JP2006089414A - Method for removing residual agricultural chemical of plant extract and plant extract - Google Patents

Method for removing residual agricultural chemical of plant extract and plant extract Download PDF

Info

Publication number
JP2006089414A
JP2006089414A JP2004277757A JP2004277757A JP2006089414A JP 2006089414 A JP2006089414 A JP 2006089414A JP 2004277757 A JP2004277757 A JP 2004277757A JP 2004277757 A JP2004277757 A JP 2004277757A JP 2006089414 A JP2006089414 A JP 2006089414A
Authority
JP
Japan
Prior art keywords
plant extract
carbon dioxide
plant
supercritical
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004277757A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nakamura
喜孝 中村
Hiromoto Kuwabara
浩誠 桑原
Tetsuhiro Kajiya
哲博 梶矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Res & Dev Ass For New Fu
Japan Research & Development Association For New Functional Foods
Original Assignee
Japan Res & Dev Ass For New Fu
Japan Research & Development Association For New Functional Foods
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Res & Dev Ass For New Fu, Japan Research & Development Association For New Functional Foods filed Critical Japan Res & Dev Ass For New Fu
Priority to JP2004277757A priority Critical patent/JP2006089414A/en
Publication of JP2006089414A publication Critical patent/JP2006089414A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing a residual agricultural chemical of a plant extract by using carbon dioxide fluid kept in a supercritical or subcritical state, in which the residual agricultural chemical can efficiently be removed without loss or deterioration of a plant extract ingredient. <P>SOLUTION: The method for removing the residual agricultural chemical of the plant extract comprises a carbon dioxide-dissolving step for dissolving carbon dioxide in the plant extract material by bringing the plant extract material into contact with the carbon dioxide fluid, a carbon dioxide supercritical treatment step for retaining the plant extract material in which the carbon dioxide is dissolved in the supercritical or subcritical state and agitating the solution, and a carbon dioxide-removing step for removing carbon dioxide from the plant extract material by rapidly reducing the pressure of the plant extract material to ordinary pressure. In the carbon dioxide-dissolving step, an aspect using the carbon dioxide fluid forming microbubble by passing the carbon dioxide fluid through a mesh-like filter having ≤100 μm mesh is preferable. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超臨界乃至は亜臨界状態の炭酸ガス流体を用いた植物抽出物の残留農薬除去方法及び該残留農薬除去方法により得られた植物抽出物に関する。   The present invention relates to a method for removing residual pesticides from a plant extract using a supercritical or subcritical carbon dioxide fluid, and a plant extract obtained by the method for removing residual pesticides.

炭酸ガス超臨界流体は、水を多量に含む試料において抽出効率が大きく低下するが、炭酸ガス超臨界流体をミクロバブル化させて液状物と混合接触させて、低温下で、効率よく大量に抽出することができる装置が提案されている(特許文献1及び2参照)。   Carbon dioxide supercritical fluid greatly reduces the extraction efficiency in samples containing a large amount of water. However, carbon dioxide supercritical fluid is microbubbled and mixed with a liquid to efficiently extract large quantities at low temperatures. Devices that can do this have been proposed (see Patent Documents 1 and 2).

植物より含水アルコール抽出される植物抽出物から、過去に使用された農薬のうち分解せずに土壌中に蓄積されていたものを原料植物が根から吸収したり、また栽培過程で使用された農薬が付着、又は吸収され、濃縮されて残留農薬が検出されることがある。   From plant extracts extracted from plants with hydroalcoholic alcohol, the pesticides used in the past have been absorbed from the roots by the plants that have accumulated in the soil without being decomposed. May be attached or absorbed and concentrated to detect residual pesticides.

このような抽出物からの残留農薬の除去方法として、例えば、(1)植物乾燥原料を超臨界抽出する方法、及び(2)疎水性溶媒で抽出する方法がある。しかし、前記(1)の超臨界抽出では、高圧機器を用いるため、植物乾燥原料の抽出バッチ当たり仕込み量が少なくなり、多大な製造費用を要するという問題がある。一方、前記(2)の疎水性溶媒での抽出では、植物原料へ残存する溶媒回収時に多量の熱量を必要とするため、多大なエネルギー消費と褐変等の品質劣化が生じたり、また、残留農薬と物性の近似した成分も抽出して損失するおそれがある。
また、植物抽出物を体積比で10:90〜80:20の低級脂肪族アルコールと水との混合液に溶解させ、得られた溶液を細孔の最頻度半径が30〜120Åである多孔性吸着樹脂に接触させて溶液中の残留農薬を該吸着樹脂に吸着させ、処理後の溶液より植物抽出物を回収する植物抽出物中の残留農薬を除去する方法が提案されている(特許文献3参照)。しかし、この方法においても、残留農薬と物性が近似した抽出成分は吸着損失が大きく、抽出物の収率が低くなってしまうという問題がある。
As a method for removing residual agricultural chemicals from such an extract, for example, there are (1) a method for supercritical extraction of dry plant raw materials and (2) a method for extraction with a hydrophobic solvent. However, in the supercritical extraction of (1), since a high-pressure apparatus is used, there is a problem that the amount of the plant dry raw material charged per extraction batch is reduced and a great production cost is required. On the other hand, the extraction with the hydrophobic solvent (2) requires a large amount of heat when recovering the solvent remaining in the plant raw material, resulting in significant energy consumption and quality deterioration such as browning, and residual agricultural chemicals. There is a risk of extracting and losing components with similar physical properties.
Further, the plant extract is dissolved in a mixture of a lower aliphatic alcohol and water having a volume ratio of 10:90 to 80:20, and the resulting solution is porous with a pore having a most frequent radius of 30 to 120 mm. There has been proposed a method for removing residual agricultural chemicals in a plant extract by bringing the residual agricultural chemicals in a solution into contact with an adsorption resin and adsorbing the residual agricultural chemicals in the adsorption resin and recovering the plant extract from the treated solution (Patent Document 3). reference). However, even in this method, there is a problem that an extraction component having properties close to those of the residual agricultural chemical has a large adsorption loss and the yield of the extract is lowered.

したがって植物抽出成分の損失や劣化がなく、残留農薬を効率良く除去する方法の開発が強く望まれているのが現状である。   Therefore, there is a strong demand for the development of a method for efficiently removing residual agricultural chemicals without loss or deterioration of plant extract components.

特開2001−128652号公報JP 2001-128652 A 特開2001−299303号公報JP 2001-299303 A 特開2000−72790号公報JP 2000-72790 A

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、超臨界乃至は亜臨界状態の炭酸ガス流体を植物抽出材料に接触させることによって、植物抽出材料から残留農薬を効率良く除去することができ、植物抽出成分の損失や劣化がなく、低温で、連続抽出処理が可能となり、大量生産ができ、大幅なコストダウンが達成できる植物抽出物の残留農薬除去方法及び植物抽出物を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, according to the present invention, residual pesticides can be efficiently removed from the plant extract material by bringing a supercritical or subcritical carbon dioxide fluid into contact with the plant extract material, and the loss or deterioration of the plant extract component is reduced. An object of the present invention is to provide a method for removing residual agricultural chemicals from a plant extract and a plant extract that can be continuously extracted at low temperature, can be mass-produced, and can achieve a significant cost reduction.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、以下の知見を得た。即ち
植物抽出材料を炭酸ガス超臨界流体に接触させることによって液−液抽出により残留農薬を効率良く除去できることを知見した。
また、炭酸ガス超臨界流体をミクロバブル化することにより短時間に炭酸ガスの飽和濃度にまで達することができる。更に、反応コイルを用いることにより抽出効率が飛躍的に高められ、従来のように植物抽出原料を乾燥して直接抽出することなく、アルコール抽出により大規模に効率よく抽出した後、液−液で超臨界抽出を行うことによって、超臨界流体が持つ拡散性と凝集性の性質を最大限に利用して、植物抽出成分の損失や劣化がなく、植物抽出物から残留農薬を効率良く除去できることを知見した。
As a result of intensive studies by the present inventors in order to solve the above problems, the following knowledge has been obtained. That is, it was found that residual pesticides can be efficiently removed by liquid-liquid extraction by contacting the plant extract material with carbon dioxide supercritical fluid.
Further, the carbon dioxide supercritical fluid can be microbubbled to reach the saturation concentration of carbon dioxide in a short time. Furthermore, the extraction efficiency is dramatically increased by using the reaction coil, and after the plant extraction raw material is efficiently extracted on a large scale by alcohol extraction without drying and directly extracting as in the conventional method, the liquid-liquid By performing supercritical extraction, the diffusive and cohesive properties of supercritical fluids can be utilized to the maximum, so that there is no loss or deterioration of plant extract components, and pesticide residues can be efficiently removed from plant extracts. I found out.

本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 植物抽出材料を炭酸ガス流体に接触させて該植物抽出材料中に該炭酸ガス流体を溶解させる炭酸ガス溶解工程と、該炭酸ガスを溶解させた植物抽出材料を炭酸ガスの超臨界乃至亜臨界状態に保持して撹拌する炭酸ガス超臨界処理工程と、前記植物抽出材料を常圧まで急速に減圧して該植物抽出材料中から炭酸ガスを除去する炭酸ガス除去工程とを含むことを特徴とする植物抽出物の残留農薬除去方法である。
<2> 炭酸ガス溶解工程において、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いる前記<1>に記載の植物抽出物の残留農薬除去方法である。
<3> 植物抽出材料が、植物抽出原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理して得られた植物抽出液、並びに植物抽出物を水、親水性溶媒及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかである前記<1>から<2>のいずれかに記載の植物抽出物の残留農薬除去方法である。
<4> 植物抽出材料が、植物抽出原料を水、エタノール及びこれらの混合溶媒のいずれかで抽出処理した植物抽出液、並びに植物抽出物を水、エタノール及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかである前記<3>に記載の植物抽出物の残留農薬除去方法である。
<5> 前記<1>から<4>のいずれかに記載の残留農薬除去方法により得られたことを特徴とする植物抽出物である。
The present invention is based on the above findings of the present inventors, and means for solving the above problems are as follows. That is,
<1> A carbon dioxide gas dissolving step in which a plant extract material is brought into contact with a carbon dioxide gas fluid to dissolve the carbon dioxide gas fluid in the plant extract material, and a plant extract material in which the carbon dioxide gas is dissolved is supercritical to carbon dioxide gas. A carbon dioxide supercritical treatment step of maintaining and stirring in a subcritical state, and a carbon dioxide gas removal step of rapidly reducing the plant extract material to normal pressure to remove carbon dioxide from the plant extract material. A method for removing residual pesticides from plant extracts.
<2> The method for removing residual pesticides from a plant extract according to <1>, wherein in the carbon dioxide gas dissolving step, carbon dioxide gas fluid that is microbubbled through a mesh filter having a mesh size of 100 μm or less is used.
<3> A plant extract obtained by extracting a plant extract raw material with water, a hydrophilic solvent, and a mixed solvent thereof, and a plant extract obtained by extracting the plant extract with water, a hydrophilic solvent, and these The method for removing residual agricultural chemicals from a plant extract according to any one of <1> to <2>, wherein the plant extract solution is any one of plant extract solutions dissolved in any of mixed solvents.
<4> Plant extract material is a plant extract obtained by extracting a plant extract raw material with water, ethanol, or a mixed solvent thereof, and a plant extract is dissolved with water, ethanol, or a mixed solvent thereof. It is a residual agrochemical removal method of the plant extract as described in said <3> which is either a plant extract solution.
<5> A plant extract obtained by the method for removing residual agricultural chemicals according to any one of <1> to <4>.

本発明によると、従来における諸問題を解決でき、植物抽出材料を炭酸ガス超臨界流体に接触させることによって液−液抽出により、連続抽出として小型化し得、安価なコストで、植物抽出成分の損失や劣化がなく、植物抽出物から残留農薬を効率良く除去することができ、食品添加物、化粧料構成成分、医薬品、医薬部外品等、様々な分野で好適に用いることができる。   According to the present invention, various problems in the prior art can be solved, liquid-liquid extraction can be miniaturized as continuous extraction by contacting the plant extraction material with carbon dioxide supercritical fluid, loss of plant extraction components at low cost It can be efficiently removed from plant extracts and can be suitably used in various fields such as food additives, cosmetic constituents, pharmaceuticals, and quasi drugs.

(植物抽出物の残留農薬除去方法、及び植物抽出物)
本発明の植物抽出物の残留農薬除去方法は、炭酸ガス溶解工程と、炭酸ガス超臨界処理工程と、炭酸ガス除去工程とを含んでなり、更に必要に応じてその他の工程を含んでなる。
本発明の植物抽出物は、前記本発明の植物抽出物の残留農薬除去方法により得られる。
以下、本発明の植物抽出物の残留農薬除去方法の説明を通じて、本発明の植物抽出物の詳細についても明らかにする。
(Residual pesticide removal method of plant extract and plant extract)
The method for removing residual agricultural chemicals from plant extracts of the present invention comprises a carbon dioxide gas dissolving step, a carbon dioxide supercritical treatment step, and a carbon dioxide removing step, and further comprising other steps as necessary.
The plant extract of the present invention is obtained by the method for removing residual agricultural chemicals of the plant extract of the present invention.
Hereinafter, the details of the plant extract of the present invention will be clarified through the description of the method for removing residual agricultural chemicals of the plant extract of the present invention.

ここで、本発明の植物抽出物の残留農薬除去方法において、除去が可能な農薬としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、EPN、EPTC、p,p−DDD、p,p−DDE、α−BHC、β−BHC、γ−BHC、δ−BHC、アクリナトリン、アセタミプリド、アセフェート、イソフェンホス、イソフェンホスP=O、イソプロカルブ、イプロジオン、イミベンコナゾール、エジフェンホス、エスプロカルブ、エチオフェンカルブ、エトプロホス、エトリムホス、カズサホス、カプタホール、カルバリル、キナルホス、キノメチオネート、キャプタン、クロルピリホス、クロルフェンビンホス、クロルベンジレート、クロロプロファム、ジエトフェンカルブ、ジクロフルアニド、ジクロルボス、ジコホール、シハロトリン、ジフェノコナゾール、シフルトリン、シプロコナゾール、シペルメトリン、ジメチピン、ジメチルビンホス、シラフルオフェン、ダイアジノン、チオベンカルブ、チオメトン、デルタメトリン、テニルクロール、テブコナゾ−ル、テブフェンピラド、テフルトリン、テルブホス、トリアジメノール、トリクラゾール、トリクロホスメチル、パクロブトラゾール、パラチオン、パラチオンメチル、ハルフェンプロックス、ビテルタノール、ピラクロホス、ピリダベン、ピリフェノックス−E、ピリフェノックス−Z、ピリプロキシフェン、ピリミカルブ、ピリミジフェン、ピリミホスメチル、フェナリモル、フェニトロチオン、フェノカルブ、フェンスルホチオン、フェンチオン、フェントエート、フェンバレレート、ブチレート、フルシトリネート、フルトラニル、フルバリネート、フルシラゾール、プレチラクロール、プロチオホス、プロピコナゾール、ペルメトリン、ベンダイオカルブ、ペンディメタリン、ベンフレセート、ホサロン、ホスチアゼート、マラチオン、ミクロブタニル、メタミドホス、メチオカルブ、メトラクロル、メフェナセット、メプロニル、レナシル、エトフェンプロックス、オキサジキシル、クロルフェナピル、クロロタロニル、フェンプロパトロン、フサライド、ブタミホス、ブプロフェジン、フルジオキソニル、クレソキシムメチル、プロシミドン、メソミル、メタラキシル、メチダチオン、アゾキシストロビン、などが挙げられる。   Here, in the residual pesticide removal method of the plant extract of the present invention, the pesticide that can be removed is not particularly limited and can be appropriately selected according to the purpose. For example, EPN, EPTC, p, p- DDD, p, p-DDE, α-BHC, β-BHC, γ-BHC, δ-BHC, acrinathrin, acetamiprid, acephate, isofenphos, isofenphos P = O, isoprocarb, iprodione, imibenconazole, edifenphos, esprocarb, etiophencarb , Ethophos, etrimfos, kazusafos, captahol, carbaryl, quinalphos, quinomethionate, captan, chlorpyrifos, chlorfenvinphos, chlorbenzilate, chloropropham, dietofencarb, diclofuranide, dichlorvos, dicoho , Cyhalothrin, diphenoconazole, cyfluthrin, cyproconazole, cypermethrin, dimethipine, dimethylvinphos, silafluophene, diazinon, thiobencarb, thiomethone, deltamethrin, tenylchlor, tebuconazole, tebufenpyrad, tefluthrin, terbufos, triazimenol trichlorate Phosmethyl, paclobutrazol, parathion, parathion methyl, halfenprox, viteltanol, pyraclophos, pyridaben, pyrifenox-E, pyrifenox-Z, pyriproxyfen, pirimicarb, pyrimidifen, pyrimiphosmethyl, phenarimol, fenitrothion, phenocarb , Fensulfothion, fenthion, phentoate, fenvalerate, butyre , Flucitrinate, flutolanil, fulvalinate, flusilazole, pretilachlor, prothiophos, propiconazole, permethrin, bendiocarb, pendimethalin, benfrate, hosalon, phostiazate, malathion, microbutanyl, methamidophos, methiocarb, metolachlor, mefenaset, Examples include mepronil, lenacyl, etofenprox, oxadixyl, chlorfenapyr, chlorothalonil, fenpropatron, fusalide, butamifos, buprofezin, fludioxonyl, cresoxime methyl, procymidone, mesomil, metalaxyl, methidathion, azoxystrobin, and the like.

−炭酸ガス溶解工程−
前記炭酸ガス溶解工程は、植物抽出材料を炭酸ガス流体に接触させて該植物抽出材料中に該炭酸ガス流体を溶解させる工程である。
前記炭酸ガス溶解工程は、温度0〜30℃、圧力10〜30MPaの炭酸ガス飽和濃度条件で行われることが好ましい。
前記炭酸ガス溶解工程においては、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いることが、植物抽出材料への炭酸ガスの溶解性を向上させて炭酸ガスを飽和濃度にまで溶解させることができ、接触効率を上げる点で好ましい。メッシュが20μm以下のメッシュ状フィルタを用いることがより好ましい。
なお、高速ミキサー、超音波発生装置などを併用して植物抽出材料と炭酸ガスとの接触効率を高めることもできる。
-Carbon dioxide dissolution process-
The carbon dioxide gas dissolving step is a step of bringing the plant extract material into contact with a carbon dioxide fluid to dissolve the carbon dioxide fluid in the plant extract material.
The carbon dioxide gas dissolving step is preferably performed under carbon dioxide saturation conditions of a temperature of 0 to 30 ° C. and a pressure of 10 to 30 MPa.
In the carbon dioxide gas dissolving step, using a carbon dioxide gas fluid that is micro-bubbled through a mesh filter having a mesh of 100 μm or less improves the solubility of the carbon dioxide gas in the plant extract material, so that the carbon dioxide gas has a saturated concentration. It is preferable in terms of increasing the contact efficiency. It is more preferable to use a mesh filter having a mesh of 20 μm or less.
In addition, the contact efficiency between the plant extract material and carbon dioxide can be increased by using a high-speed mixer, an ultrasonic generator, or the like.

前記植物抽出原料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(1)植物抽出原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理して得られた植物抽出液、並びに(2)植物抽出物を水、親水性溶媒及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかが好ましい。   There is no restriction | limiting in particular as said plant extraction raw material, According to the objective, it can select suitably, For example, (1) The plant extraction raw material is extracted with water, a hydrophilic solvent, and these mixed solvents. Any of the obtained plant extract and (2) a plant extract solution prepared by dissolving a plant extract in water, a hydrophilic solvent, or a mixed solvent thereof is preferable.

前記植物抽出原料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、マリアアザミ、ポンカン、アザミ、アマチャ、アヘン、アロエベア、イチョウ、ウイキョウ、ウコン、ウスベニアオイ、ウラジロガシ、エイジツ、エゾウコギ、延命草、黄精、オウギ、オウゴン、オウバク、大麦、オトギリ草、柿、カミツレ、甘草、キダチアロエ、ギムネマ、キャベツ、玉竹、キラヤ、金銀花、菊花、クコ、紅参、苦参、熊笹、クワ、月桂樹葉、決明子、ゲンチアナ、小麦、米、ゴボウ、ゴマ、サルビア、サンザ、紫蘇、サンシシ、サンシュ、山椒、山薬、椎茸、紫恨、芍薬、車前草、十薬、生姜、白樺、スギナ、ステビア、センキュウ、センナ、センブリ、ソバ、大根、タイソウ、大豆、タマリンド、タラ、チンピ、当帰、トチュウ、冬虫夏草、トウモロコシ、刺梨、人参、忍冬、パセリ、浜防風、ハマメリス、姫松茸、ビルベリー、ビワ、ブクリョウ、ブドウ、ブルーベリー、ヘチマ、ヘマティン、菩提樹、牡丹皮、ホップ、松葉、桃、メリッサ、ユッカ、ヨクイニン、ヨモギ、ライ麦、ラカンカ、緑茶、リンゴ、ルイボス、ルスカス、霊芝、連銭草、ローズヒップ、ローズマリー等が挙げられる。   The plant extraction raw material is not particularly limited and may be appropriately selected depending on the purpose.For example, Maria thistle, Ponkan, thistle, Achacha, opium, aloe bear, ginkgo, fennel, turmeric, usbeneer, moths, ages Ezoukogi, Life-saving grass, Yellow spirit, Ougi, Ogon, Obakaku, Barley, Hypericum grass, Persimmon, Camille, Licorice, Kidachi aloe, Gymnema, Cabbage, Jade bamboo, Quillaja, Gold-silver flower, Chrysanthemum flower, Ginkgo, Red ginseng, Ginseng, Bear bear, Mulberry, Laurel Leaves, Seiko, Gentiana, Wheat, Rice, Burdock, Sesame, Salvia, Sanza, Shiso, Sanshishi, Sanche, Sanroku, Sanyaku, Shiitake, Murasakihime, Glaze, Car Forage, Ginger, White Ginger, Horsetail, Stevia, senkyu, senna, assembly, buckwheat, radish, tiso, soy, tamarind, cod, chimpi, toll, tomato Liu, Cordyceps, Corn, Sashimi, Ginseng, Shinobi Winter, Parsley, Beach Windbreak, Hamelis, Himematsu Rin, Bilberry, Biwa, Bukuryo, Grape, Blueberry, Loofah, Hematin, Bodhi Tree, Peony Skin, Hop, Pine Leaf, Peach, Melissa, Yucca, Yokuinin, Artemisia, Rye, Lacanca, Green tea, Apple, Rooibos, Luscus, Ganoderma, Reindeer grass, Rosehip, Rosemary and the like.

前記抽出処理としては、特に制限はなく、公知の方法の中から目的に応じて適宜選択することができ、例えば、水、熱水、親水性有機溶媒等による抽出処理、などが挙げられ、 前記抽出に用いる溶媒としては、水、親水性有機溶媒、若しくはこれらの混合液を室温又は溶媒の沸点以下の温度で用いることが好ましい。   The extraction treatment is not particularly limited and may be appropriately selected from known methods according to the purpose. Examples thereof include extraction treatment with water, hot water, a hydrophilic organic solvent, and the like. As a solvent used for extraction, it is preferable to use water, a hydrophilic organic solvent, or a mixture thereof at room temperature or a temperature not higher than the boiling point of the solvent.

前記水としては、例えば、純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水等の他、これらに各種処理を施したものが含まれる。水に施す処理としては、例えば、精製、加熱、殺菌、ろ過、イオン交換、浸透圧の調整、緩衝化等が含まれる。従って、本発明において抽出溶媒として使用し得る水には、精製水、熱水、イオン交換水、生理食塩水、リン酸緩衝液、リン酸緩衝生理食塩水等も含まれる。   Examples of the water include pure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, and fresh water, and those obtained by performing various treatments on these. Examples of the treatment applied to water include purification, heating, sterilization, filtration, ion exchange, adjustment of osmotic pressure, buffering, and the like. Therefore, the water that can be used as the extraction solvent in the present invention includes purified water, hot water, ion-exchanged water, physiological saline, phosphate buffer, phosphate buffered saline, and the like.

前記親水性有機溶媒としては、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール等の炭素数1〜5の低級アルコール;アセトン、メチルエチルケトン等の低級脂肪族ケトン;1,3−ブチレングリコール、プロピレングリコール、グリセリン等の炭素数2〜5の多価アルコールなどが挙げられ、これら親水性有機溶媒と水との混合溶媒などを用いることができる。なお、水と親水性有機溶媒との混合系溶媒を使用する場合には、前記低級アルコールの場合には、水10質量部に対して低級アルコール1〜90質量部が好ましい。前記低級脂肪族ケトンの場合には、水10質量部に対して低級脂肪族ケトン1〜40質量部が好ましい。前記多価アルコールの場合には、水10質量部に対して多価アルコール1〜90質量部が好ましい。
これらの中でも、植物抽出原料を水、エタノール及びこれらの混合溶媒のいずれかで抽出処理した植物抽出液、並びに植物抽出物を水、エタノール及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかが好ましく、植物抽出原料の含水エタノール抽出液及び植物の含水エタノール抽出物を含水エタノールで溶解した植物抽出物含水エタノール溶液のいずれかが特に好ましい。
Examples of the hydrophilic organic solvent include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, propyl alcohol, and isopropyl alcohol; lower aliphatic ketones such as acetone and methyl ethyl ketone; 1,3-butylene glycol, propylene glycol, Examples thereof include polyhydric alcohols having 2 to 5 carbon atoms such as glycerin, and a mixed solvent of these hydrophilic organic solvents and water can be used. In addition, when using the mixed solvent of water and a hydrophilic organic solvent, in the case of the said lower alcohol, 1-90 mass parts of lower alcohol is preferable with respect to 10 mass parts of water. In the case of the lower aliphatic ketone, 1 to 40 parts by mass of the lower aliphatic ketone is preferable with respect to 10 parts by mass of water. In the case of the said polyhydric alcohol, 1-90 mass parts of polyhydric alcohol is preferable with respect to 10 mass parts of water.
Among these, a plant extract obtained by extracting a plant extract raw material with water, ethanol, or a mixed solvent thereof, and a plant extract solution obtained by dissolving a plant extract with water, ethanol, or a mixed solvent thereof. Any one of the above is preferable, and either a hydrous ethanol extract of a plant extract raw material or a hydrous ethanol solution of a plant extract obtained by dissolving a hydrous ethanol extract of a plant with hydrous ethanol is particularly preferable.

前記抽出処理は、例えば、抽出溶媒を満たした処理槽に植物抽出原料を投入し、必要に応じて時々攪拌しながら、30分から2時間静置して可溶性成分を溶出した後、ろ過して固形物を除去し、得られた抽出液から抽出溶媒を留去し、乾燥することにより抽出物が得られる。抽出溶媒量は通常、植物抽出原料の5〜15倍量(質量比)であり、抽出条件は、抽出溶媒として水を用いた場合には、通常50〜95℃で1〜4時間程度である。また、抽出溶媒として水とエタノールとの混合溶媒を用いた場合には、通常40〜80℃で30分〜4時間程度である。   In the extraction treatment, for example, a plant extraction raw material is put into a treatment tank filled with an extraction solvent, and left standing for 30 minutes to 2 hours with occasional stirring as necessary to elute soluble components, followed by filtration and solidification. An extract is obtained by removing a thing, distilling an extraction solvent off from the obtained extract, and drying. The amount of extraction solvent is usually 5 to 15 times (mass ratio) of the plant extraction raw material, and the extraction condition is usually about 1 to 4 hours at 50 to 95 ° C. when water is used as the extraction solvent. . Moreover, when using the mixed solvent of water and ethanol as an extraction solvent, it is about 30 minutes-4 hours at 40-80 degreeC normally.

−炭酸ガス超臨界処理工程−
前記炭酸ガス超臨界処理工程は、該炭酸ガスを溶解させた植物抽出材料を炭酸ガスの超臨界乃至亜臨界状態に保持して撹拌する工程である。
前記炭酸ガス超臨界処理工程は、温度31.1〜50℃(好ましくは31.5〜40℃)、圧力10〜30MPaの炭酸ガス超臨界条件を保持して行われることが好ましい。この条件において、植物抽出材料に溶解している炭酸ガスは速やかに超臨界状態に変化する。超臨界状態の炭酸ガスは、極めて効率的に拡散、凝集し、炭酸ガスの浸透により、植物抽出材料から残留農薬を効率良く除去することができる。
-Carbon dioxide supercritical processing-
The carbon dioxide gas supercritical treatment step is a step of stirring the plant extract material in which the carbon dioxide gas is dissolved while maintaining the carbon dioxide gas in a supercritical to subcritical state.
The carbon dioxide supercritical treatment step is preferably performed while maintaining carbon dioxide supercritical conditions at a temperature of 31.1 to 50 ° C. (preferably 31.5 to 40 ° C.) and a pressure of 10 to 30 MPa. Under this condition, carbon dioxide dissolved in the plant extract material quickly changes to a supercritical state. Supercritical carbon dioxide diffuses and aggregates very efficiently, and residual pesticides can be efficiently removed from the plant extract material by the permeation of carbon dioxide.

−炭酸ガス除去工程−
前記炭酸ガス除去工程は、植物抽出材料にかけていた圧力を常圧まで急速に減圧して炭酸ガスを除去する工程である。
植物抽出材料にかけていた圧力を常圧まで急速に減圧することで、植物抽出材料中に溶け込んでいた炭酸ガスは瞬間的に膨張し、気化する。
-Carbon dioxide removal process-
The carbon dioxide removal step is a step of removing carbon dioxide by rapidly reducing the pressure applied to the plant extract material to normal pressure.
By rapidly reducing the pressure applied to the plant extract material to normal pressure, the carbon dioxide dissolved in the plant extract material is instantaneously expanded and vaporized.

本発明においては、更にリサイクル工程を含み、分離された炭酸ガス超臨界流体を減圧部にて抽出された溶質を分離し、炭酸ガスとしてモレキュラーシーブ脱水後粒状活性炭で脱臭して加圧液化処理を経て再利用することができ、コストダウンを図ることができる点で好ましい。
以上説明した本発明の植物抽出物の残留農薬除去方法は、各工程を連結して、連続処理することによって、植物抽出材料から残留農薬を効率良く除去することができる。
In the present invention, further comprising a recycling step, the separated solute extracted from the carbon dioxide supercritical fluid in the decompression unit is separated, dehydrated with granular activated carbon after carbon sieve dehydration as carbon dioxide, and subjected to pressure liquefaction treatment. It is preferable in that it can be reused later and cost can be reduced.
The method for removing residual pesticides from plant extracts of the present invention described above can efficiently remove residual pesticides from plant extract materials by connecting the steps and continuously treating them.

ここで、本発明の植物抽出物の残留農薬の除去方法を実施するための装置としては、例えば、図1に示すミクロバブル炭酸ガス超臨界処理装置が好適に挙げられる。なお、ミクロバブル炭酸ガス超臨界処理装置の詳細については、特開2001−299303号公報及び特開2001−128652号公報に記載されている。   Here, as a device for carrying out the method for removing a pesticide residue of a plant extract of the present invention, for example, a microbubble carbon dioxide supercritical treatment device shown in FIG. 1 is preferably exemplified. The details of the microbubble carbon dioxide supercritical processing apparatus are described in Japanese Patent Application Laid-Open Nos. 2001-299303 and 2001-128652.

図1に示すミクロバブル炭酸ガス超臨界処理装置は、植物抽出材料を原液供給タンク1から高圧ポンプ2にて溶解槽7へ連続供給し、該溶解槽7にて炭酸ガス流体に接触させる。
一方、液体二酸化炭素ボンベ3と溶解槽7底部との間には、冷却器4、ポンプ4、加熱器6を備えた炭酸ガス流路が設けられている。このように冷却器により液状炭酸ガスを冷却してポンプに通すことにより、圧力が一定となるので、炭酸ガスが一定量溶解槽中に入れることができる。
The microbubble carbon dioxide supercritical processing apparatus shown in FIG. 1 continuously supplies plant extract material from the stock solution supply tank 1 to the dissolution tank 7 by the high-pressure pump 2, and contacts the carbon dioxide gas fluid in the dissolution tank 7.
On the other hand, between the liquid carbon dioxide cylinder 3 and the bottom of the dissolution tank 7, a carbon dioxide gas flow path including a cooler 4, a pump 4, and a heater 6 is provided. Thus, by cooling liquid carbon dioxide gas with a cooler and letting it pass through a pump, the pressure becomes constant, so that a certain amount of carbon dioxide gas can be put into the dissolution tank.

溶解槽7の下部にはメッシュ状フィルタ9が設けられている。設置したメッシュが100μm以下(好ましくはメッシュが20μm以下)のメッシュ状フィルタ9を通ってミクロバブル化した液化炭酸ガスと接触混合させることにより効率的に飽和濃度に達する。溶解槽7を0℃〜30℃に保持し圧力を10Mpa〜30Mpaに調整して炭酸ガスの飽和溶解濃度に達する拡散性が十分に発揮される。そして、飽和濃度に達した接触・混合液を反応コイル8(保持部)へ移し、31.1℃以上に加熱することにより炭酸ガスの超臨界状態とし、凝集性を有する炭酸ガス超臨界流体溶媒への溶質の抽出を行う。その後、反応液を気液分離槽10へ移し、植物精油抽出液と炭酸ガス超臨界流体とを分離する。このように分離槽を設けているので、超臨界処理の効率が向上する。   A mesh filter 9 is provided at the bottom of the dissolution tank 7. The saturated concentration is efficiently reached by contacting and mixing with the liquefied carbon dioxide gas formed into microbubbles through the mesh filter 9 having a mesh of 100 μm or less (preferably a mesh of 20 μm or less). The dissolution tank 7 is maintained at 0 ° C. to 30 ° C., and the pressure is adjusted to 10 Mpa to 30 Mpa, so that the diffusibility reaching the saturated dissolution concentration of carbon dioxide gas is sufficiently exhibited. Then, the contact / mixed solution having reached the saturated concentration is transferred to the reaction coil 8 (holding section) and heated to 31.1 ° C. or higher to bring the carbon dioxide gas into a supercritical state. Extract solutes into Then, a reaction liquid is moved to the gas-liquid separation tank 10, and a plant essential oil extract and a carbon dioxide supercritical fluid are isolate | separated. Since the separation tank is thus provided, the efficiency of the supercritical processing is improved.

次に、分離された炭酸ガス超臨界流体は減圧部にて抽出された溶質を分離した後、炭酸ガスとしてモレキュラーシーブ脱水後粒状活性炭で脱臭して加圧液化処理を経て再利用される。分離回収された液体試料は減圧濃縮した後、噴霧乾燥して粉末製品が得られる。
なお、図1中、11は気液分離センサ、12は分離槽、13はトラップ、16は処理試料槽をそれぞれ表す。
Next, the separated carbon dioxide supercritical fluid is separated from the solute extracted in the decompression section, dehydrated with molecular activated carbon after carbon sieve dehydration, and reused through pressure liquefaction treatment. The separated and collected liquid sample is concentrated under reduced pressure and then spray-dried to obtain a powder product.
In FIG. 1, 11 represents a gas-liquid separation sensor, 12 represents a separation tank, 13 represents a trap, and 16 represents a processing sample tank.

本発明の植物抽出物の残留農薬除去方法によれば、植物抽出材料から残留農薬を効率よく除去することができ、植物抽出成分の損失がなく、品質劣化を防止し得、連続抽出処理が可能となり、大幅なコストダウンが達成できる。
本発明の植物抽出物の残留農薬除去方法により得られた植物抽出物は、残留農薬がほとんどすべて除去されており、安全性に優れ、医薬品、健康食品、化粧料、飲食品等に幅広く利用できる。
According to the method for removing pesticide residues from plant extracts of the present invention, pesticide residues can be efficiently removed from plant extract materials, there is no loss of plant extract components, quality deterioration can be prevented, and continuous extraction processing is possible. Thus, significant cost reduction can be achieved.
The plant extract obtained by the method for removing a pesticide residue of the plant extract of the present invention has almost all the pesticide residue removed, is excellent in safety, and can be widely used for pharmaceuticals, health foods, cosmetics, foods and drinks, etc. .

以下、本発明の実施例について説明するが、本発明はこれら実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
−マリアアザミエキスの調製−
マリアアザミの種子1kgを粉砕し、これを90質量%エタノール10Lにて室温循環しながら2時間抽出した。100メッシュスクリーンにて固液分離後、抽出粕へ90質量%エタノール(水とエタノールとの質量比1:9)10Lを加え、室温循環1時間抽出を行った。その後、100メッシュスクリーンにて固液分離した。2回の抽出液を合わせて珪藻土プリコートによる清澄ろ過を行い抽出液18Lを得た。次いで、得られた抽出液を減圧濃縮した後、エタノールを加えて60質量%エタノール溶液3Lを調製した。活性炭50gを加えた後、加熱して還流1時間を行い、清澄ろ過し、マリアアザミ抽出液2.5Lを得た。
得られたマリアアザミ抽出液の固形分は110gであった。また、マリアアザミ抽出液中における有効成分であるシリマリンの含有量は31質量%であった。
Example 1
-Preparation of Maria Thistle Extract-
1 kg of seeds of Maria Thistle were pulverized and extracted with 10 L of 90 mass% ethanol for 2 hours while circulating at room temperature. After solid-liquid separation on a 100 mesh screen, 10 L of 90% by mass ethanol (mass ratio of water to ethanol 1: 9) was added to the extraction bowl, and extraction was performed at room temperature for 1 hour. Thereafter, solid-liquid separation was performed with a 100 mesh screen. The two extracts were combined and clarified by diatomaceous earth precoat to obtain 18 L of extract. Subsequently, after concentrating the obtained extract under reduced pressure, ethanol was added to prepare 3 L of a 60 mass% ethanol solution. After adding 50 g of activated carbon, the mixture was heated to reflux for 1 hour and clarified to obtain 2.5 L of a Maria Thistle extract.
The solid content of the resulting Maria Thistle extract was 110 g. In addition, the content of silymarin as an active ingredient in the Maria Thistle extract was 31% by mass.

得られたマリアアザミエキスに含まれる残留農薬について、下記測定機器及び条件のGC−MSにて測定した結果、マラチオン0.02ppm、パラチオン0.015ppmの残留農薬の汚染が確認された。   As a result of measuring the residual agricultural chemical contained in the obtained Maria Thistle extract by GC-MS under the following measuring equipment and conditions, contamination of residual agricultural chemicals of malathion 0.02 ppm and parathion 0.015 ppm was confirmed.

<GC−MS測定条件>
測定機器:アジレント(Agilent)社製 6890N GC、5973MSD
カラム:HP−5MS、0.25μm×30m
オーブン:80℃(2min)→30℃/min→180℃(5min)→3℃/min→260℃(10min)
流量:He 1mL/min
注入口:250℃ パルスドスプリットレス(パルス圧30psi、1.5min パージ1.45min)
注入量:2μL
MS:SIM測定(EI)
<GC-MS measurement conditions>
Measuring instrument: 6890N GC, 5973MSD manufactured by Agilent
Column: HP-5MS, 0.25 μm × 30 m
Oven: 80 ° C. (2 min) → 30 ° C./min→180° C. (5 min) → 3 ° C./min→260° C. (10 min)
Flow rate: He 1mL / min
Inlet: 250 ° C. Pulsed splitless (pulse pressure 30 psi, 1.5 min purge 1.45 min)
Injection volume: 2 μL
MS: SIM measurement (EI)

−マリアアザミ超臨界抽出物の調製−
上記で得られたマリアアザミの抽出液を、図1に示すミクロバブル超臨界処理装置(溶解槽7の下部にメッシュが100μmのメッシュ状フィルタを配置)を用いて、試料流量20mL/分、液化炭酸ガス流量20mL/分、処理圧力20Mpa、溶解槽温度20℃、反応コイル保持部温度40℃で通液処理し3時間抽出を行った。その結果、超臨界抽出物108gを得た。また、マリアアザミ超臨界抽出物中における有効成分であるシリマリンの含有量は31質量%であった。
得られたマリアアザミ超臨界抽出物について、残留農薬を上記同様にGC−MSにて測定した結果、マラチオン不検出及びパラチオン不検出となり農薬は除去された。また、超臨界抽出処理により、有効成分であるシリマリンの含有量には変化は生じないことが認められた。
-Preparation of Maria Thistle supercritical extract-
The extract of Maria thistle obtained above is liquefied at a sample flow rate of 20 mL / min using the microbubble supercritical processing apparatus shown in FIG. 1 (a mesh filter having a mesh of 100 μm is arranged at the bottom of the dissolution tank 7). Extraction was carried out for 3 hours with a flow rate of carbon dioxide at 20 mL / min, a treatment pressure of 20 Mpa, a dissolution bath temperature of 20 ° C., and a reaction coil holder temperature of 40 ° C. As a result, 108 g of a supercritical extract was obtained. Further, the content of silymarin as an active ingredient in the Maria Thistle supercritical extract was 31% by mass.
About the obtained Maria thistle supercritical extract, the residual pesticide was measured by GC-MS in the same manner as described above. As a result, malathion was not detected and parathion was not detected, and the pesticide was removed. In addition, it was confirmed that the content of silymarin, which is an active ingredient, was not changed by the supercritical extraction treatment.

(実施例2)
−ポンカンエキスの調製−
ポンカン2500kgに抽出溶媒である30質量%エタノール(水とエタノールとの質量比7:3)50Lを加え、還流抽出器で80℃にて2時間加熱抽出し、熱時濾過した。得られた抽出液を合わせて減圧下に濃縮し、更に乾燥してポンカンの抽出物を得た。
得られた抽出物を吸着樹脂としてダイヤイオンHP−20(三菱化学株式会社製)を用いたカラムクロマトグラフィーで処理した後、70質量%含水メタノールで溶出した。得られた分画物を活性炭処理した。更に、減圧下で濃縮後、乾燥してノビレチン粗精製物1.3kgを得た。なお、ノビレチン粗精製物中の有効成分としてのノビレチンの含量は45質量%であった。
得られたノビレチン粗精製物に含まれる残留農薬を実施例1と同様にGC−MSにて測定した結果、メチダチオン0.15ppmの残留農薬の汚染が確認された。
(Example 2)
-Preparation of Ponkan extract-
To 2500 kg of Ponkan, 50 L of 30% by mass ethanol (mass ratio of water to ethanol: 7: 3) as an extraction solvent was added, and the mixture was heated and extracted at 80 ° C. for 2 hours with a reflux extractor and filtered while hot. The obtained extracts were combined, concentrated under reduced pressure, and further dried to obtain a Ponkan extract.
The obtained extract was treated with column chromatography using Diaion HP-20 (manufactured by Mitsubishi Chemical Corporation) as an adsorption resin, and then eluted with 70% by mass aqueous methanol. The obtained fraction was treated with activated carbon. Furthermore, after concentrating under reduced pressure, it was dried to obtain 1.3 kg of a crude nobiletin product. In addition, the content of nobiletin as an active ingredient in the nobiletin crude purified product was 45% by mass.
As a result of measuring the residual agricultural chemicals contained in the obtained nobiletin crude purified product by GC-MS in the same manner as in Example 1, contamination of residual agricultural chemicals of 0.15 ppm methidathion was confirmed.

−ポンカン超臨界抽出物の製造−
上記で得られたノビレチン粗精製物を60質量%エタノールに溶解させた溶液を、図1に示すミクロバブル超臨界処理装置(溶解槽7の下部にメッシュが100μmのメッシュ状フィルタを配置)を用いて、試料流量20mL/分、液化炭酸ガス流量20mL/分、処理圧力20Mpa、溶解槽温度20℃、反応コイル保持部温度40℃で通液処理し3時間抽出を行った。
次に、得られた超臨界抽出液へ水を添加しエタノール濃度を5質量%以下となるように調製した。生じる沈殿をデカント法にて上澄液を除去し沈殿物を得た。得られた沈殿物へエタノール2Lを加え溶解し、得られた溶液を5℃に冷却した。冷却により生じた不溶物を清澄ろ過し、得られたろ液に水を添加しエタノール濃度を5質量%以下となるように調製した。生じた沈殿をデカント法にて上澄液を除去し沈殿物を減圧乾燥してポンカン超臨界抽出物1.2kgを得た。また、ポンカン超臨界抽出物中の有効成分であるノビレチンの含量は45質量%であった。
得られたポンカン超臨界抽出物について、残留農薬を実施例1と同様にGC−MSにて測定した結果、メチダチオン不検出となり農薬は除去された。また、超臨界処理により有効成分であるノビレチンの含有量には変化は生じないことが認められた。
-Production of Ponkan supercritical extract-
A solution obtained by dissolving the crude nobiletin product obtained above in 60% by mass of ethanol was used using a microbubble supercritical processing apparatus (a mesh filter having a mesh size of 100 μm disposed at the bottom of the dissolution tank 7) shown in FIG. Then, a sample flow rate of 20 mL / min, a liquefied carbon dioxide gas flow rate of 20 mL / min, a treatment pressure of 20 Mpa, a dissolution bath temperature of 20 ° C., and a reaction coil holding unit temperature of 40 ° C. were passed through and extracted for 3 hours.
Next, water was added to the obtained supercritical extract to prepare an ethanol concentration of 5% by mass or less. The supernatant was removed from the resulting precipitate by decantation to obtain a precipitate. The obtained precipitate was dissolved by adding 2 L of ethanol, and the resulting solution was cooled to 5 ° C. The insoluble matter produced by cooling was clarified and filtered, and water was added to the obtained filtrate to prepare an ethanol concentration of 5% by mass or less. The resulting precipitate was decanted and the supernatant was removed, and the precipitate was dried under reduced pressure to obtain 1.2 kg of Ponkan supercritical extract. The content of nobiletin, which is an active ingredient in the Ponkan supercritical extract, was 45% by mass.
About the obtained Ponkan supercritical extract, the residual pesticide was measured by GC-MS in the same manner as in Example 1. As a result, no methidathion was detected and the pesticide was removed. In addition, it was confirmed that the content of nobiletin, which is an active ingredient, was not changed by the supercritical treatment.

本発明の植物抽出物の残留農薬除去方法によれば、植物抽出材料から残留農薬を効率よく除去することができ、品質劣化を防止し得、連続抽出処理が可能となり、大幅なコストダウンが達成できる。本発明の植物抽出物の残留農薬除去方法により得られた植物抽出物は、植物抽出成分の損失や劣化がなく、残留農薬がほとんどすべて除去されており、安全性に優れ、食品添加物、化粧料構成成分、医薬品、医薬部外品等、様々な分野で幅広く利用できる。   According to the method for removing residual agricultural chemicals from plant extracts of the present invention, residual agricultural chemicals can be efficiently removed from plant extracted materials, quality deterioration can be prevented, continuous extraction processing is possible, and a significant cost reduction is achieved. it can. The plant extract obtained by the method for removing residual pesticides of the plant extract of the present invention has no loss or deterioration of plant extract components, almost all of the residual pesticides are removed, and is excellent in safety, food additives, cosmetics. It can be widely used in various fields such as ingredients, pharmaceuticals, and quasi drugs.

図1は、本発明のミクロバブル超臨界処理装置の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a microbubble supercritical processing apparatus of the present invention.

符号の説明Explanation of symbols

1 原液供給タンク
2 高圧ポンプ
3 液体二酸化炭素ボンベ
4 冷却器
5 炭酸ガス供給ポンプ
6 加熱器
7 溶解槽
8 反応コイル(保持部)
9 メッシュ状フィルタ
10 気液分離槽
11 気液分離センサ
12 分離槽
13 トラップ
16 処理試料槽
20 減圧部
DESCRIPTION OF SYMBOLS 1 Stock solution supply tank 2 High pressure pump 3 Liquid carbon dioxide cylinder 4 Cooler 5 Carbon dioxide supply pump 6 Heater 7 Dissolution tank 8 Reaction coil (holding part)
9 Mesh Filter 10 Gas-Liquid Separation Tank 11 Gas-Liquid Separation Sensor 12 Separation Tank 13 Trap 16 Processed Sample Tank 20 Decompression Unit

Claims (5)

植物抽出材料を炭酸ガス流体に接触させて該植物抽出材料中に該炭酸ガス流体を溶解させる炭酸ガス溶解工程と、該炭酸ガスを溶解させた植物抽出材料を炭酸ガスの超臨界乃至亜臨界状態に保持して撹拌する炭酸ガス超臨界処理工程と、前記植物抽出材料を常圧まで急速に減圧して該植物抽出材料中から炭酸ガスを除去する炭酸ガス除去工程とを含むことを特徴とする植物抽出物の残留農薬除去方法。   A carbon dioxide gas dissolving step in which the plant extract material is brought into contact with a carbon dioxide fluid to dissolve the carbon dioxide gas fluid in the plant extract material, and the plant extract material in which the carbon dioxide gas is dissolved is converted into a supercritical to subcritical state of carbon dioxide gas. And a carbon dioxide gas supercritical treatment step in which the plant extract material is held and stirred, and a carbon dioxide gas removal step in which the plant extract material is rapidly depressurized to normal pressure to remove carbon dioxide from the plant extract material. A method for removing residual pesticides from plant extracts. 炭酸ガス溶解工程において、メッシュが100μm以下のメッシュ状フィルタに通してミクロバブル化した炭酸ガス流体を用いる請求項1に記載の植物抽出物の残留農薬除去方法。   The method for removing residual pesticides from plant extracts according to claim 1, wherein in the carbon dioxide dissolving step, carbon dioxide fluid that is microbubbled through a mesh filter having a mesh of 100 µm or less is used. 植物抽出材料が、植物抽出原料を水、親水性溶媒及びこれらの混合溶媒のいずれかで抽出処理して得られた植物抽出液、並びに植物抽出物を水、親水性溶媒及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかである請求項1から2のいずれかに記載の植物抽出物の残留農薬除去方法。   A plant extract material is obtained by extracting a plant extract raw material with water, a hydrophilic solvent and a mixed solvent thereof, and a plant extract obtained by extracting the plant extract with water, a hydrophilic solvent and a mixed solvent thereof. The method for removing residual agricultural chemicals from plant extracts according to any one of claims 1 to 2, wherein the solution is any one of plant extract solutions dissolved in any of the above. 植物抽出材料が、植物抽出原料を水、エタノール及びこれらの混合溶媒のいずれかで抽出処理した植物抽出液、並びに植物抽出物を水、エタノール及びこれらの混合溶媒のいずれかで溶解した植物抽出物溶液のいずれかである請求項3に記載の植物抽出物の残留農薬除去方法。   A plant extract obtained by extracting a plant extract material with water, ethanol, or a mixed solvent thereof, and a plant extract obtained by dissolving a plant extract with water, ethanol, or a mixed solvent thereof. The method for removing a residual pesticide from a plant extract according to claim 3, wherein the method is any one of solutions. 請求項1から4のいずれかに記載の残留農薬除去方法により得られたことを特徴とする植物抽出物。
A plant extract obtained by the method for removing residual agricultural chemicals according to any one of claims 1 to 4.
JP2004277757A 2004-09-24 2004-09-24 Method for removing residual agricultural chemical of plant extract and plant extract Ceased JP2006089414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277757A JP2006089414A (en) 2004-09-24 2004-09-24 Method for removing residual agricultural chemical of plant extract and plant extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277757A JP2006089414A (en) 2004-09-24 2004-09-24 Method for removing residual agricultural chemical of plant extract and plant extract

Publications (1)

Publication Number Publication Date
JP2006089414A true JP2006089414A (en) 2006-04-06

Family

ID=36230730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277757A Ceased JP2006089414A (en) 2004-09-24 2004-09-24 Method for removing residual agricultural chemical of plant extract and plant extract

Country Status (1)

Country Link
JP (1) JP2006089414A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092840A1 (en) 2010-01-29 2011-08-04 小川香料株式会社 Method for manufacturing polymethoxyflavones that are highly stable over time and have reduced residual pesticide levels
JP2014118370A (en) * 2012-12-14 2014-06-30 Ogawa & Co Ltd Method of manufacturing polymethoxyflavones
CN108822094A (en) * 2018-09-17 2018-11-16 西安利君精华药业有限责任公司 A kind of silymarin extraction process
JP2019141829A (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Liquid-liquid extraction method and apparatus with high-tension carbon dioxide using micro mixer
JP2019165728A (en) * 2015-05-29 2019-10-03 サラヤ株式会社 Momordicae fruit extract containing no agricultural chemical, and preparation method thereof
CN113680102A (en) * 2021-08-27 2021-11-23 湖南绿蔓生物科技股份有限公司 Method for preparing plant extract without exogenous pollutant
KR102376179B1 (en) * 2021-11-29 2022-03-18 (주)건보 Method for producing ginseng concentrate with reduced pesticide and phthalate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072790A (en) * 1998-09-01 2000-03-07 Maruzen Pharmaceut Co Ltd Method of removing residual agrochemical in plant extract
WO2004016277A2 (en) * 2002-08-14 2004-02-26 Gw Pharma Limited Extraction of pharmaceutically active cannabinoids from plant materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072790A (en) * 1998-09-01 2000-03-07 Maruzen Pharmaceut Co Ltd Method of removing residual agrochemical in plant extract
WO2004016277A2 (en) * 2002-08-14 2004-02-26 Gw Pharma Limited Extraction of pharmaceutically active cannabinoids from plant materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092840A1 (en) 2010-01-29 2011-08-04 小川香料株式会社 Method for manufacturing polymethoxyflavones that are highly stable over time and have reduced residual pesticide levels
US8945646B2 (en) 2010-01-29 2015-02-03 Ogawa & Co., Ltd. Method for manufacturing polymethoxyflavones that are highly stable over time and have reduced residual pesticide levels
JP2014118370A (en) * 2012-12-14 2014-06-30 Ogawa & Co Ltd Method of manufacturing polymethoxyflavones
JP2019165728A (en) * 2015-05-29 2019-10-03 サラヤ株式会社 Momordicae fruit extract containing no agricultural chemical, and preparation method thereof
JP2019141829A (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Liquid-liquid extraction method and apparatus with high-tension carbon dioxide using micro mixer
JP7051088B2 (en) 2018-02-23 2022-04-11 国立研究開発法人産業技術総合研究所 Liquid-liquid extraction method and equipment using high-pressure carbon dioxide using a micromixer
CN108822094A (en) * 2018-09-17 2018-11-16 西安利君精华药业有限责任公司 A kind of silymarin extraction process
CN113680102A (en) * 2021-08-27 2021-11-23 湖南绿蔓生物科技股份有限公司 Method for preparing plant extract without exogenous pollutant
KR102376179B1 (en) * 2021-11-29 2022-03-18 (주)건보 Method for producing ginseng concentrate with reduced pesticide and phthalate

Similar Documents

Publication Publication Date Title
Yahya et al. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds
Wiboonsirikul et al. Extraction of functional substances from agricultural products or by-products by subcritical water treatment
Manousi et al. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants
Teo et al. Pressurized hot water extraction (PHWE)
Wang et al. Recent advances in extraction of nutraceuticals from plants
Ho et al. Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water
Shams et al. Green technology: Economically and environmentally innovative methods for extraction of medicinal & aromatic plants (MAP) in Egypt
Mustafa et al. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review
Roh et al. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent
del Valle et al. Extraction of boldo (Peumus boldus M.) leaves with supercritical CO2 and hot pressurized water
Piantino et al. Supercritical CO2 extraction of phenolic compounds from Baccharis dracunculifolia
Karale Chandrakant et al. An overview on supercritical fluid extraction for herbal drugs
Shalmashi et al. Isolation of caffeine from tea waste using subcritical water extraction
EP2907395A1 (en) Method for manufacturing substance containing nobiletin and tangeretin derived from citrus fruits, and nobiletin- and tangeretin-containing substance obtained thereby
CN101386806A (en) Supercritical CO2 extraction of grape-kernel oil and method for extracting oligoprotoanthocyanidin by solvent process
Nautiyal Food processing by supercritical carbon dioxide-review
Turner et al. Pressurized hot water extraction and processing
Lee et al. Isolation and purification of 3, 5-diprenyl-4-hydroxycinnamic acid (artepillin C) in Brazilian propolis by supercritical fluid extractions
CN107708440A (en) Fructus Monordicae extract without agricultural chemicals and preparation method thereof
Veggi et al. Ultrasound-assisted extraction of polyphenols from jatoba (Hymenaea courbaril L. var stilbocarpa) bark.
WO2022011322A1 (en) Semi-aqueous method for extracting a substance
JP2006089414A (en) Method for removing residual agricultural chemical of plant extract and plant extract
Contieri et al. Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications
Selvaraj et al. Impact of physicochemical parameters on effective extraction of bioactive compounds from natural sources: An overview
Barbero et al. Extraction of natural products: principles and fundamental aspects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120529