JP2005229013A - 窒化物半導体の成長方法 - Google Patents

窒化物半導体の成長方法 Download PDF

Info

Publication number
JP2005229013A
JP2005229013A JP2004037842A JP2004037842A JP2005229013A JP 2005229013 A JP2005229013 A JP 2005229013A JP 2004037842 A JP2004037842 A JP 2004037842A JP 2004037842 A JP2004037842 A JP 2004037842A JP 2005229013 A JP2005229013 A JP 2005229013A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
type
growing
gallium nitride
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004037842A
Other languages
English (en)
Inventor
Akinori Koketsu
明伯 纐纈
Norihito Kawaguchi
紀仁 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004037842A priority Critical patent/JP2005229013A/ja
Publication of JP2005229013A publication Critical patent/JP2005229013A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】約600℃以下の低い温度でも、基板表面に窒化インジウムガリウム(InGaN)中のInの比率xが高い窒化物半導体を効率よく成長させることができる窒化物半導体の成長方法を提供する。
【解決手段】結晶成長用基板1を反応容器内で約500℃以上、約600℃以下の温度に保持し、反応容器内にIn,Ga,Nの前駆体を順次又は同時に供給し、基板表面にビーム成形光学系13によりエネルギー分布が均一化された高出力パルスレーザ10を照射し、その照射部分に窒化インジウムガリウムを有機金属気相成長法により成長させる。この方法により、窒化インジウムガリウム(InGa1−xN:0<X≦1)中のInの比率Xが0.5以上である。
【選択図】図1

Description

本発明は、基板上に窒化物半導体を成長させる窒化物半導体の成長方法に関する。
青色発光ダイオード等で使用される窒化ガリウム系半導体として、例えば特許文献1〜8が開示されている。これらの特許によると、p型やn型のドーパントをドープした窒化インジウムガリウム(InGa1−xN:0<x≦1、以下単に「InGaN」と表す)の発光層やp型の窒化アルミニウムガリウム(AlGa1−yN:0<y≦1、以下単に「AlGaN」と表す)を600℃を超える温度で成長させており、ノンドープのInGaN発光層に比べ高発光の特性を得ている。
一方、InGaNの発光層において、Inの比率xにより、発光する波長が変化し、x=0.25付近で波長450nm前後の青色、x=0.53付近で波長830nm付近の近赤外、その中間において波長650nm付近の赤色を発光させることができることが知られている。
なお、窒化インジウムガリウムの成長温度とInの比率xとの関係については、非特許文献1の図8に、窒化インジウムガリウム中のInの比率xと発光強度との関係については、非特許文献2の図5に開示されている。
さらに、本発明に関連する「半導体結晶膜の成長方法」は、特許文献9に、「照明光学系」は特許文献10、11に開示されている。
特許第2560963号公報 特許第2560964号公報 特許第2576819号公報 特許第2751963号公報 特許第2932468号公報 特許第3019132号公報 特許第3203282号公報 特許第3274907号公報 特開2003−60237号公報、「半導体結晶膜の成長方法」 特開平10−62710号公報、「照明光学系」 特開2001−155993号公報、「照明光学装置及び該装置を備える投影露光装置」
Akinori Koukitu,"Thermodynamic analysis of the MOVPE growth of InxGa1-xN",Journal of Crystal Growth,170(1997)306−311. V.Yu.Davydov,"Band Gap of Hexagonal InN and InGaN Alloys", phys.stat.sol.(b)234,No.3,787-795(2002).
非特許文献1、2に開示されているように、窒化物半導体は、バンドギャップが0.7eV〜6eVまで変化するため、紫外、青色発光ダイオード、レーザダイオードのみならず、通信用に用いられる近赤外波長の発光素子として近年注目されてきている。
しかし、特許文献1〜8が開示されている青色発光ダイオード等で用いられている窒化物半導体素子では、窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xは、最大でもたかだか0.25程度にすぎず、x値が0.5以上では結晶性に優れた窒化インジウムガリウムが得られにくく、発光効率に優れた発光素子が得られない問題点があった。そのため、特許文献1〜8の手段では、赤色や近赤外波長の発光素子を成長させることができなかった。
この原因は、以下のように説明することができる。
図6は、窒化インジウムガリウム中のInのモル分率xと平衡温度との関係図である。この図に示すように、InGa1−xN中のInのモル分率xを約0.5以上に高めと、その平衡温度は常圧において約600℃以下となる。そのため、サファイア基板の表面にInGaNの半導体被膜を成長させる過程で、サファイア基板や形成されたInGaNを約600℃以上に加熱すると、InGaNが熱分解してしまう問題点があった。
すなわち、特許文献7の「発光デバイス用窒化インジウムガリウム半導体」に開示されているように、従来の有機金属気相成長法で高品質の発光層である窒化インジウムガリウムを得るためには、600℃を超えた基板温度で作製する必要があった。
一方、非特許文献1の「J.Crystal Growth,170(1997)306−311」にて示されるように、高濃度のインジウムを含むInGaNは相分離を起こし、現実問題として赤を超える波長を発光するInGaNの成長に成功したことはなかった。すなわち、600℃以下では高品質の窒化物半導体の成長は困難であった。
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、約600℃以下の低い温度でも、基板表面に窒化インジウムガリウム(InGaN)中のInの比率xが高い 窒化物半導体を効率よく成長させることができる窒化物半導体の成長方法を提供することにある。
本発明によれば、結晶成長用基板上に、n型窒化物半導体、窒化インジウムガリウムの発光層、およびp型の窒化アルミニウムガリウム(AlGa1−yN:0<y≦1)を順に成長させる窒化物半導体の成長方法であって、
前記窒化インジウムガリウムの発光層は、p型またはn型あるいはp型およびn型両方の不純物をドーピングされた窒化インジウムガリウム(InGa1−xN:0<x≦1)であり、
結晶成長用基板を反応容器内で約500℃以上、約600℃以下の温度に保持し、反応容器内にIn,Ga,Nの前駆体を順次又は同時に供給し、基板表面にビーム成形光学系によりエネルギー分布が均一化された高出力パルスレーザを照射しその照射部分に窒化インジウムガリウムを有機金属気相成長法により成長させる、 ことを特徴とする窒化物半導体の成長方法が提供される。
本発明の方法によれば、結晶成長用基板を反応容器内で約500℃以上、約600℃以下の温度に保持するので、基板の表面にInGaNの半導体被膜が成長する過程でその熱分解を防止することができる。
また、反応容器内にIn,Ga,Nの前駆体を順次又は同時に供給し、基板表面にビーム成形光学系によりエネルギー分布が均一化された高出力パルスレーザを照射してその照射部分に窒化インジウムガリウムを成長させるので、高出力パルスレーザにより前駆体を照射部分で励起してその分子結合(N−H結合、C−アミン結合、等)を切断し、その部分にInGaNを成長させることができる。
本発明の好ましい実施形態によれば、前記窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xが0.5以上である。
この構成により、従来困難だった赤色や近赤外波長の発光素子を成長させることができる。
また、前記窒化インジウムガリウム発光層は、窒化インジウムガリウム(InGa1−xN:0<x≦1)と窒化ガリウム(GaN)を交互に積層した量子井戸構造であることが好ましい。
前記n型の不純物は、C,Si,Ge,Sn,Pbである。また、前記p型の不純物は、Be,Mg,Cd,Zn,Ca,Sr,Baからなる。
また、前記ビーム成形光学系は、前記パルスレーザを内面反射して射出面で均一化されたビームを成形するロッド型オプティカルインテグレータと、射出面の均一化されたビームを前記n型窒化物半導体上に結像させる光学系とから構成される、ことが好ましい。
また、前記ビーム成形光学系は、パルスレーザを分割するレンズアレイと、分割されたレーザをn型窒化物半導体上に重ね合わせてレーザを均一化させる光学系とから構成される、ことが好ましい。
前記レンズアレイの各々のレンズに入射するレーザに対して、そのレーザがもつ可干渉距離以上の光路差を付与する光路差発生素子が前記レンズアレイの上流部に設置されている。
また、前記パルスレーザは、YAGレーザ、エキシマレーザ、等である、ことが好ましい。
InGaNの成長に必要なIn,Ga,Nの前駆体の分解エネルギーは、最も高いアンモニアの場合で約4.5eVであり、この分解エネルギーはYAGレーザ、エキシマレーザ、等を用いることにより、アンモニアを含む各種の前駆体を同一のパルスレーザで励起・分解してInGaNを成長させることができる。
上述したように、本発明の窒化物半導体の成長方法は、約600℃以下の低い温度でも、基板表面に窒化インジウムガリウム(InGaN)中のInの比率xが高い 窒化物半導体を効率よく成長させることができる、等の優れた効果を有する。
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
特許文献9の「半導体結晶膜の成長方法」に我々が開示した発明によれば、パルスレーザを照射しながら成長することにより、ノンドープで高品質なInGaNが650℃以下の温度にて成長できることが開示されている。また、レーザビームの形状を均一化させる光学系(特許文献10、11)を用いることで、基板全面に同一強度のレーザを照射することが可能となる。更に、InGaNの成長時にp型やn型のドーパントをドープすることで、ノンドープより発光デバイスに適用可能な高発光のInGaNを得ることができる。
本発明は、以上のことを鑑み、発明に至ったものである。すなわち、本発明によれば、約500℃以上、約600℃以下に保たれた結晶成長用基板上のn型の窒化物半導体上に、有機金属気相成長法(以下MOCVD)により、ガリウム、インジウム、窒素の原料ガスおよびp型またはn型あるいはp型およびn型両方の原料ガスを供給し、パルスレーザを照射しながら窒化インジウムガリウム(InGa1−xN:0<x<1)を成長させる。その後、インジウムの原料ガスをアルミニウムの原料ガスに交換し、p型の原料ガスを供給しながら窒化アルミニウムガリウム(AlGa1−yN:0≦y≦1)を成長させる。
図1は、本発明の方法により窒化物半導体を成長させる装置の模式図である。レーザコントローラ12により制御されたレーザ装置11(例えばエキシマレーザ)により、高出力パルスレーザ10を発生・放射する。この高出力パルスレーザ10は、ビーム成形光学系13によりエネルギー分布が均一化され、ミラー14で下向きに反射され、反応容器6に設けられた開口(図示せず)を通して、結晶成長用基板1の上面に照射される。基板1は、シリコン、SiC又はサファイアであるのがよい。
高出力パルスレーザ10は、ミラー14の揺動又はビーム成形光学系13の移動により基板上を走査する。また、ステージコントローラ16により、基板1を二次元的に移動できるようになっている。更に、反応容器6(チャンバー)内はポンプ系15及びガス導入部17により所定のガス雰囲気にコントロールされる。
図2は、図1の主要部の構成図である。この図において、本発明の方法では、基板1は反応容器6内で図示しない温度調節手段(例えばヒータ)によりInGaNが熱分解しない温度に保持される。また、反応容器6内にIn,Ga,Nの前駆体がガス導入部17より順次又は同時に供給される。InGaNが熱分解しない温度は、約500℃以上、約600℃以下であるのがよい。なお、約500℃未満ではInGaNの結晶ができにくく、約600℃を超える温度では熱分解しやすくなる。
図3(A)は、ビーム成形光学系13の一例を示す構成図である。この例において、ビーム成形光学系13は、パルスレーザ10を集光する集光光学系13aと、パルスレーザ10を内面反射して射出面で均一化されたビームを成形するロッド型オプティカルインテグレータ13bと、射出面の均一化されたビームを基板上に結像させる結像光学系13cとから構成される。
図3(B)は、ビーム成形光学系13の別の例を示す構成図である。この例において、ビーム成形光学系13は、パルスレーザを分割するレンズアレイ13eと、分割されたレーザをn型窒化物半導体上に重ね合わせてレーザを均一化させる光学系13fとから構成される。
また、レンズアレイ13eの各々のレンズに入射するレーザに対して、そのレーザがもつ可干渉距離以上の光路差を付与する光路差発生素子13dがレンズアレイ13eの上流部に設置されている。
図4Aは、本発明の方法により成長させる窒化物半導体の構成例である。この図において、窒化物半導体5は、結晶成長用基板1上に、n型窒化物半導体2、窒化インジウムガリウムの発光層3、およびp型の窒化アルミニウムガリウム4(AlGa1−yN:0<y≦1)を順に成長させることにより製造される。
また、本発明により成長させる窒化インジウムガリウムの発光層3は、p型またはn型あるいはp型およびn型両方の不純物をドーピングされた窒化インジウムガリウム(InGa1−xN:0<x≦1)である。
図4Bは、図4Aの一部をエッチングにより取り除き、n型窒化物半導体2とp型の窒化アルミニウムガリウム4に電極6を取り付け、発光ダイオードを形成した場合の構成例である。
図4A,Bにおいて、窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xは0.5以上であるのが好ましく、これにより、従来困難だった赤色や近赤外波長の発光素子を成長させることができる。
なお、本発明はこれに限定されず、In,Ga,Nの比率を変更して、0<x≦1の範囲でInの比率xを変化させることができ、これにより、紫外、青色発光ダイオード、レーザダイオードのみならず、近赤外波長の発光素子として用いることもできる。
図1〜図3に示した装置を用い、下記に実験条件の下に、成長温度600℃においてパルスレーザ10(YAG,532nm,1Hz)を照射しながら窒化ガリウム基板2の上にInGaNを成長させた。
(実験条件)
1.反応ガス
トリメチルガリウム: 1×10−5atm
トリメチルインジウム: 4×10−5atm
アンモニア: 0.3atm
窒素ガス: 850ml/min
2.基板温度 600℃
3.レーザ装置 パルスYAGレーザ
出力 0.1Wおよび0.8W
繰り返し周波数 10Hz
波長 532nm
4.成長時間 2Hr
成長した窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xは、0.53であった。以下このInGaNを、In0.53Ga0.47Nと表示する。
図5に成長した活性層であるIn0.53Ga0.47Nの光ルミネセンス測定の結果を示す。この図において、横軸は波長[nm]、縦軸はフォトルミネッセンスでの発光強度を示している。
また、図中の実線は室温(RT)での発光、破線は77Kでの発光を示している。
この図から、高インジウム組成かつノンドープにもかかわらず、パンド端発光が見られ、品質のよいInGaNが得られており、パルスレーザの照射により、600℃以下でも高品質なInGaNが得られることが明らかとなった。ノンドープでも高品質なInGaNが得られることから、n型、p型または両方のドーパントをドープすることにより、更に高発光のInGaNが得られることは明らかである。
このように、600℃以下で成長が可能となったため、全インジウム組成のInGaNを相分離が起こることがなく作製することができる。また、InGaNの上部に成長させるp型(AlGa1−yN:0≦y≦1)についても、同様に品質の良い結晶が得られる。
また、ビームを均一化する光学系を用いることで、例えばサファイア基板のような2インチサイズ全面に対して発光デバイスに必要な(InGa1−xN:0<x<1)発光層およびp型(AlGa1−yN:0≦y≦1)を低温で成長させることができる。
窒素の前駆体としてアンモニアを用いた場合、アンモニアの結合エネルギーは約4.5eVであり、この結合を切るために必要とされるレーザの波長は277nm以下である。この波長のレーザとして、エキシマレーザやYAGレーザの4倍波を使用できる。なお、波長277nm以上のエキシマレーザやYAGレーザ等であってもよい。
これにより、基板温度を低く保った状態で例えばアンモニアを分解させてInGaNを形成することができる。
なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
本発明により半導体結晶膜を成長させる装置の模式図である。 図1の主要部の構成図である。 ビーム成形光学系の例を示す構成図である。 本発明の方法により成長させる窒化物半導体の構成例である。 本発明により成長したIn0.53Ga0.47Nの光ルミネセンス測定結果を示す図である。 窒化インジウムガリウム中のInのモル分率xと平衡温度との関係図である。
符号の説明
1 基板、2 n型窒化物半導体、
3 窒化インジウムガリウム(発光層)、
4 p型の窒化アルミニウムガリウム、
5 窒化物半導体、6 反応容器、7 電極、
10 高出力パルスレーザ、12 レーザコントローラ、
11 エキシマレーザ、13 ビーム成形光学系、
13a 集光光学系、13b ロッド型オプティカルインテグレータ、
13c 結像光学系、13d 光路差発生素子、
13e レンズアレイ、13f 光学系、
14 ミラー、15 ポンプ系、16 ステージコントローラ、
17 ガス導入部

Claims (9)

  1. 結晶成長用基板上に、n型窒化物半導体、窒化インジウムガリウムの発光層、およびp型の窒化アルミニウムガリウム(AlGa1−yN:0<y≦1)を順に成長させる窒化物半導体の成長方法であって、
    前記窒化インジウムガリウムの発光層は、p型またはn型あるいはp型およびn型両方の不純物をドーピングされた窒化インジウムガリウム(InGa1−xN:0<x≦1)であり、
    結晶成長用基板を反応容器内で約600℃以下の温度に保持し、反応容器内にIn,Ga,Nの前駆体を順次又は同時に供給し、基板表面にビーム成形光学系によりエネルギー分布が均一化された高出力パルスレーザを照射しその照射部分に窒化インジウムガリウムを有機金属気相成長法により成長させる、 ことを特徴とする窒化物半導体の成長方法。
  2. 前記窒化インジウムガリウム(InGa1−xN:0<x≦1)中のInの比率xが0.5以上である、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  3. 前記窒化インジウムガリウム発光層は、窒化インジウムガリウム(InGa1−xN:0<x≦1)と窒化ガリウム(GaN)を交互に積層した量子井戸構造である、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  4. 前記n型の不純物は、C,Si,Ge,Sn,Pbである、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  5. 前記p型の不純物は、Be,Mg,Cd,Zn,Ca,Sr,Baからなる、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  6. 前記ビーム成形光学系は、前記パルスレーザを内面反射して射出面で均一化されたビームを成形するロッド型オプティカルインテグレータと、射出面の均一化されたビームを前記n型窒化物半導体上に結像させる光学系とから構成される、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  7. 前記ビーム成形光学系は、パルスレーザを分割するレンズアレイと、分割されたレーザをn型窒化物半導体上に重ね合わせてレーザを均一化させる光学系とから構成される、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
  8. 前記レンズアレイの各々のレンズに入射するレーザに対して、そのレーザがもつ可干渉距離以上の光路差を付与する光路差発生素子が前記レンズアレイの上流部に設置されている、ことを特徴とする請求項6に記載の窒化物半導体の成長方法。
  9. 前記パルスレーザは、YAGレーザ、エキシマレーザ、等である、ことを特徴とする請求項1に記載の窒化物半導体の成長方法。
JP2004037842A 2004-02-16 2004-02-16 窒化物半導体の成長方法 Pending JP2005229013A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037842A JP2005229013A (ja) 2004-02-16 2004-02-16 窒化物半導体の成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037842A JP2005229013A (ja) 2004-02-16 2004-02-16 窒化物半導体の成長方法

Publications (1)

Publication Number Publication Date
JP2005229013A true JP2005229013A (ja) 2005-08-25

Family

ID=35003461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037842A Pending JP2005229013A (ja) 2004-02-16 2004-02-16 窒化物半導体の成長方法

Country Status (1)

Country Link
JP (1) JP2005229013A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143147B1 (en) 2011-02-10 2012-03-27 Intermolecular, Inc. Methods and systems for forming thin films
US8580670B2 (en) 2009-02-11 2013-11-12 Kenneth Scott Alexander Butcher Migration and plasma enhanced chemical vapor deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963962A (ja) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd 結晶成長方法および半導体発光素子
JPH1062710A (ja) * 1996-08-22 1998-03-06 Nikon Corp 照明光学系
JP3019132B2 (ja) * 1994-04-18 2000-03-13 日亜化学工業株式会社 窒化ガリウム系化合物半導体受光素子
JP2001155993A (ja) * 1999-09-13 2001-06-08 Nikon Corp 照明光学装置及び該装置を備える投影露光装置
JP2003060237A (ja) * 2001-06-07 2003-02-28 Ishikawajima Harima Heavy Ind Co Ltd 半導体結晶膜の成長方法
JP2003304034A (ja) * 2002-04-12 2003-10-24 Sony Corp 半導体素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019132B2 (ja) * 1994-04-18 2000-03-13 日亜化学工業株式会社 窒化ガリウム系化合物半導体受光素子
JPH0963962A (ja) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd 結晶成長方法および半導体発光素子
JPH1062710A (ja) * 1996-08-22 1998-03-06 Nikon Corp 照明光学系
JP2001155993A (ja) * 1999-09-13 2001-06-08 Nikon Corp 照明光学装置及び該装置を備える投影露光装置
JP2003060237A (ja) * 2001-06-07 2003-02-28 Ishikawajima Harima Heavy Ind Co Ltd 半導体結晶膜の成長方法
JP2003304034A (ja) * 2002-04-12 2003-10-24 Sony Corp 半導体素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580670B2 (en) 2009-02-11 2013-11-12 Kenneth Scott Alexander Butcher Migration and plasma enhanced chemical vapor deposition
US9045824B2 (en) 2009-02-11 2015-06-02 Kenneth Scott Alexander Butcher Migration and plasma enhanced chemical vapor deposition
US8143147B1 (en) 2011-02-10 2012-03-27 Intermolecular, Inc. Methods and systems for forming thin films

Similar Documents

Publication Publication Date Title
US10862274B1 (en) Optical device structure using GaN substrates and growth structures for laser applications
US8306081B1 (en) High indium containing InGaN substrates for long wavelength optical devices
US8242522B1 (en) Optical device structure using non-polar GaN substrates and growth structures for laser applications in 481 nm
US8294179B1 (en) Optical device structure using GaN substrates and growth structures for laser applications
JP5026271B2 (ja) 六方晶系窒化物単結晶の製造方法、六方晶系窒化物半導体結晶及び六方晶系窒化物単結晶ウエハの製造方法
US8126024B1 (en) Optical device structure using GaN substrates and growth structures for laser applications of emissions of 500 nm and greater
US8254425B1 (en) Optical device structure using GaN substrates and growth structures for laser applications
JP4939844B2 (ja) ZnO系半導体素子
JP4644942B2 (ja) 結晶膜、結晶基板および半導体装置の製造方法
JP5403212B2 (ja) 白色ledの製造装置と方法
JP2008235802A (ja) 発光装置
JP2006303259A (ja) 窒化物半導体発光素子と窒化物半導体の成長方法
Kim et al. Surface‐mode stimulated emission from optically pumped GaInN at room temperature
JP2006303258A (ja) p型窒化物半導体の成長方法
JP2011077344A (ja) 窒化物光半導体素子
JP5392885B2 (ja) ZnO系半導体素子
JP2005259827A (ja) 窒化物半導体発光素子と窒化物半導体の成長方法
JP2005229013A (ja) 窒化物半導体の成長方法
JP4026392B2 (ja) 半導体結晶膜の成長方法
JP5192744B2 (ja) 半導体発光素子及びその製造方法
JP4389888B2 (ja) 半導体の成長方法、半導体発光素子の製造方法および半導体装置の製造方法
JP3809825B2 (ja) 半導体の成長方法および半導体発光素子の製造方法
JP2001015808A (ja) 窒素化合物半導体発光素子及びその製造方法
JP2004343132A (ja) 窒化ガリウム系化合物半導体の製造方法
JP2021002574A (ja) 構造体、光デバイス、光デバイスの製造方法、および構造体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090626