JP2005208626A - 顕微鏡装置および液浸対物レンズ - Google Patents

顕微鏡装置および液浸対物レンズ Download PDF

Info

Publication number
JP2005208626A
JP2005208626A JP2004373951A JP2004373951A JP2005208626A JP 2005208626 A JP2005208626 A JP 2005208626A JP 2004373951 A JP2004373951 A JP 2004373951A JP 2004373951 A JP2004373951 A JP 2004373951A JP 2005208626 A JP2005208626 A JP 2005208626A
Authority
JP
Japan
Prior art keywords
objective lens
immersion
immersion liquid
substrate
microscope apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004373951A
Other languages
English (en)
Inventor
Koichiro Komatsu
宏一郎 小松
Hiromasa Shibata
浩匡 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004373951A priority Critical patent/JP2005208626A/ja
Publication of JP2005208626A publication Critical patent/JP2005208626A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】 基板を観察する際に、低分解能での観察と高分解能での観察とを必要に応じて切り換えることができ、且つ、安価に高分解能化が可能な顕微鏡装置および液浸対物レンズを提供する。
【解決手段】本発明の顕微鏡装置は、液浸系の対物レンズを介して、被検部と前記対物レンズとの間に浸液を充填させた状態で前記被検部の拡大像を形成する顕微鏡光学系と、基板上の複数の被検部のうち第一の被検部が前記顕微鏡光学系の視野位置にある状態から前記基板上の第二の被検部が前記視野位置にある状態に移動させる移動装置と、前記対物レンズと被検部との間に充填する浸液を供給する浸液供給装置と、前記対物レンズと前記被検部との間に充填された前記浸液を除去する浸液除去装置と、前記移動装置を動作させる前に、前記浸液除去装置により浸液を除去させる浸液除去制御装置とを備える。
【選択図】 図1

Description

本発明は、半導体ウエハや液晶基板などの観察に用いられる顕微鏡装置および液浸対物レンズに関する。
半導体回路素子や液晶表示素子の製造工程では、半導体ウエハや液晶基板(総じて「基板」という)に形成された回路パターンの欠陥や異物などの観察が、顕微鏡装置を用いて行われる。顕微鏡装置とは、基板を自動搬送する機構と光学顕微鏡システムとを結びつけたものである。光学顕微鏡システムの対物レンズと観察対象の基板との間は、空気などの気体で満たされる(乾燥系)。なお、顕微鏡装置を用いた観察は、欠陥検査装置により検出された欠陥や異物などの原因やその状態を目視にて確認するための検査に相当する。
そして近年、基板を可視光と紫外光により観察する装置が提案された(例えば特許文献1を参照)。この装置も乾燥系である。紫外光を用いた場合は、光学系の分解能が観察波長に比例するため、可視光より高い分解能で基板を観察することができる。特許文献1の装置では、可視光を用いた低分解能での観察と、紫外光を用いた高分解能での観察とを組み合わせることにより、基板の効率的な観察が可能となる。
特開2001−118896号公報
しかしながら、上記の装置は、紫外光を用いるため、光源の種類や対物レンズを含む観察系の光学材料が高価なものに限定され、製造コストやランニングコストが非常に大きくなってしまう。また、上記の紫外光を用いた装置で、分解能を向上させるためには、照明光をさらに短波長化しなければならず、光源のコストが非常に高く、安定性にも問題がある。
本発明の目的は、基板を観察する際に、低分解能での観察と高分解能での観察とを必要に応じて切り換えることができ、且つ、安価に高分解能化が可能な顕微鏡装置および液浸対物レンズを提供することにある。
請求項1に記載の顕微鏡装置は、液浸系の対物レンズを介して、被検部と前記対物レンズとの間に浸液を充填させた状態で前記被検部の拡大像を形成する顕微鏡光学系と、基板上の複数の被検部のうち第一の被検部が前記顕微鏡光学系の視野位置にある状態から前記基板上の第二の被検部が前記視野位置にある状態に移動させる移動装置と、前記対物レンズと被検部との間に充填する浸液を供給する浸液供給装置と、記対物レンズと前記被検部との間に充填された前記浸液を除去する浸液除去装置と、前記移動装置を動作させる前に、前記浸液除去装置により浸液を除去させる浸液除去制御装置とを備えたものである。
請求項2に記載の顕微鏡装置は、請求項1に記載の顕微鏡装置であって、前記移動装置は、複数の被検部を有する基板を、予め定めた領域内で移動可能に支持するステージと、前記基板上の前記複数の被検部の位置情報に基づいて前記ステージを駆動するステージ制御装置とで構成され、前記ステージ制御装置は、前記浸液除去装置による前記浸液の除去後に次の被検部が前記対物レンズの視野内に位置するようにステージを駆動することを特徴とする。
請求項3に記載の顕微鏡装置は、請求項1または請求項2に記載の顕微鏡装置であって、前記浸液供給装置により供給された浸液が前記対物レンズ先端と前記基板との間に充填され、かつ前記浸液除去装置により前記浸液が除去される前に、前記顕微鏡光学系の合焦状態を調整する自動調整装置を更に備えたことを特徴とする。
請求項4に記載の顕微鏡装置は、請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置であって、前記浸液除去装置は浸液を吸引するための吸引ノズルを有し、前記吸引ノズルの先端は、前記対物レンズ先端の近傍に配置されたことを特徴とする。
請求項5に記載の顕微鏡装置は、請求項1乃至請求項4のいずれか一項に記載の顕微鏡装置であって、前記浸液供給装置は浸液を供給するための吐出ノズルを有し、前記吐出ノズルの先端は、前記対物レンズ先端の近傍に配置されたことを特徴とする。
請求項6に記載の顕微鏡装置は、請求項2に記載の顕微鏡装置であって、前記浸液供給装置は浸液を供給するための吐出ノズルを有し、前記吐出ノズルの先端は、前記基板の近傍の所定位置に配置され、前記ステージ制御装置はまず被検部を、前記吐出ノズルの先端直下に移動させて前記吐出ノズルから前記被検部に浸液を供給し、次に、前記浸液が供給された被検部を前記対物レンズの視野内に移動させて、前記顕微鏡光学系により前記被検部の像を形成することを特徴とする。
請求項7に記載の顕微鏡装置は、請求項1乃至請求項6に記載の顕微鏡装置であって、前記浸液供給装置により、少なくとも前記拡大像形成時における前記対物レンズ先端と前記基板との隙間を満たす量が供給されることを特徴とする。
請求項8に記載の顕微鏡装置は、請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置であって、乾燥系の対物レンズを介して、前記複数の被検部の像を形成する顕微鏡光学系と、前記乾燥系の対物レンズを介して形成された複数の被検部の像に基づいて前記複数の被検部のうち、所定の被検部の位置を記憶する記憶部とを有し、前記記憶部で記憶された位置情報に基づいて、前記移動手段を制御して前記記憶部に記憶された被検部の位置を順に前記液浸系の対物レンズの視野内に位置させて、前記被検部の位置ごとに前記液浸系の対物レンズを介して像を形成する制御手段を備えたことを特徴とする。
請求項9に記載の顕微鏡装置は、請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置であって、乾燥系の対物レンズを介して前記基板上の前記複数の被検部の像を形成する顕微鏡光学系と、前記移動手段を制御して前記複数の被検部を前記乾燥系の対物レンズの視野内に順に位置決めし、前記乾燥系の対物レンズを介して像を形成させる第一制御手段と、前記乾燥系の対物レンズを介した像の形成後、前記液浸系の対物レンズを介した像の形成を行うか否かを判定する判定手段と、前記判定手段による判定の結果、前記液浸系の対物レンズを介した観察を行う場合に、前記移動手段を制御して前記液浸系の対物レンズの視野内に前記被検部を位置決めし、前記液浸系の対物レンズを介して像を形成する第二の制御手段とを備えたことを特徴とする。
請求項10に記載の顕微鏡装置は、請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置であって、乾燥系の対物レンズを介して前記基板上の前記複数の被検部の像を形成する顕微鏡光学系と、前記移動手段を制御して前記複数の被検部を前記乾燥系の対物レンズの視野内に順に位置決めし、前記乾燥系の対物レンズを介して像を形成させる第一の制御手段と、前記乾燥系の対物レンズを介した像を形成後、前記液浸系の対物レンズを介した像の形成を場合には、前記被検部の位置情報を記憶する記憶手段と、前記記憶手段に記憶された前記位置情報に基づき、前記移動手段を制御して前記液浸系の対物レンズの視野内に前記被検部を位置決めし、前記液浸系の対物レンズを介して像を形成する第二の制御手段とを備えたことを特徴とする。
請求項11に記載の顕微鏡装置は、請求項1乃至請求項10のいずれか一項に記載の顕微鏡装置であって、前記浸液は純水であることを特徴とする。
請求項12に記載の顕微鏡装置は、請求項1乃至請求項11のいずれか一項に記載の顕微鏡装置であって、前記液浸系の対物レンズは、作動距離が0.1mm以上0.5mm以下であることを特徴とする。
請求項13に記載の顕微鏡装置は、請求項1乃至請求項12のいずれか一項に記載の顕微鏡装置であって、前記液浸系の対物レンズは紫外光により前記基板の像を形成することを特徴とする。
請求項14に記載の液浸対物レンズは、顕微鏡装置において使用する液浸対物レンズであって、前記液浸対物レンズは、全てのレンズ成分が単レンズにより構成されることを特徴とする。
請求項15に記載の顕微鏡装置は、請求項1に記載の顕微鏡装置であって、前記浸液供給装置は、前記浸液の供給量を、前記対物レンズの先端と前記被検部との間の柱状空間の体積V1と、表面張力により前記対物レンズの先端から食み出し可能な環状空間の体積V2とを用いて、「V0=V1+V2」を満足する体積V0に相当する量とすることを特徴とする。
請求項16に記載の顕微鏡装置は、請求項15に記載の顕微鏡装置であって、前記環状空間は、前記対物レンズの先端からの食み出し幅Aが、前記対物レンズの作動距離δを用い、「δ/2 ≦ A ≦ 2δ」を満足することを特徴とする。
請求項17に記載の顕微鏡装置は、請求項15に記載の顕微鏡装置であって、前記浸液供給装置を制御して前記浸液の供給を開始させると共に、前記浸液の供給量が前記体積V0に相当する量となった時点で前記浸液の供給を停止させる浸液供給制御装置を備えたことを特徴とする。
請求項18に記載の顕微鏡装置は、請求項1に記載の顕微鏡装置であって、前記浸液が前記被検部に供給された状態で、前記被検部を前記対物レンズの焦点面のうち前記対物レンズの光軸付近に位置決めする位置決め装置を有し、前記浸液除去装置は、前記対物レンズの先端の近傍に前記浸液を吸引するための吸引部を有し、前記位置決め装置により位置決めされた状態から、前記基板を前記対物レンズに近づけて前記被検部から前記浸液を除去することを特徴とする。
請求項19に記載の顕微鏡装置は、請求項1に記載の顕微鏡装置であって、前記対物レンズの焦点面よりも前記対物レンズから離れた面に、前記基板を位置決めする第1の位置決め装置と、前記液体が前記被検部に供給された状態で、該被検部を前記対物レンズの焦点面のうち前記対物レンズの光軸付近に位置決めする第2の位置決め装置とを有し、前記浸液供給装置は、前記基板が前記離れた面に位置決めされた状態で、前記基板の前記被検部に浸液を供給し、前記浸液除去装置は、前記対物レンズの先端の近傍に前記浸液を吸引するための吸引部を有し、前記第2の位置決め装置により位置決めされた状態から、前記基板を前記対物レンズに近づけて前記被検部から前記浸液を除去することを特徴とする。
請求項20に記載の顕微鏡装置は、請求項19に記載の顕微鏡装置であって、前記浸液供給装置は、前記離れた面のうち前記光軸付近をターゲットとして前記液体を供給し、前記第1の位置決め装置は、前記基板の前記被検部を前記離れた面のうち前記光軸付近に位置決めすることを特徴とする。
本発明の顕微鏡装置によれば、基板を観察する際に、低分解能での観察と高分解能での観察とを必要に応じて切り換えることができ、且つ、安価に高分解能化することができる。
以下、図面を用いて本発明の実施形態を詳細に説明する。
(第1実施形態)
第1実施形態の顕微鏡装置10は、図1に示す通り、観察対象の基板11を支持するステージ(12〜14)と、乾燥系の観察部(21〜35)および焦点検出部36と、液浸系の観察部(41〜54,32〜35)および焦点検出部55と、不図示の制御部とで構成されている。基板11は、半導体ウエハや液晶基板である。顕微鏡装置10は、半導体回路素子や液晶表示素子の製造工程において、基板11に形成された回路パターンの欠陥や異物などの観察(外観検査)に用いられる。また、基板11を観察する際に、低分解能での観察と高分解能での観察とを必要に応じて切り換えることができる(詳細は後述)ようになっている。回路パターンは、レジストパターンである。
ステージ(12〜14)の説明を行う。ステージ(12〜14)は、試料台12とXYステージ13とZステージ14とで構成される。試料台12は、XYステージ13により水平面内で移動可能、Zステージ14により鉛直方向に移動可能である。不図示の自動搬送系によって例えば現像装置から搬送されてきた基板11は、回路パターンの方位が調整された後、試料台12の上面に載置され、例えば真空吸着により固定保持される。回路パターンの方位の調整は、基板11が半導体ウエハの場合、ノッチまたはオリエンテーションフラットなどに基づいて行われる。試料台12とXYステージ13により、観察対象の基板11は、水平面の予め定めた領域内で移動可能となっている。予め定めた領域とは、XYステージ13の稼働範囲に相当する。
そして、XYステージ13の稼働範囲内の所定位置では、乾燥系の観察部(21〜35)が、ステージ(12〜14)に支持された基板11の可視光による観察を行う。さらに、XYステージ13の稼働範囲内の別の位置(乾燥系の観察部(21〜35)と異なる位置)では、液浸系の観察部(41〜54,32〜35)が、ステージ(12〜14)に支持された基板11の可視光による観察を行う。
つまり、乾燥系の観察部(21〜35)による観察位置(光軸10AのXY位置)と、液浸系の観察部(41〜54,32〜35)による観察位置(光軸10BのXY位置)とは、共通のステージ(12〜14)の稼働範囲内で、予め定めた距離だけ離れている。また、乾燥系の観察部(21〜35)の対物レンズ28と、液浸系の観察部(41〜54,32〜35)の対物レンズ48とは、各々の焦点の高さ(Z位置)が略一致している。ここで、「略
一致している」とは、各々の焦点の高さ(Z位置)の差が、液浸系の観察部(21〜35)の自動焦点合致機構の引き込み範囲内になっていることを示している。
したがって、基板11と共に試料台12を水平移動させることで、乾燥系の観察部(21〜35)による観察と、液浸系の観察部(41〜54,32〜35)による観察とを、簡単に切り換えることができる。このとき、水平移動量を光軸10Aと光軸10Bとの距離と一致させることで、例えば基板11上の光軸10Aと交わっていた観察点を光軸10B上に位置決めすることができる。光軸10Aは乾燥系の観察部(21〜35)の視野の中心に相当し、光軸10Bは液浸系の観察部(41〜54,32〜35)の視野の中心に相当する。
ここで、分解能について説明する。顕微鏡装置10の対物レンズ28,48は視野が小さいため、結像に関しては、収差が補正されたほぼ理想光学系と考えられる。収差のない理想光学系の二点分解能R(隣接する光量の等しい2点が分解して見える間隔)は、結像に関与する光の波長λと、対物レンズの開口数N.A.を用いて、「R=0.61×λ/N.A.」と表される。
また、対物レンズの開口数N.A.は、視野内の一点から出て対物レンズに取り込まれる光の出射角度(光軸との成す角度)の最大値θと、対物レンズと基板との間の媒質の屈折率nとを用いて、「N.A.=n×sinθ」と表される。
乾燥系の観察部(21〜35)の対物レンズ28と基板11との間を空気で満たす場合、その屈折率nは"1"に近い値をとるため、対物レンズ28の開口数N.A.は、最大で0.95程度となる。対物レンズ28の開口数が0.95のものを用いると、結像に関与する光の波長λが550nm(可視光)の場合、二点分解能は353nmとなる。
これに対し、液浸系の観察部(41〜54,32〜35)の対物レンズ48と基板11との間を水で満たす場合、結像に関与する光の波長λが550nm(可視光)であれば、その屈折率nは"1.33"程度となる。したがって、対物レンズ48の開口数N.A.は、同程度の取り込み角度θとすることにより、1.25程度となり、結像に関与する光の波長λが550nm(可視光)の場合、二点分解能は268nmとなる。
一般に顕微鏡装置では接眼レンズで観察する視野が決まっている。像面35Aでの視野の大きさは25φ程度である。対物レンズの倍率は被検物体面11から像面35Aまでの投影倍率を示している。このため、観察倍率が決まると被検物体面11上で観察できる実視野が一意に決まる。顕微鏡装置における対物レンズの倍率と開口数、分解能、実視野、焦点深度との関係は、次の表1のようになる。
Figure 2005208626
つまり、低倍観察のほうが被検物体面11の広い範囲を一度に観察することができる。さらに、低倍の対物レンズの開口数が小さいために焦点深度も深くなり、見える範囲は三次元的に大きくなる。しかしながら、より細かい部分を観察するためには対物レンズを切り換えて倍率を上げて分解能を高くするが、焦点深度も浅くなるために焦点合わせを厳密にしながら観察する必要がある。段差の高さが焦点深度よりも大きくなってしまう場合には、被検物体を対物レンズの光軸方向に動かしながら観察するような場合も有り得る。
このように、第1実施形態の顕微鏡装置10では、乾燥系の観察部(21〜35)により広視野低分解能で基板11の観察を行うことができ、さらに、液浸系の観察部(41〜54,32〜35)によって高分解能で基板11の観察を同じ照明光で行うことができる。したがって、例えば乾燥系の観察部(21〜35)による広視野低分解能観察を行った後で、液浸系の観察部(41〜54,32〜35)による高分解能観察を行うことにより、基板11の効率的な観察が可能となる。観察手順の詳細は後述する。
乾燥系の観察部(21〜35)の説明を行う。観察部(21〜35)には、ハロゲンランプやメタルハライドランプなどの光源21と、コレクタレンズ22と、波長選択フィルタ23と、開口絞り24とが設けられる。コレクタレンズ22は、光源21からの光を集光して開口絞り24に光源21の像を形成する。波長選択フィルタ23は、所定の波長域の可視光のみを選択的に透過する。
さらに、観察部(21〜35)には、視野絞り25と、コンデンサレンズ26と、分岐プリズム27と、対物レンズ28とが設けられる。対物レンズ28は、観察部(21〜35)の光軸10Aとは異なる軸を中心に回転可能なレボルバ29に取り付けられている。レボルバ29には、倍率の異なる複数の対物レンズ28が用意されている。レボルバ29を回転させることにより、対物レンズ28を切り換え、観察倍率を変更することができる。光軸10A上の対物レンズ28と基板11との間は、空気または窒素などの気体で満たされている(乾燥系)。
開口絞り24を通過した可視光は、視野絞り25を通過した後、コンデンサレンズ26を介して平行光となり、分岐プリズム27で反射して光軸10A上の対物レンズ28に導かれる。光軸10A上の対物レンズ28は、分岐プリズム27からの可視光を集光して乾燥状態の基板11に導く。その結果、基板11は可視光により照明される。なお、開口絞り24は、対物レンズ28の射出瞳と共役であり、基板11を照明する光の入射角度範囲を規定する。視野絞り25は、基板11の照明範囲を規定する。
上記の照明により基板11から発生した観察光(例えば反射光)は、再び対物レンズ28に導かれ、これを介して平行光となり、分岐プリズム27を透過する。分岐プリズム27の後段には、焦点検出部36(後述)が設けられる。焦点検出部36は、光軸10A上の対物レンズ28に対する基板11の合焦状態(デフォーカス量)を検出するための機構である。
さらに、焦点検出部36の後段において、観察部(21〜35)には、反射ミラー30と、結像光学系31と、光路切換ミラー32と、分岐プリズム33と、撮像素子34と、接眼レンズ35とが設けられる。基板11からの観察光のうち、分岐プリズム27と焦点検出部36の分岐プリズム36Aとを透過した光は、これらの光学素子(30〜33)を介して集光される。その結果、撮像素子34の撮像面と接眼レンズ35の視野位置35Aとの各々には、基板11の拡大像(パターン像)が形成される。
上記のように構成された乾燥系の観察部(21〜35)では、可視光(例えば波長550nm)を用いて、光軸10A上に位置決めされた基板11の観察点を低分解能(例えば二点分解能353nm)で観察することができる。さらに、光軸10A上の対物レンズ28を切り換えることで、観察倍率を変更することができる。このため、比較的低倍での観察を行った後、基板11上の観察目標を高倍観察時の視野に追い込むことができる。
なお、上記の光路切換ミラー32は、乾燥系の観察部(21〜35)による観察時、結像光学系31からの観察光を反射して分岐プリズム33へ導くように配置される(図1)が、次に説明する液浸系の観察部(41〜54,32〜35)による観察時は、図2のような向きに配置される。このような2つの配置状態の切り換えは、不図示の駆動機構を用いて制御部が自動的に行う。
液浸系の観察部(41〜54,32〜35)の説明を行う。液浸系の観察部(41〜54,32〜35)は、上記した乾燥系の観察部(21〜35)よりも開口数が大きい。液浸系の観察部(41〜54,32〜35)には、ハロゲンランプやメタルハライドランプなどの光源41と、コレクタレンズ42と、波長選択フィルタ43と、開口絞り44とが設けられる。コレクタレンズ42は、光源41からの光を集光して開口絞り44に光源41の像を形成する。波長選択フィルタ43は、所定の波長域の可視光のみを選択的に透過する。
さらに、観察部(41〜54,32〜35)には、視野絞り45と、コンデンサレンズ46と、分岐プリズム47と、対物レンズ48とが設けられる。対物レンズ48は、顕微鏡装置10の本体部に固定的に取り付けられている。対物レンズ48の先端(下面)と基板11との間は、液浸系の観察部(41〜54,32〜35)による高分解能観察時、液浸媒質の液体40で満たされる(液浸系)。対物レンズ48は、その先端と基板11との間が液体40で満たされたときに光学系の収差が補正されるように設計されている。
本実施形態では、液体40として例えば純水を使用する。純水は、半導体製造工程などで容易に大量入手できるものである。また、基板11上のレジストに対する悪影響がないため、基板11の非破壊検査が可能となる。また、純水は環境に対する悪影響もなく、不純物の含有量が極めて低いため、基板11の表面を洗浄する作用も期待できる。
そして液体40は、液体供給装置49により吐出ノズル50を介して供給され、吸引ノズル51を介して液体回収装置52により回収される。吐出ノズル50と吸引ノズル51の先端は、対物レンズ48の先端近傍の傾斜面に近接して配置されている。液体供給装置49は、液体タンクや加圧ポンプなどを備え、所定量の液体40を吐出ノズル50に送り出す。その結果、吐出ノズル50の先端から吐出した所定量の液体40は、対物レンズ48の傾斜面を伝って対物レンズ48の先端と基板11との間(空間)に到達する。
ここで、対物レンズ48の先端と基板11との間に供給された液体40により「液滴」を作るためには、液体40が純水の場合、対物レンズ48の作動距離(つまり対物レンズ48と基板11との間の距離)を0.1mm以上0.5mm以下にすることが好ましい。この場合、純水の量は0.1cc〜0.2cc程度が最適である。なお、作動距離が短いほど純水の量は少なくて済むが、上記の下限値(0.1mm)より短くすると、ステージ(12〜14)の水平移動時に対物レンズ48の先端と基板11とが接触して、基板11上のパターンを破壊する恐れが生じる。また逆に、作動距離を上記の上限値(0.5mm)より長くすると、高い分解能を実現するために必要な開口数を確保することができず、高分解能化を達成できない。
生物顕微鏡では60倍の水浸対物レンズで開口数N.A.=1、作動距離2mmのものが存在する。また、対物レンズ48として開口数N.A.が1より大きいもの(例えば1.25)を用いる場合には、対物レンズの設計上、対物レンズを必要以上に大きくしないために、その作動距離を0.1mm以上0.3mm以下とすることが好ましい。対物レンズ48の作動距離を0.1mm以上とすることにより、ステージ(12〜14)の水平移動時に、対物レンズ48の先端と基板11との接触を回避することもできる。
液体40を供給/回収する機構の説明をさらに詳細に行う。この機構は、前述の液体供給装置49と吐出ノズル50と吸引ノズル51と液体回収装置52とで構成される。
図9(a)は、液体供給装置49の構成を示す図である。液体供給装置49は、吐出ノズル50に接続された配管131と、配管131の途中に配置された2位置切り換え式の電磁弁132と、新しい清浄な液体103Aを収容する液体タンク133と、加圧ポンプ(134〜137)とで構成される。加圧ポンプ(134〜137)は、シリンダ134とピストン135と送りネジ136とモータ137とで構成される。
ピストン135は、モータ137の動力を直線運動に変換する送りネジ136に結合され、任意の速度で往復移動可能である。ピストン135の移動速度は、モータ137の回転速度に応じて調整可能である。ピストン135の移動方向は、モータ137の回転方向に対応する。
シリンダ134は、電磁弁132の第1経路を介して液体タンク133に接続され、第2経路を介して吐出ノズル50に接続される。ただし、電磁弁132において、2つの経路が同時に開放されることはなく、常に何れか一方のみが開放され、接続状態に設定される。電磁弁132は、第1経路において、シリンダ134と液体タンク133との間の経路を接続/遮断する。また、電磁弁132は、第2経路において、シリンダ134と吐出ノズル50との間の経路を接続/遮断する。
電磁弁132において第1経路が開放され、シリンダ134と液体タンク133とが実際に接続された状態で、ピストン135を図中右方向に移動させることにより、液体タンク133の内部の液体103Aをシリンダ134の内部に導入することができる(液体103B)。
電磁弁132において第2経路が開放され、シリンダ134と吐出ノズル50とが実際に接続された状態で、ピストン135を図中左方向に移動させることにより、シリンダ134の内部の液体103Bを吐出ノズル50に送り出すことができる。送り出された液体103Bは、吐出ノズル50の先端から吐出し、対物レンズ48の先端と基板11との間に到達する(液体40)。つまり、液体供給装置49により吐出ノズル50を介して液体40の供給が行われる。液体40の供給は、液浸観察の前に、不図示の制御部が自動的に行う。
シリンダ134から吐出ノズル50に送り出される液体103Bの量(つまり液体40の供給量V)は、シリンダ134の断面積Sとピストン135の移動量Xとの積に等しく(V=S・X)、ピストン135の移動量Xに応じて任意に調整することができる。また、液体40の供給速度は、ピストン135の移動速度に応じて任意に調整することができる。ピストン135の移動速度は、液体120が吐出ノズル50の先端から飛び散らないように遅く設定することが好ましい。
そして、液体40の供給量Vを適切にすることができれば、液体40は、対物レンズ48の先端と基板11との間において、表面張力により「液滴」を形成する。つまり、周囲に流れ出したり、逆に気泡が除去できなかったりすることはない。液体40が周囲に流れ出すのは、液体40の供給量Vが多すぎて表面張力の限界を超えた場合である。この場合、観察後に全ての液体40を回収するのが困難になる。また、気泡が残留するのは、液体40の供給量Vが少なすぎた場合である。この場合、対物レンズ48による鮮明な像の形成が困難になる。液体40の適切な供給量Vとは、表面張力により、対物レンズ48の先端と基板11との間に「液滴」を形成可能な量である。
ここで、図10(a)を参照して、対物レンズ48の先端と基板11との間に供給された液体40の表面の形状について説明する。液体40の表面とは、対物レンズ48の先端と基板11との間の露出面のことである。液体40の供給量Vが適切な場合、液体40の表面の形状は、表面張力により、その面積が最小の球形になろうとする。したがって、液体40は、対物レンズ48の先端から表面張力に応じて僅かに食み出すことになる。図10(a)では、対物レンズ48の先端の直径を"d"で示し、液体40の対物レンズ48の先端からの食み出し幅を"A"で示した。図10(a)の液体40を上方から見ると、図10(b)に示す通りである。
このように、液体40の供給量Vが適切な場合、液体40による占有空間は、図10(a),(b)に示す通り、対物レンズ48の先端と基板11との間の柱状空間2Aと、表面張力により対物レンズ48の先端から食み出し可能な環状空間2Bとを足し合わせたものとなる。また、その体積V0は、柱状空間2Aの体積V1と、環状空間2Bの体積V2とを用いて、次の式(11)を満足する。さらに、対物レンズ48の先端からの食み出し幅Aは、対物レンズ48の作動距離δに依存し、近似的に次の式(12)を満足すると考えられる。
V0=V1+V2 …(11)
δ/2 ≦ A ≦ 2δ …(12)
したがって、本実施形態の顕微鏡装置10では、予め上記の体積V0を設計値として計算し、この体積V0に相当する量を"液体40の適切な供給量V"とする。さらに、適切な供給量V(=体積V0)を実現するために、液体供給装置49のパラメータ(つまりシリンダ134の断面積S)を用いて、次の式(13)により、ピストン135の移動量Xを計算する。
X=V0/S …(13)
なお、適切な供給量V(=体積V0)の計算には、対物レンズ48の先端の直径d、対物レンズ48の作動距離δ、対物レンズ48の先端からの食み出し幅Aが用いられる。例えば、対物レンズ48の先端からの食み出し幅Aが、対物レンズ48の作動距離δに等しいとき、体積V0は、次の近似式(14)により計算することができる。これは、液体40の供給量Vとして最も適切な場合と考えられる。近似式(14)では、環状空間2Bの断面形状を"半径δの1/4円"と仮定した。
Figure 2005208626
液体供給装置49(図9(a))において、上記の式(13)により計算したピストン135の移動量Xを実現する(つまり液体40の適切な供給量Vを実現する)ためには、モータ137を回転させて送りネジ136を移動させ、ピストン135の移動量Xを精密に制御することが好ましい。制御方法には、モータ137としてステッピングモータを用いて開ループ制御する方法や、ロータリーエンコーダまたはリニアエンコーダにより閉ループ制御する方法が考えられる。
次に、液体回収装置52の説明を行う。図9(b)は液体回収装置52の構成を示す図である。液体回収装置52は、配管141を介して吸引ノズル51に接続された廃液貯めタンク142と、配管143を介して廃液貯めタンク142に接続された真空ポンプ144とで構成される。配管141,143は、廃液貯めタンク142の上部に接続されている。廃液貯めタンク142には、廃液104Aを排出するためのコック145が取り付けられている。なお、真空ポンプ144の代わりに工場内の真空装置(不図示)を配管143に接続しても良い。
液体回収装置52では、真空ポンプ144により、吸引ノズル51などを介して、対物レンズ48の先端と基板11との間の液体40を周りの空気と一緒に吸引する。つまり、液体40を基板11から除去する。吸引された液体40は、配管141を介して廃液貯めタンク142に導かれ、そこで空気とは選別され、廃液貯めタンク142に落下する(廃液104A)。そして空気のみが配管143を介して真空ポンプ144に導かれる。このように、吸引ノズル51を介して液体回収装置52により液体40が回収される。真空ポンプ144には空気のみを導くため、液体の流入により損傷することはない。配管143の途中に水分除去フィルタを設けてもよい。液体40の回収は、液浸観察の後で、不図示の制御部が自動的に行う。
真空ポンプ144による引き込み時の液体40の挙動を図11(a)〜(c)に示す。引き込み開始前は、図11(a)のように(図10(a)と同様)、液体40の表面(露出面)の形状が近似的に球面である。引き込みを開始すると、次第に図11(b)のようになり、表面張力による食み出し分がなくなる。そして最後は図11(c)のように、対物レンズ48の先端と基板11との間の中心部分がやせ細って途切れる。
このため、真空ポンプ144による吸い込み速度(真空排気の速度)は、対物レンズ48の先端と基板11との間隔に起因する空気漏れ量よりも、吸引ノズル51からの吸い込み量が大きくなるような条件とすることが好ましい。このことはベルヌーイの定理からも明白である。
また、吸い込み作業の途中(図11(b)または図11(c)のタイミング)で、Zステージ14を制御して試料台12を僅かに(<作動距離δの範囲内で)上昇させ、図12(b)に示す通り、基板11を対物レンズ48に近づけ、対物レンズ48の先端と基板11との間隔(δ−γ)を小さくする。この場合、基板11の上昇量γに応じて、間隔(δ−γ)に起因する空気漏れ量を小さくすることができ、基板11に残存した液体40を効果的に吸引することができる。
基板11の上昇量γ(<δ)は、概ね、以下の条件式(21)を満足するように予め設定すればよい。左辺S32Aは、吸引ノズル51の開口の総面積を表す。右辺は、対物レンズ48の先端(直径dの平坦な部分)の円周の長さ(2π(d/2))と上記の間隔(δ−γ)との積、つまり、対物レンズ48の先端と基板11とにより形成される円筒空間の側面積を表し、近似的に空気の吸い込み量(漏れ量)に比例する。
S32A ≧ 2π(d/2)(δ−γ) …(21)
このような条件式(21)を満足するように基板11の上昇量γ(<δ)を設定し、液体40の吸い込み作業の途中で、対物レンズ48の先端と基板11との間隔(δ−γ)を小さくすると、間隔(δ−γ)に起因する空気漏れ量が小さくなり、基板11に残存した液体40を効果的に吸引することができる。なお、上記の条件式(21)を満足しない場合は、吸引ノズル51に流れ込む空気の割合が多すぎて、液体40を効果的に吸引できない。
液浸系の観察部(41〜54,32〜35)において、開口絞り44を通過した可視光は、視野絞り45を通過した後、コンデンサレンズ46を介して平行光となり、分岐プリズム47で反射して光軸10B上の対物レンズ48に導かれる。光軸10B上の対物レンズ48は、分岐プリズム47からの可視光を集光して液浸状態の基板11に導く。その結果、基板11は可視光により照明される。なお、開口絞り44は、対物レンズ48の射出瞳と共役であり、基板11を照明する光の入射角度範囲を規定する。視野絞り45は、基板11の照明範囲を規定する。
上記の照明により基板11から発生した観察光(例えば反射光)は、再び対物レンズ48に導かれ、これを介して平行光となり、分岐プリズム47を透過する。分岐プリズム47の後段には、焦点検出部55(後述)が設けられる。焦点検出部55は、光軸10B上の対物レンズ48に対する基板11の合焦状態(デフォーカス量)を検出するための機構である。
さらに、焦点検出部55の後段において、観察部(41〜54,32〜35)には、反射ミラー53と、結像光学系54と、図2に示す配置状態の光路切換ミラー32と、分岐プリズム33と、撮像素子34と、接眼レンズ35とが設けられる。基板11からの観察光のうち、分岐プリズム47と焦点検出部55の分岐プリズム55Aとを透過した光は、これらの光学素子(53,54,32,33)を介して集光される。その結果、撮像素子34の撮像面と接眼レンズ35の視野位置35Aとの各々には、基板11の拡大像が形成される。
上記のように構成された液浸系の観察部(41〜54,32〜35)では、可視光(例えば波長550nm)を用いて、光軸10B上に位置決めされた基板11の観察点を高分解能(例えば二点分解能268nm)で観察することができる。液浸系の観察部(41〜54,32〜35)を用いることで、乾燥系の観察部(21〜35)よりも高い分解能での観察が可能となる。
焦点検出部36,55の説明を行う。焦点検出部36は、乾燥系の観察部(21〜35)による基板11の観察時に、光軸10A上の対物レンズ28に対する基板11の合焦状態(デフォーカス量)を検出する機構である。また、焦点検出部55は、液浸系の観察部(41〜54,32〜35)による基板11の観察時に、光軸10B上の対物レンズ48に対する基板11の合焦状態(デフォーカス量)を検出する機構である。顕微鏡装置10の制御部(不図示)は、焦点検出部36または焦点検出部55による検出結果に基づいて、Zステージ14を制御し、基板11の合焦状態を自動調整する(AF制御)。
図3に示す通り、焦点検出部36では、光源61からの光をスリット62に照射し、レンズ63で略平行な光にして、遮光板64に入射させる。遮光板64は、スリット62を通過した光のうち、半分を遮光する。遮光板64を通過した光は、分岐プリズム65,36Aで反射し、分岐プリズム27を透過して、対物レンズ28に導かれる。その結果、基板11にスリット像が投影される。基板11で反射した光(AF検出光)は、再び、対物レンズ28で集光され、分岐プリズム27,36A,65を透過し、結像レンズ66により集光される。その結果、1次元撮像素子67にスリット像が形成される。信号処理部68は、1次元撮像素子67におけるスリット像の重心位置を検出し、その位置から基板11のデフォーカス量を求める。
焦点検出部55は、基本的な構成が上記の焦点検出部36と同じであり、図3の光学素子(61〜67)と信号処理部68と図1の分岐プリズム55Aとで構成される。液浸系の場合、焦点検出部55による検出結果(デフォーカス量)を補正し、液浸媒質(液体40)の屈折率で割った量に基づいて、Zステージ14の制御が行われる。
次に、第1実施形態の顕微鏡装置10における基板11の観察動作を説明する。基板11の観察動作は、不図示の制御部による自動制御であり、図4に示すフローチャートの手順にしたがって行われる。
まず(S1)、観察対象の基板11をステージ(12〜14)に搬送し、基板11上の回路パターンの方位を調整した後、試料台12の上に固定させる。次に(S2)、乾燥系の観察部(21〜35)のレボルバ29を必要に応じて回転させ、対物レンズ28を低倍観察状態に設定する。次に(S3)、XYステージ13を制御して、基板11の予め定めた観察点を、乾燥系の観察部(21〜35)の視野内に位置決めする。このとき、乾燥系の観察部(21〜35)の視野の中心に観察点が位置するように、XYステージ13の制御が行われる。
次に(S4)、AF制御を開始し、焦点検出部36とZステージ14とを制御して、基板11の合焦状態を自動調整する。この状態で(S5)、乾燥系の観察部(21〜35)による基板11の観察(つまり低分解能での観察)を開始させる。観察者は、撮像素子34に接続されたモニタや接眼レンズ35を介して、基板11の観察点の観察を行う。この間、制御部は、観察者からの指示待ち状態となり、ステップS6における「十分な観察倍率で基板11を観察できたか否か」の判定結果に応じて、次の処理に進む。
観察者からの指示に基づいて「十分な観察倍率ではなかった」と判定した場合(S6がNo)、制御部は、次のステップS7でAF制御を停止させ、さらに次のステップS8で「現在より高倍の対物レンズ28があるか否か」を判定する。そして高倍の対物レンズ28がある場合には(S8がYes)、レボルバ29を回転させて高倍観察状態に切り換え、上記ステップS3の処理に戻る。つまり、XYステージ13を制御して、乾燥系の観察部(21〜35)の視野の中心に観察点を移動させる。
このようにして、ステップS3〜S8の処理を繰り返すことで、比較的低倍での観察から始めて徐々に観察倍率を上げ、基板11上の観察点の観察目標(注目箇所)を高倍観察時の視野の中心に追い込むことができる。そして、乾燥系の観察部(21〜35)の最高倍率で観察した後、ステップS6の判定結果がNoの場合で(つまり十分な観察倍率ではなく)、ステップS8の判定結果もNoの場合(つまり現在より高倍の対物レンズ28がない場合)には、「乾燥系の観察部(21〜35)による観察後、液浸系の観察部(41〜54,32〜35)による観察を行う」と判定したことになり、次のステップS9以降の処理に進む。
そして制御部は、まず(S9)、XYステージ13を制御して、基板11を水平移動させ、基板11上の観察点を、液浸系の観察部(41〜54,32〜35)の視野内に位置決めする。このとき、水平移動量を光軸10A,10Bの距離と一致させることで、例えば基板11上の光軸10Aと交わっていた観察点を光軸10B上(つまり液浸系の観察部(41〜54,32〜35)の視野の中心)に位置決めすることができる。また、光路切換ミラー32の配置状態を図2のように電気的に切り換える。
次に(S10)、液体供給装置49と吐出ノズル50を制御して、対物レンズ48の先端と基板11との間に、前述のように所定量の液体40を供給する。次に(S11)、AF制御を開始し、焦点検出部55とZステージ14とを制御して、基板11の合焦状態を自動調整する。この状態で(S12)、液浸系の観察部(41〜54,32〜35)による基板11の観察(つまり高分解能での観察)を開始させる。観察者は、撮像素子34に接続されたモニタや接眼レンズ35を介して、基板11の観察点の観察を行う。
そして観察者から「液浸観察終了」の指示を受け取ると、制御部は、次のステップS13でAF制御を停止させる。次に(S14)、前述のように、吸引ノズル51と液体回収装置52とZステージ14を制御して、対物レンズ48の先端と基板11との間から液体40を回収する。つまり、基板11に「液滴」が残らないようにする。
次に(S15)、「基板11上に次の観察点があるか否か」を判定し、ある場合(S15がYes)には上記ステップS2の処理に戻る。つまり、他の観察点についての乾燥系での低分解能観察が開始される。光路切換ミラー32の配置状態は図1のように切り換えられる。一方、次の観察点がない場合(S15がNo)にはステップS16に進み、基板11をステージ(12〜14)から回収して、基板11の観察動作を終了する。
なお、上記のステップS6で観察者からの指示に基づいて「十分な観察倍率だった」と判定した場合(S6がYes)、制御部は、次のステップS17でAF制御を停止させ、ステップS15の処理に進む。この場合、その観察点については、液浸系の観察部(41〜54,32〜35)による観察が行われない。
上記したように、第1実施形態の顕微鏡装置10では、基板11上の予め定めた観察点ごとに、乾燥系の観察部(21〜35)による観察(低分解能)を行った後で、必要に応じて液浸系の観察部(41〜54,32〜35)による観察(高分解能)を行うため、基板11の効率的な観察が可能となる。
さらに、液浸系の観察部(41〜54,32〜35)を設けたことにより、可視光(例えば波長550nm)でも高分解能の観察が可能になるため、安価に構成することもできる。上記した第1実施形態の顕微鏡装置10では、可視光のみで高分解能と低分解能の観察を効率よく行うことができる。
さらに、第1実施形態の顕微鏡装置10では、液浸系の観察部(41〜54,32〜35)による観察の際、液体40の供給と回収を自動制御で行うため、作業者に対する負担が殆どなく、高スループットで基板11の観察を行うことができる。
(第2実施形態)
第2実施形態の顕微鏡装置70は、図5に示す通り、図1の顕微鏡装置10の反射ミラー30,53と光路切換ミラー32を省略し、結像光学系54の後段に撮像素子72を設け、光学素子(41〜47,54,72)を窒素充填室71の中に配置したものであり、その他の構成が図1と同じである。図5では図示省略したが、顕微鏡装置70にも図1と同様の焦点検出部36,55が設けられ、一方の焦点検出部55は窒素充填室71の中に配置される。
顕微鏡装置70でも、基板11を観察する際に、低分解能での観察と高分解能での観察とを必要に応じて切り換えることができるようになっている。低分解能での観察を行うのは、可視光(例えば波長550nm)を用いた乾燥系の観察部(21〜29,31,33〜35)である。高分解能での観察を行うのは、紫外光(波長400nm以下,例えば248nm)を用いた液浸系の観察部(41〜52,54,72)である。
ここで、液浸系の観察部(41〜52,54,72)の対物レンズ48と基板11との間を水で満たす場合、結像に関与する光の波長λが248nm(紫外光)であれば、その屈折率nは"1.4"程度となる。したがって、対物レンズ48の開口数N.A.が1.25程度の場合、二点分解能は121nmとなる。つまり、液浸系の観察部(41〜52,54,72)に紫外光を用いることで、非常に高い分解能を得ることができる。
ちなみに、乾燥系の場合(開口数0.9)、波長248nmでの二点分解能は168nmであり、波長193nmで二点分解能は131nmである。したがって、第2実施形態のように液浸系で紫外光(波長248nm)を用いることにより、上記「131nm」よりも高い分解能が得られること分かる。
また、第2実施形態の顕微鏡装置70では、液浸系の観察部(41〜52,54,72)のうち、光学素子(41〜47,54,72)を窒素充填室71の中に配置し、紫外光が通過する経路を不活性ガスの窒素で充填するため、光源41として波長250nm以下の深紫外光源を用いた場合でも、オゾンなどの有害物質が発生することはない。また、例えば空気中で波長200nm以下の深紫外域の光を照射すると空気中に含まれる様々な気体分子が光化学反応により活性化して光学系の表面にダメージを与えるが、液浸系の光学素子を不活性ガスで充填すれば、このダメージも軽減することができる。なお、対物レンズ48と基板11との間の光路は窒素充填室71の外に位置するが、液体40が供給された後で紫外光による観察を行うため、その紫外光が周囲の空気(酸素)と光化学反応を起こすことはない。したがって、液浸系で紫外光を用いる場合には、乾燥系で紫外光を用いる場合と比較して、窒素充填室71の体積を小さくできるという利点もある。
なお、第2実施形態では、液浸系の観察部(41〜52,54,72)のみを窒素充填し、乾燥系の観察部(21〜29,31,33〜35)は空気のままである。乾燥系を窒素充填しないため、通常の光学顕微鏡で用いられているレボルバ29を利用することができる。
さらに、紫外光を用いる場合には、レンズの接合面で接合材が紫外光により劣化するため、対物レンズ48では接合をしないで(つまり全てのレンズ成分を単レンズにより構成して)、所定の波長範囲で色消しした対物レンズを使うことが好ましい。
次に、中心波長248nmで±3nmの範囲で色消ししたN.A.=1.25の水浸無限遠系の対物レンズ48Aの一例を示す。表2は、対物レンズ48Aのレンズデータである。図6は、対物レンズ48Aの断面図である。対物レンズ48Aの焦点距離は約2mmである。対物レンズ48Aでは焦点検出用の770nmの光を通すために、波長770nmの光の球面収差を抑えている。ただし、焦点検出光学系と観察系とは分岐する構成で検出像面をオフセットして設定しているので、軸上色収差は完全に補正していない。この光学系の収差の概略を図7,図8に示す。なおレンズデータ(表2)で空気と記載している部分は窒素でもよい。
Figure 2005208626
また、第2実施形態では、可視光/乾燥系用の撮像素子34と、紫外光/液浸系用の撮像素子72とが、別構成となっている。これは、可視光用と紫外光用とで撮像素子の感度が異なるためである。可視光用にはカラーCCDなどの色情報を取り込み可能なものを用い、紫外光用には紫外光に感度を有するモノクロCCDを使うことが好ましい。2つの撮像素子34,72を共通のモニタに接続しても、別のモニタに接続してもよい。共通のモニタの場合には、基板11の観察時に乾燥系と液浸系を切り換える際、モニタへの画像入力を電気的なスイッチングにより切り換え、何れか一方の画像を表示すればよい。
観察できる視野は撮像素子の画面サイズと光学系の観察倍率で決まるが、CCDなどの撮像素子を用いる場合には画面サイズが撮像素子によって異なるために、実視野は光学系の倍率だけで一意には決まらない。可視光用のCCDは様々な種類のものが作られているが、顕微鏡用途には2/3インチ(有効画面範囲8.8mm×6.6mm)のものが使いやすい(表3参照)。紫外用には種類が少なく、8mm□の有効画面範囲を持つものがある。また、光学系の倍率についても結像光学系の焦点距離を可視光用のものと変えて配置することもできる。焦点深度Dも撮像素子で撮像する場合には人間の目の調整機能が働かないため、光源波長λと対物レンズの開口数N.A.と被検物体面周囲の屈折率nとで、次の式(22)により表される。
D = (nλ) / (2N.A.2) …(22)
Figure 2005208626
第2実施形態の顕微鏡装置70では、例えば上記と同様の観察手順(図4)により、基板11の観察動作が行われる。このため、基板11上の予め定めた観察点ごとに、乾燥系の観察部(21〜29,31,33〜35)による観察(低分解能)を行った後で、必要に応じて液浸系の観察部(41〜52,54,72)による観察(高分解能)を行うため、基板11の効率的な観察が可能となる。
さらに、液浸系の観察部(41〜52,54,72)を設けたことにより、可視光(例えば波長550nm)でも高分解能の観察が可能になるため、安価に構成できる。加えて、第2実施形態では、液浸系の光学素子(41〜47,54,72)を窒素充填室71の中に配置したため、紫外光(波長400nm以下,例えば248nm)を用いることができ、紫外光/乾燥系の従来構成よりも高い分解能での観察が可能となる。
また、第2実施形態の顕微鏡装置70でも、液浸系の観察部(41〜52,54,72)による観察の際、液体40の供給と回収を自動制御で行うため、作業者に対する負担が殆どなく、高スループットで基板11の観察を行うことができる。
(変形例)
なお、上記した実施形態では、図4に示すフローチャートの手順にしたがって基板11の観察を行ったが、本発明はこれに限定されない。例えば、図4のステップS8の判定結果がNoの場合(つまり現在より高倍の対物レンズ28がない場合)に、その観察点の位置情報(例えば観察点を乾燥系の視野の中心に位置決めしたときのXYステージ13の位置)を制御部のメモリに記憶させ、同様の処理を基板11上の全ての観察点について順に行い、乾燥系での観察後、制御部のメモリに記憶された位置情報に基づいてXYステージ13を制御し、液浸系での観察を行ってもよい。この手順によれば、観察点ごとに乾燥系と液浸系とを切り換える時間が省略でき、全体の処理時間を短縮することができる。
また、この手順を採用する場合、液体40を供給/回収する手順を次のように変更することもできる。つまり、液浸系での観察中、次の観察点までの距離が近い場合には、現在の観察点に供給されている液体40を回収することなく、XYステージ13(つまり基板11)を移動させてもよい。基板11の表面がある程度の疎水性を持ち、対物レンズ48の先端がある程度の親水性を持つ場合には、液体40が液滴(水滴)となり、対物レンズ48の側に付着し続けようとする。このため、XYステージ13(つまり基板11)を移動させても、液体40を対物レンズ48の先端に付着させておくことができ、次の観察点に到着したときに同じ液体40を利用して観察を行える。液体40を回収するか否かの判断は、制御部のメモリ内の位置情報に基づいて、次の観察点までの移動距離を計算し、これを予め定めた距離と比較することにより行えばよい。比較の結果、予め定めた距離以内であれば液体40を回収せずに次の観察点まで移動させることになる。
さらに、上記した実施形態では、液体40として例えば純水を用いたが(水浸系)、本発明はこれに限定されない。その他、純水よりも屈折率の高い油(例えば液浸オイルやシリコンオイルなど)を液体40として用いてもよい(油浸系)。この場合、液体40を対物レンズ48の先端に付着させながらXYステージ13(つまり基板11)を移動させるには、基板11の表面がある程度の親水性を持ち、対物レンズ48の先端がある程度の疎水性を持つことが好ましい。
また、液体40として純水よりも表面張力の小さい液体(例えば界面活性剤を添加した水、アルコール類などの有機溶媒、および有機溶媒と純水との混合物)を用いることもできる。この場合には、基板11の回路パターンが微細な場合でも、液体40を回路パターンの凹部に確実に浸透させることができ、良好に観察できる。また、特に、観察するパターンがレジストパターンである場合、液体40の吸引時に該液体の表面張力によるレジストパターンの倒れを防ぐことができるので、100nm以下の微細パターンを観察する際に非破壊での検査が可能になる。
さらに、上記した実施形態では、液浸系での観察後、基板11から液体40を除去するために、吸引ノズル51と液体回収装置52とを用いて液体40を回収したが、本発明はこれに限定されない。何らかの乾燥手段(例えば減圧乾燥など)を用いて、液体40を除去してもよい。また、検査した基板を破棄せずに次のラインに取り込む(完全な非破壊検査を行う)ためには、液体40の除去手段として超臨界乾燥装置を顕微鏡装置に併設または顕微鏡装置に一体化することが好ましい。この場合には、もちろん対物レンズに液体除去ノズルを設けなくても良く、全ての観察が終了後、基板を超臨界乾燥装置に搬送して液体の除去を行う。
また、上記した実施形態では、固定の分岐プリズム33により撮像素子34と接眼レンズ35との双方に結像光を振り分けたが、本発明はこれに限定されない。分岐プリズム33の位置に可動の分岐プリズムや反射ミラーを出し入れするようにしてもよい。この場合、撮像素子34と接眼レンズ35との何れか一方に結像光を導くことができ、光量を確保できる。
さらに、焦点検出部36,55として、画像コントラスト方式を用いてもよい。この場合には、画像コントラストが最大となるZ位置を求めるので、液浸系でもZステージ14の移動量を補正する必要がなくなる。
なお、上記した実施形態では、液体40の最も適切な供給量Vとして近似式(14)により体積V0を計算したが、本発明はこれに限定されない。例えば液体40の表面(露出面)の形状が図13のようになることが想定される場合は、次の近似式(15)により体積V0を計算することが好ましい。この近似式(15)は、環状空間2B(図10(b)参照)の断面形状を"半径δ/2の半円"と仮定するものである。
Figure 2005208626
ちなみに、液体40の比重が比較的小さい場合は、図13の表面形状が現実的であり、近似式(15)を用いることが好ましい。また、液体40の比重が比較的大きい場合は、図10(a)の表面形状が現実的であり、近似式(14)を用いることが好ましい。ただし、対物レンズ48の作動距離δが微小な場合(δ≦0.5mm程度)には、近似式(14)と近似式(15)との何れを用いても、計算結果の体積V0は殆ど同じである。このため、何れの近似式を用いても構わない。
第1実施形態の顕微鏡装置10の全体構成を示す図である。 光路切換ミラー32の別の配置状態を示す図である。 焦点検出部36の構成を示す図である。 顕微鏡装置10による基板11の観察手順を示すフローチャートである。 第2実施形態の顕微鏡装置70の全体構成を示す図である。 水浸無限遠系の対物レンズ48Aの一例を示す断面図である。 対物レンズ48Aの収差を示す概略図である。 対物レンズ48Aの収差を示す概略図である。 液体供給装置、液体回収装置の構成を示す図である。 液体40の形状を説明する側面図、上面図である。 液体40の回収時の液体40の挙動を示す側面図である。 観察時の液体40の状態を示す側面図と、回収時にZステージを上昇させた場合の液体40の状態を示す側面図である。 液体40の形状を説明する側面図である。
符号の説明
10,70 顕微鏡装置 11 基板
12 試料台 13 XYステージ
14 Zステージ 21,41 光源
22,42 コレクタレンズ 23,43 波長選択フィルタ
24,44 開口絞り 25,45 視野絞り
26,46 コンデンサレンズ 27,47 分岐プリズム
28,48 対物レンズ 29 レボルバ
30,53 反射ミラー 31,54 結像光学系
32 光路切換ミラー 33 分岐プリズム
34,72 撮像素子 35 接眼レンズ
36,55 焦点検出部 49 液体供給装置
50 吐出ノズル 51 吸引ノズル
52 液体回収装置 71 窒素充填室

Claims (20)

  1. 液浸系の対物レンズを介して、被検部と前記対物レンズとの間に浸液を充填させた状態で前記被検部の拡大像を形成する顕微鏡光学系と、
    基板上の複数の被検部のうち第一の被検部が前記顕微鏡光学系の視野位置にある状態から前記基板上の第二の被検部が前記視野位置にある状態に移動させる移動装置と、
    前記対物レンズと被検部との間に充填する浸液を供給する浸液供給装置と、
    前記対物レンズと前記被検部との間に充填された前記浸液を除去する浸液除去装置と、
    前記移動装置を動作させる前に、前記浸液除去装置により浸液を除去させる浸液除去制御装置とを備えた
    ことを特徴とする顕微鏡装置。
  2. 請求項1に記載の顕微鏡装置において、
    前記移動装置は、複数の被検部を有する基板を、予め定めた領域内で移動可能に支持するステージと、前記基板上の前記複数の被検部の位置情報に基づいて前記ステージを駆動するステージ制御装置とで構成され、
    前記ステージ制御装置は、前記浸液除去装置による前記浸液の除去後に次の被検部が前記対物レンズの視野内に位置するようにステージを駆動する
    ことを特徴とする顕微鏡装置。
  3. 請求項1または請求項2に記載の顕微鏡装置において、
    前記浸液供給装置により供給された浸液が前記対物レンズ先端と前記基板との間に充填された後で、かつ前記浸液除去装置により前記浸液が除去される前に、前記顕微鏡光学系の合焦状態を調整する自動調整装置を更に備えた
    ことを特徴とする顕微鏡装置。
  4. 請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置において、
    前記浸液除去装置は浸液を吸引するための吸引ノズルを有し、前記吸引ノズルの先端は、前記対物レンズ先端の近傍に配置された
    ことを特徴とする顕微鏡装置。
  5. 請求項1乃至請求項4のいずれか一項に記載の顕微鏡装置において、
    前記浸液供給装置は浸液を供給するための吐出ノズルを有し、前記吐出ノズルの先端は、前記対物レンズ先端の近傍に配置された
    ことを特徴とする顕微鏡装置。
  6. 請求項2に記載の顕微鏡装置において、
    前記浸液供給装置は浸液を供給するための吐出ノズルを有し、前記吐出ノズルの先端は、前記基板の近傍の所定位置に配置され、
    前記ステージ制御装置はまず被検部を、前記吐出ノズルの先端直下に移動させて前記吐出ノズルから前記被検部に浸液を供給し、次に、前記浸液が供給された被検部を前記対物レンズの視野内に移動させて、前記顕微鏡光学系により前記被検部の像を形成する
    ことを特徴とする顕微鏡装置。
  7. 請求項1乃至請求項6に記載の顕微鏡装置において、
    前記浸液供給装置により、少なくとも前記拡大像形成時における前記対物レンズ先端と前記基板との隙間を満たす量が供給される
    ことを特徴とする顕微鏡装置。
  8. 請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置において、
    乾燥系の対物レンズを介して、前記複数の被検部の像を形成する顕微鏡光学系と、
    前記乾燥系の対物レンズを介して形成された複数の被検部の像に基づいて前記複数の被検部のうち、所定の被検部の位置を記憶する記憶部とを有し、
    前記記憶部で記憶された位置情報に基づいて、前記移動手段を制御して前記記憶部に記憶された被検部の位置を順に前記液浸系の対物レンズの視野内に位置させて、前記被検部の位置ごとに前記液浸系の対物レンズを介して像を形成する制御手段を備えた
    ことを特徴とする顕微鏡装置。
  9. 請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置において、
    乾燥系の対物レンズを介して前記基板上の前記複数の被検部の像を形成する顕微鏡光学系と、
    前記移動手段を制御して前記複数の被検部を前記乾燥系の対物レンズの視野内に順に位置決めし、前記乾燥系の対物レンズを介して像を形成させる第一制御手段と、
    前記乾燥系の対物レンズを介した像の形成後、前記液浸系の対物レンズを介した像の形成を行うか否かを判定する判定手段と、
    前記判定手段による判定の結果、前記液浸系の対物レンズを介した観察を行う場合に、前記移動手段を制御して前記液浸系の対物レンズの視野内に前記被検部を位置決めし、前記液浸系の対物レンズを介して像を形成する第二の制御手段とを備えた
    ことを特徴とする顕微鏡装置。
  10. 請求項1乃至請求項3のいずれか一項に記載の顕微鏡装置において、
    乾燥系の対物レンズを介して前記基板上の前記複数の被検部の像を形成する顕微鏡光学系と、
    前記移動手段を制御して前記複数の被検部を前記乾燥系の対物レンズの視野内に順に位置決めし、前記乾燥系の対物レンズを介して像を形成させる第一の制御手段と、
    前記乾燥系の対物レンズを介した像を形成後、前記液浸系の対物レンズを介した像の形成を場合には、前記被検部の位置情報を記憶する記憶手段と、
    前記記憶手段に記憶された前記位置情報に基づき、前記移動手段を制御して前記液浸系の対物レンズの視野内に前記被検部を位置決めし、前記液浸系の対物レンズを介して像を形成する第二の制御手段とを備えた
    ことを特徴とする顕微鏡装置。
  11. 請求項1乃至請求項10のいずれか一項に記載の顕微鏡装置において、
    前記浸液は純水である
    ことを特徴とする顕微鏡装置。
  12. 請求項1乃至請求項11のいずれか一項に記載の顕微鏡装置において、
    前記液浸系の対物レンズは、作動距離が0.1mm以上0.5mm以下である
    ことを特徴とする顕微鏡装置。
  13. 請求項1乃至請求項12のいずれか一項に記載の顕微鏡装置において、
    前記液浸系の対物レンズは紫外光により前記基板の像を形成する
    ことを特徴とする顕微鏡装置。
  14. 顕微鏡装置において使用する液浸対物レンズであって、
    前記液浸対物レンズは、全てのレンズ成分が単レンズにより構成される
    ことを特徴とする液浸対物レンズ。
  15. 請求項1に記載の顕微鏡装置において、
    前記浸液供給装置は、前記浸液の供給量を、前記対物レンズの先端と前記被検部との間の柱状空間の体積V1と、表面張力により前記対物レンズの先端から食み出し可能な環状空間の体積V2とを用いて、次の式(1)を満足する体積V0に相当する量とする
    V0=V1+V2 …(1)
    ことを特徴とする顕微鏡装置。
  16. 請求項15に記載の顕微鏡装置において、
    前記環状空間は、前記対物レンズの先端からの食み出し幅Aが、前記対物レンズの作動距離δを用い、次の式(2)を満足する
    δ/2 ≦ A ≦ 2δ …(2)
    ことを特徴とする顕微鏡装置。
  17. 請求項15に記載の顕微鏡装置において、
    前記浸液供給装置を制御して前記浸液の供給を開始させると共に、前記浸液の供給量が前記体積V0に相当する量となった時点で前記浸液の供給を停止させる浸液供給制御装置を備えた
    ことを特徴とする顕微鏡装置。
  18. 請求項1に記載の顕微鏡装置において、
    前記浸液が前記被検部に供給された状態で、前記被検部を前記対物レンズの焦点面のうち前記対物レンズの光軸付近に位置決めする位置決め装置を有し、
    前記浸液除去装置は、前記対物レンズの先端の近傍に前記浸液を吸引するための吸引部を有し、前記位置決め装置により位置決めされた状態から、前記基板を前記対物レンズに近づけて前記被検部から前記浸液を除去する
    ことを特徴とする顕微鏡装置。
  19. 請求項1に記載の顕微鏡装置において、
    前記対物レンズの焦点面よりも前記対物レンズから離れた面に、前記基板を位置決めする第1の位置決め装置と、
    前記液体が前記被検部に供給された状態で、該被検部を前記対物レンズの焦点面のうち前記対物レンズの光軸付近に位置決めする第2の位置決め装置とを有し、
    前記浸液供給装置は、前記基板が前記離れた面に位置決めされた状態で、前記基板の前記被検部に浸液を供給し、
    前記浸液除去装置は、前記対物レンズの先端の近傍に前記浸液を吸引するための吸引部を有し、前記第2の位置決め装置により位置決めされた状態から、前記基板を前記対物レンズに近づけて前記被検部から前記浸液を除去する
    ことを特徴とする顕微鏡装置。
  20. 請求項19に記載の顕微鏡装置において、
    前記浸液供給装置は、前記離れた面のうち前記光軸付近をターゲットとして前記液体を供給し、
    前記第1の位置決め装置は、前記基板の前記被検部を前記離れた面のうち前記光軸付近に位置決めする
    ことを特徴とする顕微鏡装置。
JP2004373951A 2003-12-24 2004-12-24 顕微鏡装置および液浸対物レンズ Pending JP2005208626A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373951A JP2005208626A (ja) 2003-12-24 2004-12-24 顕微鏡装置および液浸対物レンズ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003428276 2003-12-24
JP2004373951A JP2005208626A (ja) 2003-12-24 2004-12-24 顕微鏡装置および液浸対物レンズ

Publications (1)

Publication Number Publication Date
JP2005208626A true JP2005208626A (ja) 2005-08-04

Family

ID=34914036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373951A Pending JP2005208626A (ja) 2003-12-24 2004-12-24 顕微鏡装置および液浸対物レンズ

Country Status (1)

Country Link
JP (1) JP2005208626A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058910A (ja) * 2006-09-04 2008-03-13 Nikon Corp 顕微鏡システム
US8144396B2 (en) 2007-04-10 2012-03-27 Olympus Corporation Microscope apparatus
CN111308741A (zh) * 2018-12-12 2020-06-19 电子科技大学 基于液晶透镜的小凹成像装置及成像方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919912A (ja) * 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
JPH04340242A (ja) * 1991-04-03 1992-11-26 Hitachi Ltd 顕微鏡
JPH08338943A (ja) * 1995-06-13 1996-12-24 Olympus Optical Co Ltd 顕微鏡自動焦点調整装置
JPH10154659A (ja) * 1996-10-07 1998-06-09 Nikon Corp リソグラフィーアライナー、製造装置、または検査装置用の焦点及びチルト調節システム
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000155267A (ja) * 1998-11-19 2000-06-06 Nikon Gijutsu Kobo:Kk 顕微鏡対物レンズ
JP2001118896A (ja) * 1999-10-15 2001-04-27 Sony Corp 検査装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919912A (ja) * 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
JPH04340242A (ja) * 1991-04-03 1992-11-26 Hitachi Ltd 顕微鏡
JPH08338943A (ja) * 1995-06-13 1996-12-24 Olympus Optical Co Ltd 顕微鏡自動焦点調整装置
JPH10154659A (ja) * 1996-10-07 1998-06-09 Nikon Corp リソグラフィーアライナー、製造装置、または検査装置用の焦点及びチルト調節システム
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000155267A (ja) * 1998-11-19 2000-06-06 Nikon Gijutsu Kobo:Kk 顕微鏡対物レンズ
JP2001118896A (ja) * 1999-10-15 2001-04-27 Sony Corp 検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058910A (ja) * 2006-09-04 2008-03-13 Nikon Corp 顕微鏡システム
US8144396B2 (en) 2007-04-10 2012-03-27 Olympus Corporation Microscope apparatus
CN111308741A (zh) * 2018-12-12 2020-06-19 电子科技大学 基于液晶透镜的小凹成像装置及成像方法

Similar Documents

Publication Publication Date Title
KR20050065366A (ko) 현미경 장치 및 액침 대물 렌즈
US20080259446A1 (en) Adaptor for Microscope and Microscope Apparatus (Microscope-Use Adaptor and Microscope Device)
JP2005083800A (ja) 欠陥検査方法及び欠陥検査装置
EP1944643A1 (en) Observation apparatus provided with immersion objective lens
EP1887402B1 (en) Microscope optical system, microscope apparatus and microscope observation method
JP4567594B2 (ja) 顕微鏡、試料観察方法、及び半導体検査方法
JP2008509426A6 (ja) 微細要素の検査用装置
JP2005208626A (ja) 顕微鏡装置および液浸対物レンズ
JP4569123B2 (ja) 顕微鏡観察装置
JP4586421B2 (ja) 液浸対物レンズおよび顕微鏡観察装置
JP2007316233A (ja) 液浸顕微鏡装置
JP2005234457A (ja) 顕微鏡観察装置
JP4788289B2 (ja) 液浸顕微鏡装置
JP4691927B2 (ja) 顕微鏡観察装置
JP2005128443A (ja) 顕微鏡
JP2008058910A (ja) 顕微鏡システム
JP4694760B2 (ja) 顕微鏡
JP2006138654A (ja) 有形成分分析装置および有形成分分析方法
EP4078266A1 (en) Systems, methods, and apparatuses for immersion media application and lens cleaning
JP2007286162A (ja) 液浸顕微鏡装置
JP2006011045A (ja) 全反射顕微鏡
JP7399168B2 (ja) 顕微鏡画像化用の試料チャンバの作動方法、装置、及び試料チャンバ
JP3644997B2 (ja) レーザ加工装置
US20220011561A1 (en) Microscope and method for generating an overview image of a sample
JP2007065257A (ja) 液浸顕微鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426