥検知用センサは、電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、異なる対の一方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、同じく他方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、しかも両直列接続磁気インピーダンス効果素子を逆極性となるようにし、両直列接続磁気インピーダンス効果素子による出力を減算または差動増幅してセンサ出力とするようにしたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a sensor for detecting a conductor defect of an electric wire, wherein a defect of a conductor wire of any of the twisted conductors in the electric wire is detected when there is no wire defect of a peripheral circuit magnetic field based on a current flowing through the twisted conductor. A sensor used in a method for detecting a change in distribution with respect to a circuit magnetic field, spaced at an angle of 180 ° around the wire and equidistant from the center of the wire, and the direction of magnetic sensing is perpendicular to the circumference concentric with the wire. Two pairs of magneto-impedance effect elements are arranged at a predetermined angle in the circumferential direction of the wire, and one of the magneto-impedance effect elements of a different pair is connected in series so as to have the same polarity or opposite polarity, Similarly, the other magneto-impedance effect element is connected in series so as to have the same polarity or opposite polarity, and both the series-connected magneto-impedance effect elements are set to have opposite polarities. The output of scan effect element by subtracting or differential amplifier, characterized in that as the sensor output.

電線の周回路磁界分布の変化を電線と同心円の周方向に直角方向の磁界成分から検出しており、この検出磁界成分が電線外周近傍の周方向磁界よりも充分に小であって測定限度内に収め得、電線外周に接近してセンサ素子を配設でき、センサを小型にできる。そして、磁気インピーダンス効果素子の高検出能と、磁気インピーダンス効果素子の180°を隔てての対配置による外部ノイズの除去乃至は差動増幅回路または減算回路の使用による内外ノイズの除去等とで高感度検出が可能であり、前記離隔した箇所での周回路磁界分布の変化を高感度で検知できる。   Changes in the circumferential circuit magnetic field distribution of the wire are detected from the magnetic field component perpendicular to the circumferential direction of the concentric circle with the wire, and this detected magnetic field component is sufficiently smaller than the circumferential magnetic field in the vicinity of the wire and within the measurement limits. The sensor element can be disposed close to the outer periphery of the electric wire, and the sensor can be miniaturized. The high detection capability of the magneto-impedance effect element and the removal of external noise by the pair arrangement of the magneto-impedance effect element separated by 180 ° or the removal of internal and external noise by using a differential amplifier circuit or a subtraction circuit are high. Sensitivity can be detected, and the change in the circumferential circuit magnetic field distribution at the separated location can be detected with high sensitivity.

図1は本発明の導体欠陥検知の対象とされる電線の一例を示し、硬銅線等の導体素線aを撚合せた撚合導体b上にポリエチレンやポリ塩化ビニル等の合成樹脂cを押出し被覆してある。
この電線の撚合導体の何れかの導体素線に欠陥が生じたとする。素線間の接触抵抗が素線間の電流導通を完全に遮断し得る程度に高抵抗であると仮定すれば、欠陥に基づく導電路断面の電流中心のずれは電線全長ににわたって発生し、従って導体電流に基づく周回路磁界分布の変化が電線全長にわたって発生する。
図2において、導電路断面の電流中心のずれが発生していないときの電線中心oから距離rでの基準周回路磁界の強度Hは
FIG. 1 shows an example of an electric wire to be subjected to conductor defect detection according to the present invention. A synthetic resin c such as polyethylene or polyvinyl chloride is placed on a twisted conductor b obtained by twisting a conductor wire a such as a hard copper wire. Extrusion coated.
It is assumed that a defect has occurred in any conductor wire of the twisted conductor of this electric wire. Assuming that the contact resistance between the strands is high enough to completely interrupt the current conduction between the strands, the deviation of the current center of the conductor cross section due to the defect occurs over the entire length of the wire, and therefore A change in the circumferential circuit magnetic field distribution based on the conductor current occurs over the entire length of the wire.
In FIG. 2, the strength H of the reference peripheral circuit magnetic field at the distance r from the wire center o when no deviation of the current center of the conductive path cross section occurs.

H=I/(2πr)   H = I / (2πr)

で与えられる。
1a,1a’は電線中心からの距離が共にrで、かつ電線中心と同心の円上で180°隔てられ、軸方向(最大感磁方向)が前記同心円に直角な方向とされた磁気インピーダンス効果素子を示し、前記の基準周回路磁界には感磁しない。磁気インピーダンス効果素子の軸方向とずれの方向とがなす角度をα、ずれ距離をΔLとすれば、
Given in.
1a and 1a ′ are magneto-impedance effects in which the distance from the center of the wire is r and they are separated by 180 ° on a circle concentric with the center of the wire, and the axial direction (maximum magnetosensitive direction) is a direction perpendicular to the concentric circle. The element is shown and is not sensitive to the reference circuit magnetic field. If the angle between the axial direction of the magneto-impedance effect element and the direction of displacement is α and the displacement distance is ΔL,

=r+(ΔL)−2r・ΔLcosα
sinγ/ΔL=sinα/x
x 2 = r 2 + (ΔL) 2 −2r · ΔL cos α
sinγ / ΔL = sinα / x

が成立し、導電路断面中心o’のもとでの距離xでの周回路磁界強さH’=I/(2πx)における磁気インピーダンス効果素子1aの感磁成分、すなわち最大感磁方向成分haは、 And the magnetosensitive component of the magneto-impedance effect element 1a at the circumferential circuit magnetic field strength H ′ = I / (2πx) at the distance x under the conductive path cross-sectional center o ′, that is, the maximum magnetosensitive direction component ha. Is

ha=H’sinγ   ha = H’sinγ

で与えられる。
上記の諸式からhaを求めると
Given in.
When ha is obtained from the above equations,

〔式1〕 ha≒H(ΔL/r)sinα/〔1−2(ΔL/r)cosα〕 [Formula 1] ha≈H (ΔL / r) sin α / [1-2 (ΔL / r) cos α]

が成立する。
他方の磁気インピーダンス効果素子1a’の感磁成分ha’は、前記haにおいてαを(π+α)と置き、周回路磁界の方向が逆方向であることを考慮して
Is established.
The magnetosensitive component ha ′ of the other magneto-impedance effect element 1a ′ takes into account that α is (π + α) in the ha and the direction of the circumferential circuit magnetic field is opposite.

〔式2〕 ha’≒H(ΔL/r)sinα/〔1+2(ΔL/r)cosα〕 [Formula 2] ha′≈H (ΔL / r) sin α / [1 + 2 (ΔL / r) cos α]

で与えられる。 Given in.

上記対をなす磁気インピーダンス効果素子1a,1a’に対し、1b,1b’で示すように前記と同様の対を前記円周方向に角度β隔てた位置に配設すると、
この追加した対の一方の磁気インピーダンス効果素子1bの前記周回路磁界の分布変化による感磁成分hbは、前記haにおいてαを(α+β)と置くことにより与えられ
For the magneto-impedance effect elements 1a and 1a ′ forming the above pair, as shown by 1b and 1b ′, a pair similar to the above is disposed at a position separated by an angle β in the circumferential direction,
The magnetosensitive component hb due to the change in the distribution of the peripheral circuit magnetic field of the added magneto-impedance effect element 1b is given by setting α as (α + β) in the ha.

〔式3〕 hb≒H(ΔL/r)sin(α+β)/〔1−2(ΔL/r)cos(α+β)〕
が成立する。
他方の磁気インピーダンス効果素子1b’の感磁成分hb’は、前記hbにおいて(α+β)を〔π+(α+β)〕と置くことにより与えられ
[Formula 3] hb≈H (ΔL / r) sin (α + β) / [1-2 (ΔL / r) cos (α + β)]
Is established.
The magnetosensitive component hb ′ of the other magneto-impedance effect element 1b ′ is given by placing (α + β) as [π + (α + β)] in hb.

〔式4〕 hb’≒H(ΔL/r)sin(α+β)/〔1+2(ΔL/r)cos(α+β)〕 [Formula 4] hb′≈H (ΔL / r) sin (α + β) / [1 + 2 (ΔL / r) cos (α + β)]

が成立する。 Is established.

本発明は、周回路磁界分布の変化により生じる周回路磁界と直角方向の小さい感磁成分を磁気インピーダンス効果素子の高い検出能で検出し、対をなす磁気インピーダンス効果素子の感磁方向の逆極性化により、または減算乃至は差動増幅での同相打消作用によりノイズを除去して、前記導体欠陥に基づく周回路磁界分布の変化を高感度で検出し、前記撚合導体の欠陥箇所から相当に遠く離隔した箇所でもその周回路磁界の分布変化の検知を可能としている。   The present invention detects a small magnetosensitive component in a direction perpendicular to the circumferential circuit magnetic field caused by a change in the circumferential circuit magnetic field distribution with high detectability of the magneto-impedance effect element, and reverses the polarity of the magneto-sensitive direction of the paired magneto-impedance effect element. Or by subtraction or in-phase cancellation in differential amplification to detect noise with a high sensitivity and detect a change in the circumferential circuit magnetic field distribution based on the conductor defect. It is possible to detect changes in the distribution of the magnetic field of the peripheral circuit even at locations far away from each other.

図3は磁気インピーダンス効果素子を使用した磁気センサの基本的構成を示している。
図3において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用されている。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向(最大感磁方向)に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
FIG. 3 shows a basic configuration of a magnetic sensor using a magneto-impedance effect element.
In FIG. 3, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. An amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Therefore, when a detected magnetic field is applied in the axial direction (maximum magnetosensitive direction) of the energized amorphous wire, the circumferential direction magnetic flux and the detected magnetic field magnetic flux generated by the energization are combined in the circumferential direction. The direction of the magnetic flux acting on the easily magnetized outer shell part is deviated from the circumferential direction, and the magnetization in the circumferential direction is less likely to occur, the circumferential permeability μ θ changes, and the inductance voltage changes. Will do. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by the detected magnetic field, the resistance voltage division also be detected magnetic field in the wire between both ends output voltage It will fluctuate with. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave).

図3において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。   In FIG. 3, 2 is a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a modulation of the high-frequency excitation current (carrier wave) by a detected magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element. Demodulation circuit for demodulating the modulated wave thus generated, 4 an amplification circuit for amplifying the demodulated wave, 5 an output terminal, 6 a negative feedback coil, and 7 a bias magnetic field coil. For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to zero magnetostrictive or negative magnetostrictive amorphous wires.

磁気インピーダンス効果素子においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図4の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイルで負帰還をかけて図4の(ロ)に示すように特性を直線化している。図4の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図4の(ハ)に示すように極性判別可能としている。すなわち、図4の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図4の(ニ)に示すように0点調整により原点を通る直線特性としている。従って、図4の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。 In the magneto-impedance effect element, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction is obtained by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. Due to the deviation from the circumferential direction, the circumferential magnetic permeability μ θ changes, the inductance is changed, and the impedance is changed by the change of the skin depth of the high frequency skin effect of the circumferential magnetic permeability μ θ . Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Accordingly, the detected magnetic field-output characteristics are substantially bilaterally symmetric with respect to the y axis when the detected magnetic field is on the x axis and the output is on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by a negative feedback coil to linearize the characteristics as shown in FIG. In FIG. 4B, Δw is a linear range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β. However, with this output characteristic, since the polarity of the magnetic field to be detected cannot be determined, a bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 4 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range of the detected magnetic field −Hmax to + Hmax is within the range of the single oblique line region. Further, as shown in FIG. 4D, a linear characteristic passing through the origin is obtained by adjusting the zero point. Therefore, in FIG. 4D, if the detected magnetic field is + He, the output is + Eo, and if the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .

前記極性判別可能なリニア出力特性を得るのに図5に示すように、出力より反転入力端子に負帰還をかけた演算増幅器(負帰還路挿入インピーダンスZ、入力側挿入インピーダンスZ)を使用することもできる。この場合、負帰還用コイルに挿入した抵抗をR、同コイルの巻数をn、長さをL、復調増幅部Bの利得をA、被検出磁界をHex、出力をEoutとすると、 As shown in FIG. 5, an operational amplifier (negative feedback path insertion impedance Z 2 , input side insertion impedance Z 1 ) in which negative feedback is applied to the inverting input terminal from the output is used to obtain the linear output characteristics capable of discriminating the polarity. You can also In this case, if the resistance inserted in the negative feedback coil is R, the number of turns of the coil is n, the length is L, the gain of the demodulation amplifier B is A, the detected magnetic field is Hex, and the output is Eout,

A≫ZRL/(Zn) A >> Z 1 RL / (Z 2 n)

のもとで Under

Eout=RLZHex/(nZ)+VccZR/〔Z(Z+R)〕 Eout = RLZ 1 Hex / (nZ 2 ) + VccZ 1 R / [Z 2 (Z 2 + R)]

が成立し、この出力特性を諸定数(Z,Z,抵抗R,コイル巻数n等)の調整によりx軸の±方向にシフトさせることができ、その調整により極性判別可能な斜め直線部を最大被検出磁界の範囲±Hmax内に位置させることが可能となり、更にy軸方向の0点調整により図4の(ニ)に示すような極性判別可能な直線性の出力特性を得ることもできる。 Is established, and the output characteristics can be shifted in the ± direction of the x-axis by adjusting various constants (Z 1 , Z 2 , resistance R, coil turns n, etc.), and the diagonal straight line portion whose polarity can be discriminated by the adjustment Can be positioned within the range of the maximum detected magnetic field ± Hmax, and the linearity output characteristics capable of discriminating the polarity as shown in FIG. 4 (d) can be obtained by adjusting the zero point in the y-axis direction. it can.

上記高周波励磁電流としては、例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、COMS−ICを発振部として使用した三角波発生器等を使用できる。   As the high frequency excitation current, a normal high frequency such as a continuous sine wave, a pulse wave, or a triangular wave can be used. As the high frequency excitation current source, for example, a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector tuning oscillation circuit, a base tuning oscillation circuit can be used. In addition to the normal oscillation circuit, a rectangular wave generator that integrates the square wave output of the crystal oscillator through a DC cut capacitor with an integration circuit and amplifies the triangular wave of the integration output with an amplification circuit, and the COMS-IC as an oscillation unit The used triangular wave generator etc. can be used.

上記の復調回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。   The demodulating circuit includes, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit, and this half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave. A configuration in which the modulated wave is half-wave rectified by a diode and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used.

上記の実施例では、被変調波の復調によって被検出量を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し得るものであれば、適宜の回路構成を使用できる。
前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図6に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。
In the above embodiment, the detected amount is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and the detected amount corresponding to the detected magnetic field is detected from the magnetic field detection signal by the detected magnetic field acting on the magneto-impedance effect element. Any circuit configuration can be used as long as the amount can be extracted.
The negative feedback coil and the bias magnetic field coil can be wound around a magneto-impedance effect element. Further, as shown in FIG. 6, a negative feedback coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit.

図6の(イ)は鉄芯付き磁気インピーダンス効果ユニットの一例を示す側面図、図6の(ロ)は同じく底面図、図6の(ハ)は図6の(ロ)におけるハ−ハ断面図である。
図6において、100は基板チツプであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、エレメント接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
6 (a) is a side view showing an example of a magnetic impedance effect unit with an iron core, FIG. 6 (b) is a bottom view, and FIG. 6 (c) is a cross-sectional view of FIG. FIG.
In FIG. 6, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one surface of the substrate piece, and includes an element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding. As described above, an amorphous wire, amorphous ribbon, sputtered film or the like having zero or negative magnetostriction can be used. 103 is a C-type iron core, 6x is a negative feedback coil wound around the C-type iron core, 7x is also a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

図7の(イ)は請求項1に係る電線の導体欠陥検知用センサの一実施例を示す図面、図7の(ロ)は同センサの回路図である。
図7において、8は電線、9はセンサ基板であり、電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度βを隔ててa,bの2対で配設し、対をなす磁気インピーダンス効果素子1a,1a’及び1b,1b’を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を加算若しくは重畳してセンサ出力としている。3a,3bは復調回路を、Adは加算若しくは重畳回路を示している。
対aの一方の磁気インピーダンス効果素子1aの前記した周回路磁界分布の変化による感磁成分をha、地磁気等の外部ノイズに対する感磁成分をNaとすると、この磁気インピーダンス効果素子1aが感磁する磁界強さHaは、Ha=ha+Naである。
対aの他方の磁気インピーダンス効果素子1a’が感磁する磁界強Ha’さは、両素子1a,1a’の感磁方向を逆極性としてあるから、Ha’=−(ha’+Na)である。
従って、直列接続された対aの磁気インピーダンス効果素子1a,1a’が感磁する磁界強さ(Ha+Ha’)は、(Ha+Ha’)=(ha−ha’)であり、ノイズを排除でき、その磁界強さ(Ha+Ha’)は、前記式(1)と(2)から
7 (a) is a drawing showing an embodiment of a sensor for detecting a conductor defect of an electric wire according to claim 1, and FIG. 7 (b) is a circuit diagram of the sensor.
In FIG. 7, 8 is an electric wire, and 9 is a sensor substrate. The magnetic sensing direction is a direction perpendicular to the circumference concentric with the electric wire at an angle of 180 ° around the electric wire and equidistant from the electric wire center. A pair of magneto-impedance effect elements are arranged in two pairs of a and b with a predetermined angle β in the circumferential direction of the electric wire, and the paired magneto-impedance effect elements 1a, 1a ′ and 1b, 1b ′ are in the magnetosensitive direction. Are connected in series so as to have reverse polarity, and the outputs from the series-connected magneto-impedance effect elements are added or superimposed to form a sensor output. Reference numerals 3a and 3b denote demodulation circuits, and Ad denotes an addition or superposition circuit.
The magneto-impedance effect element 1a is magnetized when the magneto-sensitive component due to the change in the circumferential circuit magnetic field distribution of one magneto-impedance effect element 1a of the pair a is ha and the magneto-sensitive component with respect to external noise such as geomagnetism is Na. The magnetic field strength Ha is Ha = ha + Na.
The magnetic field strength Ha ′ sensed by the other magneto-impedance effect element 1a ′ of the pair a is Ha ′ = − (ha ′ + Na) because the magnetosensitive direction of both elements 1a and 1a ′ is reversed. .
Therefore, the magnetic field strength (Ha + Ha ′) that the magneto-impedance effect element 1a, 1a ′ of the pair a connected in series has a magnetic sensitivity is (Ha + Ha ′) = (ha−ha ′), and noise can be eliminated. The magnetic field strength (Ha + Ha ′) is obtained from the above equations (1) and (2).

(ha−ha’)≒4H(ΔL/r)sinαcosα=2H(ΔL/r)sin2α (Ha−ha ′) ≈4H (ΔL / r) 2 sinαcosα = 2H (ΔL / r) 2 sin2α

で与えられる。
他方の対bの一方の磁気インピーダンス効果素子1bの前記した周回路磁界分布の変化による感磁成分をhb、地磁気等の外部ノイズに対する感磁成分をNbとすると、この磁気インピーダンス効果素子が感磁する磁界強さHbは、Hb=hb+Nbである。
Given in.
When the magnetosensitive component due to the change in the circumferential circuit magnetic field distribution of one magneto-impedance effect element 1b of the other pair b is hb and the magneto-sensitive component for external noise such as geomagnetism is Nb, the magneto-impedance effect element is magnetosensitive. The magnetic field strength Hb to be applied is Hb = hb + Nb.

対bの他方の磁気インピーダンス効果素子1b’が感磁する磁界強Hb’さは、両素子の感磁方向を逆極性としてあるから、Hb’=−(hb’+Nb)である。
従って、直列接続された対bの磁気インピーダンス効果素子1b,1b’が感磁する磁界強さ(Hb+Hb’)は、(Hb+Hb’)=(hb−hb’)であり、外部ノイズを排除でき、その磁界強さ(Hb+Hb’)は、前記式(1)と(2)から
The magnetic field strength Hb ′ that the other magneto-impedance effect element 1b ′ of the pair b senses is Hb ′ = − (hb ′ + Nb) because the magnetosensitive direction of both elements is opposite in polarity.
Therefore, the magnetic field strength (Hb + Hb ′) that the magneto-impedance effect elements 1b and 1b ′ of the pair b connected in series are magnetically sensitive is (Hb + Hb ′) = (hb−hb ′), and external noise can be eliminated. The magnetic field strength (Hb + Hb ′) is obtained from the above equations (1) and (2).

(hb−hb’)≒4H(ΔL/r)sin(α+β)cos(α+β)=2H(ΔL/r)sin2(α+β)で与えられる。 (Hb−hb ′) ≈4H (ΔL / r) 2 sin (α + β) cos (α + β) = 2H (ΔL / r) 2 sin2 (α + β).

図7に示した実施例では、直列接続された対bの磁気インピーダンス効果素子1a,1a’と直列接続された対bの磁気インピーダンス効果素子1b,1b’との極性を同極性とするようにそれら磁気インピーダンス効果素子の向きを設定してある。従って、センサ出力Eoutは、図4の(ニ)に示した出力特性の比例係数をkとして   In the embodiment shown in FIG. 7, the polarities of the pair b magneto-impedance effect elements 1a and 1a 'connected in series and the pair b magneto-impedance effect elements 1b and 1b' connected in series are the same. The direction of these magneto-impedance effect elements is set. Therefore, the sensor output Eout is expressed by assuming that the proportionality coefficient of the output characteristic shown in FIG.

Eout=k(ha−ha’)+k(hb−hb’)≒2kH(ΔL/r)〔sin2α+sin2(α+β)〕 Eout = k (ha−ha ′) + k (hb−hb ′) ≈2 kH (ΔL / r) 2 [sin2α + sin2 (α + β)]

で与えられる。
直列接続された対bの磁気インピーダンス効果素子1a,1a’と直列接続された対bの磁気インピーダンス効果素子1b,1b’との極性を逆極性とするようにそれら磁気インピーダンス効果素子の向きを設定する場合は、
Given in.
The orientation of the magneto-impedance effect elements 1a and 1a ′ of the pair b connected in series and the polarity of the magneto-impedance effect elements 1b and 1b ′ of the pair b connected in series are reversed. If you want to

Eout=k(ha−ha’)−k(hb−hb’)≒2kH(ΔL/r)〔sin2α−sin2(α+β)〕
が成立する。
前記の感磁量(ha−ha’)及び(hb−hb’)は、ΔL≪rのために小であり、センサを小型にできる。各被検出量(ha−ha’)、(hb−hb’)が小さくても、磁気インピーダンス効果素子の高検出分解能のために各直列接続素子の出力を素子の高検出分解能のために高くでき、高精度の検出が可能である。
従って、電線の導体欠陥箇所から遠くなって導体の導電路断面の電流中心のずれΔLが小さくなっても、その高感度のために検出可能であり、導体欠陥箇所から数10m離隔した箇所の磁界検知でも、欠陥の検知が可能となる。
Eout = k (ha−ha ′) − k (hb−hb ′) ≈2 kH (ΔL / r) 2 [sin2α−sin2 (α + β)]
Is established.
The magnetosensitive amounts (ha−ha ′) and (hb−hb ′) are small because ΔL << r, and the sensor can be downsized. Even if each detected amount (ha−ha ′) and (hb−hb ′) is small, the output of each series-connected element can be increased for the high detection resolution of the element because of the high detection resolution of the magneto-impedance effect element. Highly accurate detection is possible.
Therefore, even if the deviation ΔL of the current center of the conductor path cross section of the conductor becomes small from the conductor defective portion of the electric wire, it can be detected because of its high sensitivity, and the magnetic field at a location several tens of meters away from the conductor defective portion. Detection can also detect defects.

図8の(イ)は請求項2に係る電線の導体欠陥検知用センサの一実施例を示す図面、図8の(ロ)は同センサの回路図である。
図8において、8は電線、9はセンサ基板であり、電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度βを隔ててa,bの2対で配設し、対をなす磁気インピーダンス効果素子1a,1a’及び1b,1b’を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を減算または差動増幅してセンサ出力としている。3a,3bは復調回路を、Dmは差動増幅器を示している。
対aの一方の磁気インピーダンス効果素子1aの前記した周回路磁界分布の変化による感磁成分をha、地磁気等の外部ノイズに対する感磁成分をNaとすると、この磁気インピーダンス効果素子1aが感磁する磁界強さHaは、Ha=ha+Naである。
対aの他方の磁気インピーダンス効果素子1a’が感磁する磁界強Ha’さは、両素子1a,1a’の感磁方向を逆極性としてあるから、Ha’=−(ha’+Na)である。
従って、直列接続された対aの磁気インピーダンス効果素子1a,1a’が感磁する磁界強さ(Ha+Ha’)は、(Ha+Ha’)=(ha−ha’)であり、ノイズを排除でき、その磁界強さ(Ha+Ha’)は、前記式(1)と(2)から
8A is a drawing showing an embodiment of the sensor for detecting a conductor defect of an electric wire according to claim 2, and FIG. 8B is a circuit diagram of the sensor.
In FIG. 8, 8 is an electric wire, and 9 is a sensor substrate. The magnetic sensing direction is a direction perpendicular to the circumference concentric with the electric wire at an angle of 180 ° around the electric wire and equidistant from the electric wire center. A pair of magneto-impedance effect elements are arranged in two pairs of a and b with a predetermined angle β in the circumferential direction of the electric wire, and the paired magneto-impedance effect elements 1a, 1a ′ and 1b, 1b ′ are in the magnetosensitive direction. Are connected in series so as to have a reverse polarity, and the output from each series-connected magneto-impedance effect element is subtracted or differentially amplified to obtain a sensor output. Reference numerals 3a and 3b denote demodulation circuits, and Dm denotes a differential amplifier.
The magneto-impedance effect element 1a is magnetized when the magneto-sensitive component due to the change in the circumferential circuit magnetic field distribution of one magneto-impedance effect element 1a of the pair a is ha and the magneto-sensitive component with respect to external noise such as geomagnetism is Na. The magnetic field strength Ha is Ha = ha + Na.
The magnetic field strength Ha ′ sensed by the other magneto-impedance effect element 1a ′ of the pair a is Ha ′ = − (ha ′ + Na) because the magnetosensitive direction of both elements 1a and 1a ′ is reversed. .
Therefore, the magnetic field strength (Ha + Ha ′) that the magneto-impedance effect element 1a, 1a ′ of the pair a connected in series has a magnetic sensitivity is (Ha + Ha ′) = (ha−ha ′), and noise can be eliminated. The magnetic field strength (Ha + Ha ′) is obtained from the above equations (1) and (2).

(ha−ha’)≒4H(ΔL/r)sinαcosα=2H(ΔL/r)sin2α (Ha−ha ′) ≈4H (ΔL / r) 2 sinαcosα = 2H (ΔL / r) 2 sin2α

で与えられる。
他方の対bの一方の磁気インピーダンス効果素子1bの前記した周回路磁界分布の変化による感磁成分をhb、地磁気等の外部ノイズに対する感磁成分をNbとすると、この磁気インピーダンス効果素子が感磁する磁界強さHbは、Hb=hb+Nbである。
Given in.
When the magnetosensitive component due to the change in the circumferential circuit magnetic field distribution of one magneto-impedance effect element 1b of the other pair b is hb and the magneto-sensitive component for external noise such as geomagnetism is Nb, the magneto-impedance effect element is magnetosensitive. The magnetic field strength Hb to be applied is Hb = hb + Nb.

対bの他方の磁気インピーダンス効果素子1b’が感磁する磁界強Hb’さは、両素子の感磁方向を逆極性としてあるから、Hb’=−(hb’+Nb)である。
従って、直列接続された対bの磁気インピーダンス効果素子1b,1b’が感磁する磁界強さ(Hb+Hb’)は、(Hb+Hb’)=(hb−hb’)であり、外部ノイズを排除でき、その磁界強さ(Hb+Hb’)は、前記式(1)と(2)から
The magnetic field strength Hb ′ that the other magneto-impedance effect element 1b ′ of the pair b senses is Hb ′ = − (hb ′ + Nb) because the magnetosensitive direction of both elements is opposite in polarity.
Therefore, the magnetic field strength (Hb + Hb ′) that the magneto-impedance effect elements 1b and 1b ′ of the pair b connected in series are magnetically sensitive is (Hb + Hb ′) = (hb−hb ′), and external noise can be eliminated. The magnetic field strength (Hb + Hb ′) is obtained from the above equations (1) and (2).

(hb−hb’)≒4H(ΔL/r)sin(α+β)cos(α+β)=2H(ΔL/r)sin2(α+β)で与えられる。 (Hb−hb ′) ≈4H (ΔL / r) 2 sin (α + β) cos (α + β) = 2H (ΔL / r) 2 sin2 (α + β).

図8に示した実施例では、直列接続された対bの磁気インピーダンス効果素子1a,1a’と直列接続された対bの磁気インピーダンス効果素子1b,1b’との極性を逆極性とするようにそれら磁気インピーダンス効果素子の向きを設定してある。従って、センサ出力Eoutは、   In the embodiment shown in FIG. 8, the polarities of the pair b magneto-impedance effect elements 1a and 1a 'connected in series and the pair b magneto-impedance effect elements 1b and 1b' connected in series are reversed. The direction of these magneto-impedance effect elements is set. Therefore, the sensor output Eout is

Eout=k(ha−ha’)−〔−k(hb−hb’)〕≒2kH(ΔL/r)〔sin2α+sin2(α+β)〕 Eout = k (ha−ha ′) − [− k (hb−hb ′)] ≈2 kH (ΔL / r) 2 [sin2α + sin2 (α + β)]

で与えられる。
直列接続された対bの磁気インピーダンス効果素子1a,1a’と直列接続された対bの磁気インピーダンス効果素子1b,1b’との極性を同極性とするようにそれら磁気インピーダンス効果素子の向きを設定する場合は、
Given in.
The orientations of the magneto-impedance effect elements 1a and 1a ′ of the pair b connected in series and the magneto-impedance effect elements 1b and 1b ′ of the pair b connected in series are set to the same polarity. If you want to

Eout=k(ha−ha’)−k(hb−hb’)≒2kH(ΔL/r)〔sin2α−sin2(α+β)〕
が成立する。
前記の感磁量(ha−ha’)及び(hb−hb’)は、ΔL≪rのために小であり、センサを小型にできる。各被検出量(ha−ha’)、(hb−hb’)が小さくても、磁気インピーダンス効果素子の高検出分解能のために各直列接続素子の出力を素子の高検出分解能のために高くでき、高精度の検出が可能である。
従って、電線の欠陥箇所から遠くなって導体の導電路断面の電流中心のずれΔLが小さくなっても、その高感度のために検出可能であり、導体欠陥箇所から数10m離隔した箇所の磁界検知でも、欠陥の検知が可能となる。
Eout = k (ha−ha ′) − k (hb−hb ′) ≈2 kH (ΔL / r) 2 [sin2α−sin2 (α + β)]
Is established.
The magnetosensitive amounts (ha−ha ′) and (hb−hb ′) are small because ΔL << r, and the sensor can be downsized. Even if each detected amount (ha−ha ′) and (hb−hb ′) is small, the output of each series-connected element can be increased for the high detection resolution of the element because of the high detection resolution of the magneto-impedance effect element. Highly accurate detection is possible.
Therefore, even if the deviation ΔL of the current center of the conductor path cross section of the conductor becomes far away from the defective part of the electric wire, it can be detected because of its high sensitivity, and the magnetic field is detected at a place several tens of meters away from the defective part of the conductor. However, it is possible to detect defects.

図9−1は請求項3に係る電線の導体欠陥検知用センサの一実施例を示す回路図である。
請求項1のセンサと同様に、電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度βを隔てて二対配設してある。
請求項3のセンサでは、図9−1に示すように異なる対a,bの一方の磁気インピーダンス効果素子1a,1b’を同極性または逆極性とするように直列に接続し、同じく他方の磁気インピーダンス効果素子1a’,1bを同極性または逆極性とするように直列に接続し、しかも、1aと1b’との直列接続磁気インピーダンス効果素子と1a’と1bの直列接続磁気インピーダンス効果素子との極性を逆極性となるようにし、両直列接続磁気インピーダンス効果素子による出力を加算若しくは重畳してセンサ出力としている。Adは加算または重畳回路を示している。
図9−1において、前記と同様に周回路磁界の分布変化により対aの磁気インピーダンス効果素子1aの感磁成分がha、同じく対aの磁気インピーダンス効果素子1a’の感磁成分がha’、地磁気等の外部ノイズに対する感磁成分をNa、対bの磁気インピーダンス効果素子1bの感磁成分がhb、同じく対Wbの磁気インピーダンス効果素子1b’の感磁成分がhb’、地磁気等の外部ノイズに対する感磁成分をNbとすると、
各磁気インピーダンス効果素子に対する被感磁磁界は、ha+Na、ha’+Na、hb+Nb、hb’+Nbとなり、異なる対の一方の磁気インピーダンス効果素子の同極性または逆極性直列接続磁気インピーダンス効果素子の感磁磁界H
FIG. 9A is a circuit diagram illustrating an embodiment of a sensor for detecting a conductor defect of an electric wire according to claim 3.
A pair of magneto-impedance effect elements having an angle of 180 ° around the electric wire and an equal distance from the center of the electric wire and having a magnetosensitive direction perpendicular to the circumference concentric with the electric wire, as in the sensor of claim 1. Are arranged in two pairs with a predetermined angle β in the circumferential direction of the electric wire.
In the sensor according to the third aspect, as shown in FIG. 9A, one of the magneto-impedance effect elements 1a and 1b ′ of different pairs a and b is connected in series so as to have the same polarity or opposite polarity, and the other magnet Impedance effect elements 1a 'and 1b are connected in series so as to have the same or opposite polarity, and a series-connected magnetoimpedance effect element of 1a and 1b' and a series-connected magnetoimpedance effect element of 1a 'and 1b The polarity is reversed, and the output from both series-connected magnetoimpedance effect elements is added or superimposed to obtain the sensor output. Ad represents an addition or superposition circuit.
In FIG. 9A, the magnetosensitive component of the magnetoimpedance effect element 1a of the pair a is ha, and the magnetosensitive component of the magnetoimpedance effect element 1a ′ of the pair a is ha ′ due to the distribution change of the peripheral circuit magnetic field as described above. The magnetosensitive component for external noise such as geomagnetism is Na, the magnetosensitive component of the magnetoimpedance effect element 1b of the pair b is hb, the magnetosensitive component of the magnetoimpedance effect element 1b ′ of the pair Wb is hb ′, and external noise such as geomagnetism. If the magnetic sensitive component for Nb is Nb,
The magnetosensitive magnetic field for each magneto-impedance effect element is ha + Na, ha ′ + Na, hb + Nb, and hb ′ + Nb. H 1

〔式5〕 H=(ha+Na)±(hb’+Nb) [Formula 5] H 1 = (ha + Na) ± (hb ′ + Nb)

となり、この感磁磁界Hに基づく検出出力はEThe detection output based on this magnetosensitive magnetic field H 1 is E 1

=kH=k〔(ha+Na)±(hb’+Nb)〕
で与えられ、異なる対の他方の磁気インピーダンス効果素子が前記直列接続磁気インピーダンス効果素子とは逆極性の直列接続であるから、この直列接続磁気インピーダンス効果素子の感磁磁界H
E 1 = kH 1 = k [(ha + Na) ± (hb ′ + Nb)]
Since the other magneto-impedance effect element of the different pair is a series connection having a polarity opposite to that of the series-connected magneto-impedance effect element, the magneto-sensitive magnetic field H 2 of the series-connected magneto-impedance effect element is

〔式6〕 H=−〔(hb+Nb)±(ha’+Na)〕 [Formula 6] H 2 = − [(hb + Nb) ± (ha ′ + Na)]

となり、これら感磁磁界Hに基づく検出出力はE
=kH=−k〔(hb+Nb)±(ha’+Na)〕
Next, the detection output E 2 based on these sensitive magnetizing field H 2 is E 2 = kH 2 = -k [(hb + Nb) ± (ha '+ Na) ]

で与えられる。
両検出出力EとEとの加算もしくは重畳であるセンサ出力Eoutは
Given in.
Sensor output Eout is an addition or superposition of the two detection outputs E 1 and E 2 are

Eout=k〔(ha−ha’)−(hb−hb’)〕   Eout = k [(ha−ha ′) − (hb−hb ′)]

または   Or

Eout=k〔(ha+ha’)−(hb+hb’)〕   Eout = k [(ha + ha ′) − (hb + hb ′)]

であり、地磁気等の外部ノイズNa,Nbに対する感磁成分が出力されない。
前記センサ出力Eoutは
Thus, no magnetosensitive component for external noise Na, Nb such as geomagnetism is output.
The sensor output Eout is

〔式7〕 Eout≒kH(ΔL/r)〔sinα−sin(α+β)〕
または
[Formula 7] Eout≈kH (ΔL / r) [sin α−sin (α + β)]
Or

〔式8〕 Eout≒2kH(ΔL/r)〔sin2α−sin2(α+β)〕 [Formula 8] Eout≈2 kHz (ΔL / r) 2 [sin2α−sin2 (α + β)]

で与えられる。
図9−2は請求項4に係る電線の導体欠陥検知用センサの一実施例を示す図面である。
図9−2においても、図9−1と同様に電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度βを隔てて二つの対a,bで配設し、対aの一方の磁気インピーダンス効果素子1aと対bの一方の磁気インピーダンス効果素子1b’とを同極性または逆極性とするように直列に接続ししている。対aの一方の磁気インピーダンス効果素子1aと対bの一方の磁気インピーダンス効果素子1b’との同極性または逆極性直列接続磁気インピーダンス効果素子の感磁磁界Hは、図9−1のセンサと同様に、式5から
Given in.
9-2 is a drawing showing an embodiment of a sensor for detecting a conductor defect in an electric wire according to a fourth aspect.
Also in FIG. 9-2, as in FIG. 9-1, a pair of wires having an angle of 180 ° around the wire and equidistant from the center of the wire, with the magnetic sensing direction being perpendicular to the circumference concentric with the wire. Are arranged in two pairs a and b with a predetermined angle β in the circumferential direction of the wire, and one magnetoimpedance effect element 1a of the pair a and one magnetoimpedance effect element 1b of the pair b. Are connected in series so that they have the same or opposite polarity. Sensitive magnetizing field H 1 of the same polarity or opposite polarity series magneto-impedance effect element pair one of the magneto-impedance effect element 1a and paired one of the magneto-impedance effect element 1b of b in a 'includes a sensor of Figure 9-1 Similarly, from Equation 5

=(ha+Na)±(hb’+Nb) H 1 = (ha + Na) ± (hb ′ + Nb)

である。
しかし、図9−1のセンサでは、他方の磁気インピーダンス効果素子1a’と1bとを前記直列接続磁気インピーダンス効果素子(1a+1b’)と逆極性とするように直列に接続しているのに対し、図9−2では他方の磁気インピーダンス効果素子1a’と1bとを前記直列接続磁気インピーダンス効果素子(1a+1b’)と同極性とするように直列に接続している。対a,bの他方の磁気インピーダンス効果素子1a’と1bとの直列接続素子(1a’+1b)が前記直列接続磁気インピーダンス効果素子1aと1b’との直列接続素子(1a+1b’)とが同極性であるから、この直列接続磁気インピーダンス効果素子(1a’+1b)の感磁磁界Hは前記の式6とは逆符号となり
It is.
However, in the sensor of FIG. 9A, the other magneto-impedance effect elements 1a ′ and 1b are connected in series so as to have the opposite polarity to the series-connected magneto-impedance effect element (1a + 1b ′). In FIG. 9-2, the other magneto-impedance effect elements 1a ′ and 1b are connected in series so as to have the same polarity as the series-connected magneto-impedance effect element (1a + 1b ′). The series connection element (1a ′ + 1b) of the other magnetoimpedance effect element 1a ′ and 1b of the pair a and b has the same polarity as the series connection element (1a + 1b ′) of the series connection magnetoimpedance effect element 1a and 1b ′. Therefore, the magneto-sensitive magnetic field H 2 of the series-connected magneto-impedance effect element (1a ′ + 1b) has an opposite sign to that of Equation 6 above.

=+〔(hb+Nb)±(ha’+Na)〕
で与えられる。
これらの感磁磁界H、Hを信号波とする被変調波が復調回路3a'b、3ab'で復調され、それらの復調波が差動増幅器Dmで差動増幅されてセンサ出力Eoutとされるから、
H 2 = + [(hb + Nb) ± (ha ′ + Na)]
Given in.
The modulated waves having the magneto-sensitive magnetic fields H 1 and H 2 as signal waves are demodulated by the demodulation circuits 3a′b and 3ab ′, and these demodulated waves are differentially amplified by the differential amplifier Dm to obtain the sensor output Eout. Because

Eout=kH−kH=k〔(ha+ha’)−(hb+hb’)〕 Eout = kH 1 −kH 2 = k [(ha + ha ′) − (hb + hb ′)]

で与えられ、センサ出力Eoutは、前記の式7と同様に The sensor output Eout is given by

Eout≒kH(ΔL/r)〔sinα−sin(α+β)〕     Eout≈kH (ΔL / r) [sin α−sin (α + β)]

または、前記の式8と同様に Or similar to Equation 8 above

Eout≒2kH(ΔL/r)〔sin2α−sin2(α+β)〕 Eout≈2 kHz (ΔL / r) 2 [sin2α−sin2 (α + β)]

で与えられる。
本発明に係る電線の導体欠陥検知用センサにおいては、感磁強さがsin2α(またはsinα)の波形で変化し、αが0、90°及び180°(または0、180°及び360°)で0となる。
而るに、撚合導体には撚りがかけられており、半ピッチの間にαが0から180°に変化し、αが0、90°及び180°(またはαが0、180°及び360°)となる箇所では前記検知を満足に行ない得ないから、センサを電線の撚合導体の数ピッチ分、このましくは3〜5ピッチ分だけスキャンすることが有効である。
Given in.
In the sensor for detecting a conductor defect of an electric wire according to the present invention, the magnetosensitive strength changes with a waveform of sin 2α (or sin α), and α is 0, 90 ° and 180 ° (or 0, 180 ° and 360 °). 0.
Thus, the twisted conductor is twisted, α changes from 0 to 180 ° during a half pitch, α is 0, 90 ° and 180 ° (or α is 0, 180 ° and 360). Since the above detection cannot be satisfactorily performed at a position indicated by (°), it is effective to scan the sensor by several pitches of twisted conductors of the electric wire, preferably 3-5 pitches.

請求項2または4のセンサのように増幅を差動増幅により行なう場合、図10に示すように一方の磁気インピーダンス効果素子にかけるバイアス磁界Hbの方向と他方の磁気インピーダンス効果素子にかけるバイアス磁界Hbの方向とが逆方向とされ、互いに逆相の復調出力(磁界検出信号)がE+、E−で表わされ、その差がE±で示すように直線に近づくので、負帰還を省略することも可能である。
本発明は4個以上の磁気インピーダンス効果素子を使用して実施することも可能である。
When amplification is performed by differential amplification as in the sensor of claim 2 or 4, the direction of the bias magnetic field Hb applied to one magnetoimpedance effect element and the bias magnetic field Hb applied to the other magnetoimpedance effect element as shown in FIG. Since the opposite directions of the demodulated outputs (magnetic field detection signals) are represented by E + and E− and the difference approaches a straight line as indicated by E ±, the negative feedback is omitted. Is also possible.
The present invention can also be implemented using four or more magneto-impedance effect elements.

電線を示す断面図である。It is sectional drawing which shows an electric wire. 本発明における180°隔てられた磁気インピーダンス効果素子の感磁成分を示す図面である。2 is a view showing a magnetosensitive component of a magneto-impedance effect element separated by 180 ° in the present invention. 磁界インピーダンス効果素子を用いた磁界検出の基本的回路を示す図面である。It is drawing which shows the basic circuit of the magnetic field detection using a magnetic field impedance effect element. 磁界インピーダンス効果素子を用いた磁界検出の出力特性を示す図面である。It is drawing which shows the output characteristic of the magnetic field detection using a magnetic field impedance effect element. 磁界インピーダンス効果素子を用いた磁界検出の基本的回路の別例を示す図面である。It is drawing which shows another example of the basic circuit of the magnetic field detection using a magnetic field impedance effect element. C型鉄心付き磁界インピーダンス効果素子を示す図面である。It is drawing which shows a magnetic impedance effect element with a C type iron core. 請求項1に係るセンサを示す図面である。It is drawing which shows the sensor which concerns on Claim 1. 請求項2に係るセンサを示す図面である。It is drawing which shows the sensor which concerns on Claim 2. 請求項3に係るセンサを示す図面である。It is drawing which shows the sensor which concerns on Claim 3. 請求項4に係るセンサを示す図面である。It is drawing which shows the sensor which concerns on Claim 4. 請求項2または4のセンサの直線特性を示すための図面である。It is drawing for showing the linear characteristic of the sensor of Claim 2 or 4. 特許文献1の内容を示す図面である。2 is a diagram showing the contents of Patent Document 1. 非特許文献1の内容を示す図面である。1 is a diagram showing the contents of Non-Patent Document 1.

符号の説明Explanation of symbols

1,1’ 180°隔てられた磁気インピーダンス効果素子
1a,1a’ 180°隔てられた磁気インピーダンス効果素子
1b,1b’ 180°隔てられた磁気インピーダンス効果素子
Dm 差動増幅器
Ad 加算若しくは重畳回路
8 電線
1, 1 ′ 180 ° -separated magnetoimpedance effect element 1a, 1a ′ 180 ° -separated magneto-impedance effect element 1b, 1b ′ 180 ° -separated magneto-impedance effect element Dm differential amplifier Ad addition or superposition circuit 8

Claims (4)

電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、対をなす磁気インピーダンス効果素子を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を加算若しくは重畳してセンサ出力とするようにしたことを特徴とする電線の導体欠陥検知用センサ。 A sensor used in a method for detecting a defect in a conductor wire of any of the twisted conductors in an electric wire from a change in the distribution of the peripheral circuit magnetic field based on the energizing current of the twisted conductor when there is no wire defect. There is a pair of magneto-impedance effect elements in the circumferential direction of the electric wire, with an angle of 180 ° around the electric wire and at an equal distance from the electric wire center, and the magnetic sensing direction is perpendicular to the circumference concentric with the electric wire. Two pairs are arranged at a predetermined angle, and the paired magneto-impedance effect elements are connected in series so that the magnetosensitive direction is opposite in polarity, and the outputs from the series-connected magneto-impedance effect elements are added or superimposed. A sensor for detecting a conductor defect in an electric wire, characterized in that the sensor output is used. 電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、対をなす磁気インピーダンス効果素子を感磁方向を逆極性とするように直列に接続し、各直列接続磁気インピーダンス効果素子による出力を減算または差動増幅してセンサ出力とするようにしたことを特徴とする電線の導体欠陥検知用センサ。 A sensor used in a method for detecting a defect in a conductor wire of any of the twisted conductors in an electric wire from a change in the distribution of the peripheral circuit magnetic field based on the energizing current of the twisted conductor when there is no wire defect. There is a pair of magneto-impedance effect elements in the circumferential direction of the electric wire, with an angle of 180 ° around the electric wire and at an equal distance from the electric wire center, and the magnetic sensing direction is perpendicular to the circumference concentric with the electric wire. Two pairs are arranged at a predetermined angle, and the paired magneto-impedance effect elements are connected in series so that the direction of magnetic sensing is reversed, and the output from each series-connected magneto-impedance effect element is subtracted or differentially amplified. A sensor for detecting a conductor defect in an electric wire, characterized in that a sensor output is obtained. 電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、異なる対の一方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、同じく他方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、しかも、両直列接続磁気インピーダンス効果素子を逆極性となるようにし、両直列接続磁気インピーダンス効果素子による出力を加算もしくは重畳してセンサ出力とするようにしたことを特徴とする電線の導体欠陥検知用センサ。 A sensor used in a method for detecting a defect in a conductor wire of any of the twisted conductors in an electric wire from a change in the distribution of the peripheral circuit magnetic field based on the energizing current of the twisted conductor when there is no wire defect. There is a pair of magneto-impedance effect elements in the circumferential direction of the electric wire, with an angle of 180 ° around the electric wire and at an equal distance from the electric wire center, and the magnetic sensing direction is perpendicular to the circumference concentric with the electric wire. Two pairs are arranged at a predetermined angle, one of the magneto-impedance effect elements of different pairs is connected in series so as to have the same polarity or opposite polarity, and the other magneto-impedance effect element is also set to the same polarity or opposite polarity. So that both series-connected magneto-impedance effect elements have opposite polarities, and the outputs from both series-connected magneto-impedance effect elements are added or superimposed. Conductor defect detection sensor wire, characterized in that as the sensor output. 電線における撚合導体の何れかの導体素線の欠陥を、撚合導体の通電電流に基づく周回路磁界の素線欠陥無しのときの周回路磁界に対する分布変化から検知する方法に使用するセンサであり、前記電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気インピーダンス効果素子を電線の周方向に所定の角度を隔てて2対配設し、異なる対の一方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、同じく他方の磁気インピーダンス効果素子を同極性または逆極性とするように直列に接続し、しかも、両直列接続磁気インピーダンス効果素子を同極性となるようにし、両直列接続磁気インピーダンス効果素子による出力を減算または差動増幅してセンサ出力とするようにしたことを特徴とする電線の導体欠陥検知用センサ。 A sensor used in a method for detecting a defect in a conductor wire of any of the twisted conductors in an electric wire from a change in the distribution of the peripheral circuit magnetic field based on the energizing current of the twisted conductor when there is no wire defect. There is a pair of magneto-impedance effect elements in the circumferential direction of the electric wire, with an angle of 180 ° around the electric wire and at an equal distance from the electric wire center, and the magnetic sensing direction is perpendicular to the circumference concentric with the electric wire. Two pairs are arranged at a predetermined angle, one of the magneto-impedance effect elements of different pairs is connected in series so as to have the same polarity or opposite polarity, and the other magneto-impedance effect element is also set to the same polarity or opposite polarity. Connected in series so that both series-connected magneto-impedance effect elements have the same polarity, and the output from both series-connected magneto-impedance effect elements is subtracted or differentially amplified Conductor defect detection sensor wire, characterized in that as the sensor output Te.
JP2004062700A 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires Expired - Fee Related JP4286686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062700A JP4286686B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062700A JP4286686B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Publications (2)

Publication Number Publication Date
JP2005249678A true JP2005249678A (en) 2005-09-15
JP4286686B2 JP4286686B2 (en) 2009-07-01

Family

ID=35030275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062700A Expired - Fee Related JP4286686B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Country Status (1)

Country Link
JP (1) JP4286686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287808A (en) * 2006-04-14 2007-11-01 Uchihashi Estec Co Ltd Method of diagnosing pole mounted transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287808A (en) * 2006-04-14 2007-11-01 Uchihashi Estec Co Ltd Method of diagnosing pole mounted transformer
JP4739097B2 (en) * 2006-04-14 2011-08-03 双日マシナリー株式会社 Diagnosis method of pole transformer

Also Published As

Publication number Publication date
JP4286686B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP4619884B2 (en) Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2006322706A (en) Method of measuring conductor current
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP2005061980A (en) Conductor current measuring method
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2007003509A (en) Method and apparatus for diagnosing degradation of steel framed structure
JP4722717B2 (en) Current sensor
JP2005257594A (en) Fault region detecting method for conductor of wire
JP4938740B2 (en) Magnetic field detector
JP4698959B2 (en) Sensor for detecting conductor defects in electric wires
JP2021025820A (en) Magnetic field detection sensor
JP4739097B2 (en) Diagnosis method of pole transformer
JP2003177167A (en) Magnetic sensor
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP2005043254A (en) Method for measuring conductor current
JP4600989B2 (en) Defect detection method for metal body and scanning magnetic detector
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees