JP2005229102A - ヒートシンク - Google Patents

ヒートシンク Download PDF

Info

Publication number
JP2005229102A
JP2005229102A JP2004379229A JP2004379229A JP2005229102A JP 2005229102 A JP2005229102 A JP 2005229102A JP 2004379229 A JP2004379229 A JP 2004379229A JP 2004379229 A JP2004379229 A JP 2004379229A JP 2005229102 A JP2005229102 A JP 2005229102A
Authority
JP
Japan
Prior art keywords
substrate
heat sink
pores
pore
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004379229A
Other languages
English (en)
Inventor
Akio Adachi
昭夫 安達
Kenichi Ikeda
健一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004379229A priority Critical patent/JP2005229102A/ja
Publication of JP2005229102A publication Critical patent/JP2005229102A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】ヒートシンクに取り付けられた被冷却体となる発熱体の熱をより均等に基板および放熱フィン側へ均一に拡散して伝達することができるようにする。
【解決手段】熱良導体からなる平板状の基板と、この基板の一方の主面に取り付けられた複数の放熱フィンとを備え、前記基板の他方の主面に、被冷却体となる発熱体を取り付け発熱体の冷却を行うヒートシンクにおいて、前記基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成し、これらの細孔列の両端に、細孔列の各細孔を相互に連通させて密封するヘッダ部を設け、密封された各細孔内に冷却媒体を封入してヒートポンプを構成する。
【選択図】図5A

Description

この発明は、半導体素子等の発熱密度の高い発熱体の冷却に適したヒートシンクに関する。
半導体素子は高集積化、高出力化に伴って損失が増加し、発熱量が増大するので、これを効果的に冷却することが必要となる。
半導体素子の発生損失が数Wレベルまでは半導体素子の表面からの自然放熱でもよいが、数十Wレベルでは、これまで図11に示すようにアルミニウム等の熱良導体で構成された基板51に放熱フィン52を多数取付けて構成したヒートシンク50を用いるようにしていた。このヒートシンク50を半導体素子などの発熱体1に結合し、発熱体1の熱をこのヒートシンク50へ伝達し放熱フィン52から大気中への放熱することにより発熱体の熱の放熱が促進される。また、半導体素子などの発熱体の損失が数十W以上のレベルになった場合は、このヒートシンク50に電動ファン60により送風することにより放熱効率をさらに向上させるようにするのが一般的である。
半導体素子の出力がさらに増大し、または実装密度が高密度化することにより、ヒートシンクにさらに高い単位面積あたりの放熱量が要求されるが、この場合は、一般に、図12に示すように、ヒートシンク50に設ける櫛歯状の放熱フィン52aの間隔を可能な限り小さくしたり、図13に示すように、放熱フィン52bを格子状にすることにより、放熱フィン52の放熱面積を増加させて放熱効率を高め、半導体素子の温度上昇を抑制するようにしている。
近年、半導体素子の高集積化と実装密度の高密度化が進展する中で、ヒートシンクの単位面積あたりの放熱量が10W/cm2レベルを超えると前記したようなヒートシンクでは対応できなくなり、図12や図13に示すような熱分散型ヒートシンクが提案されている。
図14は、特許文献1に記載されるもので、アルミニウム製の櫛歯状放熱フィン52を有するヒートシンク50の基板51内にそれぞれ密封された細孔53により独立して形成されたヒートパイプ7を複数分散して配設し、基板51の一部に結合された半導体素子1から発生する熱をこのヒートパイプ7により基板51全体に分散させて放熱フィン52に伝達するようにしたものである。これにより実効的なヒートシンクの放熱面積が拡大し、大気に対して低温度差での放熱が行えるようになる。
また、図15は、特許文献2に示されるもので、蛇行細管ヒートパイプ8とコルゲート状フィン53を組み合わせて構成したものである。半導体素子1を取付けた基板51の裏面に蛇行細管ヒートパイプ8を配し、複数段のコルゲート状フィン53に接合させるようにしている。このような構成のヒートシンクは、蛇行細管ヒートパイプ8が基板51の熱を分散して多段構成されたコルゲート状フィン53の全体に伝達して放熱することができるので、ヒートシンク全体の実効的な放熱面積が拡大し、放熱効率を向上できる。また、このヒートシンクによれば、複数の半導体素子1に発生損失にバラツキがある場合でも、熱分散効果により基板51の温度分布を均一にできる。
特開2001−156299号公報(2〜4頁、図1) 特開2001−223308号公報(3〜4頁、図1)
半導体素子などの高集積化と実装密度の高密度化に対応して単位面積あたりの放熱量が10W/cm2以上のレベルを超えるような発熱体を冷却する場合には、前記のようなヒートパイプを組み込んだヒートシンクの採用が検討されているが、図14に示したヒートシンクの基板51内にヒートパイプ7を組み込む形式のヒートシンクの場合は、複数のヒートパイプ7が独立して形成されているのでヒートシンクの基板51内での熱分散方向が、ヒートパイプ7の長手方向に限られるため、実効的な放熱面積の拡大はできても複数の半導体素子などの発熱体の発熱分布のバラツキを十分に吸収することができない。これを改善するためには、特に大容量の半導体変換装置の冷却装置に適用した場合、より多数のヒートパイプを設ける必要があり、基板51への細孔の加工およびヒートパイプにかかる費用が嵩む問題がある。
また、図15に示した蛇行細管ヒートパイプ8とコルゲート状フィン53を組み合わせたヒートシンクでは、熱拡散の性能は優れているが、蛇行細管内のヒートパイプの作動液の振動により熱移動を行うため、熱輸送限界値が図14の従来装置に比べて低く、放熱量が熱輸送限界を超えると受熱部温度が急激に上昇し、半導体素子などの焼損事故を招く不都合がある。
さらに、高発熱密度の放熱方法として水冷方式をとることもできるが、電気的装置に適用する場合は、電気部品の絶縁手段の追加設置、冷却水循環系の漏洩防止構造、冷却水循環ポンプの信頼性確保のための冗長化、水と空気の熱交換器設置などが必要となり、空気冷却器と比べ信頼性の低下や、価格の高騰を招く欠点がある。
このように、従来の空冷式および水冷式ヒートシンクにおける問題点に鑑みて、本発明は、熱拡散性能の制限を解消するとともに、発熱体の熱をヒートシンクの全体に拡散し低温度差で効率よく放熱を行うことのできる熱拡散型のヒートシンクを提供することを課題とする。
この課題を解決するため、請求項1の発明は、熱良導体からなる平板状の基板と、この基板の一方の主面に取り付けられた複数の放熱フィンとを備え、前記基板の他方の主面に、被冷却体となる発熱体を取り付け発熱体の冷却を行うヒートシンクにおいて、前記基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成し、これらの細孔列の両端に、細孔列の各細孔を相互に連通させて密封するヘッダ部を設け、密封された各細孔内に冷却媒体を封入したことを特徴とする。
請求項2の発明は、請求項1に記載のヒートシンクにおいて、前記基板をほぼ鉛直方向に直立して配置し、前記細孔列の各細孔を、前記基板内の上下方向に設け、前記細孔列の各細孔の両端を相互に連通させて密封するヘッダ部を前記基板の上下端部に設けたことを特徴とする。
請求項3の発明は、請求項2に記載のヒートシンクにおいて、前記基板内に鉛直方向に設けた細孔列の各細孔を、基板の厚さ方向に2列に配列し、各列の細孔を上下端で相互に連通させたことを特徴とする。
請求項4の発明は、請求項3に記載のヒートシンクにおいて、前記2列に配列された細孔を、それぞれ複数の細孔を1列ずつ配列した2枚の基板を重ね合わせて構成したことを特徴とする。
請求項5の発明は、請求項4に記載のヒートシンクにおいて、細孔列の各細孔を1列ずつ配列した2枚の基板の間に断熱部材を介して重ね合わせたことを特徴とする。
請求項6の発明は、請求項5に記載のヒートシンクにおいて、断熱部材が空隙であることを特徴とする。
請求項7の発明は、請求項1ないし6の何れか1つに記載のヒートシンクにおいて、前記基板の発熱体の取り付けられた主面の余白部分に、放熱フィンを取り付けたことを特徴とする。
請求項8の発明は、請求項3ないし7の何れか1つに記載のヒートシンクにおいて、前記基板の厚さ方向に2列に配列された細孔のうち、一方の列の細孔を還流路としたことを特徴とする。
請求項9の発明は、請求項8に記載のヒートシンクにおいて、前記還流路に対向する他方の細孔側に位置する基板の主面には前記発熱体の取り付け、前記発熱体の取り付けられた基板の受熱部付近の各細孔内には絞り部を設けたことを特徴とする。
請求項10の発明は、熱良導体からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成した第1の基板の両端と、熱良導体からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成した基板を蛇行形状に屈曲形成した第2の基板の両端とを、それぞれ各基板内に配設した細孔列が相互に連通するように接合することで密閉型の循環路を形成し、この密封された各細孔内には冷却媒体を封入し、前記第1の基板の所定の場所には被冷却体となる発熱体を取り付けたことを特徴とする。
請求項11の発明は、請求項10に記載のヒートシンクにおいて、第1の基板の一端または両端と第2の基板の一端または両端に、それぞれ各基板内に配設した細孔列を相互に連通させて密封するヘッダ部を設けたことを特徴とする。
請求項12の発明は、請求項10または11に記載のヒートシンクにおいて、前記発熱体の取り付けられた基板の受熱部付近の各細孔内に絞り部を設けたことを特徴とする。
請求項13の発明は、請求項10ないし12の何れか1つに記載のヒートシンクにおいて、第2の基板の面部に放熱フィンを取り付けたことを特徴とする。
請求項14の発明は、熱良導体からなる平板状の基板と、前記基板の一方の主面に、被冷却体となる発熱体を取り付け発熱体の冷却を行うヒートシンクにおいて、前記ヒートシンクの基板の内部には、複数の直線状の細孔を分散して同一平面上に並列に配設した細孔列を設け、この細孔の両端を相互に連通させて密封のヘッダ部を設け、密封された流路内には、冷却媒体を封入したことを特徴とする。
請求項15の発明は、請求項14に記載のヒートシンクにおいて、前記基板内に設けられた各細孔の内、基板両側端に位置する細孔の断面積は、他の細孔の断面積よりも大きく成形し還流路としたことを特徴とする。
請求項16の発明は、請求項14または15に記載のヒートシンクにおいて、前記基板の内部に設けられている細孔と還流路の断面形状は、略円形であることを特徴とする。
請求項17の発明は、請求項14ないし16の何れか1つに記載のヒートシンクにおいて、前記還流路と隣接する細孔との間に断熱部を設けたことを特徴とする。
請求項18の発明は、請求項14ないし17の何れか1つに記載のヒートシンクにおいて、還流路に隣接する細孔を閉塞したことを特徴とする。
請求項19の発明は、請求項14ないし18の何れか1つに記載のヒートシンクにおいて、前記基板内に設けた細孔の長さは中央で長く、基板両側にいくに従って短く形成したことを特徴とする。
請求項20の発明は、請求項19に記載のヒートシンクにおいて、各細孔の両端に設けられるヘッダ部の形状は、各細孔の端を相互に結ぶ包絡線に沿って相似状に形成されていることを特徴とする。
請求項21の発明は、請求項14ないし20の何れか1つに記載のヒートシンクにおいて、前記発熱体の取り付けられた基板の受熱部付近の前記還流路を除く各細孔内に、絞り部を設けたことを特徴とする。
請求項22の発明は、請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略矩形状であることを特徴とする。
請求項23の発明は、請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略円弧形状であることを特徴とする。
請求項24の発明は、請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略楔形状であることを特徴とする。
請求項25の発明は、請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略不等辺三角形状であることを特徴とする。
請求項26の発明は、請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部はベルマウス形状であることを特徴とする。
この発明によれば、基板内に設けられたヒートパイプを構成する複数の細孔が全て両端においてヘッダ部によって連通されているため、各細孔内に封入された冷却媒体17が、発熱体によって加熱されて相変化した蒸気が発熱体の取り付け位置に係わらず、ヘッダ部を介して全ての細孔に分散して流れ、このため発熱体の熱が基板全体に均一に伝達拡散され、基板の放熱フィン全体から均一に放熱されるようになり、発熱体に発熱分布のバラツキがあってもこれを吸収し、均一に冷却することができる効果を得られる。
また2列に配列された複数の細孔を全て連通することにより閉ループの還流路を重力により冷却媒体が循環するようになるので熱輸送限界値を大きくでき、発熱体の冷却を安全に行うことができる効果も得られる。
更に、基板に設けられる発熱部付近に位置する受熱部直下の各細孔管内に、絞り部を設けることにより逆止弁効果が生じて、発熱体の加熱動作によって発生する蒸気泡を一方向に限定させることが可能となり、これにより冷却媒体をスムーズに循環させ、半導体素子などから発生する局所的な発熱を速やかに基板全体に拡散させるという効果が得られる。
以下に、この発明の実施の形態を図に示す実施例について説明する
図1は、この発明によるヒートシンク10の全体を示すものであり、アルミニウムや銅などの熱良導体により平板状に形成した基板11の一方の主面に、多数の放熱フィン12がこれと一体的に植設され、この主面と対向する一方の主面に半導体素子等の被冷却体となる発熱体1が所要数熱的におよび機械的に結合されている。図1には図示されないが、基板1内には、この発明にしたがって発熱体1の熱を拡散して基板11全体に伝達するために複数の細孔およびこれらの細孔を相互に連通させるヘッダ部が設けられている。
このように構成されたこの発明のヒートシンクは、放熱性能をさらに向上させるために、図2に示すように構成することができる。
すなわち、基板11の発熱体1の取り付け面11a側に発熱体1を一端に寄せて取り付けることにより、上端側に発熱体の取り付けられない余白部が生じた場合には、この余白部分に放熱フィン12aを取り付けるようにするのである。これによりヒートシンク全体の放熱面積を増大させることができるので、放熱効率をより高くすることができる。
図3にこの発明の第1の実施例を示す。
図3は、ヒートシンク10の基板11を示したもので、(A)はこの基板11の放熱フィン12の取り付け面からみた立面図、(B)は(A)におけるB−B線の断面図、(C)は同C−C線の断面図である。
熱良導体から構成された平板状の基板11に、ここには図示しない放熱フィンを取り付け側の主面11bには、上下方向に直線的に走る放熱フィン取り付け溝13が所定間隔で多数形成されている。この溝13に放熱フィンが基板11と熱的に結合されるように植え込まれる。
また、基板11の中に溝13と同様に上下方向に直線状に延びる多数の細孔14が設けられ、これらの細孔14は、基板11の厚さ方向に2列に配列される(図3(B)参照)。
これら2列に配列される細孔14のうち、発熱体1が取り付けられる側に配設される細孔を14aとし、放熱フィン12が取り付けられる側に配設される細孔を14bとし還流路とする。
基板11の上下端にそれぞれ基板11のほぼ全幅にわたる溝16を有するヘッダ部15が設けられている。このヘッダ部15は基板11の上下両端にこれと一体的に結合され、溝16により全部の細孔14を両端で相互に連通させるとともに、密封する。このように密封された細孔14に2相凝縮性の冷却媒体17を封入してヒートシンクを構成する。
このように構成された当該ヒートシンクにおける熱輸送作用を図5に基づいて説明する。
図5Aにおいて、ヒートシンクの基板11に設けられた2列の細孔14aと還流路14bが設けられ、その上下端においてヘッダ部15a、15bの溝16a、16bによって連通され、これらの細孔および溝によって14a−16b−14b−16aの1つの閉ループの循環路が形成される。基板11の一方の主面11aに半導体素子などの被冷却体となる発熱体1が取り付けられ、他方の主面11bに放熱フィン12が結合される。細孔14a、還流路14bの中には、発熱体1の上端と等しい高さ程度まで、加熱、冷却により液体と気体との間で相変化する2相凝縮性の冷却媒体17を封入する。
発熱体1が作動し、熱を発生すると、基板11を介して細孔14a内の液体状の冷却媒体17が加熱され、沸騰し蒸発する。冷却媒体17のその蒸発熱により発熱体1の熱を吸収する。冷却媒体の蒸気はその圧力により細孔14a内を上昇し、上部ヘッダ15bの溝16bを通して還流路14bへ流入する。還流路14b側の基板面11bには、放熱フィン12が結合されているため、冷却媒体の蒸気で運ばれてきた熱がこの放熱フィン12を介して大気中に放熱され、冷却される。このように冷却されると冷却媒体の蒸気は凝縮して液体に戻り、重力により還流路14b内を下降して下部ヘッダ部15aの溝16aを介して細孔14aへ流入する。基板11内の細孔、溝および冷却媒体が発熱体1から放熱フィン12へ熱輸送を行うヒートパイプを構成する。
図5Aでは、細孔14a、還流路14bが1対しか示されていないが、基板11内には多数対の細孔と還流路が設けられており、これらの細孔の全部が上下両端のヘッダ部15a、15bを介して連通されているため、発熱体1に近い位置にある蒸発部側の1つの細孔14a内で受けた熱であっても冷却媒体の蒸気によりにヘッダ部15bにより分散されるためすべての凝縮部側の還流路14bへ送られるようになる。したがって、発熱体1の基板11への取り付け位置にかかわらず、発熱体1からの熱は、冷却媒体17により基板11のほぼ全体に均等に拡散して伝達されるようえになるので、多数の放熱フィン12のすべてがほぼ均等な温度上昇を示し、放熱フィン12全体が均等に放熱し、放熱効率を高めることができる。
なお、本実施例の基板内の各細孔内に密封されている冷却媒体である作動流体の循環を、より効果的に促進するために、図5B(A)、(B)に示すように、ヒートシンク10の発熱体1の取り付けられた基板11の受熱部付近の各細孔14a内に、図5C(A)、(B)、(C)に示すような矩形状101a、円弧形状101bまたは楔形状101cの絞り部101が設けられている。このような絞り部101を設けることによって以下のような蒸気ポンプ作用を発生させ、冷却媒体の循環を一層効果的に促進することが可能となる。
このように構成されたヒートシンク10における蒸気ポンプ作用を図5B(A)に従って説明する。
図5B(A)においては、基板11に取り付けられた発熱体1が発熱すると、発熱体1の取り付けられた基板11の受熱部付近の密封してなる細孔14a、還流路14b、溝16a内に封入された冷却媒体である作動流体17が、相変化(沸騰)して蒸気泡27が生成される。液体より密度の小さい蒸気泡27はその浮力により細孔14aの上方へと移動する。発熱体1の取り付けられた基板11の受熱部1より温度の低い細孔14aの中間部及び上部では蒸気が凝縮して液化し、潜熱を放出する。この過程で、基板11の温度分布は均一化される。凝縮した冷却媒体液17は、蒸気泡27に同伴して細孔内14aを上昇し、気液2相流29となって溝16bを経て、還流路14bに至り液流28aとなって、溝16aに液溜りを作り再び沸騰循環サークルを形成する。
ここで、図5B(A)に示すように、発熱を受ける基板11の受熱部下端付近の細孔14a内に、絞り部101を形成すると、蒸気泡27の流れに方向性を与えることができる。これは次に示す(1)式に従って、細孔内の流れの摩擦損失が、気相と液相とでは大幅に異なるからである。
(細孔管流路内の流れの摩擦損失)
ΔP=λ・(l/d)・(ρ/2)・u2 (1)
ここで、 λ:管摩擦係数(−)、l:管長(m)、d:管内径(m)
ρ:流体の密度(kg/m3)、u:流速(m/s) とする。
例えば、50℃〜100℃の水では、液体と蒸気の流体の密度ρは以下の値となる。
水の液密度 ρl(50℃)=989kg/m3
ρl(100℃)=960kg/m3
水の蒸気密度 ρv(50℃)=0.07kg/m3
ρv(100℃)=0.54kg/m3
このように、水の蒸気密度(ρv)は水の液密度(ρl)の約1/1000〜1/10000となり、また、液と蒸気が同じ質量流量の場合は、蒸気の流速は水の流速の約1000〜10000倍となることから、(1)式に示す細孔内の流れの摩擦損失ΔPは、流速の2乗に比例するため蒸気の方が液体よりも約1000〜10000倍大きくなる。
この結果、絞り部101の上部で生成された蒸気泡27は、断面積が小さく摩擦抵抗の大きい絞り部101へ逆流することなく、より断面積が大きく摩擦抵抗の少ない各細孔14aの上部へと上昇する。
このように、各細孔14aに絞り部101を設けることにより、絞り部101の無いものに比べ、作動媒体の循環を一方向に限定し、逆止弁効果が生じ、冷却媒体の流れを促進させることが可能となる。
更に、前記絞り部17の形状を図5D(A)、(B)に示すように、各細孔14aの蒸気泡27が上昇する方向に、徐々に各細孔14aの断面を拡大するように成形した不等辺三角形状101dの絞り部101、あるいはベルマウス状101eの絞り部101を、前述と同様に設けることにより、蒸気泡27の流れに更なる方向性を与えることができる。
これは、蒸気泡の発生・成長・離脱現象に着目したものである。一般的に蒸気泡は加熱壁面の気泡核より発生・成長するが、気泡径がある一定の大きさになると壁面での表面張力による付着力よりも、成長した気泡の浮力や流れによって生じる推力の方が大きくなるため、その結果、気泡は壁面より離脱する。
ここで、離脱気泡直径を表す代表的な実験式は(2)式に示すとおりである。
(離脱気泡直径)
Dd=0.0209・φ・[σ/[g・(ρl−ρv)]]1/2 (2)
ここで、 φ:蒸気泡と壁面の接触角、 σ:表面張力(N/m)
g:重力加速度(m/s2)、ρl:液密度(kg/m3
ρv:蒸気密度(kg/m3) とする。
この離脱気泡径は、水の場合には2〜3mmであるが、前述した蒸気泡27が上昇する方向に拡大される各細孔内14aに設けられている絞り部101にあっては、その下端は離脱気泡径よりも小さく、上端に行くに従い拡がる形状に成形することで、気泡の成長方向および離脱方向をも限定することが可能となり、作動媒体17の循環流動を効果的にコントロールし、より大量の熱輸送を行うことができる。
このように、基板に取り付けられた発熱部の付近に位置する受熱部直下の各細孔内に絞り部101が設けることによって、ヒートシンク10に局部的に加わる熱を、蒸気ポンプ作用により基板全面に均一に熱拡散させるため、極めて効率の高いヒートシンクを提供することが可能となる。
図4にこの発明の第2実施例によるヒートシンクの基板の構成を示す。図4における(A)は基板11の放熱フィン取り付け面側からみた立面図、(B)は(A)のB−B線の断面図、(C)は同C−C線の断面図である。
この図4の基板11は図3に示す実施例1とは、基板11が細孔14aと還流路14bの間で2分割され、間に断熱部材18を介して結合されている点が異なるだけで、その他の構成は同じである。
このように、基板11の発熱体取り付け面11a側の蒸発部を構成する細孔列14aと、放熱フィン取り付け面11b側の凝縮部を構成する還流路14bとの間に断熱部材18を設けると、基板11の発熱体1の取り付けられる面11a側から放熱フィン12の取り付けられる面11b側へ直接基板を介して行われる熱伝導がこの断熱部材18によって抑制されるため、基板11の受熱面となる面11aから放熱面となる面11b側への熱の移動のほとんど全部が細孔14内の冷却媒体17により行われるようになる。この結果、発熱体1で発生した熱が基板全体により均等に拡散されるようになり、多数の放熱フィンから均等に放熱が行われ、ヒートシンク全体の放熱効率をより向上することができる。
なお、前記の基板11内に設けられる断熱部材としては、空気を使用することができる。この場合は、断熱部材18の設けられた部分は空気の充填された空間となる。
また、実施例1で述べたようにヒートシンク10の基板11に取り付けられた発熱部1の付近に位置する受熱部直下の各細孔内14aに絞り部101を設けることで冷却媒体の循環を一層効果的に促進することが可能となる。
図6にこの発明のヒートシンクに使用する基板11の製造方法の実施例を示す。
図6(A)に示すように、基板11は、本体部分11cとヘッダ部分15a、15bに分けて形成される。本体部分は、引抜加工または押出加工等により形成された、(B)に示すように幅方向に2列に配列された複数の細孔14を有する熱良導体からなる多穴板を所定寸法に切断し、これら2列に配列される細孔14のうち、発熱体1が取り付けられる側に配設される細孔を14aとし、放熱フィン12が取り付けられる側に配設される細孔を14bとし還流路として構成される。
このため、その上下両端面に細孔の端部が開口する。本体部分11cの放熱フィンの取り付けられる側の面11bに放熱フィン取り付け用の細溝13を設ける。この溝13は、多穴板に後から加工するか、あらかじめ一方の表面に細溝の形成された多穴板を使用することによりその加工を省略することができる。
そして、このように形成された基板の本体部分11cの幅と同じ幅に形成されたヘッダ部15a、15bを用意する。このヘッダ部分は図6の(C)および(D)に示すようにヘッダ部15a、15bには、幅方向の両端がとじられたほぼ全幅に亘る長さの溝16a、16bがそれぞれ設けられる。表面の一方には本体部分と同様に放熱フィン取り付け用の細溝13を本体部分の細溝の延長部分となるように設ける。
このように形成されたヘッダ部15a、15bを本体部分11cの上下両端面にその溝16a、16bが開口する側の端面を接合し、溶接、ろう付け等の適当な接合方法により気密的に結合する。これにより本体部分11cの細孔の端部がこのヘッダ部によって閉塞され、そして溝16a、16bを介して細孔の全部が相互に連通され、大気に対して封じ切られる。そして、本体部分11cの細孔内にヒートパイプの冷却媒体となる2相凝縮性の液体を封入する。
また、実施例1で述べたようにヒートシンク10の基板11に取り付けられた発熱部1の付近に位置する受熱部直下の各細孔内14aに絞り部101を設けることで冷却媒体の循環を一層効果的に促進することが可能となる。
図7にこの発明の第4の実施例を示す。
図7の(A)は、ヒートシンク20を斜視図によって示すものであり、(B)は(A)におけるB−B線の縦断面図であり、(C)は同C−C線の斜視断面図である。
図7の(A)(B)に示すように、熱良導体から構成された平板状の基板21の内部には、上下方向に延びている複数の直線状の細孔22を同一平面状に分散して並列に配設されている。
基板21の上下端部は、それぞれ基板21のほぼ全幅に渡って設けられた溝からなるヘッダ部24、25を形成している。このヘッダ部24、25により全部の細孔22が両端で相互に連通される。このような細孔22内には、封止パイプPの封止前に、真空排気の上で2相凝縮性の冷却媒体の封入を行い、その後封止パイプPを封止切ることによって密封された循環路を構成する。
前記基板の内部に設けられている細孔列の各細孔22のうち、基板21の両外側に位置する細孔(以下還流路という)の断面積は、他の細孔22の断面積よりも大きく形成して、還流路23としている。このように形成することで、還流路内23の流動抵抗が低減し、2相凝縮性の冷却媒体17は、細孔22から還流路23への流入をスムーズ行い冷却媒体の循環を促進させることができる。
なお、基板21への半導体素子などの被冷却体となる発熱体1の取り付け位置は、図7(B)の四角の点線で示すように、鉛直方向に立設した、基板21の主面の下部で、還流路23の領域に重ならない位置とすることが好ましい。このよう位置に取り付けることによって、細孔22と還流路23とには温度差を持たせて内圧差を生じさせることができるので、気相化された冷却媒体17をスムーズに還流させることができる。
次に、この発明のヒートシンクにおける熱輸送循環メカニズムを説明する。
図7(B)において、基板21の内部には、上下方向に延びる同一平面上に分散して並列に配設された細孔22が設けられており、その上下端はヘッダ部24、25によって全細孔が連通されている。これによって、冷却媒体17の循環経路は25−22−24−23−25というように1つの閉ループの循環路が形成される。
発熱体1が作動し熱が発生すると、基板21を介してヘッダ部25、細孔22内の液状の冷却媒体17が加熱される。液状の冷却媒体17は加熱により沸騰し気化することによって蒸気泡27を生成する。液より密度の小さい蒸気泡27は、その浮力によって上方へ移動する。それらが連続生成して、蒸気流28となり細孔列22上部へと上昇する。
常に大気に触れている発熱体1が接触していない基板21の中間部及び上部は、発熱体が接触している基板21の部分より温度が低いため、加熱により沸騰し気化した冷却媒体17の潜熱は基板面21を介して大気中へと放熱30され、これによって、気化した冷却媒体17である蒸気は冷却され凝縮して液化する。
このように凝縮して液化した冷却媒体17は、さらに蒸気流28に同伴して細孔22上部への移動し、気液2相流29となって、上部のヘッダ部24内を経て還流路23へ至る。還流路23内は、各細孔22の断面積よりも大きく、発熱体1が直接接触していないので、細孔22内よりも圧力が低く、またこれに重力作用も伴って、気液2相流29は還流路23内を伝わってヘッダ部25へと流下し液溜りを作り、再び沸騰循環サイクルを形成する。
このように、基板21の内部に細孔22からなる細孔列を形成し、上下端にはヘッダ部24、25と基板の両外側に位置する還流路23を設けることで、基板21内を冷却媒体17が循環し、局部的に加わる熱(発熱体1による)は基板21全体に均一に伝達拡散され、基板21の放熱効率を高めることができる。
また、実施例1で述べたように本実施例においても、ヒートシンク20の基板21に取り付けられた発熱部1の付近に位置する受熱部直下の各細孔内22に絞り部101を設けることで(図7(E)、(F)参照)冷却媒体の循環を一層効果的に促進することが可能となる。
図9にこの発明の第5の実施例を示す。
図9(A)、(B)は、図7(B)と同様、ヒートシンクを構成する基板の縦断面図を示すものである。その構成や熱輸送循環メカニズムについては実施例4と同様ではあるが、図9(A)については、同一平面上に分散して並列に配設された細孔32からなる細孔列の形状が、図7(B)の各細孔22からなる細孔列と異なり、図9(B)については、同一平面上に複数並列に配置された細孔42の細孔列の形状、およびヘッダ部44、45の形状が、図7(B)の細孔22からなる細孔列とヘッダ部24、25のものと異なる。以下これらの形状の差異と作用効果について説明する。
図9(A)に示すヒートシンクの基板31の内部には、上下方向に延びている複数の直線状の細孔32を同一平面上に分散して並列に配設された各細孔32からなる細孔列を備えている。本実施例の場合も実施例4と同様に、前記基板31の内部に設けられている各細孔32のうち、基板31の両外側付近に設けられている細孔を還流路33とし、その断面積は、他の細孔32の断面積よりも大きく形成されている。
また、前記基板31内に設けた細孔列をなす細孔32の上下方向の長さは、細孔列の中央で長く、基板31の両外側にいくに従って略包絡線を描くように短く形成されている。
これは、発熱体1から基板31への熱流はその構成上、細孔32からなる細孔列の中央部付近に最も集中するため、発熱体1により加熱された冷却媒体の蒸気圧は細孔列の中央部付近で最も強く基板31の両外側に行くに従い弱くなる。つまり、細孔32の上端から還流路33へ流れる気液2相流29は、細孔列の中央部付近では蒸気流に伴って良好に循環するが、基板31の両外側に行くに従い気液2相流29の循環量が減少または停滞が生じる。このような現象を回避するために、各細孔32からなる細孔列の長さを、基板31の両外側にいくに従って略包絡線を描くように形成することで、細孔内62から還流路33への流入がスムーズに行なわれ、冷却媒体の沸騰循環サイクルを効率的に行うことができる。
なお、図9(A)における、ヒートシンクの冷却媒体循環経路は、35−32−34−33−35というように1つの閉ループの循環路が形成され、その原理は実施例4と同様である。
図9(B)に示す基板41は、上下方向に延びている複数の直線状の細孔42を同一平面上に分散して並列に配設された細孔列を備えている。本実施例の場合も実施例4と同様に、前記基板41の内部に設けられている細孔42からなる細孔列のうち、両外側の細孔を還流路43とし、その断面積は、他の細孔42の断面積よりも大きく形成されている。
また、前記基板41内に設けた細孔42からなる細孔列の上下方向の長さは、細孔列の中央で長く、基板41の両外側壁にいくに従って略包絡線を描くように形成されている(作用効果については前述したとおりである)。
更に、細孔42の両端に設けられるヘッダ部44、45は、細孔42からなる細孔列の端を相互に結ぶ略包絡線と相似形成されている。このように形成することで、ヘッダ部44に浮上した気液2相流29は、無駄な領域を通ることなく包絡線に沿って滑らかに両外側の還流路43に渡り、ヘッダ部45へと環流することが可能となる。
なお、図9(B)における、ヒートシンクの冷却媒体循環経路は、45−42−43−45というように1つの閉ループの循環路が形成され、その原理は実施例4と同様である。
ここで、実施例5で示した、前記基板21、31、41の内部に設けられている各細孔(22、23、32、33、42、43)の断面形状は、図8(A)、(B)に示すように方形状や略円状とするのがよい。または図示されていないが、これらの形状を混合して組み合わせることも有効である。
更に実施例4、5で示されるヒートシンクの基板の内部に設けられている細孔のうち、両外側の細孔(還流路)に隣接する細孔部の基板を潰して、この細孔を閉塞孔B(図8(C)参照)とすることで、還流路と他の細孔との間を隔離し、断熱効果を生じさせ、細孔から還流路への熱伝達を抑制されることができる。この結果、細孔と還流路は温度差が生じ、断熱により熱伝導の少ない還流路は、細孔よりも温度が低く圧力も低いため高圧な細孔から低圧の還流路への流入はスムーズに行なわれ、沸騰循環サイクルの効率化を一層高めることができる。
なお、この場合も、実施例4で述べたように、基板への発熱体1の取り付けは両外側壁の細孔(還流路)の領域には接触しないように載置するのが好ましい。
また、図示はしないが、本実施例においても実施例1と同様、ヒートシンク30、40の基板31、41に取り付けられた発熱部1の付近に位置する受熱部直下の各細孔内32、42に絞り部101を設けることで冷却媒体の循環を一層効果的に促進することが可能となる。
図10にこの発明の第6の実施例を示す。
図10(A)は本実施例の構成図であり、(B)は(A)における破線円部を拡大して表した縦断面図であり、(C)は(A)を構成する基板61a、61bの一部を表した断面斜視図である。以下その構成について説明する。
第6の実施例のヒートシンクは、熱良導体からなる平板状の第1の基板61aと第2基板61bから構成され、第1の基板61aと第2基板61bの内部には、それぞれ複数の直線状の細孔62を同一平面上に分散して並列に配設された各細孔62からなる細孔列を備えている。
また第1の基板61aには、それを鉛直方向に立設した上で、基板61aの主面下部にベース板を介して発熱体1が取り付けられている。
他方、第2の基板61bは、蛇行形状に屈曲形成し、その面部には基板61bの表面積を拡大し放熱効果を促進するための放熱フィン12が取り付けられている。
このように成形された、第1の基板61aの両端と第2の基板61bの両端とを、それぞれ各基板内に配設した細孔62が相互に連通するようにヘッダ管63を介して密閉接合され、細孔62が一つの循環路として形成し、この密封された細孔62には2相凝縮性の冷却媒体17が封入されている。なお、図10(A)では、第1の基板の下端にのみヘッダ管63を設けているが、上端または上下端に設けてもよい。
次に、この発明のヒートシンク60における熱輸送循環メカニズムを図10(A)、(B)に基づいて説明する。
発熱体1が作動することにより熱が発生すると、発熱体1が取り付けられているベース板1aと基板61aを介して細孔62内に密封されている液状の冷却媒体17が加熱され、蒸気泡27が生成される。液より密度の小さい蒸気泡27は、その浮力によって上方へ移動する。それらが連続生成して、蒸気流28となり基板61a内の細孔62を上部へと上昇する。
発熱体1が接触していない基板61aの中間並びに上部は、常に大気にさらされているため発熱部より温度は低く、結果、冷却媒体の蒸気は凝縮して液化し、その潜熱は基板面61を介して大気中へと放熱30される。このように凝縮して液化した冷却媒体17は、さらに蒸気流28に同伴して細孔管62の上部へと移動し、蛇行形状に成形した基板61b内部の細孔62へと流入する。
蛇行形状に成形した基板61bは、常に大気にさらされているため、発熱体1が取り付けられている基板61aよりも温度は低く内圧も低いため、基板61bの細孔62を移動する冷却媒体は、この内圧差に重力作用も伴って蛇行形状に成形した基板61b内の細孔62の中を沿って下方へと流下する。
基板61b内の細孔62を管路として移動する気液2相流29は、基板61bの面部に取り付けられている放熱フィン12の立体的な熱拡散作用により、気液2相流29に蓄えられている潜熱は更に大気中へと放熱し、気液2相流29は完全に液化して基板61bの細孔内62の最下部至り、ヘッダ管63に液溜りを作って再び沸騰循環サイクルを形成する。
また、図10(B)に示したように、本実施例においても実施例1と同様、ヒートシンク60の基板61aに取り付けられた発熱部1の付近に位置する受熱部直下の各細孔内62に絞り部101を設けることで冷却媒体の循環を一層効果的に促進することが可能となる。
本発明のヒートシンクの基本構成を示す斜視図である。 本発明の他の実施の形態に係わるヒートシンクの基本構成を示す斜視図である。 本発明の実施例1によるヒートシンクの基板の構成を示すもので、(A)は放熱板取り付け面からみた立面図、(B)は(A)におけるB−B線断面図、(C)は(A)におけるC−C線断面図である。 本発明の実施例2によるヒートシンクの基板の構成を示すもので、(A)は放熱板取り付け面からみた立面図、(B)は(A)におけるB−B線断面図、(C)は(A)におけるC−C線断面図である。 本発明の動作説明に用いたヒートシンクの縦断面図である。 本発明における他の実施の形態に係わるヒートシンクであり、(A)はその縦断面図で、(B)平断面図である。 (A)から(C)は、本発明における他の実施の形態に係わる、図5Bの(A)の破線円部の拡大図である。 (A)から(B)は、本発明における他の実施の形態に係わる、図5Bの(A)の破線円部の拡大図。 本発明のヒートシンクの基板の製造方法を説明するための図であり、(A)は放熱板取り付け面からみた立面図、(B)は(A)におけるB−B線断面図、(C)は(A)におけるC−C線断面図、(D)は(B)のD−D線断面図である。 本発明の実施例4によるヒートシンクの基本構造の説明図であり、(A)はヒートシンクの外観を表し、(B)は(A)におけるB−B線断面図、(C)は(A)におけるC−C線断面図、(D)は(B)におけるC−C線断面図、(E)は(A)における他の実施の形態に表すB−B線断面図、(F)は(E)におけるF−F線断面図。 (A)から(C)は、本発明の基板の平断面図である。 本発明の実施例5によるヒートシンクを示すもので、(A)と(B)その縦断面図である。 本発明の実施例6によるヒートシンクの構成を示すもので、(A)はヒートシンクの外観図、(B)は(A)の破線円部内の縦断面拡大図、(C)は基板の平断面図。 従来のヒートシンクの構成を示す斜視図である。 従来のヒートシンクの構成を示す図であり、(A)は平面図、(B)は側面図である。 従来のヒートシンクの構成を示す図であり、(A)は平面図、(B)は側面図である。 従来のヒートシンクの構成を示す図であり、(A)は平面図、(B)は側面図である。 従来のヒートシンクの構成を示す図であり、(A)は平面図、(B)は側面図である。
符号の説明
B:閉塞部
P:封止パイプ
1:発熱体 1a:ベース板
10:ヒートシンク 11:基板
12、12a:放熱フィン 13:放熱フィン取り付け用溝
14、14a:細孔 14b:還流路
15a、15b:ヘッダ部 16a、16b:溝
17:冷却媒体 18:断熱部材
20:ヒートシンク 21:基板
22:細孔 23:還流路
24:上部ヘッダ部 25:下部ヘッダ部
27:蒸気泡 28:蒸気流
28a:液流 29:気液2相流
30:ヒートシンク 31:基板
32:細孔 33:還流路
34:上部ヘッダ部 35:下部ヘッダ部
40ヒートシンク 41:基板
42:細孔 43:還流路
44:上部ヘッダ部 45:下部ヘッダ部
60:ヒートシンク 61a:第1の基板
61b:第2の基板 62:細孔
63:ヘッダ管
101:絞り部
101a、101b、101c、101d、101e:絞り部
110:放熱 110a:加熱

Claims (26)

  1. 熱良導体からなる平板状の基板と、この基板の一方の主面に取り付けられた複数の放熱フィンとを備え、前記基板の他方の主面に、被冷却体となる発熱体を取り付け発熱体の冷却を行うヒートシンクにおいて、前記基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成し、これらの細孔列の両端に、細孔列の各細孔を相互に連通させて密封するヘッダ部を設け、密封された各細孔内に冷却媒体を封入したことを特徴とするヒートシンク。
  2. 請求項1に記載のヒートシンクにおいて、前記基板をほぼ鉛直方向に直立して配置し、前記細孔列の各細孔を、前記基板内の上下方向に設け、前記細孔列の各細孔の両端を相互に連通させて密封するヘッダ部を前記基板の上下端部に設けたことを特徴とするヒートシンク。
  3. 請求項2に記載のヒートシンクにおいて、前記基板内に鉛直方向に設けた細孔列の各細孔を、基板の厚さ方向に2列に配列し、各列の細孔を上下端で相互に連通させたことを特徴とするヒートシンク。
  4. 請求項3に記載のヒートシンクにおいて、前記2列に配列された細孔を、それぞれ複数の細孔を1列ずつ配列した2枚の基板を重ね合わせて構成したことを特徴とするヒートシンク。
  5. 請求項4に記載のヒートシンクにおいて、細孔列の各細孔を1列ずつ配列した2枚の基板の間に断熱部材を介して重ね合わせたことを特徴とするヒートシンク。
  6. 請求項5に記載のヒートシンクにおいて、断熱部材が空隙であることを特徴とするヒートシンク。
  7. 請求項1ないし6の何れか1つに記載のヒートシンクにおいて、前記基板の発熱体の取り付けられた主面の余白部分に、放熱フィンを取り付けたことを特徴とするヒートシンク。
  8. 請求項3ないし7の何れか1つに記載のヒートシンクにおいて、前記基板の厚さ方向に2列に配列された細孔のうち、一方の列の細孔を還流路としたことを特徴とするヒートシンク。
  9. 請求項8に記載のヒートシンクにおいて、前記還流路に対向する他方の細孔側に位置する基板の主面には前記発熱体の取り付け、前記発熱体の取り付けられた基板の受熱部付近の各細孔内には絞り部を設けたことを特徴とするヒートシンク。
  10. 熱良導体からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成した第1の基板の両端と、熱良導体からなる平板状の基板内に複数の直線状の細孔を分散して平行に配設して細孔列を形成した基板を蛇行形状に屈曲形成した第2の基板の両端とを、それぞれ各基板内に配設した細孔列が相互に連通するように接合することで密閉型の循環路を形成し、この密封された各細孔内には冷却媒体を封入し、前記第1の基板の所定の場所には被冷却体となる発熱体を取り付けたことを特徴とするヒートシンク。
  11. 請求項10に記載のヒートシンクにおいて、第1の基板の一端または両端と第2の基板の一端または両端に、それぞれ各基板内に配設した細孔列を相互に連通させて密封するヘッダ部を設けたことを特徴とするヒートシンク。
  12. 請求項10または11に記載のヒートシンクにおいて、前記発熱体の取り付けられた基板の受熱部付近の各細孔内に絞り部を設けたことを特徴とするヒートシンク。
  13. 請求項10ないし12の何れか1つに記載のヒートシンクにおいて、第2の基板の面部に放熱フィンを取り付けたことを特徴とするヒートシンク。
  14. 熱良導体からなる平板状の基板と、前記基板の一方の主面に、被冷却体となる発熱体を取り付け発熱体の冷却を行うヒートシンクにおいて、前記ヒートシンクの基板の内部には、複数の直線状の細孔を分散して同一平面上に並列に配設した細孔列を設け、この細孔の両端を相互に連通させて密封のヘッダ部を設け、密封された流路内には、冷却媒体を封入したことを特徴とするヒートシンク。
  15. 請求項14に記載のヒートシンクにおいて、前記基板内に設けられた各細孔の内、基板両側端に位置する細孔の断面積は、他の細孔の断面積よりも大きく成形し還流路としたことを特徴とするヒートシンク。
  16. 請求項14または15に記載のヒートシンクにおいて、前記基板の内部に設けられている細孔と還流路の断面形状は、略円形であることを特徴とするヒートシンク。
  17. 請求項14ないし16の何れか1つに記載のヒートシンクにおいて、前記還流路と隣接する細孔との間に断熱部を設けたことを特徴とするヒートシンク。
  18. 請求項14ないし17の何れか1つに記載のヒートシンクにおいて、還流路に隣接する細孔を閉塞したことを特徴とするヒートシンク。
  19. 請求項14ないし18の何れか1つに記載のヒートシンクにおいて、前記基板内に設けた細孔の長さは中央で長く、基板両側にいくに従って短く形成したことを特徴とするヒートシンク。
  20. 請求項19に記載のヒートシンクにおいて、各細孔の両端に設けられるヘッダ部の形状は、各細孔の端を相互に結ぶ包絡線に沿って相似状に形成されていることを特徴とするヒートシンク。
  21. 請求項14ないし20の何れか1つに記載のヒートシンクにおいて、前記発熱体の取り付けられた基板の受熱部付近の前記還流路を除く各細孔内に、絞り部を設けたことを特徴とするヒートシンク。
  22. 請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略矩形状であることを特徴とするヒートシンク。
  23. 請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略円弧形状であることを特徴とするヒートシンク。
  24. 請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略楔形状であることを特徴とするヒートシンク。
  25. 請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部は略不等辺三角形状であることを特徴とするヒートシンク。
  26. 請求項9、12、21の何れか1つに記載のヒートシンクにおいて、前記絞り部はベルマウス形状であることを特徴とするヒートシンク。

JP2004379229A 2004-01-13 2004-12-28 ヒートシンク Pending JP2005229102A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379229A JP2005229102A (ja) 2004-01-13 2004-12-28 ヒートシンク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004005905 2004-01-13
JP2004379229A JP2005229102A (ja) 2004-01-13 2004-12-28 ヒートシンク

Publications (1)

Publication Number Publication Date
JP2005229102A true JP2005229102A (ja) 2005-08-25

Family

ID=35003517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379229A Pending JP2005229102A (ja) 2004-01-13 2004-12-28 ヒートシンク

Country Status (1)

Country Link
JP (1) JP2005229102A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906447A2 (en) 2006-09-29 2008-04-02 Vacon Oyj Cooling of the power components of a frequency converter
JP2008091700A (ja) * 2006-10-03 2008-04-17 Toyota Motor Corp 半導体装置
US20090056916A1 (en) * 2007-08-27 2009-03-05 Abb Research Ltd Heat exchanger
WO2011087117A1 (ja) * 2010-01-18 2011-07-21 古河電気工業株式会社 ヒートシンク
JP2011222433A (ja) * 2010-04-14 2011-11-04 Yutaka Denki Kk 照明器具
CN102709374A (zh) * 2012-05-25 2012-10-03 中海阳新能源电力股份有限公司 光伏电池板高效自然循环背散热装置
JP2013251943A (ja) * 2012-05-30 2013-12-12 Yaskawa Electric Corp リニアモータ電機子及びリニアモータ
JP2014072265A (ja) * 2012-09-28 2014-04-21 Hitachi Ltd 冷却システム、及びそれを用いた電子装置
JP2015052791A (ja) * 2014-10-15 2015-03-19 カシオ計算機株式会社 光源装置及びプロジェクタ
JP2016017702A (ja) * 2014-07-09 2016-02-01 東芝ホームテクノ株式会社 シート型ヒートパイプ
US10907907B2 (en) * 2017-12-26 2021-02-02 Cooler Master Co., Ltd. Heat dissipation structure
CN113035805A (zh) * 2021-03-04 2021-06-25 阳光电源股份有限公司 液冷板及功率模组
CN113453517A (zh) * 2021-07-13 2021-09-28 维沃移动通信有限公司 散热装置及电子设备
WO2022148435A1 (zh) * 2021-01-08 2022-07-14 华为技术有限公司 散热器及通信设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127895A (ja) * 1987-11-04 1989-05-19 Akutoronikusu Kk 閉ループ管型熱伝達装置
JPH01189496A (ja) * 1988-01-21 1989-07-28 Akutoronikusu Kk ループ管型熱伝達装置
JPH0688685A (ja) * 1991-05-24 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> 逆止め弁のないループ型ヒートパイプを具備する冷却装置
JPH07332881A (ja) * 1994-06-09 1995-12-22 Akutoronikusu Kk ループ型蛇行細管ヒートパイプ
JPH08264695A (ja) * 1995-03-20 1996-10-11 Calsonic Corp 電子部品用冷却装置
JPH09167818A (ja) * 1995-07-05 1997-06-24 Denso Corp 沸騰冷却装置およびその製造方法
JP2000018853A (ja) * 1998-06-30 2000-01-18 Furukawa Electric Co Ltd:The 板型ヒートパイプを用いた冷却構造
JP2000146470A (ja) * 1998-11-05 2000-05-26 Furukawa Electric Co Ltd:The 平板型ヒートパイプ及びその製造方法
JP2003042672A (ja) * 2001-07-31 2003-02-13 Denso Corp 沸騰冷却装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127895A (ja) * 1987-11-04 1989-05-19 Akutoronikusu Kk 閉ループ管型熱伝達装置
JPH01189496A (ja) * 1988-01-21 1989-07-28 Akutoronikusu Kk ループ管型熱伝達装置
JPH0688685A (ja) * 1991-05-24 1994-03-29 Nippon Telegr & Teleph Corp <Ntt> 逆止め弁のないループ型ヒートパイプを具備する冷却装置
JPH07332881A (ja) * 1994-06-09 1995-12-22 Akutoronikusu Kk ループ型蛇行細管ヒートパイプ
JPH08264695A (ja) * 1995-03-20 1996-10-11 Calsonic Corp 電子部品用冷却装置
JPH09167818A (ja) * 1995-07-05 1997-06-24 Denso Corp 沸騰冷却装置およびその製造方法
JP2000018853A (ja) * 1998-06-30 2000-01-18 Furukawa Electric Co Ltd:The 板型ヒートパイプを用いた冷却構造
JP2000146470A (ja) * 1998-11-05 2000-05-26 Furukawa Electric Co Ltd:The 平板型ヒートパイプ及びその製造方法
JP2003042672A (ja) * 2001-07-31 2003-02-13 Denso Corp 沸騰冷却装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1906447A3 (en) * 2006-09-29 2010-04-14 Vacon Oyj Cooling of the power components of a frequency converter
EP1906447A2 (en) 2006-09-29 2008-04-02 Vacon Oyj Cooling of the power components of a frequency converter
JP2008091700A (ja) * 2006-10-03 2008-04-17 Toyota Motor Corp 半導体装置
US9897383B2 (en) * 2007-08-27 2018-02-20 Abb Research Ltd. Heat exchanger
US20090056916A1 (en) * 2007-08-27 2009-03-05 Abb Research Ltd Heat exchanger
WO2011087117A1 (ja) * 2010-01-18 2011-07-21 古河電気工業株式会社 ヒートシンク
JP2011222433A (ja) * 2010-04-14 2011-11-04 Yutaka Denki Kk 照明器具
CN102709374A (zh) * 2012-05-25 2012-10-03 中海阳新能源电力股份有限公司 光伏电池板高效自然循环背散热装置
JP2013251943A (ja) * 2012-05-30 2013-12-12 Yaskawa Electric Corp リニアモータ電機子及びリニアモータ
JP2014072265A (ja) * 2012-09-28 2014-04-21 Hitachi Ltd 冷却システム、及びそれを用いた電子装置
JP2016017702A (ja) * 2014-07-09 2016-02-01 東芝ホームテクノ株式会社 シート型ヒートパイプ
JP2015052791A (ja) * 2014-10-15 2015-03-19 カシオ計算機株式会社 光源装置及びプロジェクタ
US10907907B2 (en) * 2017-12-26 2021-02-02 Cooler Master Co., Ltd. Heat dissipation structure
WO2022148435A1 (zh) * 2021-01-08 2022-07-14 华为技术有限公司 散热器及通信设备
CN113035805A (zh) * 2021-03-04 2021-06-25 阳光电源股份有限公司 液冷板及功率模组
CN113453517A (zh) * 2021-07-13 2021-09-28 维沃移动通信有限公司 散热装置及电子设备

Similar Documents

Publication Publication Date Title
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
US6834713B2 (en) Thermosiphon for electronics cooling with nonuniform airflow
US8813834B2 (en) Quick temperature-equlizing heat-dissipating device
TW512507B (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
CN102696103B (zh) 用于冷却电子构件的冷却模块
KR20040034014A (ko) 판형 열전달장치 및 그 제조방법
JP2005229102A (ja) ヒートシンク
JP4426684B2 (ja) ヒートシンク
JP2007115917A (ja) 熱分散プレート
JP2006202798A (ja) ヒートシンク
JP5874935B2 (ja) 平板型冷却装置及びその使用方法
JP2009076622A (ja) ヒートシンクおよびそれを用いた電子装置
JP2008021697A (ja) 熱分散型放熱器
JP2006344636A (ja) 並列ループ型熱分散プレート
CN213244790U (zh) 一种散热装置
JP2007081375A (ja) 冷却装置
JP2016205745A (ja) ヒートパイプ式ヒートシンク
WO2013102974A1 (ja) 冷却装置
WO2022270083A1 (ja) ヒートシンク
JP2006234267A (ja) 沸騰冷却装置
JPH08186208A (ja) 沸騰冷却装置
JP2007115940A (ja) 熱分散プレート
JP2011149563A (ja) ヒートパイプおよびヒートパイプ付ヒートシンク
JP4358963B2 (ja) ヒートシンク
JP2000150749A (ja) ヒートシンク

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622