JP4698959B2 - Sensor for detecting conductor defects in electric wires - Google Patents

Sensor for detecting conductor defects in electric wires Download PDF

Info

Publication number
JP4698959B2
JP4698959B2 JP2004062708A JP2004062708A JP4698959B2 JP 4698959 B2 JP4698959 B2 JP 4698959B2 JP 2004062708 A JP2004062708 A JP 2004062708A JP 2004062708 A JP2004062708 A JP 2004062708A JP 4698959 B2 JP4698959 B2 JP 4698959B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic sensor
electric wire
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004062708A
Other languages
Japanese (ja)
Other versions
JP2005249679A (en
Inventor
一実 豊田
和幸 井澤
英樹 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2004062708A priority Critical patent/JP4698959B2/en
Publication of JP2005249679A publication Critical patent/JP2005249679A/en
Application granted granted Critical
Publication of JP4698959B2 publication Critical patent/JP4698959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は電線の撚合導体の欠陥を検知するのに使用するセンサに関し、通電・活線状態で断線、傷、不導体化並びに応力腐食割れ等の劣化といった不良並びに欠陥を検知するのに有用なセンサである。   The present invention relates to a sensor used to detect a defect in a twisted conductor of an electric wire, and is useful for detecting defects and defects such as disconnection, scratches, non-conductivity, and deterioration such as stress corrosion cracking in a live / hot state. Sensor.

通電・活線状態で断線、傷、不導体化並びに応力腐食割れ等の劣化といった不良(欠陥)を検知する方法の一つとして、実際に流されている負荷電流が欠陥部分で乱れを生じ、それによって発生する磁場の変化を検出する方法が知られている。
電線の撚合導体に欠陥が発生すると、その箇所の導体断面の輪郭が非円形化され、同断面の電流路中心がずれる結果、導体電流に基づく周回路磁界の分布が変化するに至る。
そこで、この周回路磁界分布の変化や電流路断面の中心変位を検出して前記撚線導体の欠陥を検知することが提案されている。(特許文献1、非特許文献1)
As one of the methods to detect defects (defects) such as disconnection, scratches, non-conductivity, and deterioration such as stress corrosion cracking in the energized / hot line state, the load current that is actually flowing disturbs the defective part, A method for detecting a change in the magnetic field generated thereby is known.
When a defect occurs in the twisted conductor of the electric wire, the contour of the conductor cross section at that portion is made non-circular, and the current path center of the cross section shifts, resulting in a change in the distribution of the peripheral circuit magnetic field based on the conductor current.
In view of this, it has been proposed to detect a defect in the stranded conductor by detecting the change in the circumferential circuit magnetic field distribution and the center displacement of the current path cross section. (Patent Document 1, Non-Patent Document 1)

特開平10−73631号公報Japanese Patent Laid-Open No. 10-73631 野中崇、他2名,「配電線の非破壊磁気探傷に関する基礎的検討」T,IEEjapan,Vol,121−A,No.3,2001,p282−287Takashi Nonaka and two others, “Fundamental study on non-destructive magnetic flaw detection of distribution lines” T, IEEEjapan, Vol, 121-A, No. 3,2001, p282-287

特許文献1では、図10に示す、電線の周囲にサーチコイル1,1’を180°隔てた対の複数対で電線中心から等距離の位置にて配設し、サーチコイルのコア方向と電線同心円の接線方向とを一致させ、各対の両サーチコイルの出力の差をセンサ出力としている。
図10において、撚線導体の電流路断面の中心の変位がゼロ、すなわち周回路磁界分布変化が無い場合、両コイルの出力が等しくセンサ出力が0となり欠陥無しと評価される。周回路磁界分布変化が生じている場合、両コイルの出力が等しくならずにセンサ出力が発生し、欠陥有りと評価される。
In Patent Document 1, as shown in FIG. 10, search coils 1 and 1 ′ are arranged around the electric wire at a position equidistant from the center of the electric wire in a plurality of pairs separated by 180 °. The tangential direction of the concentric circles is matched, and the difference between the outputs of both search coils of each pair is used as the sensor output.
In FIG. 10, when the displacement of the center of the current path cross section of the stranded wire conductor is zero, that is, there is no change in the circumferential circuit magnetic field distribution, the outputs of both coils are equal, the sensor output is 0, and it is evaluated that there is no defect. When the circumferential circuit magnetic field distribution change occurs, the outputs of both coils are not equal and a sensor output is generated, which is evaluated as defective.

非特許文献1では、図11に示すように電流路断面の中心C1(Cx1,Cy1)が任意座標点p1(x1,y1)及びp2(x2,y2)とそれら任意座標点p1(x1,y1)及びp2(x2,y2)での磁束密度(Bx1,By1)及び(Bx2,By2)から次式で与えられることから

Figure 0004698959
任意座標点p1(x1,y1)における磁束密度(Bx1,By1)及びp2(x2,y2)における磁束密度(Bx2,By2)をサーチコイルにより測定し、これらの測定値から電流路断面の中心座標C1(Cx1,Cy1)を計算し、この中心座標の変位から撚線導体の欠陥を評価している。 In Non-Patent Document 1, as shown in FIG. 11, the center C1 (Cx1, Cy1) of the current path cross section has arbitrary coordinate points p1 (x1, y1) and p2 (x2, y2) and these arbitrary coordinate points p1 (x1, y1). ) And magnetic flux density (Bx1, By1) and (Bx2, By2) at p2 (x2, y2)
Figure 0004698959
The magnetic flux density (Bx1, By1) at the arbitrary coordinate point p1 (x1, y1) and the magnetic flux density (Bx2, By2) at p2 (x2, y2) are measured by the search coil, and the center coordinates of the current path cross section are obtained from these measured values. C1 (Cx1, Cy1) is calculated, and the defect of the stranded conductor is evaluated from the displacement of the center coordinates.

導体電流をIとすると、導体中心から距離rにおける磁束密度Bは、
B=μoI/(2πr)
で与えられ、導体中心のずれ距離をΔLとすれば、磁束密度変化ΔBはΔB∝BΔL/rとなる。
架線された電線には、数10A〜数100Aの電流が通電されており、電線外周上での磁束密度は極めて高い。例えば、電流値を150A、電線半径を15mmとすると、電線表面での磁束密度は1600A/mもの高磁束密度となる。サーチコイル等の磁界センサには、測定限度があり、1600A/mもの高磁界を測定することは困難である。
しかるに、上記従来例では、サーチコイルをその感磁方向を電線の周回路磁界の方向に向けて磁界を測定するか、検出しており、150Aもの高導体電流に対しては、レンジ上、サーチコイルを電線中心からかなり隔てた位置に配置する必要があり、センサの大型化が避けられない。
When the conductor current is I, the magnetic flux density B at a distance r from the conductor center is
B = μoI / (2πr)
If the deviation distance of the conductor center is ΔL, the magnetic flux density change ΔB is ΔB∝BΔL / r.
A current of several tens of A to several hundreds of A is passed through the wired wire, and the magnetic flux density on the outer periphery of the wire is extremely high. For example, if the current value is 150 A and the wire radius is 15 mm, the magnetic flux density on the wire surface is as high as 1600 A / m. A magnetic field sensor such as a search coil has a measurement limit, and it is difficult to measure a magnetic field as high as 1600 A / m.
However, in the above-described conventional example, the magnetic field is measured or detected by the search coil with its magnetic sensing direction directed to the direction of the circumferential circuit magnetic field of the electric wire. It is necessary to dispose the coil at a position that is considerably separated from the center of the electric wire, and an increase in the size of the sensor is inevitable.

本発明の目的は、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用するセンサにおいて、センサの小型化を図ることにある。   An object of the present invention is to reduce the size of a sensor in a sensor used in a method for detecting a defect in a conductor of an electric wire from a change in distribution of a peripheral circuit magnetic field based on the conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when there is no conductor defect. Is to plan.

請求項1に係る電線の導体欠陥検知用センサは、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、対をなす両磁気センサ素子の感磁方向が逆方向とされ、対をなす各磁気センサ素子に基づく出力が重畳若しくは加算され、更にそれらの加算若しくは重畳出力がさらに重畳若しくは加算されてセンサ出力とされることを特徴とする。 The sensor for detecting a conductor defect of an electric wire according to claim 1 is used in a method of detecting a defect of a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when there is no conductor defect. The magnetic sensor element is an MR element, a Hall element, or a fluxgate sensor, and the output characteristic based on the magnetic sensor element is a linear characteristic capable of discriminating the polarity, and the maximum magnetic sensitivity of the magnetic sensor element Magnetic sensor for obtaining each detection output which is superposed, added, subtracted, or differentially amplified as a sensor output in a wire conductor defect detection sensor whose direction is oriented perpendicular to the circumferential direction of the concentric circle with the wire The elements are two pairs, one pair of which is 180 ° apart in the circumferential direction of the electric wire, and both pairs are separated at a predetermined angle in the circumferential direction. It is arranged at a position equidistant from the center of the electric wire, the magnetic sensing direction of the paired magnetic sensor elements is reversed, the outputs based on the paired magnetic sensor elements are superimposed or added, and further The addition or superimposed output is further superimposed or added to form a sensor output.

請求項2に係る電線の導体欠陥検知用センサは、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、対をなす両磁気センサ素子の感磁方向が同方向とされ、各対の磁気センサ素子に基づく検出出力が減算または差動増幅され、これら2箇の減算または差動増幅出力が重畳若しくは加算されてセンサ出力とされることを特徴とする。  The sensor for detecting a conductor defect of an electric wire according to claim 2 is used in a method of detecting a defect in a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when there is no conductor defect. The magnetic sensor element is an MR element, a Hall element, or a fluxgate sensor, and the output characteristic based on the magnetic sensor element is a linear characteristic capable of discriminating the polarity, and the maximum magnetic sensitivity of the magnetic sensor element In the sensor for detecting a defect in a conductor for a wire in which the direction is oriented in a direction perpendicular to the circumferential direction of the concentric circle with the wire, the magnetic sensor element is made into two pairs, one pair being 180 ° apart in the circumferential direction of the wire, Both pairs are separated by a predetermined angle in the circumferential direction, all magnetic sensor elements are arranged at equal distances from the center of the electric wire, and the magnetic sensing directions of the paired magnetic sensor elements are the same direction. Is, the detection output based on the magnetic sensor elements of each pair are subtracted or differential amplifier, subtraction or differential amplifier output of 2 箇 is characterized in that it is a superimposed or summed with the sensor output.

請求項3に係る電線の導体欠陥検知用センサは、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、異なる対の一方の磁気センサ素子が直列に接続され、同じく他方の磁気センサ素子が前記直列磁気センサ素子と逆極性の感磁方向となるように直列に接続され、各直列接続磁気センサ素子に基づく両出力が重畳若しくは加算されてセンサ出力とされることを特徴とする。  The sensor for detecting a conductor defect of an electric wire according to claim 3 is used in a method of detecting a defect of a conductor of an electric wire from a distribution change with respect to a reference peripheral circuit magnetic field when there is no conductor defect of the peripheral circuit magnetic field based on the conductor current of the electric wire. The magnetic sensor element is an MR element, a Hall element, or a fluxgate sensor, and the output characteristic based on the magnetic sensor element is a linear characteristic capable of discriminating the polarity, and the maximum magnetic sensitivity of the magnetic sensor element Magnetic sensor for obtaining each detection output which is superposed, added, subtracted, or differentially amplified as a sensor output in a wire conductor defect detection sensor whose direction is oriented perpendicular to the circumferential direction of the concentric circle with the wire The elements are two pairs, one pair of which is 180 ° apart in the circumferential direction of the electric wire, and both pairs are separated at a predetermined angle in the circumferential direction. It is arranged at a position equidistant from the center of the electric wire, so that one magnetic sensor element of a different pair is connected in series, and the other magnetic sensor element is also in a magnetic sensitive direction having a polarity opposite to that of the serial magnetic sensor element. Are connected in series, and both outputs based on each magnetic sensor element connected in series are superimposed or added to form a sensor output.

請求項4に係る電線の導体欠陥検知用センサは、電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、異なる対の一方の磁気センサ素子が直列に接続され、同じく他方の磁気センサ素子が前記直列磁気センサ素子と同極性の感磁方向となるように直列に接続され、各直列接続磁気センサ素子に基づく両出力が減算または差動増幅されてセンサ出力とされることを特徴とする。  The sensor for detecting a conductor defect of an electric wire according to claim 4 is used in a method for detecting a defect in a conductor of an electric wire from a distribution change with respect to a reference peripheral circuit magnetic field when there is no conductor defect of the peripheral circuit magnetic field based on the conductor current of the electric wire. The magnetic sensor element is an MR element, a Hall element, or a fluxgate sensor, and the output characteristic based on the magnetic sensor element is a linear characteristic capable of discriminating the polarity, and the maximum magnetic sensitivity of the magnetic sensor element Magnetic sensor for obtaining each detection output which is superposed, added, subtracted, or differentially amplified as a sensor output in a wire conductor defect detection sensor whose direction is oriented perpendicular to the circumferential direction of the concentric circle with the wire The elements are two pairs, one pair of which is 180 ° apart in the circumferential direction of the electric wire, and both pairs are separated at a predetermined angle in the circumferential direction. It is arranged at a position equidistant from the center of the electric wire, so that one magnetic sensor element of a different pair is connected in series, and the other magnetic sensor element is also in a magnetic sensitive direction having the same polarity as the series magnetic sensor element. Are connected in series, and both outputs based on each series-connected magnetic sensor element are subtracted or differentially amplified to obtain a sensor output.

センサ素子の最大感磁方向を電線と同心円の周方向と直角方向としてあるから、センサ素子の最大感磁方向に作用する磁界成分が小さく、周回路磁界強さの大なる電線の外面に接近してセンサ素子を配設しても磁界検出できる。従って、センサを小型化できる。更に、電線の周りに180°隔てた前記磁気センサ素子の対の逆極性出力とその出力の加算若しくは重畳、または同磁気センサ素子の対の同極性出力とその出力の減算若しくは差動増幅による同相除去によって内外ノイズの影響を排除できる。
従って、前記周回路磁界の変化を良好に検知でき、電線の導体欠陥を円滑に検知できる。
Since the sensor element's maximum magnetic sensing direction is perpendicular to the circumferential direction of the concentric circle with the wire, the magnetic field component acting in the sensor element's maximum magnetic sensitivity direction is small, and it approaches the outer surface of the wire where the circumferential circuit magnetic field strength is large. Even if a sensor element is provided, the magnetic field can be detected. Therefore, the sensor can be reduced in size. Further, the reverse polarity output of the pair of magnetic sensor elements separated by 180 ° around the electric wire and the addition or superposition of the outputs, or the same polarity output of the pair of magnetic sensor elements and the subtraction or differential amplification of the output of the same polarity. The effect of internal and external noise can be eliminated by the removal.
Therefore, the change in the circumferential circuit magnetic field can be detected satisfactorily, and the conductor defect of the electric wire can be detected smoothly.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1において、8は電線、9はセンサ基板であり、電線挿通用スリット91が設けられている。
1はMR素子、ホール素子またはフラックスゲートコイル等の磁気センサ素子、2は処理回路であり、磁気センサ素子1の感磁成分を被検出量として図2に示すような極性判別可能なリニア特性を呈し、被検出量Hxに比例した出力値Eoutを出力する。磁気センサ素子1は電線中心から距離rの位置に最大感磁方向を電線と同心の円cの周方向と直角に向けて配設してある。3はセンサ出力端である。
前述した通り、導体素線に欠陥が発生すると導電路断面の電流中心ずれ、周回路磁界の分布が変化するに至る。
図3において、導電路断面の電流中心のずれが発生していないときの電線中心oから距離rでの基準周回路磁界の強度Hは
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, 8 is an electric wire, 9 is a sensor board | substrate, and the slit 91 for electric wire insertion is provided.
Reference numeral 1 denotes a magnetic sensor element such as an MR element, a Hall element, or a fluxgate coil. Reference numeral 2 denotes a processing circuit, which has a linear characteristic capable of discriminating polarity as shown in FIG. The output value Eout proportional to the detected amount Hx is output. The magnetic sensor element 1 is arranged at a distance r from the center of the electric wire so that the maximum magnetosensitive direction is perpendicular to the circumferential direction of a circle c concentric with the electric wire. Reference numeral 3 denotes a sensor output terminal.
As described above, when a defect occurs in the conductor wire, the current center shift in the cross section of the conductive path and the distribution of the peripheral circuit magnetic field change.
In FIG. 3, the strength H of the reference peripheral circuit magnetic field at the distance r from the wire center o when no deviation of the current center of the cross section of the conductive path has occurred.

H=I/(2πr)
で与えられる。
磁気センサ素子1の最大感磁方向とずれの方向とがなす角度をα、ずれ距離をΔLとすれば、
H = I / (2πr)
Given in.
If the angle formed by the maximum magnetosensitive direction of the magnetic sensor element 1 and the direction of displacement is α and the displacement distance is ΔL,

=r+(ΔL)−2r・ΔLcosα x 2 = r 2 + (ΔL) 2 −2r · ΔL cos α

sinζ/ΔL=sinα/x   sinζ / ΔL = sinα / x

が成立し、導電路断面中心o’のもとでの距離xでの周回路磁界強さH’=I/(2πx)における磁気センサ素子1の感磁成分、すなわち最大感磁方向成分haは、 And the magnetosensitive component of the magnetic sensor element 1 at the circumferential circuit magnetic field strength H ′ = I / (2πx) at the distance x under the conductive path cross-sectional center o ′, that is, the maximum magnetosensitive direction component ha is ,

ha=H’sinζ   ha = H’sinζ

で与えられる。
上記の諸式からhaを求めると
Given in.
When ha is obtained from the above equations,

〔式1〕 ha≒H(ΔL/r)sinα/〔1−2(ΔL/r)cosα〕 [Formula 1] ha≈H (ΔL / r) sin α / [1-2 (ΔL / r) cos α]

が成立する。
この感磁量haは、電線外周近傍の周方向磁界Hが大であるにもかかわらずΔL≪rのために小であり、磁気センサ素子を電線の外周近傍に配設してセンサを小型にできる。
Is established.
This amount of magnetic sensitivity ha is small because ΔL << r despite the fact that the circumferential magnetic field H in the vicinity of the outer periphery of the electric wire is large, and the magnetic sensor element is arranged in the vicinity of the outer periphery of the electric wire to reduce the size of the sensor. it can.

図4は電線の導体欠陥検知用センサの参考例を示す図面である。
図4において、8は電線である。9はセンサ基板であり、電線挿入用スロツト91を有する。1,1’は電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔てて配設した磁気センサ素子、2,2’は各磁気センサ素子1,1’に対する処理回路であり、各磁気センサ素子1,1’の最大感磁方向を電線と同心の円周と直角方向とし、磁気センサ素子に基づく出力が逆極性となるように各磁気センサ素子1,1’の感磁方向を逆方向としてある。
両磁気センサ素子1,1’に基づく出力が加算若しくは重畳されてセンサ出力とされる。Adは加算回路乃至は重畳回路を示している。
図4において、前記した周回路磁界分布の変化により一方1の磁気センサ素子が感磁する磁界成分をha、地磁気等の外部ノイズに対する感磁成分をNaとすると、この磁気センサ素子1’が感磁する磁界強さHaは、Ha=ha+Naである。
この磁気センサ素子1’に基づく出力Eaは前記リニア出力特性の係数をkとして
FIG. 4 is a drawing showing a reference example of a conductor defect detection sensor for electric wires .
In FIG. 4, 8 is an electric wire. Reference numeral 9 denotes a sensor substrate, which has a wire insertion slot 91. Reference numerals 1 and 1 ′ denote magnetic sensor elements disposed at an angle of 180 ° around the wire and at an equal distance from the center of the wire, and 2 and 2 ′ denote processing circuits for the magnetic sensor elements 1 and 1 ′. The magnetic sensor elements 1, 1 ′ have a maximum magnetic sensitivity direction perpendicular to the circumference concentric with the electric wire, and the magnetic sensor elements 1, 1 ′ have a magnetic sensitivity so that the output based on the magnetic sensor elements has a reverse polarity. The direction is the reverse direction.
Outputs based on both magnetic sensor elements 1 and 1 ′ are added or superimposed to form a sensor output. Ad represents an addition circuit or a superposition circuit.
In FIG. 4, if the magnetic field component that one magnetic sensor element is sensitive to due to the change in the magnetic field distribution of the peripheral circuit described above is ha and the magnetic sensitive component against external noise such as geomagnetism is Na, this magnetic sensor element 1 'is sensitive. The magnetic field strength Ha to be magnetized is Ha = ha + Na.
The output Ea based on the magnetic sensor element 1 ′ is k as the coefficient of the linear output characteristic.

Ea=kHa=k(ha+Na)   Ea = kHa = k (ha + Na)

で与えられる。
他方の磁気センサ素子1’が前記した周回路磁界分布の変化により感磁する成分は、図3において、前記haに対しαを−(180°−α)と置き、周回路磁界の方向が逆であることを勘案し
Given in.
The component of the other magnetic sensor element 1 'that is sensitive to the change in the circumferential circuit magnetic field distribution in FIG. 3 is such that α is set to − (180 ° −α) with respect to ha and the direction of the circumferential circuit magnetic field is reversed. Considering that

〔式2〕 ha’≒H(ΔL/r)sinα/〔1+2(ΔL/r)cosα〕 [Formula 2] ha′≈H (ΔL / r) sin α / [1 + 2 (ΔL / r) cos α]

で与えられる。
他方の磁気センサ素子1’が感磁する磁界強さha’は、両素子1,1’の感磁方向を逆極性としてあるから、Ha’=−(ha’+Na)であり、この磁気センサ素子1’に基づく出力Eaは前記と同様、リニア出力特性の係数をkとして
Given in.
The magnetic field strength ha ′ that the other magnetic sensor element 1 ′ senses is Ha ′ = − (ha ′ + Na) because the magnetosensitive direction of both the elements 1 and 1 ′ has a reverse polarity. The output Ea based on the element 1 ′ is the linear output characteristic coefficient k as described above.

Ea’=kHa’=−k(ha’+Na)   Ea '= kHa' =-k (ha '+ Na)

で与えられる。
両出力Ea,Ea’を加算若しくは重畳したセンサ出力Eoutは
Given in.
Sensor output Eout obtained by adding or superimposing both outputs Ea and Ea 'is

Eout=Ea+Ea’=k(ha−ha’)≒2kH〔(ΔL/r)sin2α Eout = Ea + Ea ′ = k (ha−ha ′) ≈2 kH [(ΔL / r) 2 sin2α

で与えられる。 Given in.

図5は電線の導体欠陥検知用センサの他の参考例を示す図面である。
1,1’は電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔てて配設した磁気センサ素子であり、両磁気センサ素子をその感磁方向を同極性とするように直列接続し、直列磁気センサ素子に処理回路2を接続し、その処理回路2の出力をセンサ出力としている。
前記した周回路磁界分布の変化により各磁気センサ素子が感磁する磁界成分をha、ha’とし、地磁気等の外部ノイズに対する感磁成分をNaとすると、両磁気センサ素子の感磁方向を同方向としてあるから、一方の磁気センサ素子1の感磁成分が(ha+Na)であり、他方の磁気センサ素子1’の感磁成分が(ha’+Na)であり、両磁気センサ素子1,1’を感磁方向を逆極性とするように直列接続してあるから、直列接続磁気センサ素子が全体として感磁する感磁成分は、ha−ha’であり、センサ出力Eoutがk(ha−ha’)で与えられる。従って、
FIG. 5 is a drawing showing another reference example of a conductor defect detection sensor for electric wires .
Reference numerals 1 and 1 ′ denote magnetic sensor elements disposed at an angle of 180 ° around the electric wire and at an equal distance from the center of the electric wire, so that both magnetic sensor elements have the same polarity in the magnetic sensing direction. In series connection, the processing circuit 2 is connected to the serial magnetic sensor element, and the output of the processing circuit 2 is used as the sensor output.
Assuming that the magnetic field components that are magnetically sensitive to each magnetic sensor element due to the change in the distribution of the circumferential circuit magnetic field described above are ha and ha ′, and the magnetically sensitive component against external noise such as geomagnetism is Na, the magnetic sensing directions of both magnetic sensor elements are the same. Therefore, the magnetic sensor component of one magnetic sensor element 1 is (ha + Na), the magnetic sensor component of the other magnetic sensor element 1 ′ is (ha ′ + Na), and both magnetic sensor elements 1, 1 ′. Are connected in series so that the magnetic sensing direction has a reverse polarity, the magnetically sensitive component that the series-connected magnetic sensor element as a whole is sensitive to is ha-ha ′, and the sensor output Eout is k (ha-ha). '). Therefore,

Eout≒2kH〔(ΔL/r)sin2α Eout≈2 kHz [(ΔL / r) 2 sin2α

である。
図6は電線の導体欠陥検知用センサの上記とは別の参考例を示す図面である。
図6において、1,1’は電線8の周りに180°の角度を隔て、かつ電線中心から等距離を隔てて配設した磁気センサ素子であり、両磁気センサ素子1,1’をその感磁方向を同極性とするよ配設し、各磁気センサ素子の処理回路による検出出力を減算または差動増幅してセンサ出力としている。Dmは減算または差動増幅器を示している。
前記した周回路磁界分布の変化により各磁気センサ素子が感磁する磁界成分をha、ha’とし、地磁気等の外部ノイズに対する感磁成分をNaとすると、両磁気センサ素子の感磁方向を同方向としてあるから、一方の磁気センサ素子1の感磁成分が(ha+Na)であり、他方の磁気センサ素子1’の感磁成分が(ha’+Na)であり、各感磁成分(ha+Na),(ha’+Na)に基づく処理回路2,2’の検出出力を減算または差動増幅してセンサ出力としているから、センサ出力Eoutがk(ha+Na)−k(ha’+Na)で与えられ、センサ出力Eout=k(ha−ha’)から、
It is.
FIG. 6 is a drawing showing a reference example different from the above for the conductor defect detection sensor for electric wires .
In FIG. 6, reference numerals 1 and 1 ′ denote magnetic sensor elements disposed at an angle of 180 ° around the electric wire 8 and at an equal distance from the center of the electric wire. The magnetic directions are arranged so as to have the same polarity, and the detection output by the processing circuit of each magnetic sensor element is subtracted or differentially amplified to obtain a sensor output. Dm represents a subtraction or differential amplifier.
Assuming that the magnetic field components that are magnetically sensitive to each magnetic sensor element due to the change in the distribution of the circumferential circuit magnetic field described above are ha and ha ′, and the magnetically sensitive component against external noise such as geomagnetism is Na, the magnetic sensing directions of both magnetic sensor elements are the same. Therefore, the magnetic sensitive component of one magnetic sensor element 1 is (ha + Na), the magnetic sensitive component of the other magnetic sensor element 1 ′ is (ha ′ + Na), and each magnetic sensitive component (ha + Na), Since the detection output of the processing circuits 2 and 2 ′ based on (ha ′ + Na) is subtracted or differentially amplified to obtain a sensor output, the sensor output Eout is given by k (ha + Na) −k (ha ′ + Na), and the sensor From the output Eout = k (ha−ha ′),

Eout≒2kH(ΔL/r)sin2α Eout≈2kH (ΔL / r) 2 sin2α

となる。
図7は本発明に係る電線の導体欠陥検知用センサの一実施例を示す図面である。
図7において、8は電線、9はセンサ基板であり、電線8の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円の周方向と直角方向とした一対の磁気センサ素子(1a,1a’)と(1b,1b’)の2つの対a,bを電線の周方向に所定の角度βを隔てて配設し、各磁気センサ素子1a,1a’,1b,1b’に処理回路2a,2a’,2b,2b’を接続し、対(1a,1a’)、(1b,1b’)をなす磁気センサ素子に基づく出力を逆極性とするようにその対をなす磁気センサ素子1aと1a’及び1bと1b’の感磁方向を逆方向とし、これらの出力を加算若しくは重畳回路Adaa'及びAdbb’で加算若しくは重畳し、これらの両出力を更に加算若しくは重畳回路Adで加算若しくは重畳してセンサ出力としている。
対aの一方の磁気センサ素子1aの前記した周回路磁界分布の変化による感磁成分をha、地磁気等の外部ノイズに対する感磁成分をNaとすると、この磁気センサ素子が感磁する磁界強さHaは、Ha=ha+Naであり、この磁気センサ素子に基づく出力EaはEa=kHa=k(ha+Na)で与えられる。
対aの他方の磁気センサ素子1a’が感磁する磁界強Ha’さは、前記一方の磁気センサ素子1aに対し感磁方向を逆極性としてあるから、Ha’=−(ha’+Na)であり、この磁気センサ素子1a’に基づく出力Ea’はEa’=kHa’=−k(ha’+Na)で与えられる。
従って、両出力Ea,Ea’の加算若しくは重畳値Eaa’は
It becomes.
FIG. 7 is a view showing an embodiment of a sensor for detecting a conductor defect in an electric wire according to the present invention .
In FIG. 7, 8 is an electric wire, and 9 is a sensor substrate. The magnetic sensing direction is perpendicular to the circumferential direction of a circle concentric with the electric wire, with an angle of 180 ° around the electric wire 8 and an equal distance from the center of the electric wire. Two pairs of a and b of a pair of magnetic sensor elements (1a, 1a ′) and (1b, 1b ′) in the direction are arranged at a predetermined angle β in the circumferential direction of the electric wire, and each magnetic sensor element 1a , 1a ′, 1b, 1b ′ are connected to the processing circuits 2a, 2a ′, 2b, 2b ′, and the output based on the magnetic sensor elements forming the pair (1a, 1a ′), (1b, 1b ′) is reversed in polarity. Thus, the magnetic sensing elements 1a and 1a ′ and 1b and 1b ′ that make up the pair are set in opposite directions, and their outputs are added or superimposed by the addition or superposition circuits Adaa ′ and Adbb ′. The output is further added or added or superimposed by the superposition circuit Ad to obtain a sensor output. .
When the magnetic sensing component due to the change in the circumferential circuit magnetic field distribution of one magnetic sensor element 1a of the pair a is ha and the magnetic sensing component with respect to external noise such as geomagnetism is Na, the magnetic field strength at which this magnetic sensor element senses magnetic field. Ha is Ha = ha + Na, and the output Ea based on this magnetic sensor element is given by Ea = kHa = k (ha + Na).
The magnetic field strength Ha ′ sensed by the other magnetic sensor element 1a ′ of the pair a is opposite to the one of the magnetic sensor elements 1a, so that Ha ′ = − (ha ′ + Na). The output Ea ′ based on the magnetic sensor element 1a ′ is given by Ea ′ = kHa ′ = − k (ha ′ + Na).
Therefore, the addition or superposition value Eaa ′ of both outputs Ea and Ea ′ is

Eaa’=k(ha−ha’)   Eaa '= k (ha-ha')

で与えられ、地磁気等の外部ノイズNaの影響を排除できる。このEaa’は The influence of external noise Na such as geomagnetism can be eliminated. This Eaa ’

Eaa’=k(ha−ha’)≒4kH〔(ΔL/r)sinαcosα=2kH〔(ΔL/r)sin2α Eaa ′ = k (ha−ha ′) ≈4 kH [(ΔL / r) 2 sin αcos α = 2 kH [(ΔL / r) 2 sin 2α

で与えられる。
他方の対bの一方の磁気センサ素子1bの前記した周回路磁界分布の変化による感磁成分をhb、地磁気等の外部ノイズに対する感磁成分をNbとすると、この磁気センサ素子が感磁する磁界強さHbは、Hb=hb+Nbであり、同じ対bの他方の磁気センサ素子1b’が感磁する磁界強Hb’さは、両素子の感磁方向を逆極性としてあるから、Hb’=−(hb’+Nb)であり、従って、両出力Eb,Eb’の加算若しくは重畳値Ebb’は
Given in.
If the magnetic sensor component due to the change in the circumferential circuit magnetic field distribution of one magnetic sensor element 1b of the other pair b is hb and the magnetic sensor component with respect to external noise such as geomagnetism is Nb, the magnetic field that this magnetic sensor element is sensitive to. The strength Hb is Hb = hb + Nb, and the magnetic field strength Hb ′ that the other magnetic sensor element 1b ′ of the same pair b is sensitive to has the opposite polarity in the magnetic sensitive direction of both elements, so Hb ′ = − (Hb ′ + Nb). Therefore, the sum of both outputs Eb and Eb ′ or the superimposed value Ebb ′ is

Ebb’=k(hb−hb’)   Ebb '= k (hb-hb')

で与えられ、地磁気等の外部ノイズNbの影響を排除できる。
対aと対bとの角度差が図3に示すようにβであるから、このEbb’は、上記Eaa’においてαを(α+β)とおくことにより得られ
The influence of external noise Nb such as geomagnetism can be eliminated.
Since the angular difference between the pair a and the pair b is β as shown in FIG. 3, this Ebb ′ is obtained by setting α to (α + β) in the Eaa ′.

Ebb’≒2kH〔(ΔL/r)sin2(α+β) Ebb′≈2 kHz [(ΔL / r) 2 sin2 (α + β)

であり、Eaa’とEbb’との加算若しくは重畳出力としてのセンサ出力Eoutは The sensor output Eout as an addition or superposition output of Eaa 'and Ebb' is

Eout≒2kH〔(ΔL/r)〔sin2α+sin2(α+β)〕 Eout≈2 kHz [(ΔL / r) 2 [sin2α + sin2 (α + β)]

で与えられる。
本発明の別実施例に係るセンサでは、前記対aの磁気センサ素子1a,1a’の感磁方向を同極性とし、対bの磁気センサ素子1b,1b’の感磁方向を同極性とし、磁気センサ素子1a,1a’の処理回路2a,2a’の出力の加算若しくは重畳量Eaa’と磁気センサ素子1b,1b’の処理回路2b,2b’の出力の加算若しくは重畳量Ebb’とを減算または差動増幅してセンサ出力Eoutとしており、その出力Eoutは
Given in.
In a sensor according to another embodiment of the present invention, the magnetic sensing elements 1a and 1a ′ of the pair a have the same polarity, the magnetic sensing elements 1b and 1b ′ of the pair b have the same polarity, The addition or superimposition amount Eaa ′ of the processing circuits 2a and 2a ′ of the magnetic sensor elements 1a and 1a ′ is subtracted from the addition or superimposition amount Ebb ′ of the processing circuits 2b and 2b ′ of the magnetic sensor elements 1b and 1b ′. Alternatively, the sensor output Eout is differentially amplified and the output Eout is

Eout≒2kH〔(ΔL/r)〔sin2α−sin2(α+β)〕 Eout≈2 kHz [(ΔL / r) 2 [sin2α−sin2 (α + β)]

で与えられる。
図8は本発明の上記とは別の実施例に係る電線の導体欠陥検知用センサの一実施例を示す図面である。
図8において、8は電線、9はセンサ基板であり、電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気センサ素子を電線の周方向に所定の角度βを隔てて二つの対a,bで配設し、対aの一方の磁気センサ素子1aと対bの一方の磁気センサ素子1bとを同極性または逆極性とするように直列に接続し、同じく他方の磁気センサ素子1a’と1b’とを前記直列接続磁気センサ素子と逆極性とするように直列に接続し、各直列接続磁気センサ素子による出力を加算もしくは重畳してセンサ出力としている。
図8において、前記と同様に周回路磁界の分布変化により対aの磁気センサ素子1aの感磁成分がha、同じく対aの磁気センサ素子1a’の感磁成分がha’、地磁気等の外部ノイズに対する感磁成分がNa、対bの磁気センサ素子1bの感磁成分がhb、同じく対bの磁気センサ素子1b’の感磁成分がhb’、地磁気等の外部ノイズに対する感磁成分がNbであるとすると、
各磁気センサ素子に対する被感磁磁界は、ha+Na、ha’+Na、hb+Nb、hb’+Nbとなり、異なる対の一方の磁気センサ素子の同極性または逆極性直列接続磁気センサ素子の感磁磁界H
Given in.
FIG. 8 is a drawing showing an embodiment of a sensor for detecting a conductor defect of an electric wire according to another embodiment of the present invention .
In FIG. 8, 8 is an electric wire, and 9 is a sensor substrate. The magnetic sensing direction is a direction perpendicular to the circumference concentric with the electric wire at an angle of 180 ° around the electric wire and equidistant from the electric wire center. A pair of magnetic sensor elements are arranged in two pairs a and b at a predetermined angle β in the circumferential direction of the electric wire, and one magnetic sensor element 1a of the pair a and one magnetic sensor element 1b of the pair b are connected. Each magnetic sensor element is connected in series so as to have the same polarity or opposite polarity, and the other magnetic sensor elements 1a 'and 1b' are connected in series so as to have the opposite polarity to the series-connected magnetic sensor element. The output from the element is added or superimposed to obtain the sensor output.
In FIG. 8, the magnetic sensing component of the magnetic sensor element 1a of the pair a is ha, the magnetic sensitive component of the magnetic sensor element 1a 'of the pair a is ha' due to the change in the distribution of the peripheral circuit magnetic field as described above, and external such as geomagnetism. The magnetic sensitive component for noise is Na, the magnetic sensitive component of the pair b magnetic sensor element 1b is hb, the magnetic sensitive component of the pair b magnetic sensor element 1b 'is hb', and the magnetic sensitive component for external noise such as geomagnetism is Nb. If
The magnetosensitive magnetic field for each magnetic sensor element is ha + Na, ha ′ + Na, hb + Nb, hb ′ + Nb, and the magnetosensitive magnetic field H 1 of the magnetic sensor element of the same polarity or reverse polarity series connection of one of the different pairs of magnetic sensor elements is

〔式3〕 H=(ha+Na)±(hb’+Nb) [Formula 3] H 1 = (ha + Na) ± (hb ′ + Nb)

となり、この感磁磁界Hに基づく検出出力はEThe detection output based on this magnetosensitive magnetic field H 1 is E 1

=kH=k〔(ha+Na)±(hb’+Nb)〕
で与えられ、異なる対の他方の磁気センサ素子が前記直列接続磁気センサ素子とは逆極性の直列接続であるから、この直列接続磁気センサ素子の感磁磁界H
E 1 = kH 1 = k [(ha + Na) ± (hb ′ + Nb)]
Since the other magnetic sensor element of the different pair is a series connection having a polarity opposite to that of the series connection magnetic sensor element, the magnetosensitive magnetic field H 2 of the series connection magnetic sensor element is

〔式4〕 H=−〔(hb+Nb)±(ha’+Na)〕 [Formula 4] H 2 = − [(hb + Nb) ± (ha ′ + Na)]

となり、これら感磁磁界Hに基づく検出出力はE
=kH=−k〔(hb+Nb)±(ha’+Na)〕
Next, the detection output E 2 based on these sensitive magnetizing field H 2 is E 2 = kH 2 = -k [(hb + Nb) ± (ha '+ Na) ]

で与えられる。
両検出出力EとEとの加算もしくは重畳であるセンサ出力Eoutは
Given in.
Sensor output Eout is an addition or superposition of the two detection outputs E 1 and E 2 are

Eout=k〔(ha−ha’)−(hb−hb’)〕   Eout = k [(ha−ha ′) − (hb−hb ′)]

または   Or

Eout=k〔(ha+ha’)−(hb+hb’)〕
であり、地磁気等の外部ノイズNa,Nbに対する感磁成分が出力されない。
前記センサ出力Eoutは
Eout = k [(ha + ha ′) − (hb + hb ′)]
Thus, no magnetosensitive component for external noise Na, Nb such as geomagnetism is output.
The sensor output Eout is

〔式5〕 Eout≒2KH(ΔL/r)〔sinα−sin(α+β)〕 [Formula 5] Eout≈2 KH (ΔL / r) [sin α−sin (α + β)]

または Or

〔式6〕 Eout≒2KH〔(ΔL/r)〔sin2α−sin2(α+β)〕 [Formula 6] Eout≈2KH [(ΔL / r) 2 [sin2α−sin2 (α + β)]

で与えられる。
図9は本発明の上記とは別の実施例に係る電線の導体欠陥検知用センサの一実施例を示す図面である。
図9においても、図8と同様に電線の周りに180°の角度を隔て、かつ電線中心から等距離を隔て、感磁方向を電線と同心の円周と直角方向とした一対の磁気センサ素子を電線の周方向に所定の角度βを隔てて二つの対a,bで配設し、対aの一方の磁気センサ素子1aと対bの一方の磁気センサ素子1bとを同極性または逆極性とするように直列に接続ししている。対aの一方の磁気センサ素子1aと対bの一方の磁気センサ素子1b’との同極性または逆極性直列接続磁気センサ素子の感磁磁界Hは、図8のセンサと同様に、式3から
Given in.
FIG. 9 is a drawing showing an embodiment of a sensor for detecting a conductor defect of an electric wire according to another embodiment of the present invention .
9 as well as FIG. 8, a pair of magnetic sensor elements having an angle of 180 ° around the electric wire and equidistant from the electric wire center, and having a magnetosensitive direction perpendicular to the circumference concentric with the electric wire. Are arranged in two pairs a and b with a predetermined angle β in the circumferential direction of the electric wire, and one magnetic sensor element 1a of the pair a and one magnetic sensor element 1b of the pair b have the same polarity or opposite polarity Are connected in series. Sensitive magnetizing field H 1 of the same polarity or opposite polarity series magnetic sensor element of a pair one magnetic sensor element 1a and the pair one magnetic sensor element 1b of b in a ', like the sensor of FIG. 8, equation 3 From

=(ha+Na)±(hb’+Nb) H 1 = (ha + Na) ± (hb ′ + Nb)

である。
しかし、図8のセンサでは、他方の磁気センサ素子1a’と1bとを前記直列接続磁気センサ素子と逆極性とするように直列に接続しているのに対し、図9では他方の磁気センサ素子1a’と1bとを前記直列接続磁気センサ素子と同極性とするように直列に接続している。対a,bの他方の磁気センサ素子1a’と1bとが前記直列接続磁気センサ素子1aと1b’との直列接続とは同極性の直列接続であるから、この直列接続磁気センサ素子の感磁磁界Hは前記の式4とは逆符号となり
It is.
However, in the sensor of FIG. 8, the other magnetic sensor elements 1a ′ and 1b are connected in series so as to have a polarity opposite to that of the series-connected magnetic sensor element, whereas in FIG. 1a ′ and 1b are connected in series so as to have the same polarity as that of the series-connected magnetic sensor element. Since the other magnetic sensor elements 1a 'and 1b of the pair a and b are in series connection with the same polarity as the series connection of the series connection magnetic sensor elements 1a and 1b', the magnetic sensing of this series connection magnetic sensor element magnetic field H 2 becomes opposite sign to the formula 4 of the

=+〔(hb+Nb)±(ha’+Na)〕
で与えられる。
これらの感磁磁界H、Hによる処理回路2a'b、2ab'の出力はkH、kHであり、これらの減算または差動増幅出力がセンサ出力Eoutとされるから、
H 2 = + [(hb + Nb) ± (ha ′ + Na)]
Given in.
Since the outputs of the processing circuits 2a′b and 2ab ′ by the magnetosensitive magnetic fields H 1 and H 2 are kH 1 and kH 2 , and the subtraction or differential amplification output thereof is the sensor output Eout,

Eout=kH−kH=k〔(ha+ha’)−(hb+hb’)〕 Eout = kH 1 −kH 2 = k [(ha + ha ′) − (hb + hb ′)]

で与えられ、センサ出力Eoutは、前記の式5と同様に The sensor output Eout is given by

Eout≒kH(ΔL/r)〔sinα−sin(α+β)〕     Eout≈kH (ΔL / r) [sin α−sin (α + β)]

または、前記の式6と同様に Or similar to Equation 6 above

Eout≒2kH〔(ΔL/r)〕〔sin2α−sin2(α+β)〕 Eout≈2 kHz [(ΔL / r)] 2 [sin2α−sin2 (α + β)]

で与えられる。
本発明に係る電線の導体欠陥検知用センサにおいては、感磁強さがsin2α(またはsinα)の波形で変化し、αが0、90°及び180°(または0、180°及び360°)で0となる。
而るに、撚合導体には撚りがかけられており、半ピッチの間にαが0から180°に変化し、αが0、90°及び180°(またはαが0、180°及び360°)となる箇所では前記検知を満足に行ない得ないから、センサを電線の撚合導体の数ピッチ分、このましくは3〜5ピッチ分だけスキャンすることが有効である。
Given in.
In the sensor for detecting a conductor defect of an electric wire according to the present invention, the magnetosensitive strength changes with a waveform of sin 2α (or sin α), and α is 0, 90 ° and 180 ° (or 0, 180 ° and 360 °). 0.
Thus, the twisted conductor is twisted, α changes from 0 to 180 ° during a half pitch, α is 0, 90 ° and 180 ° (or α is 0, 180 ° and 360). Since the above detection cannot be satisfactorily performed at a position indicated by (°), it is effective to scan the sensor by several pitches of twisted conductors of the electric wire, preferably 3-5 pitches.

センサの参考例を示す図面である。It is drawing which shows the reference example of a sensor. 本発明において使用する磁気センサ素子に基づく出力特性を示す図面である。It is drawing which shows the output characteristic based on the magnetic sensor element used in this invention. 本発明に係るセンサにおける磁気センサ素子の感磁成分を示す図面である。It is drawing which shows the magnetosensitive component of the magnetic sensor element in the sensor which concerns on this invention. センサの上記とは別の参考例を示す図面である。It is drawing which shows the reference example different from the above of a sensor . センサの上記とは別の参考例を示す図面である。It is drawing which shows the reference example different from the above of a sensor . センサの上記とは別の参考例を示す図面である。It is drawing which shows the reference example different from the above of a sensor . 本発明に係るセンサの一実施例を示す図面である。It is drawing which shows one Example of the sensor which concerns on this invention . 本発明に係るセンサの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the sensor which concerns on this invention . 本発明に係るセンサの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the sensor which concerns on this invention . 従来例を示す図面である。It is drawing which shows a prior art example. 上記とは別の従来例を示す図面である。It is drawing which shows the prior art example different from the above.

1 磁気センサ素子
1’ 磁気センサ素子
1a,1a’ 対をなす磁気センサ素子
1b,1b’ 対をなす磁気センサ素子
Ad 加算若しくは重畳回路
Adab 加算若しくは重畳回路
Adab' 加算若しくは重畳回路
Dm 減算または差動増幅回路
8 電線
c 電線と同心の円
DESCRIPTION OF SYMBOLS 1 Magnetic sensor element 1 'Magnetic sensor element 1b which makes magnetic sensor element 1a, 1a' pair, Magnetic sensor element Ad which makes 1b 'pair, Addition or superimposition circuit Adab Addition or superposition circuit Adab' Addition or superposition circuit Dm Subtraction or differential Amplification circuit 8 Electric wire c Concentric circle with electric wire

Claims (4)

電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、この対をなす両磁気センサ素子の感磁方向が逆方向とされ、対をなす各磁気センサ素子に基づく出力が重畳若しくは加算され、更にそれらの加算若しくは重畳出力がさらに重畳若しくは加算されてセンサ出力とされることを特徴とする電線の導体欠陥検知用センサ。A sensor used in a method of detecting a defect in a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when no conductor defect is present. Is an element or a fluxgate sensor, and the output characteristics based on the magnetic sensor element are linear characteristics that allow polarity discrimination, and the maximum magnetic sensing direction of the magnetic sensor element is oriented in a direction perpendicular to the circumferential direction of the concentric circle with the electric wire. In order to obtain each detection output that is superposed, added, subtracted, or differentially amplified to be a sensor output, the two magnetic sensor elements are separated by 180 ° in the circumferential direction of the electric wire. Two pairs, which are one pair, both pairs are separated by a predetermined angle in the circumferential direction, and all magnetic sensor elements are disposed at equidistant positions from the center of the wire, The magnetic sensing direction of both magnetic sensor elements forming a pair is reversed, the outputs based on each pair of magnetic sensor elements are superimposed or added, and the addition or superimposed output is further superimposed or added to output the sensor. A sensor for detecting a conductor defect in an electric wire, characterized in that: 電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、対をなす両磁気センサ素子の感磁方向が同方向とされ、各対の磁気センサ素子に基づく検出出力が減算または差動増幅され、これら2箇の減算または差動増幅出力が重畳若しくは加算されてセンサ出力とされることを特徴とする電線の導体欠陥検知用センサ。A sensor used in a method of detecting a defect in a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when no conductor defect is present. Is an element or a fluxgate sensor, and the output characteristics based on the magnetic sensor element are linear characteristics that allow polarity discrimination, and the maximum magnetic sensing direction of the magnetic sensor element is oriented in a direction perpendicular to the circumferential direction of the concentric circle with the electric wire. In the conductor defect detecting sensor for electric wires, the magnetic sensor elements are two pairs, one pair of which is separated by 180 ° in the circumferential direction of the electric wires, and the two pairs are separated by a predetermined angle in the circumferential direction, All magnetic sensor elements are arranged at equal distances from the center of the electric wire, and the magnetic sensing directions of the paired magnetic sensor elements are the same, and the detection output based on each pair of magnetic sensor elements is Calculated or are differentially amplified, the conductor defect detection sensor wire, characterized in that subtraction or differential amplifier output of 2 箇 is that it is superimposed or added sensor output. 電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、この異なる対の一方の磁気センサ素子が直列に接続され、同じく他方の磁気センサ素子が前記直列磁気センサ素子と逆極性の感磁方向となるように直列に接続され、各直列接続磁気センサ素子に基づく両出力が重畳若しくは加算されてセンサ出力とされることを特徴とする電線の導体欠陥検知用センサ。A sensor used in a method of detecting a defect in a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when no conductor defect is present. Is an element or a fluxgate sensor, and the output characteristics based on the magnetic sensor element are linear characteristics that allow polarity discrimination, and the maximum magnetic sensing direction of the magnetic sensor element is oriented in a direction perpendicular to the circumferential direction of the concentric circle with the electric wire. In order to obtain each detection output that is superposed, added, subtracted, or differentially amplified to be a sensor output, the two magnetic sensor elements are separated by 180 ° in the circumferential direction of the electric wire. Two pairs, which are one pair, both pairs are separated by a predetermined angle in the circumferential direction, and all magnetic sensor elements are disposed at equidistant positions from the center of the wire, One magnetic sensor element of a different pair is connected in series, and the other magnetic sensor element is also connected in series so as to have a magnetosensitive direction opposite in polarity to the serial magnetic sensor element. A sensor for detecting a conductor defect in an electric wire, wherein both outputs based on the output are superimposed or added to form a sensor output. 電線の導体の欠陥を該電線の導体電流に基づく周回路磁界の導体欠陥無しのときの基準周回路磁界に対する分布変化から検出する方法において使用されるセンサであり、磁気センサ素子がMR素子、ホール素子、フラックスゲートセンサの何れかであり、磁気センサ素子に基づく出力特性が極性判別可能なリニア特性であり、該磁気センサ素子の最大感磁方向が電線と同心円の周方向と直角方向に向けられている電線用導体欠陥検知用センサにおいて、重畳若しくは加算または減算若しくは差動増幅されてセンサ出力とされる各検出出力を得るために磁気センサ素子が電線の周方向に180°隔てた2箇を1対とする2対とされ、両対が前記周方向に所定の角度で隔てられ、全磁気センサ素子が電線中心から等距離の位置に配設されており、この異なる対の一方の磁気センサ素子が直列に接続され、同じく他方の磁気センサ素子が前記直列磁気センサ素子と同極性の感磁方向となるように直列に接続され、各直列接続磁気センサ素子に基づく両出力が減算または差動増幅されてセンサ出力とされることを特徴とする電線の導体欠陥検知用センサ。A sensor used in a method of detecting a defect in a conductor of an electric wire from a distribution change of a peripheral circuit magnetic field based on a conductor current of the electric wire with respect to a reference peripheral circuit magnetic field when no conductor defect is present. Is an element or a fluxgate sensor, and the output characteristics based on the magnetic sensor element are linear characteristics that allow polarity discrimination, and the maximum magnetic sensing direction of the magnetic sensor element is oriented in a direction perpendicular to the circumferential direction of the concentric circle with the electric wire. In order to obtain each detection output that is superposed, added, subtracted, or differentially amplified to be a sensor output, the two magnetic sensor elements are separated by 180 ° in the circumferential direction of the electric wire. Two pairs, which are one pair, both pairs are separated by a predetermined angle in the circumferential direction, and all magnetic sensor elements are disposed at equidistant positions from the center of the wire, One magnetic sensor element of a different pair is connected in series, and the other magnetic sensor element is connected in series so as to have a magnetic sensitive direction of the same polarity as the serial magnetic sensor element. A sensor for detecting a conductor defect in an electric wire, wherein both outputs based on the subtraction or differential amplification are used as a sensor output.
JP2004062708A 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires Expired - Fee Related JP4698959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062708A JP4698959B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062708A JP4698959B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Publications (2)

Publication Number Publication Date
JP2005249679A JP2005249679A (en) 2005-09-15
JP4698959B2 true JP4698959B2 (en) 2011-06-08

Family

ID=35030276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062708A Expired - Fee Related JP4698959B2 (en) 2004-03-05 2004-03-05 Sensor for detecting conductor defects in electric wires

Country Status (1)

Country Link
JP (1) JP4698959B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624001B1 (en) * 2012-02-01 2015-01-07 ams AG Hall sensor and sensor arrangement
JP2014185999A (en) * 2013-03-25 2014-10-02 Omron Corp Current sensor and power sensor using the same
CN104535879A (en) * 2014-12-05 2015-04-22 四川邮科通信技术有限公司 Rapid line inspection device of communication cable
CN108761358B (en) * 2018-04-22 2021-07-23 成都理工大学 Method for manufacturing magnetic probe of fluxgate sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000318250A (en) * 1999-05-07 2000-11-21 King Jim Co Ltd Apparatus and method for registering sample for separate volume back heading, apparatus and method for printing separate volume back heading and computer readable recording medium
JP2002228700A (en) * 2001-01-30 2002-08-14 Mitsubishi Heavy Ind Ltd Wire breaking detector
JP2004069443A (en) * 2002-08-06 2004-03-04 Seiko Instruments Inc High tension insulated wire inspection method using superconducting quantum interference device (squid) and inspection apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126642B2 (en) * 1995-11-09 2001-01-22 科学技術振興事業団 Magnetic field sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000318250A (en) * 1999-05-07 2000-11-21 King Jim Co Ltd Apparatus and method for registering sample for separate volume back heading, apparatus and method for printing separate volume back heading and computer readable recording medium
JP2002228700A (en) * 2001-01-30 2002-08-14 Mitsubishi Heavy Ind Ltd Wire breaking detector
JP2004069443A (en) * 2002-08-06 2004-03-04 Seiko Instruments Inc High tension insulated wire inspection method using superconducting quantum interference device (squid) and inspection apparatus

Also Published As

Publication number Publication date
JP2005249679A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
US5414353A (en) Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom
US7049924B2 (en) Electromagnetic induction type position sensor
US7038445B2 (en) Method, system and apparatus for ferromagnetic wall monitoring
US9322805B2 (en) Leakage flux probe for non-destructive leakage flux-testing of bodies consisting of magnetisable material
JPS5877653A (en) Nondestructive testing device
US10634645B2 (en) Eddy current probe with 3-D excitation coils
JP2013505443A (en) Eddy current inspection for surface hardening depth
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
WO2019155424A1 (en) Probe for eddy current non-destructive testing
US7414399B2 (en) Micromagnetometer of the fluxgate type with improved excitation coil
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
JP4698959B2 (en) Sensor for detecting conductor defects in electric wires
EP3139161B1 (en) Multi-element sensor array calibration method
Pelkner et al. Benefits of GMR sensors for high spatial resolution NDT applications
Kataoka et al. Application of GMR line sensor to detect the magnetic flux distribution for nondestructive testing
JP2007263930A (en) Eddy current flaw detector
Pelkner et al. Eddy current testing with high-spatial resolution probes using MR arrays as receiver
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP2019020272A (en) Front surface scratch inspection device
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP5011056B2 (en) Eddy current inspection probe and eddy current inspection device
JP4520188B2 (en) Method for detecting conductor defects in electric wires
Pelkner et al. Local magnetization unit for GMR array based magnetic flux leakage inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

LAPS Cancellation because of no payment of annual fees