JP2005222226A - 自律走行ロボットクリーナー - Google Patents

自律走行ロボットクリーナー Download PDF

Info

Publication number
JP2005222226A
JP2005222226A JP2004028080A JP2004028080A JP2005222226A JP 2005222226 A JP2005222226 A JP 2005222226A JP 2004028080 A JP2004028080 A JP 2004028080A JP 2004028080 A JP2004028080 A JP 2004028080A JP 2005222226 A JP2005222226 A JP 2005222226A
Authority
JP
Japan
Prior art keywords
output
traveling
sensor
acceleration sensor
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004028080A
Other languages
English (en)
Inventor
Takao Tani
太加雄 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2004028080A priority Critical patent/JP2005222226A/ja
Publication of JP2005222226A publication Critical patent/JP2005222226A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

【課題】自律走行ロボットクリーナーにおいて、加速度センサの出力及び地磁気センサの出力を基に走行ルートのずれを判定することにより、掃除ルートを正確に走行できる。
【解決手段】ロボットクリーナー1は、加速度センサの出力、地磁気センサの出力、及び走行制御出力を基に走行状態を判定し、走行状態が計画走行でなければ軌道を修正する。軌道修正に際しては、本来の走行方向に直交する方向に走行させる。例えば、ロボットクリーナー1は、C点からルートZ1に沿ってジグザグ走行し、P1点を通過後、絨毯目の影響を受け、本来のルートZ2からずれてルートZ3に沿って東に傾いて走行する。P2点に到達した時点で、本来のルートZ2からのずれ量ΔSが所定値に達し、軌道を修正する。軌道修正では、P2点からずれ量ΔSだけルートZ4に沿って西に向かって直進する。その後、P3点からルートZ5に沿って北に向かって軌道修正前の走行を再開する。
【選択図】図8

Description

本発明は、自律走行しながら部屋の掃除を行う自律走行ロボットクリーナーに関するものである。
従来から、自律走行ロボットクリーナーにおいて、ジャイロセンサにより方位判定を行っているが、ジャイロセンサでは相対方位は検出できるものの絶対方位を検出できないため、ジャイロセンサによる判定結果をファジー制御するなどして走行を制御している。また、絨毯目や人の物理的な力(人との接触)等により走行ルートが本来の走行ルートからずれた場合、軌道を修正する必要があるが、走行軌道を修正する際も、絨毯目の影響などを考慮してファジー制御を行っている。
また、ジャイロ及び加速度センサの検出信号と、方位センサから得られる検出値と、ポテンショメータから得られる出力値とを基に、走行機体が進行方向線からずれないように制御する自動直進制御装置も知られている(例えば、特許文献1参照)。また、地磁気センサの出力を用いて自律走行を制御する技術も知られている(例えば、特許文献2乃至特許文献7参照)。
特開平4−326103号公報 特開昭59−105111号公報 特開昭59−105112号公報 特開平5−108150号公報 特開平10−66405号公報 特開平7−8428号公報 特開平7−129242号公報
ところが、上述した従来のロボットクリーナーにおいては、地磁気を基準とした絶対方位を検出しておらずファジー制御などして走行を制御しているため、本来の走行ルートを正確に走行することが困難である。また、地磁気を基準とした絶対方位を検出していないため、絨毯目や人の物理的な力(人との接触)等に起因する走行ルートのずれの判定、及び走行ルートがずれた際の軌道修正についても、正確に行うことが困難である。また、軌道の修正に関しては、ジャイロセンサや加速度センサの出力を基に本来のルートへ復帰する制御を行うが、ジャイロセンサや加速度センサには積算誤差が存在するため、長距離を移動した後では、正しく本来のルートに戻ることが困難である。
なお、上述した特許文献1に示された装置においては、方位センサは地磁気を基準として方位を検出する旨の記載がなく、この方位センサの出力を基に走行機体が進行方向線からずれないように制御したとしても、本来の走行ルートを正確に走行することは困難である。また、上述した特許文献2乃至特許文献7に示された技術においては、地磁気センサを用いているため絶対方位を判定できるものの、絨毯目や人の物理的な力(人との接触)等に起因する走行ルートのずれを判定していない。従って、これら特許文献1乃至特許文献7に開示の内容を適用したとしても、上記の課題を解決することはできない。
本発明は、上記課題を解決するためになされたものであり、加速度センサの出力及び地磁気センサの出力を基に走行ルートのずれを判定することにより、掃除ルートを正確に走行することができ、正確な掃除を実行することができる自律走行ロボットクリーナーを提供することを目的とする。
上記目的を達成するために請求項1の発明は、機器本体の正面が向いている方向を検出する方向検出手段と、機器本体を走行、旋回させる走行手段と、機器本体の走行する領域を掃除する掃除手段と、方向検出手段の出力を基に走行手段及び掃除手段を制御して、機器本体を走行させつつ機器本体の走行する領域を掃除させる掃除動作を実行する制御手段とを備えた自律走行ロボットクリーナーにおいて、機器本体の前後方向及び左右方向に作用する加速度を各々独立して検出する加速度センサと、地磁気の方向を検出する地磁気センサとを備え、方向検出手段は、地磁気センサの出力を基に地磁気の方向を基準として機器本体の正面が向いている方向を検出するものであり、制御手段は、加速度センサの出力、地磁気センサの出力、及び走行手段に対する走行制御出力を基に機器本体の走行状態が計画走行であるか否かを判定し、走行状態が計画走行であれば現状の走行を維持し、走行状態が計画走行でなければ軌道を修正した後に現状の走行を再開し、制御手段による走行状態が計画走行であるか否かの判定は、北方向を前方と仮定し、かつ前進方向を平面上でのY軸としたとき、(1)地磁気センサの出力に変化がなく加速度センサの出力にY軸方向の変化があって走行制御出力が前進である場合、(2)地磁気センサの出力が東に変位し加速度センサの出力にX軸方向の変化があって走行制御出力が右カーブである場合、(3)地磁気センサの出力が西に変位し加速度センサの出力に−X軸方向の変化があって走行制御出力が左カーブである場合、(4)地磁気センサの出力に変化がなく加速度センサの出力に−Y軸方向の変化があって走行制御出力が後退である場合は、計画走行であると判定し、地磁気センサの出力に変化がなく、(5)加速度センサの出力にX軸方向の変化がある場合は、本来の走行ルートから右にスリップした状態であり、(6)加速度センサの出力に−X軸方向の変化がある場合は、本来の走行ルートから左にスリップした状態であり、(7)加速度センサの出力に−Y軸方向の変化がある場合は、本来の走行ルートから後方にスリップした状態であり、(8)加速度センサの出力にY軸方向の変化がある場合は、本来の走行ルートから前方にスリップした状態であり、(5)乃至(8)の場合は、何れも軌道修正が必要であると判定し、地磁気センサの出力に変化があって加速度センサの出力に変化がない又は微小な変化がある場合は、軌道を維持し、制御手段は、走行手段を制御して、(5)又は(6)の場合の軌道修正に際しては、方向検出手段の出力を基に本来の走行方向に直交する方向に加速度センサによるスリップ量だけ走行させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させ、(7)又は(8)の場合の軌道修正に際しては、加速度センサの出力によるスリップ量だけ本来の走行方向に沿って前進又は後退させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させるものである。
請求項2の発明は、機器本体の正面が向いている方向を検出する方向検出手段と、機器本体を走行、旋回させる走行手段と、機器本体の走行する領域を掃除する掃除手段と、方向検出手段の出力を基に走行手段及び掃除手段を制御して、機器本体を走行させつつ機器本体の走行する領域を掃除させる掃除動作を実行する制御手段とを備えた自律走行ロボットクリーナーにおいて、機器本体に作用する加速度を検出する加速度センサと、地磁気の方向を検出する地磁気センサとを備え、制御手段は、加速度センサの出力及び地磁気センサの出力を基に走行状態が計画走行であるか否かを判定し、走行状態が計画走行であれば、現状の走行を維持し、走行状態が計画走行でなければ、軌道を修正するものである。
請求項3の発明は、請求項2に記載の自律走行ロボットクリーナーにおいて、方向検出手段は、地磁気センサの出力を基に地磁気の方向を基準として機器本体の正面が向いている方向を検出するものであり、制御手段は、北方向を前方と仮定し、かつ前進方向を平面上でのY軸としたとき、地磁気センサの出力に変化がなく加速度センサの出力にX軸方向の変化がある場合は、本来の走行ルートから右にスリップした状態であり軌道修正が必要であると判定し、地磁気センサの出力に変化がなく加速度センサの出力に−X軸方向の変化がある場合は、本来の走行ルートから左にスリップした状態であり軌道修正が必要であると判定し、右又は左にスリップした状態であると判定した場合の軌道修正に際し、方向検出手段の出力を基に本来の走行方向に直交する方向に加速度センサによるスリップ量だけ走行させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させるものである。
請求項1の発明によれば、地磁気センサの出力により絶対方位を判定でき、この絶対方位と機器本体に作用する加速度と走行手段に対する走行制御出力とを基に走行状態を判定するため、本来の走行ルートを走行している計画走行であるか否かを正確に判定できる。そして、この判定結果を基に現状の走行を維持し又は軌道を修正するため、本来の走行ルートを正確に走行することができ、また、これにより部屋の間取り等の情報を入力することなく、部屋の掃除を実施できる。しかも、走行方向が地磁気の方向を基準として判定されるため、軌道の修正も地磁気の方向を基準として行われ、これにより、より正確に軌道を修正でき、本来の走行ルートをより正確に走行することができる。また、軌道の修正は、本来の走行方向に直交する方向に戻ることにより行われるため最短の移動距離となり、軌道修正時の誤差が少なく抑えられ、これにより、より正確に軌道を修正でき、本来の走行ルートをより正確に走行することができる。
請求項2の発明によれば、地磁気センサの出力により絶対方位を判定でき、この絶対方位と機器本体に作用する加速度とを基に走行状態を判定するため、本来の走行ルートを走行している計画走行であるか否かを正確に判定できる。そして、この判定結果を基に現状の走行を維持し又は軌道を修正するため、本来の走行ルートを正確に走行することができる。また、これにより部屋の間取り等の情報を入力することなく、部屋の掃除を実施できる。
請求項3の発明によれば、走行方向が地磁気の方向を基準として判定されるため、軌道の修正も地磁気の方向を基準として行われ、これにより、より正確に軌道を修正でき、本来の走行ルートをより正確に走行することができる。しかも、軌道の修正は、本来の走行方向に直交する方向に戻ることにより行われるため最短の移動距離となり、軌道修正時の誤差が少なく抑えられ、これにより、より正確に軌道を修正でき、本来の走行ルートをより正確に走行することができる。
以下、本発明を具体化した実施形態について図面を参照して説明する。まず、本実施形態による自律走行ロボットクリーナーの概略構成を図1(a)(b)及び図2に示す。自律走行ロボットクリーナー1は、部屋の床面を自律走行して床面を掃除する機器であり、機器本体2を走行させる左車輪3、右車輪4、前車輪5と、床面に落ちているゴミを収集するサブブラシ6、メインブラシ7、ローラ8、吸引ノズル9、ダストボックス10、吸引用ファン11とを備えている。また、自律走行ロボットクリーナー1は、機器本体2の周囲の障害物を検出する前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15と、センサ用照明ランプ16とを備えている。
左車輪3、及び右車輪4は、各々独立して正転・逆転駆動される駆動輪であり、前車輪5は、従動輪である。自律走行ロボットクリーナー1は、左車輪3と右車輪4が同じ回転速度で正転駆動されることにより正面(前方)方向(図中矢印A方向)に直進走行し、左車輪3と右車輪4の一方を正転駆動し、他方を逆転駆動することにより、その位置で時計回りの方向(図中矢印B方向)又は反時計回りの方向(図中矢印C方向)に旋回するようになっている。また、左車輪3と右車輪4が逆転駆動されることにより後退し、左車輪3と右車輪4が異なる回転速度で駆動されることにより右又は左にカーブして走行するようにもなっている。
サブブラシ6は、床面に落ちているゴミを掻き集めるものであり、機器本体2の前部に2つのものが配置されており、各々、図中矢印D1方向、D2方向に回転駆動されるようになっている。メインブラシ7は、床面に落ちているゴミを掻き上げるものであり、サブブラシ6の後方に配置されており、図中矢印E方向に回転駆動されるようになっている。ローラ8は、メインブラシ7により掻き上げられたゴミを吸引ノズル9の吸引口9a付近に搬送するものであり、メインブラシ7の回転に従動して図中矢印F方向に回転するようになっている。
吸引ノズル9は、メインブラシ7により掻き上げられたゴミ、及びローラ8により搬送されたゴミを吸引口9aから吸引してダストボックス10に排出するものである。吸引ノズル9の吸引口9aは、機器本体2の走行方向(図中矢印A方向)に垂直な方向に長くなっている。ダストボックス10は、吸引ノズル9から排出されるゴミを集めておくものである。
吸引用ファン11は、ダストボックス内10内の空気をフィルタを介して機器本体2の外部に排出するものである。ダストボックス内の空気が吸引用ファン11によって排出されることにより、ゴミが空気と共に吸引ノズル9の吸気口9aから吸入されてダストボックス10内に排出されるようになっている。自律走行ロボットクリーナー1は、走行しながらサブブラシ6でゴミを掻き集め、そのゴミを吸引ノズル9で吸引することにより、走行する領域を掃除する。
前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15は、各々光学式の測距センサである。前方センサ12a,12b,12cは、機器本体2の前方の段差、溝、下りの階段、壁、柱、床に置かれた本、テーブル、椅子、扇風機等の障害物を検出し、その障害物までの距離を測定するものであり、機器本体2の前方を斜め下向き(図中矢印G1,G2,G3の向き)に監視している。
左段差センサ13は、機器本体2の左側方の同様の障害物を検出し、その障害物までの距離を測定するものであり、機器本体2の僅かに前方の左側方を斜め下向き(図中矢印Hの向き)に監視している。右段差センサ14は、機器本体2の右側方の同様の障害物を検出し、その障害物までの距離を測定するものであり、機器本体2の僅かに前方の右側方を斜め下向き(図中矢印Iの向き)に監視している。
天井センサ15は、機器本体2の前上方にある障害物(テーブルやベッドの下を通り抜けできるか否か)を検出し、その障害物の高さと障害物までの距離を測定するものであり、機器本体2の前方を斜め上向き(図中矢印Jの向き)に監視している。センサ用照明ランプ16は、前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15により障害物を確実に検出できるように、機器本体2の周囲を照明するものである。
また、自律走行ロボットクリーナー1は、吸引ノズル9により吸引されるゴミを検出する検出するゴミセンサ17と、床面が絨毯であるか否かを検出する絨毯センサ18と、操作部19と、LCD20と、LED21と、スピーカ22とを備えている。
ゴミセンサ17は、透過型の光学式センサであり、光を発する発光部17aと、発光部17aからの光を受光する受光部17bとを有している。発光部17a及び受光部17bは、吸引ノズル9の吸引口9a付近の両側部に配置されており、吸引ノズル9がゴミを吸引すると、ゴミは発光部17aと受光部17bとの間を通過するようになっている。ゴミセンサ17は、発光部17aから発せられて受光部17bにて受光される光が遮ることにより、吸引ノズル9により吸引されるゴミを検出する。
絨毯センサ18は、透過型の光学式センサであり、光を発する発光部18aと、発光部18aからの光を受光する受光部18bとを有している。発光部18a及び受光部18bは、機器本体2の進行方向に垂直な方向に間隔を空けて、床面との間に僅かの隙間を有するように配置されており、機器本体2が絨毯の上を走行すると、絨毯の毛が発光部18aと受光部18bとの間を遮るようになっている。絨毯センサ18は、発光部18aから発せられて受光部18bにて受光される光が遮ることにより、床面が絨毯であることを検出する。
操作部19は、自律走行ロボットクリーナー1による掃除動作を開始・停止させるために操作され、また、その他の各種設定を行うために操作されるものである。LCD20は、文字表示により、自律走行ロボットクリーナー1の動作状況や各種メッセージを報知するものである。LED21は、点灯、点滅、消灯することにより、自律走行ロボットクリーナー1の動作状況を報知するものである。スピーカ22は、音声出力により、自律走行ロボットクリーナー1の動作状況や各種メッセージを報知するものである。これら操作部19、LCD20、LED21、スピーカ22は、機器本体2の上部に配置されている。
さらに、自律走行ロボットクリーナー1は、不法侵入者等の監視を行うセキュリティ機能を有しており、不法侵入者等を検出する人体センサ23と、不法侵入者等を撮影するカメラ24と、カメラ用照明ランプ25と、無線通信モジュール26とを備えている。
人体センサ23は、人体から放射される赤外線を受光することにより機器本体2の周辺の人体の有無を検出するものである。カメラ24は、立っている人の顔を撮影できるように、機器本体2の前方の斜め上方向に向けて配置されている。カメラ用照明ランプ25は、カメラ24による撮影が確実に行えるように、機器本体2の前方の斜め上方向(すなわちカメラ24の撮影方向)を照明するようになっている。無線通信モジュール26は、カメラ24で撮影した画像をアンテナ27を介して監視センタ等へ無線で送信するものである。自律走行ロボットクリーナー1は、掃除動作を行わないときには、これら人体センサ23、カメラ24、カメラ用照明ランプ25、及び無線通信モジュール26を動作させて、不法侵入者等の監視を行うようになっている。
次に、自律走行ロボットクリーナー1の電気的ブロック構成を図3に示す。自律走行ロボットクリーナー1は、上述の前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15、センサ用照明ランプ16、ゴミセンサ17、絨毯センサ18、操作部19、LCD20、LED21、スピーカ22、人体センサ23、カメラ24、カメラ用照明ランプ25、及び無線通信モジュール26を備えている。また、自律走行ロボットクリーナー1は、これらに加え、左車輪モータ31、右車輪モータ32、サブブラシモータ33、メインブラシモータ34、ゴミ吸引用モータ35、加速度センサ36、走行距離算出部37、地磁気センサ38、走行方向判定部39、汚れ度判定部40、地図情報メモリ41、バッテリ42、及び各部を制御する制御部43を備えている。
左車輪モータ31、右車輪モータ32、及び上述の左車輪3、右車輪4により走行手段が構成されており、サブブラシモータ33、メインブラシモータ34、ゴミ吸引用モータ35、及び上述のサブブラシ6、メインブラシ7、ローラ8、吸引ノズル9、ダストボックス10、吸引用ファン11により掃除手段が構成されている。また、地磁気センサ38、及び走行方向判定部39により走行方向検出手段が構成されている。
前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15は、上述のように障害物を検出して障害物までの距離を測定し、それらの測定値が制御部43に入力される。センサ用照明ランプ16は、制御部43による制御のもと、照明用の光を発光する。ゴミセンサ17は、上述のようにゴミを検出し、その検出信号が汚れ度判定部40に入力される。絨毯センサ18は、上述のように床面が絨毯であることを検出し、その検出信号が制御部43に入力される。操作部19は、操作に応じた操作信号を出力し、その操作信号が制御部43に入力される。LCD20、LED21、及びスピーカ22は、制御部43による制御のもと、自律走行ロボットクリーナー1の動作状況や各種メッセージを報知する。
人体センサ23は、上述のように人体の有無を検出し、その検出信号が制御部43に入力される。カメラ24は、制御部43による制御のもと、撮影動作を行い、カメラ用照明ランプ25は、制御部43による制御のもと、照明用の光を発光する。無線通信モジュール26は、制御部43による制御のもと、カメラ24で撮影した画像を無線で送信する。
左車輪モータ31は、上述の左車輪3を正転・逆転させるものであり、右車輪モータ32は、上述の右車輪4を正転・逆転させるものである。サブブラシモータ33は、上述のサブブラシ6を回転させるものであり、メインブラシモータ34は、上述のメインブラシ7を回転させるものである。ゴミ吸引用モータ35は、上述の吸引用ファン11を回転させるものである。これら左車輪モータ31、右車輪モータ32、サブブラシモータ33、メインブラシモータ34、及びゴミ吸引用モータ35は、各々、制御部43による制御のもと駆動される。
加速度センサ36は、機器本体2に作用する加速度を検出して、加速度に応じた出力値を出力するものである。この加速度センサ36は、機器本体2に作用する加速度を機器本体2の前後方向、左右方向、上下方向について各々独立して検出し、前後方向、左右方向、上下方向の各々の方向について、加速度に応じた出力値を出力する。走行距離算出部37は、加速度センサ36からの前後方向の加速度についての出力値を基に機器本体2の走行速度を算出し、さらに、その走行速度を基に走行距離を算出して、その値を出力する。
地磁気センサ38は、地磁気を検出して、地磁気の方向に応じた出力値を出力するものである。走行方向判定部38は、地磁気センサ38からの出力値を基に、機器本体2の正面方向が地磁気の方向を基準としてどの方向を向いているか(すなわち地磁気の方向に対する機器本体2の走行方向)を判定し、その値を出力する。
汚れ度判定部40は、ゴミセンサ17からの出力を基に所定時間あたりのゴミの集塵量を検出することにより機器本体2が走行する領域の汚れ度を判定し、汚れ度が基準値を超えている場合にその旨を示す信号を出力する。地図情報メモリ41は、機器本体2の現在位置、障害物の存在する位置、掃除済みの領域、床面の汚れ度が基準値を超えている領域等の機器本体2の走行を制御するのに必要な地図情報を記憶するものである。バッテリ42は、各部に給電するものである。
制御部43は、左車輪モータ31及び右車輪モータ32を駆動制御することにより、左車輪3及び右車輪を回転させて機器本体2の走行を制御し、また、サブブラシモータ33、及びメインブラシモータ34、及びゴミ吸引用モータ35を駆動することにより、サブブラシ6、メインブラシ7、及び吸引用ファン11を作動させてゴミの集塵動作を制御する。そして、制御部43は、機器本体2の走行及びゴミの集塵動作を制御して、機器本体2を所定の走行様式で走行させつつ機器本体2の走行する領域を掃除する掃除動作を実行する。
制御部43は、掃除動作において(1)障害物に到達すると機器本体2の大きさだけ横に移動した後に障害物と反対方向に走行する動作を繰り返すいわゆるジグザグ走行、(2)障害物の周囲に沿っての走行、(3)多くのゴミが密集して落ちている領域での螺旋状の走行、等の走行様式による掃除動作を実行する。制御部43による掃除動作の実行は、前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、天井センサ15からの出力、及び地図情報メモリ41に記憶されている地図情報を基に行われる。
また、制御部43は、掃除動作中、機器本体2の走行状態が計画走行であるか否かを判定し、走行状態が計画走行でなければ走行軌道を修正するための処理を実行する。制御部43による機器本体2の走行状態が計画走行であるか否かの判定は、加速度センサ36の出力、地磁気センサ38の出力、及び左車輪モータ31及び右車輪モータ32に対する制御出力を基に行われる。また、制御部43は、掃除動作中、絨毯センサ18及び汚れ判定部40からの出力を基に、機器本体2の走行速度を調整し、ゴミの集塵力を調節する。
さらに、制御部43は、掃除動作中、機器本体2の現在位置、障害物の存在する位置、掃除済みの領域等を示す地図情報を作成する。制御部43による地図情報の作成は、走行距離算出部37及び走行方向判定部39からの出力を基に機器本体2の位置及び走行方向が算出され、この算出された位置及び走行方向と前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、及び天井センサ15からの出力とを基に行われる。制御部43にて作成された地図情報は、地図情報メモリ41に記憶される。すなわち、制御部43は、掃除動作中に地図情報を作成してゆき、その作成してゆく地図情報を基に、さらに掃除動作を進めてゆく。
このような構成の自律走行ロボットクリーナー1は、図4に示すように、床60を自律走行して掃除する際に、機器本体2の中心(左車輪3と右車輪4との中点)位置Oを自分のいる位置とし、機器本体2の正面が向いている方向をY軸方向(図1に示す矢印A方向に該当)、機器本体2の正面方向を向いて右方向をX軸方向、上方向をZ軸方向として認識している。
具体的には、機器本体2の中心位置Oに上記加速度センサ36が配置されており、機器本体2の前後方向、左右方向、上下方向に作用する加速度をY軸方向、X軸方向、Z軸方向の加速度として加速度センサ36にて検出するようになっている。また、Y軸上に上記地磁気センサ38が配置されており、Y軸方向に対する地磁気の傾きを地磁気センサ38にて検出するようになっている。さらに、加速度センサ36からのY軸方向の加速度についての出力値を基に、上記走行距離算出部37にて機器本体2の走行距離を算出するようになっており、地磁気センサ38からの出力値を基に、上記走行方向判定部39にて地磁気の方向に対するY軸方向の傾き角度(すなわち機器本体2の正面が向いている方向)を判定するようになっている。
加速度センサ36は、機器本体2の前方向に加速度が作用すると、その加速度の大きさに応じたY軸方向の「+」の値を出力し、後方向に加速度が作用すると、その加速度の大きさに応じたY軸方向の「−」の値を出力する。また、機器本体2の右方向に加速度が作用すると、その加速度の大きさに応じたX軸方向の「+」の値を出力し、左方向に加速度が作用すると、その加速度の大きさに応じたX軸方向の「−」の値を出力する。また、機器本体2の上方向に加速度が作用すると、その加速度の大きさに応じたZ軸方向の「+」の値を出力し、下方向に加速度が作用すると、その加速度の大きさに応じたZ軸方向の「−」の値を出力する。
地磁気センサ38は、地磁気の方向がY軸方向と一致した(すなわちY軸方向が真北を向いた)状態では「0」の値を出力する。また、地磁気の方向がY軸方向に対して−Z軸方向に見て時計回り方向(B方向)に傾いた状態では、その傾き角度に応じた「+」の値を出力し、地磁気の方向が−Z軸方向に見て反時計回り方向(C方向)に傾いた状態では、その傾き角度に応じた「−」の値を出力する。従って、機器本体2が時計回り方向にカーブ(右カーブ)すると、地磁気の方向は反時計回り方向に変位することになり、地磁気センサ38の出力値は減少し、また、機器本体2が反時計回り方向にカーブ(左カーブ)すると、地磁気の方向は時計回り方向に変位することになり、地磁気センサ38の出力値は増加する。
走行方向判定部39は、Y軸方向が地磁気の方向(すなわち真北方向)を基準として東又は西に傾いている角度を出力する。すなわち、走行方向判定部39は、Y軸方向が地磁気の方向と一致してれば(すなわちY軸方向が真北を向いていれば)「0」の値を出力し、Y軸方向が東の方に傾いていれば、その傾き角度の大きさに応じた「+」の値(例えば北東を向いていれば「+45°」、真東を向いていれば「+90°」)を出力し、Y軸方向が西に傾いていれば、その傾き角度の大きさに応じた「−」の値(例えば北西を向いていれば「−45°」、真西を向いていれば「−90°」)を出力する。
自律走行ロボットクリーナー1は、制御部43による制御のもと、これら加速度センサ36、地磁気センサ38、走行距離算出部37、走行方向判定部39からの出力を基に、また、上記前方センサ12a,12b,12c、左段差センサ13、右段差センサ14、及び天井センサ15からの出力を基に、壁50等の障害物を回避しながら所定の走行様式で自律走行しつつ床60を掃除する。
ところで、自律走行ロボットクリーナー1は、絨毯目や人の物理的な力(人との接触)等により走行ルートが本来の走行ルートからスリップする(ずれる)ことがあり、走行ルートからスリップした場合には、軌道を修正する等の対応が必要となる。そこで、自律走行ロボットクリーナー1は、掃除動作中における走行中に、常時、走行状態を判定し、その判定結果に応じた対応をとるようになっている。
次に、上記掃除動作中における走行状態の判定条件と、その判定結果、及びその対応策について説明する。これら判定条件、判定結果、対応策は、図5に示すようになっている。地磁気センサ38の出力値、加速度センサ36の出力値、走行制御出力の内容(左車輪モータ31及び右車輪モータ32に対する制御出力)が判定条件である。
すなわち、(1)地磁気センサ38の出力に変化がなく加速度センサ36の出力にY軸「+」位相の変化(Y軸方向の「+」の出力)があって走行制御出力が前進である場合は、本来の走行ルートを走行している状態であり計画走行であると判定する。また、(2)地磁気センサ38の出力に増加の変化があり加速度センサ36の出力にX軸「+」位相の変化(X軸方向の「+」の出力)があって走行制御出力が右カーブである場合も、本来の走行ルートを走行している状態であり計画走行であると判定する。
さらに、(3)地磁気センサ38の出力に減少の変化があり加速度センサ36の出力にX軸「−」位相の変化(X軸方向の「−」の出力)があって走行制御出力が左カーブである場合、(4)地磁気センサ38の出力に変化がなく加速度センサ36の出力にY軸「−」位相の変化(Y軸方向の「−」の出力)があって走行制御出力が後退である場合も、本来の走行ルートを走行している状態であり計画走行であると判定する。
これら(1)〜(4)の場合は、地磁気センサ38の出力値、加速度センサ36の出力値、走行制御出力の内容が対応している(矛盾していない)ため計画走行であると判断でき、従って、軌道を維持(現状の走行制御)を維持する。
(5)地磁気センサ38の出力に変化がなく加速度センサ36の出力にX軸「+」位相の閾値を越える変化(X軸方向の「+」の閾値を越える出力)がある場合は、本来の走行ルートから右にスリップした状態であり計画走行でないと判定する。(6)地磁気センサ38の出力に変化がなく加速度センサ36の出力にX軸「−」位相の閾値を越える変化(X軸方向の「−」の閾値を越える出力)がある場合は、本来の走行ルートから左にスリップした状態であり計画走行でないと判定する。
(7)地磁気センサ38の出力に変化がなく加速度センサ36の出力にY軸「−」位相の閾値を越える変化(Y軸方向の「−」の閾値を越える出力)がある場合は、本来の走行ルートから後方にスリップした状態であり計画走行でないと判定する。(8)地磁気センサ38の出力に変化がなく加速度センサ36の出力にY軸「+」位相の閾値を越える変化(Y軸方向の「+」の閾値を越える出力)がある場合は、本来の走行ルートから前方にスリップした状態であり計画走行でないと判定する。
これら(5)〜(8)の場合は、地磁気センサ38の出力値と加速度センサ36の出力値とが対応していない(矛盾している)ため走行制御出力の内容に拘らず計画走行ではないと判断でき、従って、軌道を修正する。
(5)又は(6)の場合の軌道修正に際しては、スリップした距離だけ本来の走行方向に直交する方向に走行させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させる。また、(7)又は(8)の場合の軌道修正に際しては、スリップした距離だけ本来の走行方向に沿って前進又は後退させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させる。なお、スリップした距離は、加速度センサ36の出力により求められ、本来の走行方向は、地磁気センサ38及び走行方向判定部39の出力により求められる。
(9)地磁気センサ38の出力に閾値を越える大きな変化があって加速度センサ36の出力にX軸「+」位相、X軸「−」位相、Y軸「+」位相、Y軸「+」位相の閾値以下の微小な変化がある場合(加速度センサ36の出力に変化がない場合を含む)は、計画走行であるか否かの結論を出さずに軌道を維持し、単位時間後の地磁気センサ38の出力値を用いて再判定する。これは、部屋に置かれたオーディオ機器のスピーカや柱に用いられている鉄筋等による磁気の影響を受けて、地磁気センサ38の出力が変化していると考えられるためである。
次に、上記自律走行ロボットクリーナー1の走行状態判定処理について、図6のフローチャートを参照して説明する。まず、制御部43は、機器本体2の走行制御中に(#1)、地磁気センサ38の出力値を読込むと共に(#2)、加速度センサ36の出力値を読込む(#3)。
続いて、制御部43は、上記#2で読込んだ地磁気センサ38の出力値、上記#3で読込んだ加速度センサ36の出力値、及び現在の走行制御出力(左車輪モータ31及び右車輪モータ32に対する制御出力)の内容を基に、機器本体2の走行状態を判定する(#4)。この判定処理にて、上記図5に示す(1)〜(9)の判定がなされる。
そして、制御部43は、機器本体2の走行状態が計画走行であれば(図5に示す(1)〜(4)であれば)(#5でYES)、現在の走行制御を維持し(#6)、計画走行でなければ(図5に示す(5)〜(8)であれば)(#5でNO)、軌道修正処理を行う(#7)。なお、上記#4の処理で図5の(9)の場合の判別がなされた場合は、上記#5の処理を行わずに、現在の走行制御を維持する。
その後、制御部43は、上記#1からの処理を繰り返す。この走行状態判定処理は、例えば100ms周期で繰り返され、掃除動作が終了するまで行われる。これにより、自律走行ロボットクリーナー1は、自律走行中に、常時、本来の走行ルートを走行しているか否かが判別され、本来の走行ルートからずれた場合には、随時軌道が修正される。
このような走行状態判定処理によれば、地磁気センサの出力による絶対方位、機器本体2に作用する加速度、及び走行制御出力を基に走行状態を判定するため、本来の走行ルートを走行している計画走行であるか否かを正確に判定できる。そして、この判定結果を基に現状の走行を維持し又は軌道を修正するため、本来の走行ルートを正確に走行することができ、また、これにより部屋の間取り等の情報を入力することなく、部屋の掃除を実施できる。
次に、上記自律走行ロボットクリーナー1の右及び左スリップ時(上記図6の#4での判別結果が図5に示す(5)(6)の場合)の軌道修正処理について、図7のフローチャートを参照して説明する。まず、制御部43は、加速度センサ36のX軸方向(機器本体2の左右方向)の出力値を基に、スリップ量Δoを算出する(#11)。なお、ここで用いる加速度センサ36の出力は、上記図6の#3で読込んだ値である。続いて、スリップ量Δoを総スリップ量ΔSに加算する(#12)。なお、総スリップ量ΔSの初期値は「0」になっている。
そして、制御部43は、総スリップ量ΔSが所定値(例えば3cm)以上であれば(#13でYES)、地磁気センサ38及び走行方向判定部39の出力を基に、機器本体2を本来の走行ルートに向けて本来の走行方向に直交する方向に旋回させ(#14)、総スリップ量ΔSだけ直進させる(#15)。その後、地磁気センサ38及び走行方向判定部39の出力を基に、機器本体2を本来の走行方向に旋回させ(#16)、軌道修正前の走行制御を再開させる(#17)。そして、総スリップ量ΔSの値を「0」にする(#18)。
なお、総スリップ量ΔSが所定値以上でなければ(#13でNO)、上記#14以降の軌道修正は未だ実行されずせず、総スリップ量ΔSの値は保持される。この場合、上記図6(#1〜#7)の走行状態判定処理が繰り返されることにより、上記#11以降の処理が再度行われ、上記#13で総スリップ量ΔSが所定値以上になると、上記#14以降の軌道修正が実行される。
このような軌道修正処理によれば、軌道の修正は、本来の走行方向に直交する方向に戻ることにより行われるため最短の移動距離となり、軌道修正時の誤差が少なく抑えられ、これにより、正確に軌道修正でき、本来の走行ルートをより正確に走行することができる。また、走行方向は地磁気センサ38及び走行方向判定部39の出力を基に地磁気を基準として判定されるため、軌道修正時の走行も地磁気の方向を基準として行われ、これにより、より正確に軌道を修正でき、本来の走行ルートをより正確に走行することができる。
なお、後方スリップ時及び前方スリップ時(上記図6の#4での判別結果が図5に示す(7)(8)の場合)の軌道修正処理は、以下のようにして行われる。すなわち、制御部43は、加速度センサ36のY軸方向(機器本体2の前後方向)の出力値(上記図6の#3で読込んだ値)を基にスリップ量Δoを算出し、そのスリップ量Δoだけ本来の走行方向に沿って前進又は後退させた後、本来の走行方向に向けて軌道修正前の走行を再開させる。
次に、上記自律走行ロボットクリーナー1の右スリップ時(上記図6の#4での判別結果が図5に示す(5)の場合)の軌道修正の例を、図8(a)(b)(c)(d)を参照して説明する。なお、図8(a)(b)(c)(d)に示す軌道修正の例は、ジグザグ走行中に絨毯目による影響を受けた場合の例である。自律走行ロボットクリーナー1は、壁50で囲まれた床60の上に置かれており、掃除開始位置がC点とされ、掃除開始方向(機器本体2のY軸方向(前進方向))が地磁気の方向(北向き)とされている。壁50aは、地磁気の方向と平行になっている。
自律走行ロボットクリーナー1は、ジグザグ走行で掃除する動作モードが選択されており、掃除を開始すると、C点からルートZ1に沿ってジグザグ走行する(図8(a)参照)。すなわち、自律走行ロボットクリーナー1は、北に向かって壁50aと平行に直進し、壁50bに到達すると、右に90°旋回して東に向かって機器本体2の大きさだけ移動した後、さらに右に90°旋回して南に向かって直進し、壁50cに到達すると、左に90°旋回して東に向かって機器本体2の大きさだけ移動した後、さらに左に90°旋回して北に向かって直進する走行を繰り返す。
自律走行ロボットクリーナー1は、P1点を通過すると、絨毯目の影響を受け、本来のルートZ2からずれて、ルートZ3に沿って右(東)に傾いて走行する(図8(b)参照)。自律走行ロボットクリーナー1は、ルートZ3に沿って走行している際、上記図6の#5でNO(計画走行でない)と判定されて、上記図7の#11以降の処理が行われる。その後、自律走行ロボットクリーナー1がP2点に到達した時点で、本来のルートZ2からのスリップ量ΔSが所定値(例えば3cm)に達し、上記図7の#13でYESと判定される。
そして、自律走行ロボットクリーナー1は、P2点上で機器本体2を本来の走行ルートZ2に向けて本来の走行方向と直交するように旋回し、P2点から本来の走行方向と直交する方向にルートZ4に沿ってスリップ量ΔSだけ直進してP3点に到達する(図8(c)参照)。図示の例では、本来のルートZ2はP2点(機器本体2の位置)より西側にあり、本来の走行ルートは北向きとなっている。従って、自律走行ロボットクリーナー1は、P2点上で機器本体2を西に向くように旋回し、スリップ量ΔSだけ西に向かって直進してP3点に到達する。これにより、本来のルートZ2からのずれが修正されて、軌道が修正される。
なお、P2点上での旋回角度は、自律走行ロボットクリーナー1がP2点に到達したときの機器本体2の走行方向に依存し、地磁気センサ38及び走行方向判定部39の出力を基に算出される。また、スリップ量ΔSは、自律走行ロボットクリーナー1がP1点を通過してからP2点に到達するまでの加速度センサ36の出力を基に算出される。
その後、自律走行ロボットクリーナー1は、P3点上で機器本体2が北(本来の走行方向)を向くように右に90°旋回し、P3点から軌道修正前の走行すなわちルートZ5に沿って北に向かって直進走行を再開する(図8(d)参照)。
なお、本発明は、上記実施形態の構成に限られず、種々の変形が可能である。例えば、上記実施形態において、走行状態の判定は、走行制御出力の内容は用いず、加速度センサ36の出力と地磁気センサ38の出力とによって行ってもよい。また、図7の#15の処理において、総スリップ量ΔSだけ直進走行させることに代えて、総スリップ量ΔSよりも少し多めの量を直進走行させてもよい。
(a)は本発明の一実施形態に係る自律走行ロボットクリーナーの概略構成を示す平面図、(b)は同一部破断した側面図。 同ロボットクリーナーの正面図。 同ロボットクリーナーの電気的ブロック構成図。 同ロボットクリーナーの走行している状態を示す斜視図。 同ロボットクリーナーの走行状態の判定条件と、その判定結果、その対応策を示す図。 同ロボットクリーナーの走行状態判定処理を示すフローチャート。 同ロボットクリーナーの軌道修正処理を示すフローチャート。 (a)(b)(c)(d)は、同ロボットクリーナーの走行例を示す図。
符号の説明
1 自律走行ロボットクリーナー
2 機器本体
3 左車輪
4 右車輪
5 前車輪
6 サブブラシ
7 メインブラシ
8 ローラ
9 吸引ノズル
10 ダストボックス
11 吸引用ファン
12a,12b,12c 前方センサ
13 左段差センサ
14 右段差センサ
15 天井センサ
19 操作部
31 左車輪モータ
32 右車輪モータ
36 加速度センサ
37 走行距離算出部
38 地磁気センサ
39 走行方向判定部
43 制御部
50,50a,50b,50c 壁
60 床

Claims (3)

  1. 機器本体の正面が向いている方向を検出する方向検出手段と、機器本体を走行、旋回させる走行手段と、機器本体の走行する領域を掃除する掃除手段と、前記方向検出手段の出力を基に前記走行手段及び前記掃除手段を制御して、機器本体を走行させつつ機器本体の走行する領域を掃除させる掃除動作を実行する制御手段とを備えた自律走行ロボットクリーナーにおいて、
    機器本体の前後方向及び左右方向に作用する加速度を各々独立して検出する加速度センサと、
    地磁気の方向を検出する地磁気センサとを備え、
    前記方向検出手段は、前記地磁気センサの出力を基に地磁気の方向を基準として機器本体の正面が向いている方向を検出するものであり、
    前記制御手段は、前記加速度センサの出力、前記地磁気センサの出力、及び前記走行手段に対する走行制御出力を基に機器本体の走行状態が計画走行であるか否かを判定し、走行状態が計画走行であれば現状の走行を維持し、走行状態が計画走行でなければ軌道を修正した後に現状の走行を再開し、
    前記制御手段による走行状態が計画走行であるか否かの判定は、北方向を前方と仮定し、かつ前進方向を平面上でのY軸としたとき、
    (1)前記地磁気センサの出力に変化がなく前記加速度センサの出力にY軸方向の変化があって前記走行制御出力が前進である場合、(2)前記地磁気センサの出力が東に変位し前記加速度センサの出力にX軸方向の変化があって前記走行制御出力が右カーブである場合、(3)前記地磁気センサの出力が西に変位し前記加速度センサの出力に−X軸方向の変化があって前記走行制御出力が左カーブである場合、(4)前記地磁気センサの出力に変化がなく前記加速度センサの出力に−Y軸方向の変化があって前記走行制御出力が後退である場合は、計画走行であると判定し、
    前記地磁気センサの出力に変化がなく、(5)前記加速度センサの出力にX軸方向の変化がある場合は、本来の走行ルートから右にスリップした状態であり、(6)前記加速度センサの出力に−X軸方向の変化がある場合は、本来の走行ルートから左にスリップした状態であり、(7)前記加速度センサの出力に−Y軸方向の変化がある場合は、本来の走行ルートから後方にスリップした状態であり、(8)前記加速度センサの出力にY軸方向の変化がある場合は、本来の走行ルートから前方にスリップした状態であり、前記(5)乃至(8)の場合は、何れも軌道修正が必要であると判定し、
    前記地磁気センサの出力に変化があって前記加速度センサの出力に変化がない又は微小な変化がある場合は、軌道を維持し、
    前記制御手段は、前記走行手段を制御して、
    前記(5)又は(6)の場合の軌道修正に際しては、前記方向検出手段の出力を基に本来の走行方向に直交する方向に前記加速度センサによるスリップ量だけ走行させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させ、
    前記(7)又は(8)の場合の軌道修正に際しては、前記加速度センサの出力によるスリップ量だけ本来の走行方向に沿って前進又は後退させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させることを特徴とする自律走行ロボットクリーナー。
  2. 機器本体の正面が向いている方向を検出する方向検出手段と、機器本体を走行、旋回させる走行手段と、機器本体の走行する領域を掃除する掃除手段と、前記方向検出手段の出力を基に前記走行手段及び前記掃除手段を制御して、機器本体を走行させつつ機器本体の走行する領域を掃除させる掃除動作を実行する制御手段とを備えた自律走行ロボットクリーナーにおいて、
    機器本体に作用する加速度を検出する加速度センサと、
    地磁気の方向を検出する地磁気センサとを備え、
    前記制御手段は、
    前記加速度センサの出力及び前記地磁気センサの出力を基に走行状態が計画走行であるか否かを判定し、
    走行状態が計画走行であれば、現状の走行を維持し、
    走行状態が計画走行でなければ、軌道を修正することを特徴とする自律走行ロボットクリーナー。
  3. 前記方向検出手段は、前記地磁気センサの出力を基に地磁気の方向を基準として機器本体の正面が向いている方向を検出するものであり、
    前記制御手段は、北方向を前方と仮定し、かつ前進方向を平面上でのY軸としたとき、
    前記地磁気センサの出力に変化がなく前記加速度センサの出力にX軸方向の変化がある場合は、本来の走行ルートから右にスリップした状態であり軌道修正が必要であると判定し、
    前記地磁気センサの出力に変化がなく前記加速度センサの出力に−X軸方向の変化がある場合は、本来の走行ルートから左にスリップした状態であり軌道修正が必要であると判定し、
    前記右又は左にスリップした状態であると判定した場合の軌道修正に際し、前記方向検出手段の出力を基に本来の走行方向に直交する方向に前記加速度センサによるスリップ量だけ走行させ、その後、本来の走行方向に向けて軌道修正前の走行を再開させる請求項2に記載の自律走行ロボットクリーナー。



JP2004028080A 2004-02-04 2004-02-04 自律走行ロボットクリーナー Withdrawn JP2005222226A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028080A JP2005222226A (ja) 2004-02-04 2004-02-04 自律走行ロボットクリーナー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028080A JP2005222226A (ja) 2004-02-04 2004-02-04 自律走行ロボットクリーナー

Publications (1)

Publication Number Publication Date
JP2005222226A true JP2005222226A (ja) 2005-08-18

Family

ID=34997814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028080A Withdrawn JP2005222226A (ja) 2004-02-04 2004-02-04 自律走行ロボットクリーナー

Country Status (1)

Country Link
JP (1) JP2005222226A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310866A (ja) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd 絶対方位角を利用したロボット及びこれを利用したマップ作成方法
KR100963781B1 (ko) * 2008-03-31 2010-06-14 엘지전자 주식회사 로봇 청소기의 제어방법
JP2013508183A (ja) * 2009-10-30 2013-03-07 ユージン ロボット シーオー., エルティーディー. 移動ロボットのスリップ感知装置および方法
WO2013185102A1 (en) * 2012-06-08 2013-12-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
KR101359380B1 (ko) * 2007-01-22 2014-02-07 엘지전자 주식회사 로봇청소기의 외력감지방법, 이를 기록한 기록매체 및 이를이용한 로봇 청소기
JP2015536489A (ja) * 2012-09-24 2015-12-21 ロブアート ゲーエムベーハーROBART GmbH 床面を自律式に点検または処理するロボットおよび方法
JP2017054393A (ja) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 監視システム、及びこれに用いられる移動検知装置、監視装置
JP2017107275A (ja) * 2015-12-07 2017-06-15 カシオ計算機株式会社 自律移動装置、自律移動方法及びプログラム
JP2019101871A (ja) * 2017-12-05 2019-06-24 東芝ライフスタイル株式会社 電気掃除機
CN109965797A (zh) * 2019-03-07 2019-07-05 深圳市愚公科技有限公司 扫地机器人地图的生成方法、扫地机器人控制方法及终端
CN111722624A (zh) * 2019-03-18 2020-09-29 北京奇虎科技有限公司 清扫方法、装置、设备及计算机可读存储介质
JP2020164903A (ja) * 2019-03-28 2020-10-08 Jx金属株式会社 電解精製における検査装置、システム、及び検出方法
CN112336258A (zh) * 2019-08-09 2021-02-09 松下知识产权经营株式会社 移动机器人、控制方法以及存储介质
WO2021046682A1 (zh) * 2019-09-09 2021-03-18 深圳市无限动力发展有限公司 移动机器人遥控方法、装置及遥控终端
JP2021114096A (ja) * 2020-01-17 2021-08-05 株式会社熊谷組 移動体の移動制御方法
JP2021122448A (ja) * 2020-02-04 2021-08-30 東芝ライフスタイル株式会社 自律型掃除機
CN114206183A (zh) * 2019-07-31 2022-03-18 Lg电子株式会社 移动机器人及其控制方法
CN114305261A (zh) * 2021-12-29 2022-04-12 广州科语机器人有限公司 扫地机路线纠偏处理方法及装置
CN117282698A (zh) * 2023-09-20 2023-12-26 宁夏隆基宁光仪表股份有限公司 一种光伏清洁机器人及其自主选择清洁路线的方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310866A (ja) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd 絶対方位角を利用したロボット及びこれを利用したマップ作成方法
KR101359380B1 (ko) * 2007-01-22 2014-02-07 엘지전자 주식회사 로봇청소기의 외력감지방법, 이를 기록한 기록매체 및 이를이용한 로봇 청소기
KR100963781B1 (ko) * 2008-03-31 2010-06-14 엘지전자 주식회사 로봇 청소기의 제어방법
US8873832B2 (en) 2009-10-30 2014-10-28 Yujin Robot Co., Ltd. Slip detection apparatus and method for a mobile robot
JP2013508183A (ja) * 2009-10-30 2013-03-07 ユージン ロボット シーオー., エルティーディー. 移動ロボットのスリップ感知装置および方法
US9427875B2 (en) 2012-06-08 2016-08-30 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US9223312B2 (en) 2012-06-08 2015-12-29 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US10974391B2 (en) 2012-06-08 2021-04-13 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
US9969089B2 (en) 2012-06-08 2018-05-15 Irobot Corporation Carpet drift estimation using differential sensors for visual measurements
US11926066B2 (en) 2012-06-08 2024-03-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
WO2013185102A1 (en) * 2012-06-08 2013-12-12 Irobot Corporation Carpet drift estimation using differential sensors or visual measurements
JP2015536489A (ja) * 2012-09-24 2015-12-21 ロブアート ゲーエムベーハーROBART GmbH 床面を自律式に点検または処理するロボットおよび方法
JP2017054393A (ja) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 監視システム、及びこれに用いられる移動検知装置、監視装置
JP2017107275A (ja) * 2015-12-07 2017-06-15 カシオ計算機株式会社 自律移動装置、自律移動方法及びプログラム
JP2019101871A (ja) * 2017-12-05 2019-06-24 東芝ライフスタイル株式会社 電気掃除機
CN109965797A (zh) * 2019-03-07 2019-07-05 深圳市愚公科技有限公司 扫地机器人地图的生成方法、扫地机器人控制方法及终端
CN109965797B (zh) * 2019-03-07 2021-08-24 深圳市愚公科技有限公司 扫地机器人地图的生成方法、扫地机器人控制方法及终端
CN111722624A (zh) * 2019-03-18 2020-09-29 北京奇虎科技有限公司 清扫方法、装置、设备及计算机可读存储介质
JP7136735B2 (ja) 2019-03-28 2022-09-13 Jx金属株式会社 電解精製における検査装置、システム、及び検出方法
JP2020164903A (ja) * 2019-03-28 2020-10-08 Jx金属株式会社 電解精製における検査装置、システム、及び検出方法
EP4005747A4 (en) * 2019-07-31 2023-08-23 LG Electronics Inc. MOBILE ROBOT AND ITS CONTROL METHOD
US11892849B2 (en) 2019-07-31 2024-02-06 Lg Electronics Inc. Moving robot and control method thereof
CN114206183A (zh) * 2019-07-31 2022-03-18 Lg电子株式会社 移动机器人及其控制方法
US11630463B2 (en) 2019-08-09 2023-04-18 Panasonic Intellectual Property Management Co., Ltd. Mobile robot, control method, and storage medium
CN112336258A (zh) * 2019-08-09 2021-02-09 松下知识产权经营株式会社 移动机器人、控制方法以及存储介质
CN112336258B (zh) * 2019-08-09 2023-12-15 松下知识产权经营株式会社 移动机器人、控制方法以及存储介质
JP7407421B2 (ja) 2019-08-09 2024-01-04 パナソニックIpマネジメント株式会社 移動ロボット、制御方法、及び制御プログラム
WO2021046682A1 (zh) * 2019-09-09 2021-03-18 深圳市无限动力发展有限公司 移动机器人遥控方法、装置及遥控终端
JP2021114096A (ja) * 2020-01-17 2021-08-05 株式会社熊谷組 移動体の移動制御方法
JP7389655B2 (ja) 2020-01-17 2023-11-30 株式会社熊谷組 移動体の移動制御方法
JP7328913B2 (ja) 2020-02-04 2023-08-17 東芝ライフスタイル株式会社 自律型掃除機
JP2021122448A (ja) * 2020-02-04 2021-08-30 東芝ライフスタイル株式会社 自律型掃除機
CN114305261A (zh) * 2021-12-29 2022-04-12 广州科语机器人有限公司 扫地机路线纠偏处理方法及装置
CN117282698A (zh) * 2023-09-20 2023-12-26 宁夏隆基宁光仪表股份有限公司 一种光伏清洁机器人及其自主选择清洁路线的方法

Similar Documents

Publication Publication Date Title
JP2005222226A (ja) 自律走行ロボットクリーナー
JP3841220B2 (ja) 自律走行ロボットクリーナー
JP2005230044A (ja) 自律走行ロボットクリーナー
JP2005230032A (ja) 自律走行ロボットクリーナー
EP3076263B1 (en) Robot cleaner and control method thereof
JP2005211365A (ja) 自律走行ロボットクリーナー
KR100871114B1 (ko) 이동로봇 및 그 동작방법
KR20160090571A (ko) 로봇 청소기 및 로봇 청소기 제어 방법
JP2005211367A (ja) 自律走行ロボットクリーナー
JP2007213236A (ja) 自律走行ロボットの経路計画方法及び自律走行ロボット
JP2006026028A (ja) 掃除機
JP2006114004A (ja) ロボット掃除機のジャイロセンサーの補正方法
KR20070027840A (ko) 로봇청소기 및 이를 이용한 제어방법
JP2006113952A (ja) 充電式走行システム
KR20200105916A (ko) 로봇 청소기 및 그의 제어방법
JP2005216022A (ja) 自律走行ロボットクリーナー
JP2006268498A (ja) 自走式掃除機
KR20090018336A (ko) 로봇 청소기 및 그 제어방법
JP2010172441A (ja) 自走式掃除機
JP2005211361A (ja) 自走式掃除機
JP2006095006A (ja) 自走式掃除機
JP2005218560A (ja) 自走式掃除機
JP2003256043A (ja) 自走作業機器及び自走式掃除機並びに自走作業機器の走行データ配信方法
JP2004318721A (ja) 自律走行車
KR100863248B1 (ko) 자동 주행 청소기 및 그 제어방법

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060915