JP2005220809A - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
JP2005220809A
JP2005220809A JP2004029413A JP2004029413A JP2005220809A JP 2005220809 A JP2005220809 A JP 2005220809A JP 2004029413 A JP2004029413 A JP 2004029413A JP 2004029413 A JP2004029413 A JP 2004029413A JP 2005220809 A JP2005220809 A JP 2005220809A
Authority
JP
Japan
Prior art keywords
combustion chamber
engine
chamber wall
wall temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004029413A
Other languages
English (en)
Inventor
Kazuki Iwatani
一樹 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004029413A priority Critical patent/JP2005220809A/ja
Publication of JP2005220809A publication Critical patent/JP2005220809A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】本発明は、内燃機関の燃焼室内における着火回数をより正確に検出して、その着火回数に基づいてより正確な燃焼室壁温を推定する。
【解決手段】内燃機関の機関始動時において、内燃機関の燃焼室内における着火回数を積算し、積算された着火回数に基づいて内燃機関の燃焼室壁温を推定する燃焼室壁温推定手段(S205)と、内燃機関の機関回転速度を検出する機関回転速度検出手段と、を備える内燃機関において、燃焼室壁温推定手段による内燃機関の燃焼室壁温の推定に際して、機関回転速度検出手段によって検出される機関回転速度が基準機関回転速度以下である場合は、燃焼室壁温推定手段は、内燃機関の燃焼室内における着火回数の積算を行わない(S202、S204)。
【選択図】 図4

Description

本発明は、燃焼室壁温の推定を行う内燃機関に関する。
内燃機関の機関始動時においては、内燃機関の機関温度、特に燃焼室内における燃料の着火性や燃焼状態に影響する燃焼室壁温の上昇や機関回転速度の上昇が行われる。そして、燃焼室壁温を早期に昇温させるために、燃焼室壁温に応じて内燃機関の機関始動に適した量の燃料を燃焼室内に供給する。
例えば、内燃機関の機関始動開始直後は、燃焼室内への燃料の供給量を最も多くし、燃焼室壁温の上昇とともに該供給量を減量することで、機関始動に要する燃料量を可及的に抑制し、機関始動に要する燃費の悪化を抑制することが可能となる。
このように、燃焼室壁温に基づいて燃料噴射制御を行うとき、燃焼室壁温をより正確に推定することが重要となる。そこで、内燃機関の燃焼サイクルにおいて圧縮行程上死点を迎えた回数、即ち燃焼室内において発生したであろう燃焼の回数に基づいて、内燃機関の機関始動時における燃焼室壁温の推定を行う技術が公開されている(例えば、特許文献1を参照。)。
特開平11−218043号公報(第9頁) 特開2001−254645号公報 特開2000−192836号公報
内燃機関の機関始動時、特に外気温度が零下であるような極低温状態での機関始動時においては、燃焼室壁温も比較的低くなるため燃料の着火性が低下する。その結果、燃焼室内に燃料が供給されても、着火が起こらず、更には一度着火しても失火する場合がある。
そして、内燃機関の燃焼室壁温を燃焼室内における着火回数に基づいて推定する場合、例えば、その着火回数を燃焼サイクルにおける圧縮行程上死点を迎えた回数とすると、燃焼室内で失火状態となっている場合にも着火したものと扱うため、燃焼室壁温を正確に推定することが困難となる。
本発明では、上記した問題に鑑み、燃焼室内における着火回数をより正確に検出して、その着火回数に基づいてより正確な燃焼室壁温を推定することを目的とする。
本発明においては、上記した課題を解決するために、燃焼室壁温の推定を行う際の内燃機関の機関回転速度に着目した。燃焼室内において燃料が噴射されているにもかかわらず、燃焼が起こらない場合、即ち失火状態となっている場合、機関回転速度は上昇せず、クランキング時の機関回転速度に近い機関回転速度となり、そのような場合、燃焼室壁温は上昇しないと考えられるからである。
そこで、本発明は、内燃機関の機関始動時において、燃焼室内における燃焼サイクル数によって該燃焼室内での着火回数を積算し、該積算された着火回数に基づいて該内燃機関の燃焼室壁温を推定する燃焼室壁温推定手段と、前記内燃機関の機関回転速度を検出する機関回転速度検出手段と、を備える内燃機関であって、前記燃焼室壁温推定手段による前
記内燃機関の燃焼室壁温の推定に際して、前記機関回転速度検出手段によって検出される機関回転速度が基準機関回転速度以下である場合は、該燃焼室壁温推定手段は、該内燃機関の燃焼室内における着火回数の積算を行わない。
上述の内燃機関においては、燃焼室内で生じた燃料の着火によって燃焼室壁温を上昇させる熱エネルギーが生じ、その着火が繰り返されることで燃焼室壁温が次第に上昇していく。そこで、燃焼室における積算着火回数に基づいて燃焼室壁温を推定するものである。ここで、燃焼室における着火回数の積算は、該燃焼室において迎えた燃焼サイクル数を積算することで行われ得る。即ち、燃焼室での燃焼サイクルにおいては、一般に圧縮行程上死点において燃焼室内の燃料が着火される。例えば、圧縮着火内燃機関においては、圧縮上死点近傍において、混合気が圧縮されて着火する。また、火花点火式内燃機関においては、圧縮行程上死点近傍において点火栓により混合気の点火が行われ、以て混合気が着火する。そこで、燃焼サイクル数、換言すると燃焼サイクルにおける圧縮行程上死点の回数を積算することで、燃焼室での着火回数の積算を行うことが可能となる。また、着火回数の積算は、燃焼サイクル数の積算だけではなく、圧縮行程上死点そのものを検出してその回数を積算することで、行ってもよい。
しかし、燃焼室壁温が低温である等の理由で、燃焼室内で失火が発生する場合には、当然に燃焼サイクルにおける圧縮行程上死点を迎えるものの、燃焼室壁温を上昇させる熱エネルギーは発生しない。そして、熱エネルギーが発生しないことにより、内燃機関の機関回転速度はクランキング時の機関回転速度に近い値にまで低下する。
そこで、本発明では、内燃機関の機関始動時において、機関回転速度が基準機関回転速度以下となるときは、燃焼室において燃料の着火が行われず失火状態になっていると判断して、燃焼室壁温の推定における着火回数の積算である燃焼サイクル数の積算を行わない。これにより、着火回数をより正確に検出し、以て燃焼室壁温を過度に高温側に推定することを回避し、より正確な燃焼室壁温の推定が可能となる。
尚、上述の基準機関回転速度は、燃焼室において燃料が着火している時と着火していない時とを区別するための、内燃機関の機関始動時における機関回転速度である。一般に、クランキング時において燃焼室において燃料が着火すると、機関回転速度が急激に上昇する。そこで、例えば、基準機関回転速度として、内燃機関のクランキングが行われているときの機関回転速度に基づいて決定することができる。尚、燃焼室壁温やクランキングを行うスタータモータへのバッテリからの供給電圧によって、クランキング時の機関回転速度は変動するため、これらを考慮して基準機関回転速度を決定してもよい。
また、上述の内燃機関において、前記基準機関回転速度は、燃焼室内で燃焼が生起されない条件下でクランキングが行われるときに、前記機関回転速度検出手段によって検出される機関回転速度に基づいて決定されるようにしてもよい。
即ち、クランキング時において燃焼室では確実に燃料が着火せずに燃焼が生起しない条件下で決定された基準機関回転速度に基づくことで、機関回転速度検出手段によって検出される機関回転速度による燃焼室での燃料の着火の有無をより正確に判定し、以て燃焼室壁温推定手段による燃焼室壁温の推定精度が向上する。
特に、クランキング時において燃焼室では確実に燃料が着火せずに燃焼が生起しない条件下で基準機関回転速度を決定するのは、前記内燃機関の機関始動の初期であることが好ましい。
内燃機関の機関始動の初期においては、一般に気筒判別制御や燃料ポンプによる燃圧の
上昇等の内燃機関での燃焼の準備のための各種制御が行われるため、機関始動開始後一定期間は燃焼室内への燃料供給は行われない。そこで、その時期におけるクランキング時の機関回転速度に基づいて基準機関回転速度を決定することで、燃焼室では確実に燃料が着火せずに燃焼が生起しない条件下で基準機関回転速度を決定することが可能となる。
ここで、上述した内燃機関において、該内燃機関の冷却水温度を検出する冷却水温度検出手段を更に備える場合、前記冷却水温度検出手段によって検出される冷却水温度が所定温度以上であるときに、該冷却水温度に基づいて推定される燃焼室壁温を、前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値として設定してもよい。
燃焼室内で燃料の着火が開始されてその積算着火回数が増加してくると、燃焼室壁温の推移は、燃焼室内で発生する熱エネルギーと燃焼室から内燃機関本体を経て外部へと放出される放出エネルギーとの関係から、次第に飽和していく。このとき、内燃機関を冷却する冷却水が存在する場合、該冷却水によって内燃機関本体からの放出エネルギーが制御されることになるため、積算着火回数の増加とともに冷却水温度は、実際の燃焼室壁温に近づくと考えられる。
そこで、冷却水温度検出手段によって検出された冷却水温度に基づいて推定された燃焼室壁温を、燃焼室壁温推定手段によって推定される燃焼室壁温の上限値とすることで、燃焼室壁温推定手段によって推定される燃焼室壁温が実際の燃焼室壁温から大きく外れることを抑制し、より精度の高い燃焼室壁温の推定が可能となる。
尚、内燃機関本体からの放出エネルギーが冷却水温度に反映されるまでは、熱の伝播に要する時間、冷却水や内燃機関本体の熱容量等によって、ある程度の時間を要する。即ち、燃焼室内において燃料の着火、燃焼が開始されてからある程度の時間は、燃料の着火、燃焼により燃焼室壁温は急速に上昇するものの、冷却水温度の上昇速度は鈍い。そのため、実際の燃焼室壁温と冷却水温度に基づいて推定される燃焼室温度との間には比較的大きな温度差が生じ得る。そこで、上述のように冷却水温度に基づいて推定される燃焼室温度を前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値とするのは、燃焼室内での積算着火回数がある程度まで増加し、冷却水温度が所定温度以上となるときである。従って、所定温度とは、冷却水温度が実際の燃焼室壁温に近づいたときの冷却水温度であって、上記上限値の設定によってより精度の高い燃焼室壁温の推定が可能となる冷却水温度である。
尚、上述のように冷却水温度に基づいて推定される燃焼室温度を前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値として設定する場合、前記冷却水温度検出手段によって検出される冷却水温度に基づいて推定される燃焼室壁温であって前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値とされる燃焼室壁温は、該冷却水温度が高くなるに従い高くなるようにしてもよい。
冷却水温度検出手段によって検出される冷却水温度が上昇する限りにおいては、燃焼室壁温も上昇していると考えられるため、該冷却水温度の上昇とともに上記の上限値を高くすることで、より正確な燃焼室壁温の推定が可能となる。
本発明に係る内燃機関においては、燃焼室内における着火回数をより正確に検出して、その着火回数に基づいてより正確な燃焼室壁温を推定することが可能となる。
ここで、本発明に係る内燃機関の実施の形態、および該内燃機関における機関始動の実
施例について図面に基づいて説明する。
図1は、本発明が適用される圧縮着火内燃機関(以下、単に「内燃機関」という)1およびその制御系統の概略構成を表すブロック図である。内燃機関1は、燃焼室9内に直接燃料を噴射することが可能な燃料噴射弁3を備えている。そして、燃焼室9内において、ピストン4が往復運動を行う。従って、燃焼室9内において、ピストン4と気筒2の内壁面によって、燃焼室9が画定される。また、内燃機関1では吸気通路が吸気ポート7を介して燃焼室9に接続される。同様に、内燃機関1では排気通路が排気ポート8を介して、燃焼室9に接続される。ここで、吸気ポート7と燃焼室9との間には吸気弁5が、排気ポート8と燃焼室9との間には排気弁6が設けられている。
また、内燃機関1には、該内燃機関1を制御するための電子制御ユニット(以下、「ECU」という)10が併設されている。このECU10は、CPUの他、後述する各種の制御ルーチン及びマップを記憶するROM、RAM等を備えており、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御するユニットである。ここで、燃料噴射弁3は、ECU10からの制御信号によって開閉動作を行う。
更に、内燃機関1のイグニッションスイッチ11、内燃機関1の冷却水温度Thwを検出する水温センサ12が、ECU10と電気的に接続されている。これにより、ECU10は、それぞれ、内燃機関1への機関始動指令I/G、冷却水温度Thwを受け取る。また、クランクポジションセンサ13がECU10と電気的に接続されている。これにより、ECU10は内燃機関1の出力軸の回転角に応じた信号を受け取って内燃機関1の機関回転速度Ne等を算出する。
ここで、図2に基づいて燃焼室9内での燃料の着火時期について説明する。図2は、燃料の着火時期と燃焼室壁温および内燃機関1の出力トルクとの関係を表す図である。図2の横軸は内燃機関1のクランクアングルを表し、図中TDCとあるのは圧縮工程上死点を意味する。また、縦軸は図2中の線L1、L2、L3で表されるクランクアングルに対する燃焼室壁温、出力トルク、燃焼室9内での燃焼における冷却損失の推移の各々に対応する値である。
図2中の期間ΔT1は、圧縮行程上死点TDC近傍の期間である。そして、期間ΔT1においては、燃焼室9内に燃料噴射弁3から機関始動のための燃料が噴射されている場合、線L1で表されるように、燃焼室壁温が混合気の燃焼が安定する安定燃焼温度を超える。即ち、ピストン4の圧縮動作によって燃焼室9内の混合気が圧縮されて、燃焼室壁温が安定燃焼温度を超えることで、燃料の着火が容易になるとともに安定して燃焼する。
一方で、線L3で表されるように、期間ΔT1においては、燃焼における冷却損失比較的高い。これは、期間ΔT1においては、ピストンが比較的圧縮行程上死点TDCに近い位置にあるため、燃焼室9内で生じた熱エネルギーが効率的にピストンを押し出す力とならず、その多くが気筒2やその他の内燃機関1の機関要素を暖機するためのエネルギーとして消費されてしまうからである。
換言すると、期間ΔT1における燃料の着火、燃焼は、燃料の着火性、燃焼状態の安定性という観点から見るとより好適な時期における燃料の着火、燃焼であるが、内燃機関の加速性、即ち機関回転速度の上昇の効率性という観点から見ると比較的低加速性、低効率性の燃料の着火、燃焼である。そこで、以下、期間ΔT1での燃料の着火時期を第一着火時期といい、第一着火時期での燃料の着火を可能とする燃料噴射弁3からの燃料噴射を暖機モード燃料噴射という。暖機モード燃料噴射が行われる時期としては、例えば、期間Δ
T1の何れかの時期でもよく、また第一着火時期に噴射燃料が着火されるのであれば、吸気行程や圧縮行程中期等の時期であっていわゆる予混合気が燃焼室9内に形成し得る時期であっても良い。
また、図2中の期間ΔT2は、期間ΔT1より遅角側の期間である。そして、期間ΔT2においては、燃焼室9内に燃料噴射弁3から機関始動のための燃料が噴射されている場合、線L2で表されるように、燃焼室9内で燃料が着火、燃焼したとき、内燃機関1の出力トルクが概ねピークとなる。即ち、ピストン4の位置が圧縮行程上死点TDCより下がった位置にあるため、燃焼室9内で生じた熱エネルギーが効率的にピストンを押し出す力となる。そのため、線L3で表されるように期間ΔT2においては、燃焼における冷却損失比較的低い。
一方で、ピストン4の位置が圧縮行程上死点TDCより下がった位置にあるため、線L1で表されるように、圧縮動作による燃焼室壁温が期間ΔT1の場合と比べて低くなる。その結果、燃焼室9内の燃料の着火性が低下し燃焼が不安定となる虞がある。特に、外気温度が低く燃焼室9内に形成される混合気の温度が低くなるときや、気筒2における燃焼室壁温が低く燃焼エネルギーが外部に流出しやすい極低温時の機関始動時においては、燃焼の不安定性が機関始動に支障を及ぼす場合がある。この結果、機関始動時における機関回転速度が安定しない虞がある。
換言すると、期間ΔT2における燃料の着火、燃焼は、内燃機関の加速性、即ち機関回転速度の上昇の効率性という観点から見ると比較的高加速性、高効率性の燃料の着火、燃焼であるが、燃料の着火性、燃焼状態の安定性という観点から見ると燃焼が不安定となりやすい時期における燃料の着火、燃焼である。そこで、以下、期間ΔT2での燃料の着火時期を第二着火時期といい、第二着火時期での燃料の着火を可能とする燃料噴射弁3からの燃料噴射を加速モード燃料噴射という。加速モード燃料噴射が行われる時期としては、例えば、期間ΔT2の何れかの時期でもよく、また第二着火時期に噴射燃料が着火されるのであれば、時期ΔT1が経過した後から期間ΔT2に至るまでの時期であってもよい。尚、加速モード燃料噴射を行うときは、暖機モード燃料噴射を行わないのが好ましい。暖機モード燃料噴射による燃料の燃焼によって、加速モード燃料噴射による燃料が期間ΔT2よりも早い時期に着火、燃焼する虞があるからである。
このように、内燃機関始動時において、即ち内燃機関1においてクランキングを開始してから機関回転速度が始動完了回転速度に上昇するまでの期間において、暖機モード燃料噴射または加速モード燃料噴射の何れかのみを行うと、低加速性による機関始動時間の長期化または燃料の着火の困難性、燃焼の不安定性による機関回転速度の不安定性等の問題が生じる。そこで、内燃機関1の機関始動時においては、図3に示す燃料噴射制御(以下、「機関始動制御」という)を行うことで、上記の問題点の解決を図る。尚、図3に示す機関始動制御は、内燃機関1の機関始動時において実行されるルーチンである。また、図7に、図3に示す機関始動制御が行われる際の機関回転速度の推移(図7中、線L4で表される)および燃焼室壁温の推移(図7中、線L5で表される)を示す。図7の横軸は時間を表し、縦軸は機関回転速度燃料噴射量を表す。
S101では、イグニッションスイッチ11から機関始動指令I/Gが発せられたか否かが判定される。イグニッションスイッチ11から機関始動指令I/Gが発せられたと判定されるとS102へ進み、イグニッションスイッチ11から機関始動指令I/Gが発せられていないと判定されるとS101の処理が再び行われる。
S102では、水温センサ12よって検出される冷却水温度Thwが基準冷却水温度Thw0より低いか否かが判定される。即ち、水温センサ12よって検出される冷却水温度
Thwが基準冷却水温度Thw0以上であるときは、内燃機関1は既に機関始動が完了しており、以前に発せられた機関始動指令I/Gが誤指令であったことを意味する。水温センサ12よって検出される冷却水温度Thwが基準冷却水温度Thw0より低いと判定されると、内燃機関1においてクランキングが開始されるとともにS103へ進む。尚、このクランキングが開始された時点が、図7における時期t2に相当する。水温センサ12よって検出される冷却水温度Thwが基準冷却水温度Thw0以上であると判定されると、本制御を終了する。
先述したように、燃焼室壁温Thcylは、機関始動時において燃焼室9内に噴射された燃料の着火性、燃焼の安定性に大きく影響する要素である。そのため、後述するS108では燃焼室壁温Thcylが推定され、それ以降では推定された燃焼室壁温Thcylに基づいて内燃機関の機関始動のための燃料噴射が行われる。そこで、S108で行われる燃焼室壁温Thcylの推定のための準備が、S103からS107において行われる。
S103では、機関始動開始時の冷却水温度Thwsを水温センサ12からの信号に基づいて検出する。機関始動開始時においては、冷却水温度Thwsと燃焼室壁温Thcylとはほぼ同温であるから、後述するS108での燃焼室壁温Thcylの推定において、機関始動開始時の冷却水温度Thwsを燃焼室壁温の初期値として扱う。S103の処理が終了すると、S104へ進む。
S104では、燃料噴射弁3からの燃焼室9への燃料噴射を禁止する。これは、後述するS105での基準機関回転速度Necrの算出時に、内燃機関1において燃料の燃焼が行われないことを担保するためである。S104の処理が終了すると、S105へ進む。
S105では、基準機関回転速度Necrの算出を行う。基準機関回転速度Necrとは、燃焼室9において燃料が着火するときと着火しないときの区別を行うために基準となる機関回転速度である。一般に、燃焼室9において燃料が着火すると、機関回転速度が急激に上昇する。そこで、クランキング時の機関回転速度に基づいて基準機関回転速度Necrを決定し、後述するS108での燃焼室壁温Thcylの推定において、基準機関回転速度Necrに基づいて燃焼室9内での燃料の着火の有無を検出する。
本実施の形態においては、クランキング時の機関回転速度Neをクランクポジションセンサ13からの信号に基づいて検出し、該機関回転速度Neに50rev/minを加算した値を基準機関回転速度Necrとして設定する。この加算された50rev/minは、燃焼室壁温Thcyl上昇とともにクランキング時の機関回転速度Neが上昇すること等を考慮して、燃焼室9で数回燃料の着火が発生した後に迎える失火状態を、機関回転速度に基づいて検出することを可能とするためである。S105の処理が終了すると、S106へ進む。
S106では、クランキングが開始されてから所定期間t1が経過したか否かが判定される。所定期間t1は、主にS105での基準機関回転数Necrの算出に要する時間を担保するための時間である。尚、内燃機関1においては、この所定期間t1の間に、燃料噴射弁3における噴射圧の上昇や、内燃機関1が有する気筒の判別等の機関始動のための準備を行う。S106の処理が終了すると、S107へ進む。
S107では、S104で行った燃料噴射の禁止を解除する。これにより、燃焼室9への燃料の供給が開始されることとなる。S107の処理が終了すると、S108へ進む。
S108では、燃焼室壁温推定制御が行われることで、より正確な燃焼室壁温Thcy
lが推定される。尚、燃焼室壁温推定制御の詳細については後述する。この燃焼室壁温推定制御によって推定された燃焼室壁温Thcylに基づいて、以降、燃料噴射弁3からの燃料噴射が制御される。S108の処理が終了すると、S109へ進む。
S109では、S108で推定された燃焼室壁温Thcylが、基準燃焼室壁温Thcyl0より高いか否かが判定される。ここで、基準燃焼室壁温Thcyl0とは、加速モード燃料噴射によって噴射された燃料の着火性および該燃料の燃焼の安定性が比較的良好であって、加速モード燃料噴射によって機関始動を行う場合であっても、燃焼の不安定性に起因する機関回転速度の変動が機関始動に影響しない程度に抑制され得る燃焼室壁温をいう。
ここで、燃焼室壁温Thcylが基準燃焼室壁温Thcyl0以下であると判定される場合に、燃焼室壁温Thcylが比較的低いため加速モード燃料噴射によって機関始動を行うと、噴射された燃料の着火性が低く、また該燃料の燃焼の安定性が低いために、機関回転速度の変動が大きくなる。従って、この場合には、S111に進み、燃料の着火性が比較的良く、燃焼が安定している暖機モード燃料噴射を行う。これにより、機関回転速度の上昇率は低いものの、燃焼の安定性が確保されるとともに、燃焼室壁温上昇が効率的に行われる。
一方で、燃焼室壁温Thcylが基準燃焼室壁温Thcyl0より高いと判定される場合は、燃焼室壁温Thcylが比較的高いため加速モード燃料噴射によって機関始動を行う場合でも、噴射された燃料の着火性および該燃料の燃焼の安定性が担保される。そこで、この場合には、S106に進み、機関回転速度の上昇率が高い加速モード燃料噴射を行う。これにより、燃料の着火性および燃焼の安定性が担保された状態で、機関回転速度を効率的に上昇させることが可能となる。尚、暖機モード燃料噴射から加速モード燃料噴射への切換が行われる時点が、図7においては時期t3となる。加速モード燃料噴射に切り換えられることで、機関回転速度の上昇率が大きく上昇する一方で、燃焼室壁温の上昇率が低下する。
S110またはS111の処理が終了すると、S112へ進む。S112では、機関回転速度Neが始動完了回転速度Ncを超えたか否かが判定される。即ち、内燃機関1の機関始動が完了したか否かが判定される。機関回転速度Neが始動完了回転速度Ncを超えたと判定されると、本制御を終了する。機関回転速度Neが始動完了回転速度Ncを超えた時点が、図7において時期t4となる。機関回転速度Neが始動完了回転速度Ncを超えていないと判定されると、再びS108以降の処理が行われる。
本制御によると、燃焼室壁温Thcylが基準燃焼室壁温Thcyl0より低い場合には暖機モード燃料噴射が、燃焼室壁温Thcylが基準燃焼室壁温Thcyl0以上であるときは加速モード燃料噴射が行われて、機関回転速度の上昇が図られる。これにより、機関始動時の燃焼の安定性が担保されるとともに、機関始動に要する時間を可及的に短くすることが可能となる。その結果、機関始動に要する燃料消費量を抑制するとともに機関始動時の燃焼を安定させてエミッションの悪化を抑制することが可能となる。
次に、S108で行われる燃焼室壁温推定制御を図4に基づいて説明する。燃焼室壁温推定制御においては、図4に示すS201からS211までの処理が行われる。先ず、S201では、クランクポジションセンサ13からの信号に基づいて機関回転速度Neを検出する。S201の処理が終了すると、S202へ進む。
S202では、S201で検出された機関回転速度Neが、S105で算出された基準機関回転速度Necrより大きいか否かを判定する。即ち、機関回転速度Neに基づいて
、燃焼室9内での燃料の着火が発生したか否かを判定する。機関回転速度Neが基準機関回転速度Necrより大きいときは、燃焼室9内で燃料が着火、燃焼して燃焼室壁温Thcylが上昇することを意味し、機関回転速度Neが基準機関回転速度Necr以下であるときは、燃焼室9内で燃料は着火、燃焼せず燃焼室壁温Thcylは上昇しないことを意味する。
S202で機関回転速度Neが基準機関回転速度Necrより大きいと判定されるときは、S203へ進み、S201で検出された機関回転速度Neと、機関回転速度Neが基準機関回転速度Necrより大きい状態にある期間Δtとから、燃焼室9内における燃料の着火回数の積算値(以下、「積算着火回数」という)n_combを算出する。
ここで、積算着火回数n_combの算出について、図5に基づいて説明する。図5は、機関始動時における機関回転速度の推移を表すグラフであり、横軸は時間を、縦軸は機関回転速度Neを表している。尚、図5に示す機関回転速度Neは、一度所定期間t1経過時に燃料の着火により機関回転速度Neが上昇したものの、その後失火状態を迎えてクランキング時の機関回転速度Ncとなり、その後再び機関回転速度Neは上昇している。ここで、基準機関回転速度Necrは、先述したように、所定期間t1が経過するまでの燃料噴射が行われていない期間での、クランキング時の機関回転速度Ncより50rev/min高い値である。そして、以下においては、時間t=T0における積算着火回数n_combの算出について説明する。
期間Δtにおいて内燃機関1の出力軸が回転した総回転数は、機関回転速度Neを期間Δtにおける時間で積分することで算出される。尚、該総回転数は、燃焼室9での燃焼サイクルにおいて迎えた圧縮行程上死点の回数と比例するため、該総回転数より積算着火回数n_combが計算される。S203の処理が終了すると、S205へ進む。
一方で、燃焼室9内で燃料の着火、燃焼が起こらない場合、即ち、S202で機関回転速度Neが基準機関回転速度Necr以下であると判定されるときは、S204へ進む。S204では、積算着火回数n_combの算出は行わない。従って、期間積算着火回数n_combの値は増加することはない。具体的には、図5において機関回転速度Neが基準機関回転速度Necr以下である期間Δtnでの内燃機関1の出力軸の総回転数を、積算着火回数n_combへは反映させない。S204の処理が終了すると、S205へ進む。
S205では、積算着火回数n_combに基づいて、燃焼室壁温Thcylを算出する。積算着火回数n_combは、実際に燃焼室で発生した燃料の着火回数に準じた値であることから、その回数に応じて燃焼室壁温Thcylの値は上昇すると考えられる。そこで、積算着火回数n_combが多くなるに従い、燃焼室壁温Thcylの値を上昇させる。ここで、上述した暖機モード燃料噴射が行われる場合と加速モード燃料噴射が行われる場合とでは、燃焼室9内に発生する熱エネルギーの燃焼室壁温Thcylへの寄与の程度が異なるため、それぞれの燃料噴射を考慮して、燃焼室壁温Thcylを推定する。即ち、暖機モード燃料噴射が一回行われるときの燃焼室壁温の上昇分は、加速モード燃料噴射が行われるときの燃焼室壁温の上昇分より大きくする。S205の処理が終了すると、S206へ進む。
S206では、水温センサ12によって検出された冷却水温度Thwが所定温度Thw1より大きいか否かが判定される。所定温度Thw1とは、燃焼室9における燃料の積算着火回数n_combの増加とともに、実際の燃焼室壁温Thcylが冷却水温度Thwに近づき両者の温度差が比較的小さくなるときの冷却水温度である。機関始動が開始された直後は、燃焼室9において燃料が燃焼することで燃焼室壁温Thcylは直ちに上昇す
るが、熱の伝播に要する時間、冷却水や内燃機関本体の熱容量等によって、冷却水温度Thwの上昇は鈍い。一方で、機関始動開始から一定の時間が経過して燃焼室9において燃料の燃焼が繰り返されると、実際の燃焼室壁温Thcylが冷却水温度Thwとの温度差が縮まる。
そこで、実際の燃焼室壁温Thcylが冷却水温度Thwとの温度差が縮まったとき、S205で算出された燃焼室壁温Thcylの値が過度に上昇しているか否かの判定(以下、「過昇温判定」という)を冷却水温度Thwに基づいて行うことが可能となる。この過昇温判定の実行が可能か否かの判断をするための基準となる冷却水温度が所定温度Thw1である。
従って、冷却水温度Thwが所定温度Thw1より大きいと判定されるときは過昇温判定が可能であるためS207へ進む。一方で、冷却水温度Thwが所定温度Thw1以下であるときは過昇温判定は困難であるため、S205で算出された燃焼室壁温Thcylを本制御によって推定された燃焼室壁温Thcylとして、本制御を終了し、上述した機関始動制御における処理S109へと進む。
S207では、冷却水温度Thwに基づいて、燃焼室壁温Thcylのとり得る最大値である最大燃焼室壁温Thcylmaxを算出する。最大燃焼室壁温Thcylmaxについては、図6に示すように冷却水温度Thwが上昇するに従い、最大燃焼室壁温Thcylmaxの値は上昇する。そして、図6に示す関係をマップ化してECU10内に格納し、冷却水温度Thwをパラメータとして該マップにアクセスすることで、最大燃焼室壁温Thcylmaxを算出する。尚、最大燃焼室壁温Thcylmaxと冷却水温度Thwとの関係は、予め実験等で測定しておく。S207の処理が終了すると、S208へ進む。
S208では、S205で算出された燃焼室壁温Thcylが最大燃焼室壁温Thcylmaxより大きいか否かが判定される。そして、S205で算出された燃焼室壁温Thcylが最大燃焼室壁温Thcylmaxより大きいと判定されるときは、該燃焼室壁温Thcylの値が、実際の燃焼室壁温より過度に高い値であることを意味する。そこで、このような場合には、S208からS209へ進み、本制御によって推定された燃焼室壁温Thcylの値を、S205で算出された燃焼室壁温Thcylに代えて最大燃焼室壁温Thcylmaxとして、本制御を終了し、上述した機関始動制御における処理S109へと進む。
一方で、S205で算出された燃焼室壁温Thcylが最大燃焼室壁温Thcylmax以下であると判定されるときは、該燃焼室壁温Thcylの値は、実際の燃焼室壁温より過度に高い値となっていないことを意味する。そこで、このような場合には、S208からS210へ進み、S205で算出された燃焼室壁温Thcylを本制御によって推定された燃焼室壁温Thcylとして、本制御を終了し、上述した機関始動制御における処理S109へと進む。
本燃焼室壁温推定制御においては、機関回転速度Neに基づいて燃焼室9内での燃料の着火、燃焼の有無を判定し、その着火回数から燃焼室壁温を推定する。そして、冷却水温度Thwに基づいて、着火回数から推定された燃焼室壁温の適否を判断する。これにより、燃焼室壁温をより正確に推定することが可能となるとともに、該推定燃焼室壁温に基づく制御(本実施例においては、上述の機関始動制御)がより正確に実行され、その制御の目的をより確実に果たすことが可能となる。
本発明の実施の形態に係る内燃機関の概略構成を表す図である。 本発明の実施の形態に係る内燃機関における燃料の着火時期と気筒内温度および出力トルクとの関係を表す図である。 本発明の実施の形態に係る内燃機関において、機関始動時に実行される機関始動制御に関するフローチャートである。 本発明の実施の形態に係る内燃機関において、燃焼室壁温を推定する燃焼室推定制御に関するフローチャートである。 本発明の実施の形態に係る内燃機関において、機関始動時の機関回転速度の推移を表す図である。 本発明の実施の形態に係る内燃機関において、冷却水温度と最大燃焼室壁温との関係を表すグラフである。 本発明の実施の形態に係る内燃機関において、図3に示す機関始動制御が行われている際の機関回転速度および気筒内温度の推移を表す図である。
符号の説明
1・・・・内燃機関
2・・・・気筒
3・・・・燃料噴射弁
4・・・・ピストン
5・・・・吸気弁
6・・・・排気弁
7・・・・吸気ポート
8・・・・排気ポート
9・・・・燃焼室
10・・・・ECU
11・・・・イグニッションスイッチ
12・・・・水温センサ
13・・・・クランクポジションセンサ

Claims (5)

  1. 内燃機関の機関始動時において、燃焼室内における燃焼サイクル数によって該燃焼室内での着火回数を積算し、該積算された着火回数に基づいて該内燃機関の燃焼室壁温を推定する燃焼室壁温推定手段と、
    前記内燃機関の機関回転速度を検出する機関回転速度検出手段と、を備える内燃機関であって、
    前記燃焼室壁温推定手段による前記内燃機関の燃焼室壁温の推定に際して、前記機関回転速度検出手段によって検出される機関回転速度が基準機関回転速度以下である場合は、該燃焼室壁温推定手段は、該内燃機関の燃焼室内における着火回数の積算を行わないことを特徴とする内燃機関。
  2. 前記基準機関回転速度は、前記内燃機関において燃焼室内で燃焼が生起されない条件下でクランキングが行われるときに、前記機関回転速度検出手段によって検出される機関回転速度に基づいて決定されることを特徴とする請求項1に記載の内燃機関。
  3. 前記基準機関回転速度の決定は、前記内燃機関の機関始動の初期に行われることを特徴とする請求項2に記載の内燃機関。
  4. 前記内燃機関の冷却水温度を検出する冷却水温度検出手段を更に備え、
    前記冷却水温度検出手段によって検出される冷却水温度が所定温度以上であるときに、該冷却水温度に基づいて推定される燃焼室壁温を、前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値として設定することを特徴とする請求項1に記載の内燃機関。
  5. 前記冷却水温度検出手段によって検出される冷却水温度に基づいて推定される燃焼室壁温であって前記燃焼室壁温推定手段によって推定される燃焼室壁温の上限値とされる燃焼室壁温は、該冷却水温度が高くなるに従い高くなることを特徴とする請求項4に記載の内燃機関。
JP2004029413A 2004-02-05 2004-02-05 内燃機関 Withdrawn JP2005220809A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029413A JP2005220809A (ja) 2004-02-05 2004-02-05 内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029413A JP2005220809A (ja) 2004-02-05 2004-02-05 内燃機関

Publications (1)

Publication Number Publication Date
JP2005220809A true JP2005220809A (ja) 2005-08-18

Family

ID=34996644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029413A Withdrawn JP2005220809A (ja) 2004-02-05 2004-02-05 内燃機関

Country Status (1)

Country Link
JP (1) JP2005220809A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025521A (ja) * 2006-07-25 2008-02-07 Toyota Motor Corp 内燃機関の制御装置
DE102007006341A1 (de) * 2007-02-08 2008-08-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen
US8161920B2 (en) 2006-06-05 2012-04-24 Toyota Jidosha Kabushiki Kaisha Heat storage apparatus and engine including the same
JP2019148233A (ja) * 2018-02-27 2019-09-05 ダイハツ工業株式会社 内燃機関の制御装置
JP2020105938A (ja) * 2018-12-26 2020-07-09 ダイハツ工業株式会社 内燃機関の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8161920B2 (en) 2006-06-05 2012-04-24 Toyota Jidosha Kabushiki Kaisha Heat storage apparatus and engine including the same
JP2008025521A (ja) * 2006-07-25 2008-02-07 Toyota Motor Corp 内燃機関の制御装置
DE102007006341A1 (de) * 2007-02-08 2008-08-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen
DE102007006341B4 (de) 2007-02-08 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung einer Brennkraftmaschine in Kraftfahrzeugen
JP2019148233A (ja) * 2018-02-27 2019-09-05 ダイハツ工業株式会社 内燃機関の制御装置
JP7013090B2 (ja) 2018-02-27 2022-01-31 ダイハツ工業株式会社 内燃機関の制御装置
JP2020105938A (ja) * 2018-12-26 2020-07-09 ダイハツ工業株式会社 内燃機関の制御装置
JP7218054B2 (ja) 2018-12-26 2023-02-06 ダイハツ工業株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP4434241B2 (ja) 内燃機関の停止始動制御装置
JP3811044B2 (ja) 内燃機関のラジエータ故障検知装置
CN104797799A (zh) 基于测量和估算的内燃机内部汽缸压力值检测自动点火的方法和设备
JP2009185774A (ja) 内燃機関の制御装置および制御方法
JP4096942B2 (ja) 内燃機関の燃料噴射制御装置
JP2841921B2 (ja) 内燃機関の電子制御燃料噴射装置
US10273929B2 (en) Ignition timing control apparatus for internal combustion engine
CN104781523A (zh) 基于测量和估算的内燃机内部汽缸压力值检测自动点火的方法和设备
JP2018071485A (ja) 内燃機関の制御装置
JPH11125141A (ja) エンジンの実燃料着火時期検出方法及びその装置,並びにエンジンの燃料噴射時期制御方法及びその装置
JP2005220809A (ja) 内燃機関
JP4923463B2 (ja) 内燃機関の燃料噴射制御装置
JP2008261236A (ja) 内燃機関の制御装置及び制御システム
JP4872900B2 (ja) 圧縮着火式内燃機関の燃料セタン価推定装置及び圧縮着火式内燃機関の制御装置
JP2010156248A (ja) 内燃機関の制御装置
JP4937287B2 (ja) 内燃機関の制御装置
JP2008038732A (ja) 内燃機関の燃料制御装置
JP4706424B2 (ja) 圧縮自着火式内燃機関の制御装置
JP4352901B2 (ja) 圧縮着火内燃機関の始動制御装置
JP2012219757A (ja) 内燃機関の制御装置
JP5018660B2 (ja) 内燃機関の始動制御システム
JP5222122B2 (ja) エンジンの始動制御装置
JP2005009357A (ja) 圧縮着火式内燃機関の制御装置
JP4085817B2 (ja) 内燃機関の失火検出装置
JP2005120860A (ja) 内燃機関の最適点火時期設定方法及び最適点火時期設定装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501