JP2005221974A - Correction device for defect and method therefor - Google Patents

Correction device for defect and method therefor Download PDF

Info

Publication number
JP2005221974A
JP2005221974A JP2004032288A JP2004032288A JP2005221974A JP 2005221974 A JP2005221974 A JP 2005221974A JP 2004032288 A JP2004032288 A JP 2004032288A JP 2004032288 A JP2004032288 A JP 2004032288A JP 2005221974 A JP2005221974 A JP 2005221974A
Authority
JP
Japan
Prior art keywords
correction
defect
information
machine
defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004032288A
Other languages
Japanese (ja)
Other versions
JP4640757B2 (en
Inventor
Ruriko Kukida
るり子 久木田
Atsushi Ueda
淳 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laserfront Technologies Inc
Original Assignee
Laserfront Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laserfront Technologies Inc filed Critical Laserfront Technologies Inc
Priority to JP2004032288A priority Critical patent/JP4640757B2/en
Publication of JP2005221974A publication Critical patent/JP2005221974A/en
Application granted granted Critical
Publication of JP4640757B2 publication Critical patent/JP4640757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a correction device and method of defects of a flat-panel display, capable of improving its productivity and production yield, by improving the unit process time and the quality of the plates, after repair. <P>SOLUTION: CIM information, such as defect information, is inputted to the input 2 from a high order CIM 1. The information of the correction device is also inputted to the input 2 from the database, other than the high order CIM. The operation unit 3 obtains the relative positions between the defects and the kinds of defects, based on the inputted CIM information. Further, it obtains specific items, including the position and the kind of the defects to correct based on it. The output 4 outputs these specific items to the correction device 5 as the data, to correct the target defects. The correction device 5 uses a laser CVD to correct the defects, based on specific items inputted from the output 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶表示装置及びPDP(Plasma Display Panel)等のフラットパネルディスプレイの欠陥の修正装置及びその修正方法に関し、特に製造工程で発生するフラットパネルディスプレイの欠陥を修正する装置及びその修正方法に関する。   The present invention relates to a defect correcting device for a flat panel display such as a liquid crystal display device and PDP (Plasma Display Panel) and a method for correcting the same, and more particularly to an apparatus for correcting a defect in a flat panel display generated in a manufacturing process and a method for correcting the same. .

近年の液晶表示装置等のフラットパネルディスプレイの大型化に伴い、その製造工程では製造工程、検査工程及び修正工程の繰り返し処理が行われている。製造工程の中に検査工程及び修正工程を含めているのは、本来なら廃棄するしかない欠陥を有する基板を再生させ、歩留まりの向上を図るためである。例えば、従来のTFTアレイ基板の製造工程は、図6に記載されている工程が一般的であり、成膜・レジスト塗布・露光・現像・エッチングによるパターン形成を各層ごとに繰返すが、この複数回繰り返される工程のうちのいくつかの工程において、エッチングによるパターン形成の完了後に検査及び修正を行い、TFTアレイ基板を完成させている。なお、各製造工程、検査工程及び修正工程は、CIM(Computer Integrated Manufacturing)等で統合して管理されているのが一般的であり、修正作業においては、修正部の場所の特定と、除去修正か接続修正かの決定がCIM等によりなされる。   With the recent increase in the size of flat panel displays such as liquid crystal display devices, in the manufacturing process, repeated processes of a manufacturing process, an inspection process, and a correction process are performed. The reason why the inspection process and the correction process are included in the manufacturing process is to regenerate a substrate having defects that can only be discarded, thereby improving the yield. For example, the manufacturing process of a conventional TFT array substrate is generally the process shown in FIG. 6, and pattern formation by film formation, resist coating, exposure, development, and etching is repeated for each layer. In some of the repeated processes, inspection and correction are performed after completion of pattern formation by etching, and the TFT array substrate is completed. In general, each manufacturing process, inspection process, and correction process are integrated and managed by CIM (Computer Integrated Manufacturing), etc. In the correction work, the location of the correction part is specified, and the correction is removed. Is determined by CIM or the like.

なお、特開平10−177844では、欠陥検査に関する情報や欠陥修正に関する情報を基板単位又はロット単位で管理することによって、フラットパネルディスプレイの歩留まりを向上させ、低コスト化を実現しようとする製造方法が提案されている。   In JP-A-10-177844, there is a manufacturing method for improving the yield of flat panel displays and reducing the cost by managing information on defect inspection and information on defect correction in units of substrates or lots. Proposed.

特開平10−177844号公報JP-A-10-177844

前述のように、TFTアレイ基板の製造工程ではCIM等により統合されたシステムが一般的に採用され、また特開平10−177844に記載の製造方法も提案されているが、生産能率及び製品の歩留まりは十分とはいえない。   As described above, a system integrated by CIM or the like is generally adopted in the manufacturing process of the TFT array substrate, and a manufacturing method described in Japanese Patent Laid-Open No. 10-177844 has been proposed. However, the production efficiency and the product yield are proposed. Is not enough.

本発明はかかる問題点に鑑みてなされたものであって、タクトタイムのより一層の向上及び基板の修正作業後の品質の更なる向上により、フラットパネルディスプレイの生産能率の向上及び製品の歩留まりの向上を実現できる欠陥修正装置及びその修正方法を提供することを目的とする。   The present invention has been made in view of such problems, and by further improving the tact time and further improving the quality after the substrate correction work, the production efficiency of the flat panel display and the product yield are improved. An object of the present invention is to provide a defect correcting apparatus and a correcting method thereof that can realize improvement.

本願第1発明に係る欠陥修正装置は、製造工程で発生するフラットパネルディスプレイの欠陥を修正する欠陥修正装置において、基板情報、パネル情報及び欠陥情報を含む情報を入力する入力部と、特定のパネルに生じている複数の欠陥の中から、修正対象の欠陥について、その位置を含む特定事項を前記情報に基づいて求める演算部と、この特定事項を修正機に対して前記修正対象の欠陥を修正するためのデータとして出力する出力部とを有することを特徴とする。   A defect correction apparatus according to the first invention of the present application is a defect correction apparatus for correcting defects of a flat panel display generated in a manufacturing process, an input unit for inputting information including board information, panel information and defect information, and a specific panel A calculation unit for obtaining a specific matter including the position of a defect to be corrected based on the information from among a plurality of defects occurring in And an output unit that outputs the data as data to be performed.

この欠陥修正装置において、前記特定事項は、前記欠陥の位置の他に、欠陥の種類、大きさ又は修正方法を含むことが好ましい。また、前記情報は、各欠陥同士の相対的な位置関係、欠陥の種類、欠陥の大きさ及びパネルパターンレイアウトのうちの少なくとも1つを含むことが好ましい。また、前記情報は、更に、修正機の装置状態に関する情報及び/又は修正機に固有の修正条件に関する情報を含むことが好ましい。   In this defect correction apparatus, it is preferable that the specific items include a defect type, a size, or a correction method in addition to the position of the defect. The information preferably includes at least one of a relative positional relationship between defects, a defect type, a defect size, and a panel pattern layout. In addition, it is preferable that the information further includes information related to a device status of the correction machine and / or information related to a correction condition unique to the correction machine.

また、前記情報は、更に、前記修正機による欠陥修正中の修正部の材質及び温度を含む修正部特性、基板の材質及び温度、並びに欠陥の修正条件からなる群から選択された少なくとも1つの修正中データを含むことが好ましい。   In addition, the information further includes at least one correction selected from the group consisting of correction part characteristics including a correction part material and temperature during defect correction by the correction machine, substrate material and temperature, and defect correction conditions. It is preferable to include medium data.

更に、前記修正機は、レーザ照射により前記欠陥を修正するものであることも好ましい。   Furthermore, it is preferable that the correction machine corrects the defect by laser irradiation.

本願第2発明に係る欠陥修正方法は、製造工程で発生するフラットパネルディスプレイの欠陥を修正する欠陥修正方法において、基板情報、パネル情報及び欠陥情報を含む情報を入力し、特定のパネルに生じている複数の欠陥の中から、修正対象の欠陥について、その位置を含む特定事項を前記情報に基づいて求め、この特定事項を修正機に対して前記修正対象の欠陥を修正するためのデータとして出力することを特徴とする。   The defect correction method according to the second invention of the present application is a defect correction method for correcting a defect of a flat panel display that occurs in a manufacturing process. The defect correction method is performed by inputting information including board information, panel information, and defect information, and occurring in a specific panel. A specific matter including the position of a defect to be corrected is obtained from the plurality of defects based on the information, and the specific matter is output to a correction machine as data for correcting the defect to be corrected. It is characterized by doing.

この欠陥修正方法において、前記特定事項は、前記欠陥の位置の他に、欠陥の種類、大きさ又は修正方法を含むことが好ましい。また、前記情報は、各欠陥同士の相対的な位置関係、欠陥の種類、欠陥の大きさ及びパネルパターンレイアウトのうちの少なくとも1つを含むことが好ましい。また、前記情報は、更に、修正機の装置状態に関する情報及び/又は修正機に固有の修正条件に関する情報を含むことが好ましい。   In this defect correction method, it is preferable that the specific items include a defect type, a size, or a correction method in addition to the position of the defect. The information preferably includes at least one of a relative positional relationship between defects, a defect type, a defect size, and a panel pattern layout. In addition, it is preferable that the information further includes information related to a device state of the correction machine and / or information related to a correction condition unique to the correction machine.

また、前記情報は、更に、前記修正機による欠陥修正中の修正部の材質及び温度を含む修正部特性、基板の材質及び温度、並びに欠陥の修正条件からなる群から選択された少なくとも1つの修正中データを含むことが好ましい。   In addition, the information further includes at least one correction selected from the group consisting of correction part characteristics including a correction part material and temperature during defect correction by the correction machine, substrate material and temperature, and defect correction conditions. It is preferable to include medium data.

更に、前記修正機は、レーザ照射により前記欠陥を修正するものであることも好ましい。   Furthermore, it is preferable that the correction machine corrects the defect by laser irradiation.

本願発明者等は、前記課題の原因は、修正装置を用いた欠陥部位の実修正作業において作業者の判断を要する工程が多いこと、及び修正作業中のガラス基板、修正部位及び修正機のレーザ強度のデータが修正作業条件の変更にフィードバックされていないことにあると考え、上述のような本願発明に到った。   The inventors of the present application have found that the cause of the problem is that there are many processes that require the operator's judgment in the actual correction work of the defective part using the correction device, and the glass substrate, the correction part, and the laser of the correction machine during the correction work. The present inventors have arrived at the present invention as described above, considering that the strength data is not fed back to the modification work condition change.

上記のように構成された本発明の欠陥修正装置及び欠陥修正方法においては、上位CIM等から得られる基板情報、パネル情報及び欠陥情報を含む情報を処理して、修正対象の欠陥について、その位置を含む特定事項を求めて、この特定事項を修正機に対して前記修正対象の欠陥を修正するためのデータとして出力し、修正機を作動させているので、従来は作業者の判断によりなされていた修正機のコンディションの調整、修正位置の最終決定及び修正機の修正条件の決定等が自動的に行われることとなる。これにより、タクトタイムのより一層の向上及び基板の修正作業後の品質の更なる向上が可能となり、フラットパネルディスプレイの製造工程における生産能率の向上及び製品の歩留まりの向上を実現できる。   In the defect correcting apparatus and the defect correcting method of the present invention configured as described above, the information including the board information, the panel information, and the defect information obtained from the upper CIM is processed, and the position of the defect to be corrected is determined. The specific matters including the above are output to the corrector as data for correcting the defect to be corrected, and the corrector is operated. Adjustment of the condition of the correction machine, final determination of the correction position, determination of correction conditions of the correction machine, and the like are automatically performed. As a result, the tact time can be further improved and the quality after the substrate correction work can be further improved, so that the production efficiency in the flat panel display manufacturing process and the product yield can be improved.

なお、前記特定事項に、前記欠陥の位置の他に、欠陥の種類、大きさ又は修正方法を含めることで、修正対象の欠陥特定における精度を更に向上させることができる。また、前記情報に、各欠陥同士の相対的な位置関係、欠陥の種類、欠陥の大きさ及びパネルパターンレイアウトのうちの少なくとも1つを含めることで、修正対象の欠陥特定における精度を更に向上させることができる。また、前記情報に修正機の装置状態に関する情報及び/又は修正機に固有の修正条件に関する情報を含めることで、修正機が有する位置精度等の能力に応じた適切な修正作業を実施することができる。更に、前記情報に前記修正機による欠陥修正中の修正部の材質及び温度を含む修正部特性、基板の材質及び温度、並びに欠陥の修正条件からなる群から選択された少なくとも1つの修正中データを含めることで、修正工程は自動的に最適化され、修正不良を減少させることができる。   In addition to the position of the defect, the specific matter includes the type, size, or correction method of the defect, so that the accuracy in specifying the defect to be corrected can be further improved. Further, by including at least one of the relative positional relationship between the defects, the type of defect, the size of the defect, and the panel pattern layout in the information, the accuracy in identifying the defect to be corrected is further improved. be able to. Further, by including information on the device status of the corrector and / or information on correction conditions unique to the corrector in the information, it is possible to perform an appropriate correction operation according to the capability of the corrector such as position accuracy. it can. Further, the information includes at least one data under correction selected from the group consisting of a correction part characteristic including a correction part material and temperature during defect correction by the correction machine, a substrate material and temperature, and a defect correction condition. By including, the correction process is automatically optimized and correction defects can be reduced.

次に、本発明の実施の形態について図面を参照して詳細に説明する。図1は、本発明の実施の形態に係る欠陥修正装置のブロック図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a defect correction apparatus according to an embodiment of the present invention.

先ず第1の実施の形態として、上位CIMから入力されるCIM情報及び修正機のデータに基づいて欠陥を修正する欠陥修正装置について説明する。本実施形態の欠陥修正装置においては、上位CIM1からロット情報、ガラス情報、パネル情報及び欠陥情報等のCIM情報が入力部(データ授受部)2に入力される。また、修正機の装置状態に関する情報及び修正機に固有の修正条件に関する情報が上位CIM又はCIM以外のデータベースから入力部(データ授受部)2にデータが入力される。演算部(データ処理部)3は、入力された前記CIM情報及び修正機情報等に基づき、各欠陥同士の相対的な位置関係及び欠陥の種類を求め、更にこの各欠陥同士の相対的な位置関係及び欠陥の種類に基づき、修正対象の欠陥について、その位置、欠陥の種類及び修正方法を含む特定事項を演算する。出力部4は、この特定事項を修正機5に対して前記修正対象の欠陥を修正するためのデータとして出力する。修正機5は、出力部4から入力された前記特定事項に基づき、レーザーCVD等で欠陥を修正する。   First, as a first embodiment, a defect correction apparatus that corrects a defect based on CIM information input from a host CIM and data of a correction machine will be described. In the defect correction apparatus of the present embodiment, CIM information such as lot information, glass information, panel information, and defect information is input from the upper CIM 1 to the input unit (data transfer unit) 2. Further, data related to the device status of the correction machine and information related to the correction conditions unique to the correction machine are input to the input unit (data transfer unit) 2 from the host CIM or a database other than the CIM. The calculation unit (data processing unit) 3 obtains the relative positional relationship and the type of defect between the defects based on the input CIM information and the corrector information, and further, the relative position between the defects. Based on the relationship and the type of defect, specific matters including the position, the type of defect, and the correction method are calculated for the defect to be corrected. The output unit 4 outputs this specific matter to the corrector 5 as data for correcting the defect to be corrected. The corrector 5 corrects the defect by laser CVD or the like based on the specific matter input from the output unit 4.

上位CIMから入力されるデータであるガラス情報、パネル情報及び欠陥情報について図2及び図3を参照して説明する。図2は、ガラス基板上に形成された液晶パネルの模式図である。図3(a)は欠陥の存在する液晶の一部分を示した図であり、図3(b)及び(c)は欠陥部分の拡大図である。図2に示すように、ガラス基板21上には複数の液晶パネル22が形成されており、それぞれにTFTのパターン(図示せず)と電極パッド25等が形成されている。ガラス基板21の位置についての情報はガラス基板基準23に基づいて定められるものであり、液晶パネル22の位置についての情報はパネル基準24に基づいて定められる。形成された液晶パネル22とそれに対応した欠陥検査結果はこのガラス基板21と関連づけられている。   Glass information, panel information, and defect information, which are data input from the host CIM, will be described with reference to FIGS. FIG. 2 is a schematic view of a liquid crystal panel formed on a glass substrate. FIG. 3A is a view showing a part of the liquid crystal in which a defect exists, and FIGS. 3B and 3C are enlarged views of the defective portion. As shown in FIG. 2, a plurality of liquid crystal panels 22 are formed on a glass substrate 21, and a TFT pattern (not shown), an electrode pad 25, and the like are formed on each of them. Information about the position of the glass substrate 21 is determined based on the glass substrate reference 23, and information about the position of the liquid crystal panel 22 is determined based on the panel reference 24. The formed liquid crystal panel 22 and the corresponding defect inspection result are associated with the glass substrate 21.

次に、図2及び3を参照して欠陥“C”を修正する場合の本実施形態の動作について説明する。演算部3は、上位CIM1等より入力部2を介して受信したデータを利用して修正対象のガラス基板の特定のパネル及び特定のセル指定又は絶対座標指定により欠陥の存在位置及び欠陥の種類を先ず認識する。更に、図3の欠陥“A”、“C”及び“B”に関し上位CIM1等より得られる情報、例えば修正対象の欠陥はソースライン上の欠陥であるという情報及び“B”はセル内の欠陥であるという情報に基づき、演算部3は“B”は処理不要であると判断する。更に、演算部3は、基準点に基づく各欠陥の座標情報から得られる“B”の座標点と“A”及び“C”の座標点の相対的な関係から“A”及び“C”を区別し、欠陥“C”を特定する。このようにして欠陥“C”を特定することに加えて、修正機の装置状態に関する情報及び修正機に固有の修正条件に関する情報、例えば、修正機の初期設定における座標系及び修正機の制御精度等も考慮して、演算部3は修正条件を確定する。出力部4は、この修正条件を修正機5に対して修正対象の欠陥を修正するためのデータとして出力する。修正機5は、出力部4から入力された修正条件に基づき、レーザーCVD等で欠陥を修正する。   Next, the operation of this embodiment when the defect “C” is corrected will be described with reference to FIGS. The calculation unit 3 uses the data received from the upper CIM 1 or the like via the input unit 2 to determine the position of the defect and the type of the defect by specifying a specific panel of the glass substrate to be corrected and specific cell designation or absolute coordinate designation. First recognize. Further, information obtained from the upper CIM 1 and the like regarding the defects “A”, “C”, and “B” in FIG. 3, for example, information that the defect to be corrected is a defect on the source line, and “B” is a defect in the cell. Based on the information indicating that “B” is not necessary, the calculation unit 3 determines that “B” does not require processing. Further, the calculation unit 3 calculates “A” and “C” from the relative relationship between the coordinate point “B” obtained from the coordinate information of each defect based on the reference point and the coordinate points “A” and “C”. Distinguish and identify the defect “C”. In addition to identifying the defect “C” in this way, information on the device status of the correction machine and information on correction conditions unique to the correction machine, for example, the coordinate system and the control accuracy of the correction machine in the initial settings of the correction machine In consideration of the above, the calculation unit 3 determines the correction condition. The output unit 4 outputs the correction condition to the correction machine 5 as data for correcting the defect to be corrected. The corrector 5 corrects the defect by laser CVD or the like based on the correction condition input from the output unit 4.

実際の修正においては、修正機5は、出力部4から入力された修正条件のデータに基づき、その座標系の中心を上記のようにして特定した“C”の座標点へ移動させて、実際の修正作業を行う。   In the actual correction, the corrector 5 moves the center of the coordinate system to the coordinate point “C” specified as described above based on the correction condition data input from the output unit 4 to Perform the correction work.

なお、本実施形態においては、データの特性に応じて修正条件を自動で調整しているので、データの特性に応じた修正条件の調整についての具体的な内容の例を以下で説明する。先ず上位CIM1等から得られるガラス基板情報及びパネル情報についてであるが、図2に示すように通常ガラス基板及びパネルのそれぞれに基準点又はアライメントマークが存在する。これらに基づくデータには、露光工程及び検査工程での誤差が累積されている。したがって、これらを基準とした欠陥位置情報により、自動に修正作業を行わせるためには、図3のB点の誤差を示す円を他の欠陥と重ならない領域まで小さくするように、修正条件としては修正機側の座標精度を十分に上げることが必要となる。本実施形態では、ガラス基板情報及びパネル情報を用いて修正条件を決める際には自動的に修正機側の座標精度を十分に上げることとなる。次に、上位CIM1等から得られる欠陥情報についてであるが、外観検査機によるデータは各欠陥の位置情報をある特定基準に基づく座標系で表したもので、配線の導通検査によるによるデータは欠陥の存在するセルがラインで特定されたものである。このようにそれぞれに特徴を持ったデータである。従来はこれらのデータ種別を判別して、修正機側の座標系へ置き換えるのみで修正機を動作させていた。しかし、これらのデータの違いに基づく情報には、欠陥位置の指定方法の違いだけでなく欠陥検出方法及び検査領域が違っているので、欠陥の特定にこれらの情報を用いれば修正の必要のないガラス基板、パネル及び欠陥等を判別することが可能となり、修正すべき欠陥を特定する際の精度が向上することとなる。   In the present embodiment, the correction conditions are automatically adjusted according to the data characteristics, so an example of specific contents regarding the adjustment of the correction conditions according to the data characteristics will be described below. First, regarding the glass substrate information and the panel information obtained from the upper CIM 1 and the like, as shown in FIG. 2, a normal point or an alignment mark exists on each of the normal glass substrate and the panel. In the data based on these, errors in the exposure process and the inspection process are accumulated. Therefore, in order to automatically perform the correction work based on the defect position information based on these, the correction condition is such that the circle indicating the error at the point B in FIG. 3 is reduced to an area that does not overlap with other defects. It is necessary to sufficiently increase the coordinate accuracy on the corrector side. In this embodiment, when the correction condition is determined using the glass substrate information and the panel information, the coordinate accuracy on the correction machine side is automatically sufficiently increased. Next, regarding the defect information obtained from the upper CIM 1 etc., the data by the visual inspection machine represents the position information of each defect in a coordinate system based on a certain standard, and the data by the wiring continuity inspection is a defect. The cell in which the symbol exists is specified by the line. In this way, the data has characteristics. Conventionally, the corrector is operated only by discriminating these data types and replacing the coordinate system on the corrector side. However, the information based on the difference in these data is not only in the defect position designation method, but also in the defect detection method and the inspection area. It becomes possible to discriminate the glass substrate, the panel, the defect, and the like, and the accuracy when specifying the defect to be corrected is improved.

また、本実施形態において更に精度を向上させるためには、上位CIM1から得られた情報を座標データのコーディネート機能を適宜逐次自動実施するなどして処理し、欠陥座標位置の誤差の範囲円を等価的に小さくする方法がある。これにより修正機側の座標精度は従来の修正方法で実施するより同等かそれよりも低い精度でも自動的に処理することを可能とすることができる。   In order to further improve the accuracy in the present embodiment, the information obtained from the upper CIM 1 is processed by automatically performing coordinate function of coordinate data sequentially and appropriately, and the error range circle of the defect coordinate position is equivalent. There is a way to make it smaller. As a result, the coordinate accuracy on the corrector side can be automatically processed with an accuracy equal to or lower than that of the conventional correction method.

次に、従来の方法と比べて本実施形態が優れている点について説明する。従来の方法でも、ロット情報、ガラス情報、パネル情報及び欠陥情報といった上位CIM等からのデータを基にして図3(a)及び(b)に示すように欠陥の位置及び種類を特定することは行われていた。   Next, the point that the present embodiment is superior to the conventional method will be described. Even in the conventional method, it is possible to specify the position and type of a defect as shown in FIGS. 3A and 3B based on data from a higher-order CIM such as lot information, glass information, panel information, and defect information. It was done.

しかし、ロット情報、ガラス情報、パネル情報及び欠陥情報といった上位CIM等からの情報は生産工程側に必要な検査情報を修正工程に流用して利用しているにすぎず、修正を目的として得たデータではなく、これらの情報をそのまま利用したのでは欠陥を特定する上での精度が十分ではなかった。つまり、図3(b)の“A”,“B”,“C”の各欠陥について、ある程度の精度で欠陥の位置及び種類の特定をできるものの、実際には上位CIM等から受け取ったままのデータでは、実際に修正を行う段階において修正機の対象とする位置と欠陥の位置は十分な精度では一致していなかった。例えばB点について言えば、図3(c)に示す円内程度の誤差が存在し、“A”,“B”,“C”の特定は上位CIM等から受け取ったままのデータでは行えず、作業者による確認及び修正部位の位置合わせ等において、作業者が判断する必要がある場面が多く介在していた。   However, information from the upper CIM, such as lot information, glass information, panel information, and defect information, was only used by diverting inspection information necessary for the production process side to the correction process, and was obtained for the purpose of correction. Using these pieces of information as they were instead of data was not accurate enough to identify defects. In other words, although it is possible to specify the position and type of the defect with a certain degree of accuracy for each of the defects “A”, “B”, and “C” in FIG. 3B, they are actually received from the upper CIM or the like. In the data, at the stage of actual correction, the position targeted by the correction machine and the position of the defect did not match with sufficient accuracy. For example, with respect to point B, there is an error in the circle shown in FIG. 3C, and “A”, “B”, and “C” cannot be specified with the data received from the upper CIM, etc. Many scenes that require the operator to make a judgment are included in the confirmation by the worker and the position alignment of the correction part.

C点の特定についても同様で、従来は、上位CIM1等より受信したデータを利用して修正対象のガラス基板の特定のパネル及び特定のセル指定又は絶対座標指定により欠陥の存在位置及び欠陥の種類を先ず認識するのみであったので、本実施形態の場合ほど欠陥の座標が精度よく特定されていなかった。そのため、修正機の座標系を認識した欠陥位置へ移動させても、図3の円程度の寸法座標誤差はさけられず、修正機の座標系を指定位置に移動させても欠陥位置を図3の“A”、“B”又は“C”として特定できないことがあった。修正形態の違いの情報があればライン上の欠陥“A”,“C”とセル内の欠陥“B”の違いは判別できるが、“A”と“C”の違いは判断できず、従来の修正形態ではここで作業者の判断が介在し、欠陥種類等による“B”の非選択確認と実際の修正作業に必要な欠陥“C”の選択および欠陥“C”への修正機への修正条件指定を実施し、最後に欠陥“C”に修正機により具体的な修正を実施することとなっていた。   The same applies to the specification of the C point. Conventionally, using the data received from the upper CIM 1 or the like, the position of the defect and the type of the defect by specifying the specific panel of the glass substrate to be corrected and the specific cell designation or absolute coordinate designation First, the coordinates of the defect were not specified with high accuracy as in the present embodiment. Therefore, even if the coordinate system of the correction machine is moved to the recognized defect position, the dimensional coordinate error of about the circle in FIG. 3 is not avoided, and the defect position is not changed even if the correction system coordinate system is moved to the designated position. "A", "B" or "C" could not be specified. If there is information on the difference in correction form, the difference between the defects “A” and “C” on the line and the defect “B” in the cell can be determined, but the difference between “A” and “C” cannot be determined. In this correction form, the operator's judgment is involved here, and the non-selection confirmation of “B” by the defect type, selection of the defect “C” necessary for the actual correction work, and the correction to the defect “C” to the correction machine The correction condition is designated, and finally, the defect “C” is subjected to a specific correction by a correction machine.

例えば、前記特許文献1では、段落0017で配線幅は5〜10μm程度としておきながら、0022段落では修正に必要な欠陥の位置検出の精度は±100μm程度としている。これでは欠陥修正における位置情報としては不足であり、最終的には修正作業は作業者の介在なしには実現できない。また、作業者は欠陥を探し出す作業もしなければならず、作業負担も大きくなる。   For example, in Patent Document 1, while the wiring width is set to about 5 to 10 μm in paragraph 0017, the accuracy of detecting the position of a defect necessary for correction is set to about ± 100 μm in paragraph 0022. This is insufficient as position information for defect correction, and finally correction work cannot be realized without the intervention of the operator. In addition, the worker has to work for finding defects, which increases the work load.

しかし、本発明のように、この上位CIM等より得られる情報をあらかじめ処理しておくことで、従来は作業者が介在していた修正工程を自動化し、作業者の負担を大幅に少なくすることができる。前述のように図2のソースライン上の欠陥“A”,“C”及びセル内欠陥の“B”について、それぞれの欠陥の種類及び相対的な位置関係を演算部3により求めておけば、この結果を用いて各欠陥位置の特定を行ったり、欠陥“A”、“B”、“C”のそれぞれを区別して判別することができる。   However, as in the present invention, the information obtained from the higher-level CIM or the like is processed in advance, thereby automating the correction process that has been conventionally involved by the worker and greatly reducing the burden on the worker. Can do. As described above, with respect to the defects “A”, “C” and “B” of the defects in the cell on the source line in FIG. Using this result, each defect position can be specified, or each of the defects “A”, “B”, and “C” can be distinguished and discriminated.

なお、前記特許文献1では、作業者が介在していた修正工程を自動化するということには触れられていない。   In addition, in the said patent document 1, it is not touched about automating the correction process which the operator intervened.

このように上位CIM等により得られる情報をあらかじめ処理しておけば、修正機での修正機能の選択、欠陥種類に応じた修正条件の切り替え、欠陥位置及びサイズによる修正条件の切り替え、装置コンディション毎の修正条件の補正等に利用することが可能になる。この結果、修正を行うべき位置及び修正の種類の特定をより正確に行えるだけでなく、装置のコンディションに合わせた修正条件を自動で調整でき、修正位置の特定及び修正方法も作業者を介在させずに自動で最適に実施できることとなる。   If the information obtained by the upper CIM or the like is processed in advance as described above, the correction function is selected by the correction machine, the correction condition is switched according to the defect type, the correction condition is switched according to the defect position and size, and each device condition is changed. It can be used to correct the correction conditions. As a result, not only can the position to be corrected and the type of correction be specified more accurately, but also the correction conditions can be automatically adjusted according to the conditions of the device. It can be automatically and optimally implemented.

従って、修正作業時に常に作業者が判断していた以下のような工程、すなわち修正の必要性の確認、修正位置の指定、並びに修正形態種別及び装置コンディションの変化に応じた修正条件の変更といった工程において、作業者の判断が不要となり、すべて自動化でき、タクトタイムの向上と修正品質の向上という効果が得られる。   Therefore, the following processes that the operator always determined at the time of correction work, that is, confirmation of necessity of correction, specification of correction position, and change of correction conditions according to the change of correction mode type and device condition In this case, the operator's judgment is not necessary, everything can be automated, and the effect of improving the tact time and improving the correction quality can be obtained.

なお、本実施形態のように修正対象の欠陥を精度良く特定するための他の手法としては、画像処理によるパターン認識により得られる欠陥の存在するセル及び“A”、“B”、“C”の位置データを用いる方法もある。更に、各修正作業毎にコーディネート処理を実施し、修正装置とCIM等のデータ誤差を常に補正し、座標誤差を小さくし、作業者を介在させずに修正すべき欠陥の位置をできるようにする方法等も考えられる。   As another method for accurately identifying a defect to be corrected as in the present embodiment, a cell having a defect obtained by pattern recognition by image processing and “A”, “B”, “C” are provided. There is also a method using the position data. In addition, coordinate processing is performed for each correction operation, data errors such as the correction device and CIM are always corrected, the coordinate error is reduced, and the position of the defect to be corrected can be determined without involving the operator. A method is also conceivable.

更に、上記実施の形態において、欠陥修正中の修正部の材質及び温度、ガラス基板の材質及び温度、並びに修正条件を修正機の修正機能の調整に利用できるように処理し、この処理されたデータ及び修正機側のコンディション調整機能に基づいて修正機を制御することで、修正機に起因する不良をさらに低下させることも可能である。   Furthermore, in the above embodiment, the material and temperature of the correction part during the defect correction, the material and temperature of the glass substrate, and the correction conditions are processed so that they can be used for adjustment of the correction function of the correction machine, and the processed data Moreover, it is possible to further reduce defects caused by the correction machine by controlling the correction machine based on the condition adjustment function on the correction machine side.

以下、本発明の第2の実施の形態について、図4を参照して説明する。この第2の実施形態は、修正処理中の修正部の材質及び温度、ガラス基板の材質及び温度、並びに修正条件に基づき最適な修正条件に変更することで上述の修正機に起因する不良を低減するものである。   Hereinafter, a second embodiment of the present invention will be described with reference to FIG. This second embodiment reduces defects caused by the above-described correction machine by changing to the optimal correction condition based on the correction part material and temperature, the glass substrate material and temperature, and the correction condition during the correction process. To do.

前述した第1の実施の形態では、上位CIM1から得られる情報及び修正機についてのデータにより欠陥の位置及び種類を特定し、修正位置の決定及び修正作業の作業者によらない処理を可能としている。これに加えて、第2の実施の形態では、欠陥修正中の修正部の材質及び温度、ガラス基板の材質及び温度、並びに修正条件もデータ授受部2にフィードバックして入力される。演算部3は、このデータをに基づき、修正機の修正条件を求める。出力部4は、この修正条件を修正条件の変更として修正機5に出力する。修正機5は、出力部4から入力された変更された修正条件に基づき、欠陥を修正する。   In the first embodiment described above, the position and type of the defect are specified based on the information obtained from the higher-level CIM 1 and the data about the correction machine, thereby enabling the determination of the correction position and the processing independent of the operator of the correction work. . In addition to this, in the second embodiment, the material and temperature of the correction part during the defect correction, the material and temperature of the glass substrate, and the correction conditions are also fed back and input to the data transfer unit 2. The calculation unit 3 obtains correction conditions for the correction machine based on this data. The output unit 4 outputs the correction condition to the correction machine 5 as a change in the correction condition. The corrector 5 corrects the defect based on the changed correction condition input from the output unit 4.

修正機として、レーザCVD装置を用いて図3の“A”欠陥を修正する場合について説明する。第1の実施の形態にあげたガラス基板情報及び欠陥情報等の上位CIM1等のデータにより、ガラス基板中の特定のセル内に存在する“A”欠陥を認識し、ガラス基板のエリアによる条件が選択される。すなわち、図5の領域Lすなわちソース線及びゲート線の欠陥であるか、図5の領域Mすなわち液晶セル領域内の欠陥であるのかが選択される。更に、欠陥“B”及び“C”との相対的な位置関係により、“A”欠陥が特定される。次に欠陥の存在する修正部位の条件も選択され、修正機の最初の修正条件が先ず設定される。そして、その修正条件に基づいて実際にレーザCVD装置により修正作業がなされる。修正作業中には、修正処理中のガラス基板の材質、温度、修正部位におけるレーザ照射部の材質、温度、修正機のレーザの状態、CVD原料の状態、ガラス基板上の修正位置及び修正時の時間に対する修正機の特性のばらつき等のデータが取り込まれ、それらのデータは入力部2にフィードバックされ、入力される。そのデータに基づき、演算部3は修正機の修正条件を求める。出力部4は、この修正条件を修正条件の変更として修正機5(レーザCVD装置)に出力する。修正機5(レーザCVD装置)は、出力部4から入力された変更された修正条件に基づき、レーザ強度及びレーザ照射位置等の変更を行い、欠陥を修正する。   A case where the “A” defect in FIG. 3 is corrected using a laser CVD apparatus as a correction machine will be described. The “A” defect existing in a specific cell in the glass substrate is recognized based on the data such as the upper substrate CIM1 such as the glass substrate information and the defect information given in the first embodiment, and the condition depending on the area of the glass substrate is determined. Selected. That is, it is selected whether it is a defect in the region L in FIG. 5, that is, the source line and the gate line, or a defect in the region M in FIG. Furthermore, the “A” defect is specified by the relative positional relationship between the defects “B” and “C”. Next, the condition of the correction part where the defect exists is also selected, and the first correction condition of the correction machine is set first. Based on the correction condition, the correction work is actually performed by the laser CVD apparatus. During the correction work, the material of the glass substrate during the correction process, the temperature, the material of the laser irradiation part at the correction site, the temperature, the state of the laser of the correction machine, the state of the CVD raw material, the correction position on the glass substrate and the correction time Data such as variations in the characteristics of the correction machine with respect to time are taken in, and these data are fed back to the input unit 2 and input. Based on the data, the calculation unit 3 obtains correction conditions for the correction machine. The output unit 4 outputs the correction condition as a change in the correction condition to the correction machine 5 (laser CVD apparatus). The corrector 5 (laser CVD apparatus) corrects the defect by changing the laser intensity and the laser irradiation position based on the changed correction condition input from the output unit 4.

修正処理中に得られるガラス基板、修正部位、レーザ等についてのデータ及び修正機のコンディション条件も加味されて、修正処理中にリアルタイムで修正機の修正条件の調整及び変更がされることにより、修正箇所を常に最適な修正条件で処理することが可能となり、修正工程での修正不良を減少させることが可能となる。   Corrections are made by adjusting and changing the correction conditions of the correction machine in real time during the correction process, taking into account the data on the glass substrate, correction site, laser, etc. obtained during the correction process and the condition conditions of the correction machine. It is possible to always process the location under the optimal correction condition, and it is possible to reduce correction defects in the correction process.

このように、第2の実施形態では、修正機は常に最適に動作するように作業者を介さずに制御されている。このため、修正部の材質情報及び修正部の基板側の配線材料等の情報による修正条件の調整、並びに装置のコンディションに起因する修正条件の調整を修正処理中に逐次補正調整することで、修正処理に起因する修正不良を排除することが可能となる。これにより、装置コンディションの違い、基板種類の違い及び修正部の配線種類の違い等の要因に基づく修正条件の調整を修正処理中に作業者によらずに最適にすることができるようになり、修正工程での作業者の介在を排除することが可能となる。この結果、修正工程における最適化を自動処理化でき修正効率の向上と液晶表示装置の品質の向上とを併せて実現できる。   As described above, in the second embodiment, the correction machine is controlled without an operator so as to always operate optimally. For this reason, the adjustment of the correction condition based on the information on the material of the correction unit and the information on the wiring material on the board side of the correction unit, and the adjustment of the correction condition due to the condition of the apparatus are sequentially corrected and adjusted during the correction process. It becomes possible to eliminate correction defects caused by processing. This makes it possible to optimize the adjustment of correction conditions based on factors such as differences in device conditions, board types, and wiring types of correction units, regardless of the operator during correction processing. It becomes possible to eliminate the operator's intervention in the correction process. As a result, optimization in the correction process can be automatically performed, and improvement in correction efficiency and improvement in the quality of the liquid crystal display device can be realized.

なお、本実施形態における修正機の修正条件の調整は、修正中に逐次実施するのではなく、定期的な点検間隔で実施したり、実製品の基板上の修正箇所での調整によらず、特定の条件出しの箇所をもうけてキャリブレーションデータをとる形態で別途実施する方式に変更してもよく、また修正方法はレーザCVD方式以外の方式に変更してもよい。   The adjustment of the correction condition of the correction machine in this embodiment is not performed sequentially during correction, but is performed at regular inspection intervals, or regardless of adjustment at the correction point on the substrate of the actual product, It may be changed to a method that is performed separately in a form in which calibration data is obtained by providing a specific condition setting position, and the correction method may be changed to a method other than the laser CVD method.

また、修正状態の良否を判断する手法には、修正部の光学的観察手法及び修正部の導通検査手法等があり、欠陥部位の修正を適切に行うためには、修正工程と修正結果の良否判定工程を併せて実施することが必要である。   In addition, there are two methods for judging the quality of the correction state, such as an optical observation method for the correction part and a continuity inspection method for the correction part. In order to correct the defective part appropriately, the correction process and the result of the correction result are good. It is necessary to carry out the determination step together.

本発明は、製造工程で発生するフラットパネルディスプレイの欠陥の修正工程に使用することで、フラットパネルディスプレイの生産能率の向上及び製品の歩留まりの向上を実現できる。   The present invention can be used in a process for correcting defects in a flat panel display generated in the manufacturing process, thereby improving the production efficiency of the flat panel display and improving the product yield.

本発明の第1の実施形態に係る欠陥修正装置のブロック図である。1 is a block diagram of a defect correction apparatus according to a first embodiment of the present invention. ガラス基板上に形成された液晶パネルの模式図である。It is a schematic diagram of the liquid crystal panel formed on the glass substrate. (a)は欠陥の存在する液晶の一部分を示した図であり、(b)及び(c)は欠陥部分の拡大図である。(A) is the figure which showed a part of liquid crystal in which a defect exists, (b) and (c) are the enlarged views of a defective part. 本発明の第2の実施形態に係る欠陥修正装置のブロック図である。It is a block diagram of the defect correction apparatus which concerns on the 2nd Embodiment of this invention. 欠陥の存在する領域を選択するための概念図である。It is a conceptual diagram for selecting the area | region where a defect exists. 従来のTFTアレイ基板の一般的な製造工程を示す図である。It is a figure which shows the general manufacturing process of the conventional TFT array substrate.

符号の説明Explanation of symbols

21:ガラス基板
22:液晶パネル
23:ガラス基板基準
24:パネル基準
31:パネルの電極
32:パネルのパターン配線
33:欠陥の存在するセル
34:ソース
35:ゲート
36:欠陥Bの誤差範囲
21: Glass substrate 22: Liquid crystal panel 23: Glass substrate reference 24: Panel reference 31: Panel electrode 32: Panel pattern wiring 33: Cell having defect 34: Source 35: Gate 36: Error range of defect B

Claims (12)

製造工程で発生するフラットパネルディスプレイの欠陥を修正する欠陥修正装置において、基板情報、パネル情報及び欠陥情報を含む情報を入力する入力部と、特定のパネルに生じている複数の欠陥の中から、修正対象の欠陥について、その位置を含む特定事項を前記情報に基づいて求める演算部と、この特定事項を修正機に対して前記修正対象の欠陥を修正するためのデータとして出力する出力部とを有することを特徴とする欠陥修正装置。 In a defect correction apparatus for correcting defects in a flat panel display that occurs in the manufacturing process, from an input unit for inputting information including board information, panel information and defect information, and a plurality of defects occurring in a specific panel, A calculation unit for obtaining a specific matter including the position of the defect to be corrected based on the information, and an output unit for outputting the specific item as data for correcting the defect to be corrected to the correction machine. A defect correction device comprising: 前記特定事項は、前記欠陥の位置の他に、欠陥の種類、大きさ又は修正方法を含むことを特徴とする請求項1に記載の欠陥修正装置。 The defect correction apparatus according to claim 1, wherein the specific matter includes a defect type, a size, or a correction method in addition to the position of the defect. 前記情報は、各欠陥同士の相対的な位置関係、欠陥の種類、欠陥の大きさ及びパネルパターンレイアウトのうちの少なくとも1つを含むことを特徴とする請求項1又は2に記載の欠陥修正装置。 The defect correction apparatus according to claim 1, wherein the information includes at least one of a relative positional relationship between defects, a defect type, a defect size, and a panel pattern layout. . 前記情報は、更に、修正機の装置状態に関する情報及び/又は修正機に固有の修正条件に関する情報を含むことを特徴とする請求項1乃至3のいずれか1項に記載の欠陥修正装置。 The defect correction apparatus according to any one of claims 1 to 3, wherein the information further includes information on an apparatus state of the correction machine and / or information on a correction condition unique to the correction machine. 前記情報は、更に、前記修正機による欠陥修正中の修正部の材質及び温度を含む修正部特性、基板の材質及び温度、並びに欠陥の修正条件からなる群から選択された少なくとも1つの修正中データを含むことを特徴とする請求項1乃至4のいずれか1項に記載の欠陥修正装置。 The information further includes at least one data under correction selected from the group consisting of a correction part property including a correction part material and temperature during defect correction by the correction machine, a substrate material and temperature, and a defect correction condition. The defect correction apparatus according to claim 1, wherein the defect correction apparatus includes: 前記修正機は、レーザ照射により前記欠陥を修正するものであることを特徴とする請求項1乃至5のいずれか1項に記載の欠陥修正装置。 The defect correction apparatus according to claim 1, wherein the correction machine corrects the defect by laser irradiation. 製造工程で発生するフラットパネルディスプレイの欠陥を修正する欠陥修正方法において、基板情報、パネル情報及び欠陥情報を含む情報を入力し、特定のパネルに生じている複数の欠陥の中から、修正対象の欠陥について、その位置を含む特定事項を前記情報に基づいて求め、この特定事項を修正機に対して前記修正対象の欠陥を修正するためのデータとして出力することを特徴とする欠陥修正方法。 In a defect correction method for correcting a defect of a flat panel display generated in a manufacturing process, information including substrate information, panel information and defect information is input, and a correction target is selected from a plurality of defects generated in a specific panel. A defect correction method characterized in that a specific matter including a position of a defect is obtained based on the information, and the specific matter is output to a correction machine as data for correcting the defect to be corrected. 前記特定事項は、前記欠陥の位置の他に、欠陥の種類、大きさ又は修正方法を含むことを特徴とする請求項7に記載の欠陥修正方法。 The defect correction method according to claim 7, wherein the specific matter includes a defect type, a size, or a correction method in addition to the position of the defect. 前記情報は、各欠陥同士の相対的な位置関係、欠陥の種類、欠陥の大きさ及びパネルパターンレイアウトのうちの少なくとも1つを含むことを特徴とする請求項7又は8に記載の欠陥修正装置。 The defect correction apparatus according to claim 7, wherein the information includes at least one of a relative positional relationship between defects, a defect type, a defect size, and a panel pattern layout. . 前記情報は、更に、修正機の装置状態に関する情報及び/又は修正機に固有の修正条件に関する情報を含むことを特徴とする請求項7乃至9のいずれか1項に記載の欠陥修正方法。 The defect correction method according to any one of claims 7 to 9, wherein the information further includes information on an apparatus state of the correction machine and / or information on a correction condition unique to the correction machine. 前記情報は、更に、前記修正機による欠陥修正中の修正部の材質及び温度を含む修正部特性、基板の材質及び温度、並びに欠陥の修正条件からなる群から選択された少なくとも1つの修正中データを含むことを特徴とする請求項7乃至10のいずれか1項に記載の欠陥修正方法。 The information further includes at least one data under correction selected from the group consisting of a correction part property including a correction part material and temperature during defect correction by the correction machine, a substrate material and temperature, and a defect correction condition. The defect correction method according to claim 7, comprising: 前記修正機は、レーザ照射により前記欠陥を修正するものであることを特徴とする請求項7乃至11のいずれか1項に記載の欠陥修正方法。 The defect correction method according to claim 7, wherein the correction machine corrects the defect by laser irradiation.
JP2004032288A 2004-02-09 2004-02-09 Defect correcting apparatus and correcting method Expired - Fee Related JP4640757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032288A JP4640757B2 (en) 2004-02-09 2004-02-09 Defect correcting apparatus and correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032288A JP4640757B2 (en) 2004-02-09 2004-02-09 Defect correcting apparatus and correcting method

Publications (2)

Publication Number Publication Date
JP2005221974A true JP2005221974A (en) 2005-08-18
JP4640757B2 JP4640757B2 (en) 2011-03-02

Family

ID=34997630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032288A Expired - Fee Related JP4640757B2 (en) 2004-02-09 2004-02-09 Defect correcting apparatus and correcting method

Country Status (1)

Country Link
JP (1) JP4640757B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109980A (en) * 2005-10-14 2007-04-26 Laserfront Technologies Inc Method of correcting wiring
JP2007109981A (en) * 2005-10-14 2007-04-26 Laserfront Technologies Inc Method of correcting defect
JP2007123616A (en) * 2005-10-28 2007-05-17 Sony Corp Method of manufacturing wiring board and method of manufacturing display device
JP2007163892A (en) * 2005-12-14 2007-06-28 Sony Corp Defect correction apparatus and defect correction method
US7824930B2 (en) 2007-04-12 2010-11-02 Sony Corporation Method of manufacturing substrate, substrate manufacturing system, and method of manufacturing display
US8311775B2 (en) 2008-10-22 2012-11-13 Sony Corporation Defect repair apparatus and defect repair method
CN101893794B (en) * 2009-05-20 2013-11-13 索尼公司 Defect correction device and defect correction method
CN109541866A (en) * 2018-12-28 2019-03-29 成都中电熊猫显示科技有限公司 The cutting-off method and device of route in array substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052072A (en) * 1998-08-03 2000-02-22 Ntn Corp Device and method for correcting patterns
JP2000082729A (en) * 1998-08-21 2000-03-21 Samsung Electronics Co Ltd Unified mending system as well as automatic defect detecting system and its control method
JP2001071159A (en) * 1999-09-08 2001-03-21 Nec Corp Laser joining method and device therefor
JP2002107137A (en) * 2000-09-29 2002-04-10 Toshiba Corp Method for controlling inspection stage
JP2003098547A (en) * 2001-09-25 2003-04-03 Sharp Corp Substrate correction device, substrate correction object narrowing-down method and substrate correction efficiency improving program for active matrix display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052072A (en) * 1998-08-03 2000-02-22 Ntn Corp Device and method for correcting patterns
JP2000082729A (en) * 1998-08-21 2000-03-21 Samsung Electronics Co Ltd Unified mending system as well as automatic defect detecting system and its control method
JP2001071159A (en) * 1999-09-08 2001-03-21 Nec Corp Laser joining method and device therefor
JP2002107137A (en) * 2000-09-29 2002-04-10 Toshiba Corp Method for controlling inspection stage
JP2003098547A (en) * 2001-09-25 2003-04-03 Sharp Corp Substrate correction device, substrate correction object narrowing-down method and substrate correction efficiency improving program for active matrix display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109980A (en) * 2005-10-14 2007-04-26 Laserfront Technologies Inc Method of correcting wiring
JP2007109981A (en) * 2005-10-14 2007-04-26 Laserfront Technologies Inc Method of correcting defect
JP2007123616A (en) * 2005-10-28 2007-05-17 Sony Corp Method of manufacturing wiring board and method of manufacturing display device
JP4736717B2 (en) * 2005-10-28 2011-07-27 ソニー株式会社 Wiring board manufacturing method and display device manufacturing method
JP2007163892A (en) * 2005-12-14 2007-06-28 Sony Corp Defect correction apparatus and defect correction method
US7824930B2 (en) 2007-04-12 2010-11-02 Sony Corporation Method of manufacturing substrate, substrate manufacturing system, and method of manufacturing display
US8311775B2 (en) 2008-10-22 2012-11-13 Sony Corporation Defect repair apparatus and defect repair method
CN101893794B (en) * 2009-05-20 2013-11-13 索尼公司 Defect correction device and defect correction method
CN109541866A (en) * 2018-12-28 2019-03-29 成都中电熊猫显示科技有限公司 The cutting-off method and device of route in array substrate

Also Published As

Publication number Publication date
JP4640757B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US7761182B2 (en) Automatic defect repair system
JP5353179B2 (en) Defect correction apparatus and defect correction method
JP4940941B2 (en) Defect correction apparatus and defect correction method
JP4855464B2 (en) Defect cause equipment identification system
JP2012063725A (en) Defect correcting device and defect correcting method
JP5663192B2 (en) Processing apparatus, coordinate correction method, and coordinate correction program
JP4640757B2 (en) Defect correcting apparatus and correcting method
CN101911279A (en) Workpiece support with fluid zones for temperature control
JP4956984B2 (en) Defect correction apparatus and defect correction method
JP2008155263A (en) Defect correcting apparatus and defect correcting method
US6807654B2 (en) Method of and device for detecting pattern, method of and device for checking pattern, method of and device for correcting and processing pattern, and computer product
JP4736717B2 (en) Wiring board manufacturing method and display device manufacturing method
JP2007123503A (en) Inspection conveyance machine, inspection check method and mounting line
EP3525566B1 (en) Substrate inspection device and substrate distortion compensating method using same
JP2011085821A (en) Device and method for defect correction
JP2012220439A (en) Pattern inspection method and pattern inspection apparatus
JP2002296806A (en) Exposure device and substrate positioning method therefor
JP5191928B2 (en) Onboard data creation support device and component mounting device
KR100883284B1 (en) Wiring correction method
JP4940679B2 (en) Defect correction technique display method and defect correction apparatus
JP3311628B2 (en) Defect location device for thin display devices
JP2005181932A (en) Substrate exposing method, substrate exposing device, and method for manufacturing display panel and display device
JP2001307070A (en) Good item pattern registering method
JP3051623B2 (en) Automatic correction method
JP2013074242A (en) Position detecting device, drawing device and position detecting method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees