JP2005213327A - Vegetable essential oil, manufacturing method therefor and method for manufacturing thymol - Google Patents

Vegetable essential oil, manufacturing method therefor and method for manufacturing thymol Download PDF

Info

Publication number
JP2005213327A
JP2005213327A JP2004020165A JP2004020165A JP2005213327A JP 2005213327 A JP2005213327 A JP 2005213327A JP 2004020165 A JP2004020165 A JP 2004020165A JP 2004020165 A JP2004020165 A JP 2004020165A JP 2005213327 A JP2005213327 A JP 2005213327A
Authority
JP
Japan
Prior art keywords
carbon dioxide
essential oil
plant essential
plant
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004020165A
Other languages
Japanese (ja)
Other versions
JP4666923B2 (en
Inventor
Yoshitaka Nakamura
喜孝 中村
Hiromoto Kuwabara
浩誠 桑原
Tetsuhiro Kajiya
哲博 梶矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Res & Dev Ass For New Fu
Japan Research & Development Association For New Functional Foods
Original Assignee
Japan Res & Dev Ass For New Fu
Japan Research & Development Association For New Functional Foods
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Res & Dev Ass For New Fu, Japan Research & Development Association For New Functional Foods filed Critical Japan Res & Dev Ass For New Fu
Priority to JP2004020165A priority Critical patent/JP4666923B2/en
Publication of JP2005213327A publication Critical patent/JP2005213327A/en
Application granted granted Critical
Publication of JP4666923B2 publication Critical patent/JP4666923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a vegetable essential oil using a carbon dioxide fluid in a supercritical or subcritical state, and other technologies related thereto. <P>SOLUTION: This method for manufacturing a vegetable essential oil comprises a step of preparing a liquid vegetable essential oil sample in which a raw, essential oil-containing vegetable material is extracted with either one of water, a hydrophilic solvent and a mixture thereof followed by preparing the liquid vegetable essential oil sample through concentration, and a carbon dioxide fluid contacting step in which the obtained liquid vegetable essential oil sample contacts with a carbon dioxide fluid in a supercritical or subcritical state. The carbon dioxide fluid contacting step in this method preferably comprises a carbon dioxide gas dissolving step in which the liquid vegetable essential oil sample contacts with the carbon dioxide fluid to dissolve the carbon dioxide gas in the liquid vegetable essential oil sample to the saturation, and a step of treatment with a carbon dioxide gas in a supercritical state in which the liquid vegetable essential oil sample having the carbon dioxide gas dissolved therein is kept and stirred in the carbon dioxide supercritical state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超臨界乃至は亜臨界状態の炭酸ガス流体を用いた植物精油の製造方法、該製造方法により得られる植物精油、並びに、チモールの製造方法に関する。   The present invention relates to a method for producing a plant essential oil using a supercritical or subcritical carbon dioxide fluid, a plant essential oil obtained by the production method, and a method for producing thymol.

精油含有植物から抽出される揮発性の油状物質である精油成分は、香料、消臭剤、防かび剤、抗菌剤、等に広く利用されている。この精油成分の抽出方法としては、例えば、超臨界抽出法、水蒸気蒸留法、などがある。前記超臨界抽出法は、高圧機器を使用するため、植物乾燥原料の抽出バッチ当たり仕込み量が少なく、多大な製造費用を要するという欠点がある。前記水蒸気蒸留法は、精油成分の回収のために多量の熱量が必要となり、多大なエネルギー消費と褐変等の品質劣化が生じ易く、小規模生産機での製造が行われているにすぎない。
このため、精油含有植物から精油成分を低温下で、効率よく大量に製造することができる抽出方法の提供が強く求められていた。
Essential oil components, which are volatile oily substances extracted from essential oil-containing plants, are widely used in fragrances, deodorants, fungicides, antibacterial agents, and the like. Examples of the essential oil component extraction method include a supercritical extraction method and a steam distillation method. Since the supercritical extraction method uses high-pressure equipment, there is a drawback that the amount of the plant dry raw material charged per extraction batch is small and a great manufacturing cost is required. The steam distillation method requires a large amount of heat for recovering essential oil components, and is liable to cause enormous energy consumption and quality deterioration such as browning, and is only produced on a small-scale production machine.
For this reason, provision of the extraction method which can manufacture an essential oil component from an essential oil containing plant efficiently and in large quantities at low temperature was strongly calculated | required.

近年、植物体から精油成分の低温抽出を行う方法として、炭酸ガス超臨界流体をミクロバブル化させて液状物と混合接触させる装置が提案されている(特許文献1及び2、非特許文献1参照)。
しかしながら、揮発性の油状物質である精油成分を品質を損なうことなく、安価に効率よく、大量に超臨界抽出することは困難であり、更なる改良・開発が望まれているのが現状である。
In recent years, as a method for performing low-temperature extraction of essential oil components from a plant body, an apparatus has been proposed in which a carbon dioxide supercritical fluid is microbubbled and mixed and contacted with a liquid material (see Patent Documents 1 and 2, Non-Patent Document 1). ).
However, it is difficult to supercritically extract a large amount of essential oil components, which are volatile oily substances, at low cost and efficiently without losing quality, and further improvements and developments are desired. .

特開2001−299303号公報JP 2001-299303 A 特開2001−128652号公報JP 2001-128652 A ぶんせき No.4 1995 筬島 豊No. 4 1995 Yutaka Samejima

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、超臨界乃至は亜臨界状態の炭酸ガス流体を植物精油液状試料に接触させることによって、精油含有植物から精油成分を効率よく高含有量で抽出することができ、品質を損なうことなく低温で、連続抽出処理が可能となり、大量生産ができ、大幅なコストダウンが達成できる植物精油の製造方法、該製造方法により得られる植物精油、並びに、チモールの製造方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, by bringing a supercritical or subcritical carbon dioxide fluid fluid into contact with a plant essential oil liquid sample, an essential oil component can be efficiently extracted at a high content from an essential oil-containing plant, and the quality is impaired. It is possible to provide a method for producing a plant essential oil that can be continuously extracted at a low temperature, can be mass-produced, and can achieve a significant cost reduction, a plant essential oil obtained by the production method, and a method for producing thymol. Objective.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、以下の知見を得た。即ち
精油含有植物の含水アルコール抽出物を炭酸ガス超臨界流体に接触させることによって液−液抽出により精油成分を効率よく抽出できることを知見した。
また、炭酸ガス超臨界流体をミクロバブル化することにより短時間に炭酸ガスの飽和濃度にまで達することができる。更に、反応コイルを用いることにより抽出効率が飛躍的に高められ、従来のように抽出原料を乾燥して直接抽出することなく、アルコール抽出により大規模に効率よく抽出した後、液−液で超臨界抽出を行うことによって超臨界流体が持つ拡散性と凝集性の性質を最大限に利用して精油成分を効率よく抽出できることを知見した。
具体的には、強い抗菌性を有するホソバヤマジソに含まれる精油成分であるチモールを抽出精製するには、ホソバヤマジソ原料を天日乾燥して炭酸ガス超臨界抽出すれば水蒸気蒸留と同様な抽出・精製が可能であるが、乾燥費用及び単位操作となる超臨界抽出費用は膨大なものとなって商品化することは困難であったが、ホソバヤマジソ原料を含水アルコール抽出によって大量抽出処理した後、得られたホソバヤマジソ抽出液をミクロバブル炭酸ガス超臨界流体抽出装置を用いて処理することによって、連続抽出処理が可能となり、大量製造可能となり、大幅なコストダウンが達成できることを知見した。
As a result of intensive studies by the present inventors in order to solve the above problems, the following knowledge has been obtained. That is, it has been found that the essential oil component can be efficiently extracted by liquid-liquid extraction by bringing the hydrous alcohol extract of an essential oil-containing plant into contact with a carbon dioxide supercritical fluid.
Further, the carbon dioxide supercritical fluid can be microbubbled to reach the saturation concentration of carbon dioxide in a short time. Furthermore, the extraction efficiency is dramatically increased by using a reaction coil, and the extraction raw material is efficiently extracted on a large scale by alcohol extraction without drying and directly extracting the extraction raw material as in the past. It was found that the essential oil components can be extracted efficiently by making the best use of the diffusive and cohesive properties of supercritical fluids by performing critical extraction.
Specifically, in order to extract and purify thymol, an essential oil component contained in Hosoyama Yamajiso, which has strong antibacterial properties, extraction and purification similar to steam distillation can be performed by drying the Hosobayamajiso raw material in the sun and performing supercritical extraction with carbon dioxide gas. Although it was possible, it was difficult to commercialize the product because the drying cost and the supercritical extraction cost, which is a unit operation, became enormous, but it was obtained after a large amount extraction processing of Hosobayamajiso raw material by hydrous alcohol extraction It was discovered that by processing Hosoyama Yamajiso extract using a micro-bubble carbon dioxide supercritical fluid extraction device, continuous extraction processing becomes possible, mass production becomes possible, and significant cost reduction can be achieved.

本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 精油含有植物原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理して植物精油液状試料を調製する植物精油液状試料調製工程と、得られた植物精油液状試料を超臨界乃至亜臨界状態の炭酸ガス流体に接触させる炭酸ガス流体接触工程とを含むことを特徴とする植物精油の製造方法である。
<2> 炭酸ガス流体接触工程が、植物精油液状試料を炭酸ガス流体に接触させて該植物精油液状試料中に炭酸ガスを飽和濃度にまで溶解させる炭酸ガス溶解工程と、炭酸ガスを溶解させた植物精油液状試料を炭酸ガスの超臨界状態に保持して撹拌する炭酸ガス超臨界処理工程とを含む前記<1>に記載の植物精油の製造方法である。
<3> 炭酸ガス溶解工程において、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いる前記<2>に記載の植物精油の製造方法である。
<4> 炭酸ガス溶解工程が、温度0〜30℃、圧力10〜30MPaの炭酸ガス飽和濃度条件で行われる前記<2>から<3>のいずれかに記載の植物精油の製造方法である。
<5> 炭酸ガス超臨界処理工程が、温度31.1〜50℃、圧力10〜30MPaの炭酸ガス超臨界条件を保持して行われる前記<2>から<4>のいずれかに記載の植物精油の製造方法である。
<6> 植物精油液状試料にかけていた圧力を常圧まで急速に減圧して該植物精油液状試料中から炭酸ガスを除去する炭酸ガス除去工程を含む前記<2>から<5>のいずれかに記載の植物精油の製造方法である。
<7> 炭酸ガス流体接触工程が、更にリサイクル工程を含み、植物精油液状試料を連続処理する前記<2>から<6>のいずれかに記載の植物精油の製造方法である。
<8> 精油含有植物原料が、ホソバヤマジソ、タイム,オレガノ及びローズマリーから選択される少なくとも1種である前記<1>から<7>のいずれかに記載の植物精油の製造方法である。
<9> 精油含有植物原料がホソバヤマジソであり、精油成分がチモールである前記<8>に記載の植物精油の製造方法である。
<10> 前記<1>から<9>のいずれかに記載の植物精油の製造方法により製造されたことを特徴とする植物精油である。
<11> ホソバヤマジソの地上部を含水エタノールで抽出処理したホソバヤマジソ抽出液を、ミクロバブル化した炭酸ガス流体に接触させて該ホソバヤマジソ抽出液中に炭酸ガスを飽和濃度にまで溶解させる炭酸ガス溶解工程と、炭酸ガスを溶解させたホソバヤマジソ抽出液を炭酸ガスの超臨界状態に保持して撹拌する炭酸ガス超臨界処理工程とを含むことを特徴とするチモールの製造方法である。
The present invention is based on the above findings of the present inventors, and means for solving the above problems are as follows. That is,
<1> A plant essential oil liquid sample preparation step in which an essential oil-containing plant material is extracted with water, a hydrophilic solvent, or a mixed solvent thereof to prepare a plant essential oil liquid sample, and the obtained plant essential oil liquid sample And a carbon dioxide fluid contact step of contacting the carbon dioxide fluid in a critical or subcritical state.
<2> The carbon dioxide fluid contact step comprises contacting the plant essential oil liquid sample with the carbon dioxide fluid to dissolve the carbon dioxide gas to a saturated concentration in the plant essential oil liquid sample, and dissolving the carbon dioxide gas. The method for producing plant essential oil according to <1>, further comprising a carbon dioxide gas supercritical treatment step in which the plant essential oil liquid sample is kept in a supercritical state of carbon dioxide gas and stirred.
<3> The method for producing a plant essential oil according to <2>, wherein in the carbon dioxide gas dissolving step, a carbon dioxide fluid that is microbubbled through a mesh filter having a mesh of 100 μm or less is used.
<4> The method for producing a plant essential oil according to any one of <2> to <3>, wherein the carbon dioxide gas dissolving step is performed under a carbon dioxide gas saturated concentration condition of a temperature of 0 to 30 ° C. and a pressure of 10 to 30 MPa.
<5> The plant according to any one of <2> to <4>, wherein the carbon dioxide supercritical treatment step is performed while maintaining carbon dioxide supercritical conditions at a temperature of 31.1 to 50 ° C. and a pressure of 10 to 30 MPa. It is a manufacturing method of essential oil.
<6> The method according to any one of <2> to <5>, further including a carbon dioxide removal step of removing carbon dioxide from the plant essential oil liquid sample by rapidly reducing the pressure applied to the plant essential oil liquid sample to normal pressure. This is a method for producing a plant essential oil.
<7> The method for producing a plant essential oil according to any one of <2> to <6>, wherein the carbon dioxide fluid contact step further includes a recycling step, and the plant essential oil liquid sample is continuously processed.
<8> The method for producing a plant essential oil according to any one of <1> to <7>, wherein the essential oil-containing plant material is at least one selected from Hosoyama Yamajiso, Thyme, Oregano and Rosemary.
<9> The method for producing a plant essential oil according to <8>, wherein the essential oil-containing plant raw material is Hosobayamajiso and the essential oil component is thymol.
<10> A plant essential oil produced by the method for producing a plant essential oil according to any one of <1> to <9>.
<11> A carbon dioxide gas dissolving step in which the ground portion of Hosoyama Yamajiso is extracted with water-containing ethanol and brought into contact with a microbubbled carbon dioxide fluid to dissolve the carbon dioxide gas to a saturated concentration. And a carbon dioxide supercritical treatment step of stirring and maintaining the supercritical state of carbon dioxide in a supercritical state of carbon dioxide gas.

本発明によると、従来における諸問題を解決でき、植物精油液状試料をアルコール抽出として大量抽出が可能となり、超臨界抽出となる液−液抽出部は連続抽出として小型化し安価なコストで高品質の精油成分を得ることでき、大幅なコストダウンが達成できる。   According to the present invention, various problems in the prior art can be solved, a large amount of plant essential oil liquid sample can be extracted as alcohol extraction, and the liquid-liquid extraction part that becomes supercritical extraction is downsized as continuous extraction and is of high quality at low cost. Essential oil components can be obtained, and a significant cost reduction can be achieved.

(植物精油の製造方法及び植物精油)
本発明の植物精油の製造方法は、植物精油液状試料調製工程と、炭酸ガス流体接触工程とを含んでなり、該炭酸ガス流体接触工程は、炭酸ガス溶解工程、炭酸ガス超臨界処理工程、減圧工程、更に必要に応じてその他の工程を含んでなる。
本発明のチモールの製造方法は、ホソバヤマジソ抽出液を、炭酸ガス溶解工程、及び炭酸ガス超臨界処理工程で処理するものである。
本発明の植物精油は、前記本発明の植物精油の製造方法により得られる。
以下、本発明の植物精油の製造方法の説明を通じて、本発明の植物精油及びチモールの製造方法の詳細についても明らかにする。
(Plant essential oil production method and plant essential oil)
The plant essential oil production method of the present invention comprises a plant essential oil liquid sample preparation step and a carbon dioxide gas fluid contact step. The carbon dioxide fluid contact step comprises a carbon dioxide gas dissolution step, a carbon dioxide gas supercritical treatment step, a reduced pressure. The process further includes other processes as necessary.
The method for producing thymol according to the present invention is to treat Hosoyama Yamajiso extract in a carbon dioxide gas dissolving step and a carbon dioxide supercritical treatment step.
The plant essential oil of the present invention is obtained by the method for producing the plant essential oil of the present invention.
Hereinafter, the details of the method for producing the plant essential oil and thymol of the present invention will be clarified through the description of the method for producing the plant essential oil of the present invention.

−植物精油液状試料調製工程−
前記植物精油液状試料調製工程は、精油含有植物原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理し、濃縮して植物精油液状試料を調製する工程である。
-Plant essential oil liquid sample preparation process-
The plant essential oil liquid sample preparation step is a step of preparing a plant essential oil liquid sample by extracting and concentrating an essential oil-containing plant material with water, a hydrophilic solvent, or a mixed solvent thereof.

前記精油含有植物原料としては、例えば、ホソバヤマジソ、タイム、オレガノ及びローズマリーから選択される少なくとも1種が好適であり、これらの中でも、ホソバヤマジソが特に好ましい。
前記精油成分としては、例えば、チモール、カルバクロール、リナロール、シトラール、ゲラニオール、メントール、などが挙げられる。これらの中でも、チモールが特に好ましい。
As said essential oil containing plant raw material, at least 1 sort (s) selected from Hosobayamajiso, thyme, oregano, and rosemary is suitable, for example, Among these, Hosobayamajiso is especially preferable.
Examples of the essential oil component include thymol, carvacrol, linalool, citral, geraniol, menthol, and the like. Among these, thymol is particularly preferable.

前記抽出処理としては、特に制限はなく、公知の方法の中から目的に応じて適宜選択することができ、例えば、水、熱水、親水性有機溶媒等による抽出処理、などが挙げられ、 前記抽出に用いる溶媒としては、水、親水性有機溶媒、又はこれらの混合液を室温又は溶媒の沸点以下の温度で用いることが好ましい。   The extraction treatment is not particularly limited and may be appropriately selected from known methods according to the purpose. Examples thereof include extraction treatment with water, hot water, a hydrophilic organic solvent, and the like. As a solvent used for extraction, it is preferable to use water, a hydrophilic organic solvent, or a mixture thereof at room temperature or a temperature not higher than the boiling point of the solvent.

前記水としては、例えば、純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水等の他、これらに各種処理を施したものが含まれる。水に施す処理としては、例えば、精製、加熱、殺菌、ろ過、イオン交換、浸透圧の調整、緩衝化等が含まれる。従って、本発明において抽出溶媒として使用し得る水には、精製水、熱水、イオン交換水、生理食塩水、リン酸緩衝液、リン酸緩衝生理食塩水等も含まれる。   Examples of the water include pure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, and fresh water, and those obtained by performing various treatments on these. Examples of the treatment applied to water include purification, heating, sterilization, filtration, ion exchange, adjustment of osmotic pressure, buffering, and the like. Therefore, the water that can be used as the extraction solvent in the present invention includes purified water, hot water, ion-exchanged water, physiological saline, phosphate buffer, phosphate buffered saline, and the like.

前記親水性有機溶媒としては、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等の炭素数1〜5の低級アルコール;アセトン、メチルエチルケトン等の低級脂肪族ケトン;1,3−ブチレングリコール、プロピレングリコール、グリセリン等の炭素数2〜5の多価アルコールなどが挙げられ、これら親水性有機溶媒と水との混合溶媒などを用いることができる。なお、水と親水性有機溶媒との混合系溶媒を使用する場合には、前記低級アルコールの場合には、水10質量部に対して低級アルコール1〜90質量部が好ましい。前記低級脂肪族ケトンの場合には、水10質量部に対して低級脂肪族ケトン1〜40質量部が好ましい。前記多価アルコールの場合には、水10質量部に対して多価アルコール1〜90質量部が好ましい。   Examples of the hydrophilic organic solvent include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, propyl alcohol, and isopropyl alcohol; lower aliphatic ketones such as acetone and methyl ethyl ketone; 1,3-butylene glycol, propylene glycol, Examples thereof include polyhydric alcohols having 2 to 5 carbon atoms such as glycerin, and a mixed solvent of these hydrophilic organic solvents and water can be used. In addition, when using the mixed solvent of water and a hydrophilic organic solvent, in the case of the said lower alcohol, 1-90 mass parts of lower alcohol is preferable with respect to 10 mass parts of water. In the case of the lower aliphatic ketone, 1 to 40 parts by mass of the lower aliphatic ketone is preferable with respect to 10 parts by mass of water. In the case of the said polyhydric alcohol, 1-90 mass parts of polyhydric alcohol is preferable with respect to 10 mass parts of water.

例えば、抽出溶媒を満たした処理槽に精油含有植物原料を投入し、必要に応じて時々攪拌しながら、30分から2時間静置して可溶性成分を溶出した後、ろ過して固形物を除去し、得られた抽出液から抽出溶媒を留去し、乾燥することにより抽出物が得られる。抽出溶媒量は通常、抽出原料の5〜15倍量(質量比)であり、抽出条件は、抽出溶媒として水を用いた場合には、通常50〜95℃で1〜4時間程度である。また、抽出溶媒として水とエタノールとの混合溶媒を用いた場合には、通常40〜80℃で30分〜4時間程度である。   For example, an essential oil-containing plant raw material is put into a treatment tank filled with an extraction solvent, and left to stand for 30 minutes to 2 hours with occasional stirring as necessary to elute soluble components, and then filtered to remove solids. Then, the extraction solvent is distilled off from the obtained extract and dried to obtain an extract. The amount of the extraction solvent is usually 5 to 15 times the mass of the extraction raw material (mass ratio), and the extraction conditions are usually 50 to 95 ° C. and about 1 to 4 hours when water is used as the extraction solvent. Moreover, when using the mixed solvent of water and ethanol as an extraction solvent, it is about 30 minutes-4 hours at 40-80 degreeC normally.

−炭酸ガス溶解工程−
前記炭酸ガス溶解工程は、植物精油液状試料を炭酸ガス流体に接触させて該植物精油液状試料中に炭酸ガスを飽和濃度にまで溶解させる工程である。
前記炭酸ガス溶解工程は、温度0〜30℃、圧力10〜30MPaの炭酸ガス飽和濃度条件で行われることが好ましい。
前記炭酸ガス溶解工程においては、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いることが、植物精油液状試料への炭酸ガスの溶解性を向上させて炭酸ガスを飽和濃度にまで溶解させることができ、接触効率を上げる点で好ましい。メッシュが20μm以下のメッシュ状フィルタを用いることがより好ましい。
なお、高速ミキサー、超音波発生装置などを併用して植物精油液状試料と炭酸ガスとの接触効率を高めることもできる。
-Carbon dioxide dissolution process-
The carbon dioxide gas dissolving step is a step of bringing a plant essential oil liquid sample into contact with a carbon dioxide gas fluid and dissolving the carbon dioxide gas in the plant essential oil liquid sample to a saturated concentration.
The carbon dioxide gas dissolving step is preferably performed under carbon dioxide saturation conditions of a temperature of 0 to 30 ° C. and a pressure of 10 to 30 MPa.
In the carbon dioxide gas dissolving step, using a carbon dioxide gas fluid that is micro-bubbled through a mesh filter having a mesh of 100 μm or less improves the solubility of carbon dioxide gas in the plant essential oil liquid sample and saturates the carbon dioxide gas. It can be dissolved to a concentration, which is preferable in terms of increasing contact efficiency. It is more preferable to use a mesh filter having a mesh of 20 μm or less.
Note that the contact efficiency between the plant essential oil liquid sample and carbon dioxide can be increased by using a high-speed mixer, an ultrasonic generator, or the like.

−炭酸ガス超臨界処理工程−
前記炭酸ガス超臨界処理工程は、植物精油液状試料に溶解させた炭酸ガスを超臨界状態に保持して撹拌する工程である。
前記炭酸ガス超臨界処理工程は、温度31.1〜50℃(好ましくは31.5〜40℃)、圧力10〜30MPaの炭酸ガス超臨界条件を保持して行われることが好ましい。この条件において、植物精油液状試料に溶解している炭酸ガスは速やかに超臨界状態に変化する。超臨界状態の炭酸ガスは、極めて効率的に拡散、凝集し、炭酸ガスの浸透により、精油成分の抽出効率が向上する。
-Carbon dioxide supercritical processing-
The carbon dioxide supercritical treatment step is a step in which carbon dioxide dissolved in a plant essential oil liquid sample is kept in a supercritical state and stirred.
The carbon dioxide supercritical treatment step is preferably performed while maintaining carbon dioxide supercritical conditions at a temperature of 31.1 to 50 ° C. (preferably 31.5 to 40 ° C.) and a pressure of 10 to 30 MPa. Under these conditions, carbon dioxide dissolved in the plant essential oil liquid sample quickly changes to a supercritical state. Carbon dioxide in the supercritical state diffuses and aggregates very efficiently, and the extraction efficiency of essential oil components is improved by the permeation of carbon dioxide.

−減圧工程−
前記減圧工程は、植物精油液状試料にかけていた圧力を常圧まで急速に減圧して炭酸ガスを除去する工程である。
植物精油液状試料にかけていた圧力を常圧まで急速に減圧することで、植物精油液状試料中に溶け込んでいた炭酸ガスは瞬間的に膨張し、気化する。
-Decompression step-
The decompression step is a step of removing carbon dioxide by rapidly reducing the pressure applied to the plant essential oil liquid sample to normal pressure.
By rapidly reducing the pressure applied to the plant essential oil liquid sample to normal pressure, the carbon dioxide dissolved in the plant essential oil liquid sample is instantaneously expanded and vaporized.

本発明においては、更にリサイクル工程を含み、分離された炭酸ガス超臨界流体を減圧部にて抽出された溶質を分離し、炭酸ガスとしてモレキュラーシーブ脱水後、粒状活性炭で脱臭して加圧液化処理を経て再利用することができ、コストダウンを図ることができる点で好ましい。
以上説明した本発明の植物精油の製造方法は、各工程を連結して、連続処理することによって、植物精油液状試料を極めて効率よく抽出することができ、高含有量の精油が製造できる。
In the present invention, further comprising a recycling step, the separated carbon dioxide supercritical fluid is separated from the solute extracted in the decompression section, dehydrated with molecular activated carbon after carbon sieve dehydration as carbon dioxide, and pressurized liquefaction treatment It is preferable in that it can be reused through the process and the cost can be reduced.
The plant essential oil production method of the present invention described above can extract a plant essential oil liquid sample very efficiently by connecting the respective steps and performing continuous treatment, whereby a high-content essential oil can be produced.

(チモールの製造方法)
本発明のチモールの製造方法は、ホソバヤマジソの地上部を含水エタノールで抽出処理したホソバヤマジソ抽出液を、ミクロバブル化した炭酸ガス流体に接触させて該ホソバヤマジソ抽出液中に炭酸ガスを飽和濃度にまで溶解させる炭酸ガス溶解工程と、炭酸ガスを溶解させたホソバヤマジソ抽出液を炭酸ガスの超臨界状態に保持して撹拌する炭酸ガス超臨界処理工程とを含んでなり、炭酸ガス除去工程、更に必要に応じてその他の工程を含んでなる。
この場合、前記炭酸ガス溶解工程、前記炭酸ガス超臨界処理工程、及び前記炭酸ガス除去工程については、上記と同様である。
得られた精油成分であるチモールは、フェノールやクレゾールより強い殺菌作用があり,防菌剤、防腐剤として有用である。
(Thymol production method)
In the method for producing thymol of the present invention, an extract of Hosoyama Yamajiso obtained by extracting the above-ground portion of Hosobayamajiso with hydrous ethanol is brought into contact with a microbubbled carbon dioxide fluid to dissolve carbon dioxide to a saturated concentration. A carbon dioxide gas dissolving step, and a carbon dioxide gas supercritical treatment step of stirring and maintaining the supercritical state of the carbon dioxide gas dissolved in the supercritical state of carbon dioxide gas. And other steps.
In this case, the carbon dioxide dissolving step, the carbon dioxide supercritical treatment step, and the carbon dioxide removing step are the same as described above.
The obtained essential oil component, thymol, has a stronger bactericidal action than phenol and cresol, and is useful as a fungicide and antiseptic.

ここで、本発明の植物精油の製造方法及びチモールの製造方法を実施するための装置としては、例えば、図1に示すミクロバブル炭酸ガス超臨界処理装置が好適に挙げられる。なお、ミクロバブル炭酸ガス超臨界処理装置の詳細については、特開2001−299303号公報及び特開2001−128652号公報に記載されている。   Here, as an apparatus for implementing the manufacturing method of the plant essential oil and the manufacturing method of thymol of this invention, the micro bubble carbon dioxide supercritical processing apparatus shown in FIG. 1 is mentioned suitably, for example. The details of the microbubble carbon dioxide supercritical processing apparatus are described in Japanese Patent Application Laid-Open Nos. 2001-299303 and 2001-128652.

図1に示すミクロバブル炭酸ガス超臨界処理装置は、植物精油液状試料を原液供給タンク1から高圧ポンプ2にて溶解槽7へ連続供給し、該溶解槽7にて炭酸ガス流体に接触させる。
一方、液体二酸化炭素ボンベ3と溶解槽7底部との間には、冷却器4、ポンプ4、加熱器6を備えた炭酸ガス流路が設けられている。このように冷却器により液状炭酸ガスを冷却してポンプに通すことにより、圧力が一定となるので、炭酸ガスが一定量溶解槽中に入れることができる。
The microbubble carbon dioxide supercritical processing apparatus shown in FIG. 1 continuously supplies a plant essential oil liquid sample from a stock solution supply tank 1 to a dissolution tank 7 by a high-pressure pump 2, and contacts the carbon dioxide gas fluid in the dissolution tank 7.
On the other hand, between the liquid carbon dioxide cylinder 3 and the bottom of the dissolution tank 7, a carbon dioxide gas flow path including a cooler 4, a pump 4, and a heater 6 is provided. Thus, by cooling liquid carbon dioxide gas with a cooler and letting it pass through a pump, the pressure becomes constant, so that a certain amount of carbon dioxide gas can be put into the dissolution tank.

溶解槽7の下部にはメッシュ状フィルタ9が設けられている。設置したメッシュが100μm以下(好ましくはメッシュが20μm以下)のメッシュ状フィルタ9を通ってミクロバブル化した液化炭酸ガスと接触混合させることにより効率的に飽和濃度に達する。溶解槽7を0℃〜30℃に保持し圧力を10Mpa〜30Mpaに調整して炭酸ガスの飽和溶解濃度に達する拡散性が十分に発揮される。そして、飽和濃度に達した接触・混合液を反応コイル8(保持部)へ移し、31.1℃以上に加熱することにより炭酸ガスの超臨界状態とし、凝集性を有する炭酸ガス超臨界流体溶媒への溶質の抽出を行う。その後、反応液を気液分離槽10へ移し、植物精油抽出液と炭酸ガス超臨界流体とを分離する。このように分離槽を設けているので、超臨界処理の効率が向上する。   A mesh filter 9 is provided at the bottom of the dissolution tank 7. The saturated concentration is efficiently reached by contacting and mixing with the liquefied carbon dioxide gas formed into microbubbles through the mesh filter 9 having a mesh of 100 μm or less (preferably a mesh of 20 μm or less). The dissolution tank 7 is maintained at 0 ° C. to 30 ° C., and the pressure is adjusted to 10 Mpa to 30 Mpa, so that the diffusibility reaching the saturated dissolution concentration of carbon dioxide gas is sufficiently exhibited. Then, the contact / mixed solution having reached the saturated concentration is transferred to the reaction coil 8 (holding section) and heated to 31.1 ° C. or higher to bring the carbon dioxide gas into a supercritical state. Extract solutes into Then, a reaction liquid is moved to the gas-liquid separation tank 10, and a plant essential oil extract and a carbon dioxide supercritical fluid are isolate | separated. Since the separation tank is thus provided, the efficiency of the supercritical processing is improved.

次に、分離された炭酸ガス超臨界流体は減圧部にて抽出された溶質を分離した後、炭酸ガスとしてモレキュラーシーブ脱水後粒状活性炭で脱臭して加圧液化処理を経て再利用される。分離回収された液体試料は減圧濃縮した後、噴霧乾燥して粉末製品が得られる。
なお、図1中、11は、気液分離センサ、12は、分離槽、13は、トラップ、16は処理試料槽をそれぞれ表す。
Next, the separated carbon dioxide supercritical fluid is separated from the solute extracted in the decompression section, dehydrated with molecular activated carbon after carbon sieve dehydration, and reused through pressure liquefaction treatment. The separated and collected liquid sample is concentrated under reduced pressure and then spray-dried to obtain a powder product.
In FIG. 1, 11 is a gas-liquid separation sensor, 12 is a separation tank, 13 is a trap, and 16 is a processing sample tank.

本発明の植物精油の製造方法によれば、植物精油液状試料から精油成分を効率よく抽出することができ、過度の熱量が加わることを回避でき、品質劣化を防止し得、連続抽出処理が可能となり、大幅なコストダウンが達成できる。
本発明の植物精油の製造方法により得られた植物精油は、香料、消臭剤、防かび剤、抗菌剤、等に幅広く利用できる。
According to the plant essential oil production method of the present invention, essential oil components can be efficiently extracted from a plant essential oil liquid sample, an excessive amount of heat can be avoided, quality deterioration can be prevented, and continuous extraction processing is possible. Thus, significant cost reduction can be achieved.
The plant essential oil obtained by the method for producing a plant essential oil of the present invention can be widely used for a fragrance, a deodorant, a fungicide, an antibacterial agent and the like.

以下、本発明の実施例について説明するが、本発明はこれら実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
−ホソバヤマジソからのチモールの製造−
ホソバヤマジソの乾燥葉部0.9kgを60質量%エタノール9L中において、室温で循環させながら2時間抽出した。次いで、100メッシュスクリーンにて固液分離し、抽出残渣に60質量%エタノール9Lを加え、室温で循環させながら1時間抽出を行い、100メッシュスクリーンにて固液分離した。
得られた抽出液を合わせて珪藻土プリコートによる清澄ろ過を行い、ホソバヤマジソの抽出液12Lを得た。ホソバヤマジソの抽出液の固形濃度は2.1質量%であった。
(Example 1)
-Production of thymol from Hosobayamajiso-
0.9 kg of dried foliage of Hosobayamajiso was extracted in 9 L of 60% by mass ethanol for 2 hours while circulating at room temperature. Subsequently, solid-liquid separation was performed on a 100 mesh screen, 9 L of 60 mass% ethanol was added to the extraction residue, extraction was performed for 1 hour while circulating at room temperature, and solid-liquid separation was performed on a 100 mesh screen.
The obtained extracts were combined and subjected to clarification filtration with a diatomaceous earth precoat to obtain 12 L of Hosoyama Yamajiso extract. The solid concentration of the extract of Hosoyama Yamajiso was 2.1% by mass.

次に、得られたホソバヤマジソの抽出液を図1に示すミクロバブル超臨界処理装置(溶解槽7の下部にメッシュが100μmのメッシュ状フィルタを配置)を用いて、試料流量10mL/分、液化炭酸ガス流量20mL/分、処理圧力20Mpa、溶解槽温度20℃、反応コイル保持部の温度が40℃で通液処理し、3時間抽出を行った。気液分離後、減圧回収部で得られたチモールを含むエタノール液は190mLであり、エタノール濃度は93質量%であった。   Next, using the microbubble supercritical processing apparatus shown in FIG. 1 (with a mesh filter having a mesh of 100 μm disposed at the lower part of the dissolution tank 7), the extract of Hosoyama Yamajiso obtained was liquefied carbonic acid at a sample flow rate of 10 mL / min. A liquid flow treatment was performed at a gas flow rate of 20 mL / min, a treatment pressure of 20 Mpa, a dissolution bath temperature of 20 ° C., and a temperature of the reaction coil holding unit of 40 ° C., and extraction was performed for 3 hours. After the gas-liquid separation, the ethanol solution containing thymol obtained in the reduced pressure recovery part was 190 mL, and the ethanol concentration was 93% by mass.

得られた抽出試料液及びミクロバルブ処理液について、下記条件で高速液体クロマトグラフィー(HPLC)を用いて、チモール含有量を測定した。結果を表1に示す。
HPLCの条件は、カラム:Wakosilに5C18HGを添加したものを充填、キャリア:50体積%アセトニトリル、流量:1.0mL/分、波長:260nm、注入量:20mLで行った。
About the obtained extraction sample liquid and microvalve process liquid, thymol content was measured using the high performance liquid chromatography (HPLC) on the following conditions. The results are shown in Table 1.
HPLC conditions were as follows: column: packed with Wakosil added with 5C18HG, carrier: 50% by volume acetonitrile, flow rate: 1.0 mL / min, wavelength: 260 nm, injection volume: 20 mL.

Figure 2005213327
表1の結果から、ミクロバブル超臨界処理を行うことによって、飛躍的にチモールの含有量が高くなることが認められる。
Figure 2005213327
From the results of Table 1, it is recognized that the content of thymol is dramatically increased by performing the microbubble supercritical treatment.

本発明の植物精油の製造方法によれば、精油含有植物原料から精油成分を効率よく高含有量で抽出することができ、品質を損なうことなく低温で、連続抽出処理が可能となり、大量生産ができ、大幅なコストダウンが達成できる。本発明の植物精油の製造方法により製造された植物精油は、香料、消臭剤、防かび剤、抗菌剤、等に幅広く利用できる。   According to the plant essential oil production method of the present invention, essential oil components can be efficiently extracted from essential oil-containing plant raw materials at a high content, and a continuous extraction process can be performed at a low temperature without impairing the quality. And a significant cost reduction can be achieved. The plant essential oil produced by the method for producing a plant essential oil of the present invention can be widely used for a fragrance, a deodorant, a fungicide, an antibacterial agent and the like.

図1は、本発明のミクロバブル超臨界処理装置の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a microbubble supercritical processing apparatus of the present invention.

符号の説明Explanation of symbols

1 原液供給タンク
2 高圧ポンプ
3 液体二酸化炭素ボンベ
4 冷却器
5 炭酸ガス供給ポンプ
6 加熱器
7 溶解槽
8 反応コイル(保持部)
9 メッシュ状フィルタ
10 気液分離槽
11 気液分離センサ
12 分離槽
13 トラップ
16 処理試料槽
20 減圧部
DESCRIPTION OF SYMBOLS 1 Stock solution supply tank 2 High pressure pump 3 Liquid carbon dioxide cylinder 4 Cooler 5 Carbon dioxide supply pump 6 Heater 7 Dissolution tank 8 Reaction coil (holding part)
9 Mesh Filter 10 Gas-Liquid Separation Tank 11 Gas-Liquid Separation Sensor 12 Separation Tank 13 Trap 16 Processed Sample Tank 20 Decompression Unit

Claims (11)

精油含有植物原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理して植物精油液状試料を調製する植物精油液状試料調製工程と、得られた植物精油液状試料を超臨界乃至亜臨界状態の炭酸ガス流体に接触させる炭酸ガス流体接触工程とを含むことを特徴とする植物精油の製造方法。   A plant essential oil liquid sample preparation step in which an essential oil-containing plant raw material is extracted with water, a hydrophilic solvent or a mixed solvent thereof to prepare a plant essential oil liquid sample, and the obtained plant essential oil liquid sample is supercritical to sub- And a carbon dioxide fluid contact step for contacting the carbon dioxide fluid in a critical state. 炭酸ガス流体接触工程が、植物精油液状試料を炭酸ガス流体に接触させて該植物精油液状試料中に炭酸ガスを飽和濃度にまで溶解させる炭酸ガス溶解工程と、炭酸ガスを溶解させた植物精油液状試料を炭酸ガスの超臨界状態に保持して撹拌する炭酸ガス超臨界処理工程とを含む請求項1に記載の植物精油の製造方法。   The carbon dioxide fluid contact step includes contacting the plant essential oil liquid sample with the carbon dioxide fluid to dissolve the carbon dioxide gas to a saturated concentration in the plant essential oil liquid sample, and the plant essential oil liquid in which the carbon dioxide gas is dissolved. A method for producing a plant essential oil according to claim 1, comprising a carbon dioxide supercritical treatment step of stirring the sample while maintaining the sample in a supercritical state of carbon dioxide gas. 炭酸ガス溶解工程において、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いる請求項2に記載の植物精油の製造方法。   The method for producing a plant essential oil according to claim 2, wherein in the carbon dioxide gas dissolving step, a carbon dioxide gas fluid that is microbubbled through a mesh filter having a mesh of 100 µm or less is used. 炭酸ガス溶解工程が、温度0〜30℃、圧力10〜30MPaの炭酸ガス飽和濃度条件で行われる請求項2から3のいずれかに記載の植物精油の製造方法。   The method for producing a plant essential oil according to any one of claims 2 to 3, wherein the carbon dioxide gas dissolving step is performed under a carbon dioxide saturated concentration condition of a temperature of 0 to 30 ° C and a pressure of 10 to 30 MPa. 炭酸ガス超臨界処理工程が、温度31.1〜50℃、圧力10〜30MPaの炭酸ガス超臨界条件を保持して行われる請求項2から4のいずれかに記載の植物精油の製造方法。   The method for producing a plant essential oil according to any one of claims 2 to 4, wherein the carbon dioxide supercritical treatment step is performed while maintaining carbon dioxide supercritical conditions at a temperature of 31.1 to 50 ° C and a pressure of 10 to 30 MPa. 植物精油液状試料にかけていた圧力を常圧まで急速に減圧して該植物精油液状試料中から炭酸ガスを除去する炭酸ガス除去工程を含む請求項2から5のいずれかに記載の植物精油の製造方法。   The method for producing a plant essential oil according to any one of claims 2 to 5, further comprising a carbon dioxide removal step of removing carbon dioxide from the plant essential oil liquid sample by rapidly reducing the pressure applied to the plant essential oil liquid sample to normal pressure. . 炭酸ガス流体接触工程が、更にリサイクル工程を含み、植物精油液状試料を連続処理する請求項2から6のいずれかに記載の植物精油の製造方法。   The method for producing plant essential oil according to any one of claims 2 to 6, wherein the carbon dioxide fluid contact step further includes a recycling step, and the plant essential oil liquid sample is continuously processed. 精油含有植物原料が、ホソバヤマジソ、タイム,オレガノ及びローズマリーから選択される少なくとも1種である請求項1から7のいずれかに記載の植物精油の製造方法。   The method for producing a plant essential oil according to any one of claims 1 to 7, wherein the essential oil-containing plant material is at least one selected from Hosobayamajiso, thyme, oregano and rosemary. 精油含有植物原料がホソバヤマジソであり、精油成分がチモールである請求項8に記載の植物精油の製造方法。   The method for producing a plant essential oil according to claim 8, wherein the essential oil-containing plant raw material is Hosobayamajiso and the essential oil component is thymol. 請求項1から9のいずれかに記載の植物精油の製造方法により製造されたことを特徴とする植物精油。   A plant essential oil produced by the method for producing a plant essential oil according to any one of claims 1 to 9. ホソバヤマジソの地上部を含水エタノールで抽出処理したホソバヤマジソ抽出液を、ミクロバブル化した炭酸ガス流体に接触させて該ホソバヤマジソ抽出液中に炭酸ガスを飽和濃度にまで溶解させる炭酸ガス溶解工程と、炭酸ガスを溶解させたホソバヤマジソ抽出液を炭酸ガスの超臨界状態に保持して撹拌する炭酸ガス超臨界処理工程とを含むことを特徴とするチモールの製造方法。
A carbon dioxide gas dissolving step in which the above-ground portion of Hosoyama Yamajiso is extracted with hydrous ethanol and brought into contact with a microbubbled carbon dioxide fluid to dissolve the carbon dioxide gas to a saturated concentration, and carbon dioxide gas. And a carbon dioxide supercritical treatment step of stirring and maintaining a supercritical state of carbon dioxide in a supercritical state of Hosoyama Yamajiso dissolved in thymol.
JP2004020165A 2004-01-28 2004-01-28 Method for producing Hosobayamajiso essential oil and method for producing thymol Expired - Fee Related JP4666923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020165A JP4666923B2 (en) 2004-01-28 2004-01-28 Method for producing Hosobayamajiso essential oil and method for producing thymol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020165A JP4666923B2 (en) 2004-01-28 2004-01-28 Method for producing Hosobayamajiso essential oil and method for producing thymol

Publications (2)

Publication Number Publication Date
JP2005213327A true JP2005213327A (en) 2005-08-11
JP4666923B2 JP4666923B2 (en) 2011-04-06

Family

ID=34904169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020165A Expired - Fee Related JP4666923B2 (en) 2004-01-28 2004-01-28 Method for producing Hosobayamajiso essential oil and method for producing thymol

Country Status (1)

Country Link
JP (1) JP4666923B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130338241A1 (en) * 2010-12-23 2013-12-19 Charabot Process for obtaining a scented extract of fresh flowers and/or leaves using natural solvents
CN106281702A (en) * 2016-08-25 2017-01-04 苏州森佰生物科技有限公司 Artemisia argyi Levl. et Van. var. argyi cv. Qiai quintessence oil and its preparation method and application
EP2545974A4 (en) * 2010-03-08 2017-08-16 Ligaric Co., Ltd. Extraction method using microbubbles and extracting liquid
CN108707511A (en) * 2018-05-30 2018-10-26 郑州雪麦龙食品香料有限公司 A kind of extraction process of citronella oil
CN109224509A (en) * 2018-11-20 2019-01-18 那坡康正天然植物提取有限责任公司 A kind of combination extractor
CN114288707A (en) * 2021-12-29 2022-04-08 水羊化妆品制造有限公司 Honeysuckle flower extract, extraction method and application thereof
CN114887545A (en) * 2022-05-05 2022-08-12 广州芬豪香精有限公司 Preparation method of natural refreshing flower and fruit flavor essence

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108392851B (en) * 2018-05-11 2021-11-26 济南巨鼎食品有限公司 Supercritical extraction device for traditional Chinese medicine
CN108424816B (en) * 2018-05-30 2021-07-20 郑州雪麦龙食品香料有限公司 Extraction process of thyme essential oil
CN110721527A (en) * 2019-10-22 2020-01-24 枣庄学院 Natural medicine draws enrichment facility in succession

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204002A (en) * 1985-03-06 1986-09-10 Hitachi Ltd Extracting and separating method by supercritical solvent
JPH0252002A (en) * 1988-08-17 1990-02-21 Hitachi Ltd Ultracritical gas extraction process and its device
JPH039984A (en) * 1989-06-06 1991-01-17 Lion Corp Preparation of natural antioxidant
JPH05207863A (en) * 1992-01-27 1993-08-20 Nippon Tansan Kk Method for deodorizing liquid food
JPH067605A (en) * 1992-05-08 1994-01-18 Japan Tobacco Inc Extractor using supercritical carbon dioxide
JPH0788303A (en) * 1993-09-20 1995-04-04 Lion Corp Production of valuable matter extract
JPH09143489A (en) * 1995-09-21 1997-06-03 T Hasegawa Co Ltd Extraction of flavor from raw material of animal and plant
JPH1133087A (en) * 1997-07-14 1999-02-09 Shimadzu Corp Continuous processing method using subcritical fluid
JP2001031516A (en) * 1999-07-15 2001-02-06 Murata Makoto Antibacterial, deodorizing and antioxidation composition produced by using component originated from mosla chinensis maxim. and its processed product
JP2001078705A (en) * 1999-09-10 2001-03-27 Ajinomoto Co Inc Production of tangle extract seasoning with good scent and flavor
JP2001316214A (en) * 2000-05-11 2001-11-13 Sadayoshi Usuda Natural drug against plant disease

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204002A (en) * 1985-03-06 1986-09-10 Hitachi Ltd Extracting and separating method by supercritical solvent
JPH0252002A (en) * 1988-08-17 1990-02-21 Hitachi Ltd Ultracritical gas extraction process and its device
JPH039984A (en) * 1989-06-06 1991-01-17 Lion Corp Preparation of natural antioxidant
JPH05207863A (en) * 1992-01-27 1993-08-20 Nippon Tansan Kk Method for deodorizing liquid food
JPH067605A (en) * 1992-05-08 1994-01-18 Japan Tobacco Inc Extractor using supercritical carbon dioxide
JPH0788303A (en) * 1993-09-20 1995-04-04 Lion Corp Production of valuable matter extract
JPH09143489A (en) * 1995-09-21 1997-06-03 T Hasegawa Co Ltd Extraction of flavor from raw material of animal and plant
JPH1133087A (en) * 1997-07-14 1999-02-09 Shimadzu Corp Continuous processing method using subcritical fluid
JP2001031516A (en) * 1999-07-15 2001-02-06 Murata Makoto Antibacterial, deodorizing and antioxidation composition produced by using component originated from mosla chinensis maxim. and its processed product
JP2001078705A (en) * 1999-09-10 2001-03-27 Ajinomoto Co Inc Production of tangle extract seasoning with good scent and flavor
JP2001316214A (en) * 2000-05-11 2001-11-13 Sadayoshi Usuda Natural drug against plant disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEPARATION SCIENCE AND TECHNOLOGY, vol. 2003, Vol.38, No.3, p.541-552, JPN6010004016, ISSN: 0001523501 *
Z LEBENSM UNTERS FORSCH A, vol. 1999, Vol.208, No.3, p.212-216, JPN6010004015, ISSN: 0001523502 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2545974A4 (en) * 2010-03-08 2017-08-16 Ligaric Co., Ltd. Extraction method using microbubbles and extracting liquid
US20130338241A1 (en) * 2010-12-23 2013-12-19 Charabot Process for obtaining a scented extract of fresh flowers and/or leaves using natural solvents
JP2014507502A (en) * 2010-12-23 2014-03-27 チャラボット Method for obtaining fresh flower and / or leaf aroma extracts using natural solvents
JP2017088894A (en) * 2010-12-23 2017-05-25 チャラボット Method for obtaining scented extract of fresh flowers and/or leaves using natural solvent
US10577561B2 (en) * 2010-12-23 2020-03-03 Charabot Process for obtaining a scented extract of fresh flowers and/or leaves using natural solvents
CN106281702A (en) * 2016-08-25 2017-01-04 苏州森佰生物科技有限公司 Artemisia argyi Levl. et Van. var. argyi cv. Qiai quintessence oil and its preparation method and application
CN108707511A (en) * 2018-05-30 2018-10-26 郑州雪麦龙食品香料有限公司 A kind of extraction process of citronella oil
CN109224509A (en) * 2018-11-20 2019-01-18 那坡康正天然植物提取有限责任公司 A kind of combination extractor
CN114288707A (en) * 2021-12-29 2022-04-08 水羊化妆品制造有限公司 Honeysuckle flower extract, extraction method and application thereof
CN114288707B (en) * 2021-12-29 2023-09-12 水羊化妆品制造有限公司 Honeysuckle extract, extraction method and application thereof
CN114887545A (en) * 2022-05-05 2022-08-12 广州芬豪香精有限公司 Preparation method of natural refreshing flower and fruit flavor essence

Also Published As

Publication number Publication date
JP4666923B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US11135257B2 (en) Method for preparation of pharmacologically-relevant compounds from botanical sources
US11248189B2 (en) Apparatus and method for plant extraction
US10406453B2 (en) Cannabinoid extraction process using brine
AU2018254634B2 (en) Apparatus for preparation of pharmacologically-relevant compounds from botanical sources
US9744200B1 (en) System for producing a terpene-enhanced cannabinoid concentrate
JP4666923B2 (en) Method for producing Hosobayamajiso essential oil and method for producing thymol
EP1055439A2 (en) Fragrance extraction
CN106906049A (en) A kind of Australia tea tree hydrosol refining technique
Plaza et al. Obtaining hydroxytyrosol from olive mill waste using deep eutectic solvents and then supercritical CO 2
US20190232190A1 (en) Method and apparatus for preparation of pharmacologically-relevant compounds from botanical sources
WO2008071985A2 (en) Extraction process and purification process
US20220008839A1 (en) Semi-aqueous method for extracting a substance
KR20030059227A (en) Process for reducing the concentration of undesired compounds in a composition
EP1987868A1 (en) Method for the industrial use of tyrosol and hydroxytyrosol contained in the solid by-products of industrial olive crushing
KR100558382B1 (en) A method for production of extract from ginkgo biloba l. by supercritical fluid extraction technique
Lang et al. Pressurized water extraction (PWE) of terpene trilactones from Ginkgo biloba leaves
JP2006089414A (en) Method for removing residual agricultural chemical of plant extract and plant extract
CN113416605A (en) Hydrolat extraction method and hydrolat extraction device
CN106496023B (en) Method for preparing, separating and purifying artemisinin C active ingredient in propolis
JP3577358B2 (en) Method for producing deodorized carmine dye
Mattea et al. Fundamentals, Mathematical Models, and Extraction Processes with Supercritical Fluids
Sánchez-Arévalo et al. Solvent-resistant ultrafiltration to recover bioactive compounds from wet olive pomace extracts
BRPI0903275A2 (en) artemisinin extraction and purification process from artemisia annua solid mass using carbon dioxide
JPH0853382A (en) Production of cis-abienol-containing material
US20040031755A1 (en) Extraction process using water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees