JP2005161114A - 被覆線条体の製造方法及び紫外線照射装置 - Google Patents

被覆線条体の製造方法及び紫外線照射装置 Download PDF

Info

Publication number
JP2005161114A
JP2005161114A JP2003399924A JP2003399924A JP2005161114A JP 2005161114 A JP2005161114 A JP 2005161114A JP 2003399924 A JP2003399924 A JP 2003399924A JP 2003399924 A JP2003399924 A JP 2003399924A JP 2005161114 A JP2005161114 A JP 2005161114A
Authority
JP
Japan
Prior art keywords
transparent tube
resin
filament
ultraviolet
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399924A
Other languages
English (en)
Inventor
Atsushi Suzuki
厚 鈴木
Tomoyuki Hattori
知之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003399924A priority Critical patent/JP2005161114A/ja
Publication of JP2005161114A publication Critical patent/JP2005161114A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

【課題】 樹脂の揮発成分による透明管内面の曇りを抑えることができる被覆線条体の製造方法及び紫外線照射装置を提供する。
【解決手段】 線条体2に液状の樹脂31を塗布し、紫外線照射装置40内に設けられた透明管41内に該線条体2を通過させる。このとき、透明管41内に不活性ガスGを流すことにより、樹脂31の揮発成分を透明管41内から除去する。透明管41は、内径D1が30mm以上であり、外径D2が45mm以下である。そして、紫外線光源42からの紫外線UVを樹脂31に照射することにより、樹脂31を硬化させて被覆層3を形成する。
【選択図】 図2

Description

本発明は、線条体に樹脂が被覆された被覆線条体の製造方法、及び樹脂に紫外線を照射する紫外線照射装置に関するものである。
一般的に、光ファイバの製造工程には、ファイバ母材を線引きして線条体を形成する工程と、紫外線によって硬化する樹脂で線条体の表面を被覆する工程とが含まれる。具体的には、(1)ファイバ母材を加熱して線引きし、冷却することにより線条体を形成する工程と、(2)線条体の表面を覆うように樹脂を塗布する工程と、(3)紫外線に対し透光性を有する透明管内に線条体を通過させるとともに、線条体に塗布された樹脂に紫外線を照射して樹脂を硬化させることにより被覆層を形成する工程と、(4)被覆層が形成された線条体(すなわち被覆線条体)を巻き取る工程と、を経て光ファイバが完成する。
これらの工程のうち(3)の工程においては、樹脂が硬化する際の硬化反応熱や紫外線照射装置内における輻射熱などにより樹脂の温度が上昇して、樹脂の低分子量成分が揮発する。そして、揮発した成分は、透明管の内面に付着する。透明管の内面に付着した揮発成分に紫外線が照射されると、揮発成分が付着した後に熱・光により変色するため透明管の内面が曇ってしまい、紫外線を樹脂に充分に照射することができなくなる。従って、透明管内面の曇りを防止するための対策が必要となる。
例えば、特許文献1に開示された発明では、透明管の内部にパージガスを流すことによって透明管内面への揮発成分の付着を防止しようとしている。また、特許文献2に開示された発明では、紫外線を透過して赤外線を反射するチューブを透明管の外側に設けることにより、樹脂の温度上昇を防止しようとしている。
米国特許第6325981号明細書 米国特許第6419749号明細書
特許文献1に開示された構成のように透明管の内部にガスを流して揮発成分を除去するような場合には、透明管の内径が揮発成分の除去の成否に大きく影響することを本発明者は見出した。すなわち、特許文献1には開示されていないが、例えば特許文献2に開示されているとおり、内径20mm〜25mmの透明管が従来より用いられてきた。揮発成分を好適に除去するためにはガスの流れが層流に近いことが望ましいが、このような比較的小さな内径の透明管では、透明管内部においてガス流が層流となりにくく、従って揮発成分を除去する能力が抑えられてしまう。また、透明管の内径が比較的小さいと透明管の内面の面積が小さいので、揮発成分が比較的少ない場合であっても透明管内面が曇り易い。
本発明は、上記事情に鑑みてなされたものであり、樹脂の揮発成分による透明管内面の曇りを抑えることができる被覆線条体の製造方法及び紫外線照射装置を提供することを目的とする。
上記課題を解決するために、本発明による被覆線条体の製造方法は、線条体に樹脂を塗布し、紫外線照射装置内に設けられ紫外線に対して透光性を有する透明管内に樹脂が塗布された線条体を通過させると共に、紫外線照射装置内の紫外線光源から紫外線を樹脂に照射して樹脂を硬化させることによって被覆層を形成して被覆線条体を製造する方法であって、透明管の内径が30mm以上、且つ外径が45mm以下であり、透明管の内部を通過する線条体の走行方向に沿って透明管内に不活性ガスを流すことを特徴とする。
また、本発明による紫外線照射装置は、線条体の表面に塗布された樹脂に紫外線を照射する紫外線照射装置であって、不活性ガスを導入するガス導入口および不活性ガスを排出するガス排出口を有し、紫外線に対して透光性を有する透明管と、透明管外に設けられ、透明管内を通過する線条体の表面の樹脂に紫外線を照射する紫外線光源とを備え、透明管の内径が30mm以上であり且つ外径が45mm以下であることを特徴とする。
上記した被覆線条体の製造方法または紫外線照射装置では、30mm以上といった比較的大きな内径の透明管を用いている。これにより、透明管内部において不活性ガスの流れをより層流に近づけることができるので、樹脂の揮発成分を好適に除去することができる。また、比較的大きな内径の透明管を用いることにより透明管内面の面積が広くなるので、揮発成分量が比較的多くても透明管内面を曇りにくくすることができる。
また、透明管の内径を大きくすると外径も大きくする必要が生じるが、透明管の外面においては樹脂に照射される紫外線が屈折するので、透明管の外径を大きくし過ぎると、線条体が走行する透明管の中心部に効率よく紫外線が集まらない。この問題に対し、本発明者は、透明管の外径を45mm以下とすることによって、紫外線を透明管の中心部に効率よく集めることができ、樹脂へ紫外線を効率よく照射できることを見出した。
すなわち、上記した被覆線条体の製造方法または紫外線照射装置によれば、透明管の内径を30mm以上とすることによって透明管内面の曇りを抑えるとともに、外径を45mm以下とすることによって樹脂へ紫外線を効率よく照射することができる。
また、被覆線条体の製造方法または紫外線照射装置は、透明管の管壁の厚さが0.5mm以上0.8mm以下であることを特徴としてもよい。このように、透明管の管壁を比較的薄く(0.8mm以下)すると、樹脂に照射される紫外線の管壁における屈折角が小さくなり、透明管の中心部にさらに効率よく紫外線を集めることができる。また、透明管の管壁の厚さを薄くし過ぎると透明管の強度が保てないが、管壁の厚さを0.5mm以上とすることにより、透明管を取り扱う上で必要な強度を保つことができる。
本発明による被覆線条体の製造方法及び紫外線照射装置によれば、透明管内面の曇りを抑えるとともに、樹脂へ紫外線を効率よく照射することができる。
以下に、図面と共に本発明の好適な実施形態について説明する。なお、以下の説明においては、同一の要素には同一の符号を用いることとし、重複する説明は省略する。
まず、本実施形態に係る被覆線条体の製造方法によって製造される被覆線条体について説明する。図1は、被覆線条体1の斜視図である。本実施形態において、被覆線条体1は光ファイバ素線であって、線条体2と、線条体2の表面を被覆している被覆層3とを含んで構成されている。線条体2は、光ファイバ母材4を線引きして形成されたファイバガラスである。被覆層3は、紫外線が照射されると硬化する紫外線硬化型の樹脂からなり、線条体2の表面を保護する機能を有している。なお、被覆層3は、線条体2に隣接している内層と、その内層を取り巻く外層との2層から構成されている。
次に、本実施形態に用いられる被覆線条体の製造装置について説明する。図2は、被覆線条体1を製造する製造装置10を示す図である。図2を参照すると、製造装置10は、線引炉20、冷却装置60、樹脂コーティングダイス30、紫外線照射装置40、ガイドローラ70、引き取り手段90、及び巻き取りドラム80を備えている。
製造装置10においては、これらの装置のうち、線引炉20及びガイドローラ70が、線引炉20からガイドローラ70に達する線条体2が走行方向dに沿って移動するように配置されている。そして、冷却装置60、樹脂コーティングダイス30、及び紫外線照射装置40が、走行方向dに沿った線条体2が好適に通過するように、順に配置されている。なお、本実施形態では、走行方向dは鉛直方向に設定されている。
線引炉20は、石英ガラスを主成分とする光ファイバ母材4を線引きして線条体2を形成するための装置である。線引炉20は、線引炉20内にセットされる光ファイバ母材4を挟んで(或いは囲んで)配置されるヒータ21を有している。光ファイバ母材4は、その端部がヒータ21により加熱されて溶融し、線引きされて線条体2となる。線引きされた線条体2は、走行方向dに沿って移動する。
冷却装置60は、線引きされた線条体2を冷却するための装置である。冷却装置60は、線条体2を充分に冷却するために走行方向dに沿って所定の長さを備えている。冷却装置60は、線条体2を冷却するために例えば図示しない吸気口及び排気口を備え、この吸気口及び排気口から冷却用ガスを導入することによって線条体2を冷却する。
樹脂コーティングダイス30は、線条体2に樹脂を塗布するための装置である。樹脂コーティングダイス30には紫外線によって硬化する液状の樹脂31が溜められており、樹脂コーティングダイス30を線条体2が通過することによって線条体2の表面に樹脂31が塗布される。なお、図2には1つの樹脂コーティングダイス30が示されているが、図1に示した被覆層3を内層及び外層の2層構造とする場合には、樹脂コーティングダイス30を2つ備えるか、または2層を同時に塗布する機能を有する樹脂コーティングダイス30を備えるとよい。
紫外線照射装置40は、線条体2の表面に塗布された樹脂31に紫外線を照射して樹脂31を硬化させるための紫外線照射装置である。紫外線照射装置40は、紫外線照射装置40を通過する線条体2を覆う透明管41と、樹脂31を硬化させるための紫外線UVを出力する紫外線光源42とを含んで構成されている。線条体2に塗布された樹脂31は、線条体2が紫外線照射装置40を通過することによって硬化し、線条体2を覆う被覆層3となる。こうして、線条体2及び被覆層3を含む被覆線条体1が完成する。
ガイドローラ70は、被覆線条体1を案内して走行方向を変更するための装置である。引き取り手段90で引き取られる被覆線条体1は、ガイドローラ70でその走行方向が変更されて巻き取りドラム80へ送られる。巻き取りドラム80は、完成した被覆線条体1を巻き取るための装置である。
ここで、図3(a)は、紫外線照射装置40の構成を示す、走行方向dに沿った断面図である。また、図3(b)は、紫外線照射装置40の構成を示す、走行方向dと直交する方向に沿った断面図である。図3(a)及び図3(b)を参照すると、紫外線照射装置40は、透明管41、紫外線光源42、反射鏡43、及びこれらを収容する筐体44を備えている。透明管41及び紫外線光源42は、その長手方向が線条体2の走行方向dに沿うように並んで配置されている。そして、樹脂31が塗布された線条体2が透明管41のほぼ中心を移動する。
反射鏡43は、線条体2の走行方向に沿って延びる筒状を呈しており、透明管41及び紫外線光源42の周囲を覆っている。図3(b)に示すように、線条体2の走行方向と直交する反射鏡43の断面形状は楕円である。そして、その楕円の2つ焦点の位置にそれぞれ線条体2及び紫外線光源42が配置されている。反射鏡43の内面は紫外線を反射する反射面となっており、紫外線光源42からの紫外線UVは、反射鏡43の内面において反射した後、透明管41を透過して、線条体2に塗布された樹脂31に照射される。
透明管41は、紫外線に対して透光性を有していれば特に限定されないが、例えば、石英管が好適に用いられる。また、透明管41内に酸素が存在すると樹脂31が硬化しにくくなるので、透明管41内の酸素を追い出すために透明管41内に不活性ガスGが導入される。
また、透明管41内に不活性ガスGを流すことにより、以下のような効果を得ることができる。すなわち、樹脂31に紫外線UVを照射すると、硬化反応熱や輻射熱によって樹脂31の低分子量成分が揮発する。この樹脂31の揮発成分が透明管41内面に付着して硬化すると、透明管41内面が曇り、紫外線UVが遮られてしまう。これに対し、本実施形態のように透明管41内に不活性ガスGを流すことによって、樹脂31の揮発成分を除去することができるので、透明管41内面の曇りを防止できる。
透明管41の樹脂コーティングダイス30側の端部には、不活性ガスGを導入するためのガス導入口45が形成されている。ガス導入口45にはガス導入管50が接続されており、不活性ガスGがガス導入管50を介して透明管41内に導入される。また、ガス導入管50が接続されている端部と反対側の透明管41の端部には、ガス排出口46が形成されている。ガス排出口46にはガス排出管51が接続されており、不活性ガスG及び揮発した樹脂31の成分がガス排出管51を介して排出される。
紫外線光源42は、紫外線を出力する光源であれば特に限定されないが、例えば、メタルハライドランプが好適に用いられる。紫外線光源42は、例えば図示しない制御装置に電気的に接続され、該制御装置により紫外線光源42への投入電力が制御されてもよい。
ここで、図4は、本実施形態による被覆線条体1の製造方法において用いられる透明管41の断面寸法を説明するための図である。本実施形態の透明管41では、内径D1が30mm以上となっている。また、外径D2が45mm以下となっている。また、透明管41の管壁41aの厚さWは、0.5mm以上0.8mm以下となっていることが好ましい。これらの寸法については、後に詳しく説明する。
次に、本実施形態に係る被覆線条体1の製造方法について図2を参照しながら説明する。ここで、図5は、被覆線条体1の製造方法を示すフローチャートである。図2及び図5を参照すると、本製造方法においては、まず光ファイバ母材4を線引炉20にセットする。そして、光ファイバ母材4をヒータ21によって加熱・溶融し、線引きして線条体2を形成する(ステップS1)。続いて、線条体2を走行方向dに沿って移動させ、冷却装置60を通過させる。冷却装置60では、線引きされた線条体2が冷却される(ステップS2)。線条体2が光ファイバ母材4から線引きされ、走行する力は、引き取り手段90により与えられる。
続いて、冷却された線条体2を走行方向dに沿って移動させ、樹脂コーティングダイス30を通過させる。このとき、線条体2に樹脂31が塗布される(ステップS3)。
続いて、樹脂31が塗布された線条体2を走行方向dに沿って移動させ、紫外線照射装置40を通過させる。すなわち、線条体2に紫外線照射装置40の透明管41内を通過させるとともに、紫外線光源42を点灯して線条体2に塗布された樹脂31に紫外線UVを照射する(ステップS4)。このとき、透明管41の内部を通過する線条体2の走行方向dに沿って、透明管41内に不活性ガスGを流す。また、紫外線光源42に接続された制御装置を用いて、線条体2の走行速度に応じた投入電力を紫外線光源42に供給することが好ましい。こうして、樹脂31に紫外線UVが照射されることにより、樹脂31が硬化して被覆層3が形成され、線条体2及び被覆層3を含む被覆線条体1が完成する。
続いて、被覆線条体1を走行方向dに沿って移動させた後、ガイドローラ70によって被覆線条体1の走行方向を変更し、被覆線条体1を巻き取りドラム80に送る。そして、被覆線条体1は巻き取りドラム80に巻き取られる(ステップS5)。
以上に述べた本実施形態に係る被覆線条体の製造方法、及び紫外線照射装置40の効果について説明する。本実施形態に係る被覆線条体の製造方法及び紫外線照射装置40では、透明管41の内径D1が30mm以上、外径D2が45mm以下、管壁41aの厚さWが0.5mm以上0.8mm以下となっている。
ここで、下の表1は、透明管41の内径D1、外径D2、及び管壁41aの厚さWと、紫外線照射装置40を通過した直後の樹脂31の硬化度、及び透明管41の取り扱い性(洗浄や交換など通常の取り扱いによって損壊しない強度を有するか否か)との相関を調べた実施例及び比較例を示す表である。なお、この実施例及び比較例においては、被覆層3の内層となる樹脂31と外層となる樹脂31とを樹脂コーティングダイス30において線条体2に同時に塗布し、これを紫外線照射装置40に通過させて被覆線条体1を形成した。そして、被覆線条体1を500km程度形成した後、被覆線条体1の終了端を採取して外層の樹脂31の硬化度を測定した。
Figure 2005161114
なお、上記調査の際の製造条件は以下の通りである。
線条体2の走行速度:500m/分
使用した紫外線照射装置40:フュージョン(Fusion)社製F600
使用した樹脂31(内層及び外層):ウレタンアクリレート系紫外線硬化型樹脂
被覆層3の径:内層200μm、外層240μm
また、外層の樹脂31の硬化度は、外層の表面を全反射測定(ATR)法を用いた赤外分光分析によって測定した。ATR法において樹脂31の表面に接触させる結晶としてはKRS−5を使用した。また、樹脂31の硬化によって減少する二重結合による赤外光の吸光度A1として波数810cm-1付近の吸光度を測定するとともに、基準となる吸光度A0として波数760cm-1付近における吸光度を測定した。そして、樹脂31が液状のときの吸光度の比(A1/A0)をR0とし、硬化度を測定する対象である樹脂31の吸光度の比(A1/A0)をR1として、式「(硬化度)=(R0−R1)/R0」により算出した。
表1に示すように、実施例1〜3では、樹脂31の硬化度が90%以上であり、樹脂31が良好に硬化していることがわかる。そして、実施例1〜3のそれぞれを実施した後の透明管41内面には、樹脂31の揮発成分が過度に付着しておらず、紫外線UVを良好に透過できる状態であることが目視により確認された。
他方、比較例1及び2では、樹脂31の硬化度が90%未満であり、樹脂31が満足に硬化できていないことがわかる。また、比較例1及び2のそれぞれを実施した後の透明管41内面には、樹脂31の揮発成分が過度に付着しており、紫外線UVを良好に透過できる状態ではないことが目視により確認された。また、比較例1及び2によって形成された被覆層3の表面には粘着性が認められ、樹脂31が充分に硬化できていないことが確認された。
従って、実施例1〜3を含み比較例1及び2を含まない透明管41の寸法、すなわち内径D1が30mm以上であり、外径D2が45mm以下であれば、樹脂31の揮発成分による透明管41内面の曇りを抑え、樹脂31を良好に硬化させ得ることがわかる。
表1に示された結果は、以下に説明する現象によるものであると考えられる。すなわち、本実施形態では、樹脂31の揮発成分による透明管41内面の曇りを、透明管41内に不活性ガスGを流すことにより防止している。このようにして透明管41内面の曇りを防止する場合、透明管41の内径D1が揮発成分の除去能力に大きく影響する。すなわち、揮発成分を好適に除去するためには不活性ガスGの流れが層流に近いことが望ましいが、透明管41の内径D1が大きいほど、不活性ガスGの流れが層流に近づく。従って、透明管41の内径D1が大きいほど、揮発成分を好適に除去することができる。
また、透明管41の内径D1によって、透明管41の単位長あたりの内面の面積が定まる。樹脂31の揮発成分が一定量であれば、透明管41の内面の面積が大きい(すなわち、透明管41の内径D1が大きい)ほど、揮発成分が内面上において分散するので透明管41内面は曇りにくい。逆に、透明管41の内面の面積が小さい(すなわち、透明管41の内径D1が小さい)ほど、透明管41内面は曇り易い。
以上のことから、透明管41の内径D1が大きいほど、透明管41の内面の曇りを抑制可能であることがわかる。本発明者らは、表1に示した実施例1〜3を比較例1と対比することにより、透明管41の内径D1が30mm以上であれば、樹脂31が硬化するために充分な紫外線UVを照射することが可能な程度に透明管41の内面の曇りを抑制できることを見出した。
また、透明管41の内径D1を大きくすると外径D2も大きくする必要が生じる。しかし、透明管41の外面においては樹脂31に照射される紫外線UVが屈折するので、透明管41の外径D2を大きくし過ぎると、線条体2が走行する透明管41の中心部に効率よく紫外線UVが集まらない。従って、樹脂31に効率的に紫外線UVを照射するためには、透明管41の外径D2を小さく抑える必要がある。本発明者らは、実施例1〜3を比較例2と対比することにより、透明管41の外径D2が45mm以下であれば、樹脂31が充分に硬化する程度に、樹脂31に効率よく紫外線UVを照射できることを見出した。
また、透明管41の管壁41aの厚さWも、紫外線UVの照射効率に影響を及ぼす。すなわち、透明管41の管壁41aが比較的厚い場合、樹脂31に照射される紫外線UVの管壁41aにおける屈折角が大きくなり、透明管41の中心部に効率よく紫外線UVが集まりにくくなる。逆に、透明管41の管壁41aが比較的薄いと、紫外線UVの管壁41aにおける屈折角が小さくなり、透明管41の中心部に効率よく紫外線UVを集めることができる。本発明者らは、実施例1〜3を比較例2と対比することにより、管壁41aの厚さWが0.8mm以下であれば、紫外線UVを透明管41の中心部にさらに効率よく集光できることを見出した。
また、透明管41の管壁41aの厚さWを薄くし過ぎると、通常の取り扱いにおける透明管41の強度が保てない。例えば、実施例3では、透明管41を紫外線照射装置40から取り外す際にひびが入ってしまった。本発明者らは、実施例1及び2と実施例3とを対比することにより、管壁41aの厚さWを0.5mm以上とすれば、透明管41を取り扱う上で必要な強度を好適に保つことができることを見出した。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上述した実施形態では、線条体は光ファイバ母材が線引きされて形成されたファイバガラスとし、被覆線条体は光ファイバ素線としているが必ずしもこれに限られない。例えば、線条体を光ファイバ素線として、その光ファイバ素線に更に樹脂を被覆したものを被覆線条体としても良い。
図1は、実施形態に係る被覆線条体の製造方法によって製造される被覆線条体の斜視図である。 図2は、被覆線条体を製造する製造装置を示す図である。 図3(a)は、紫外線照射装置の構成を示す、線条体の走行方向に沿った断面図である。図3(b)は、紫外線照射装置の構成を示す、線条体の走行方向と直交する方向に沿った断面図である。 図4は、本実施形態による被覆線条体の製造方法において用いられる透明管の断面寸法を説明するための図である。 図5は、被覆線条体の製造方法を示すフローチャートである。
符号の説明
1…被覆線条体、2…線条体、3…被覆層、4…光ファイバ母材、10…製造装置、20…線引炉、21…ヒータ、30…樹脂コーティングダイス、31…樹脂、40…紫外線照射装置、41…透明管、41a…管壁、42…紫外線光源、60…冷却装置、70…ガイドローラ、80…巻き取りドラム、d…走行方向。

Claims (4)

  1. 線条体に樹脂を塗布し、紫外線照射装置内に設けられ紫外線に対して透光性を有する透明管内に前記樹脂が塗布された前記線条体を通過させると共に、前記紫外線照射装置内の紫外線光源から紫外線を前記樹脂に照射して前記樹脂を硬化させることによって被覆層を形成して被覆線条体を製造する方法であって、
    前記透明管の内径が30mm以上、且つ外径が45mm以下であり、前記透明管の内部を通過する前記線条体の走行方向に沿って前記透明管内に不活性ガスを流すことを特徴とする被覆線条体の製造方法。
  2. 前記透明管の管壁の厚さが0.5mm以上0.8mm以下であることを特徴とする請求項1に記載の被覆線条体の製造方法。
  3. 線条体の表面に塗布された樹脂に紫外線を照射する紫外線照射装置であって、
    不活性ガスを導入するガス導入口および前記不活性ガスを排出するガス排出口を有し、紫外線に対して透光性を有する透明管と、
    前記透明管外に設けられ、前記透明管内を通過する前記線条体の表面の前記樹脂に紫外線を照射する紫外線光源と
    を備え、
    前記透明管の内径が30mm以上であり且つ外径が45mm以下であることを特徴とする紫外線照射装置。
  4. 前記透明管の管壁の厚さが0.5mm以上0.8mm以下であることを特徴とする請求項3に記載の紫外線照射装置。

























JP2003399924A 2003-11-28 2003-11-28 被覆線条体の製造方法及び紫外線照射装置 Pending JP2005161114A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399924A JP2005161114A (ja) 2003-11-28 2003-11-28 被覆線条体の製造方法及び紫外線照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399924A JP2005161114A (ja) 2003-11-28 2003-11-28 被覆線条体の製造方法及び紫外線照射装置

Publications (1)

Publication Number Publication Date
JP2005161114A true JP2005161114A (ja) 2005-06-23

Family

ID=34724334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399924A Pending JP2005161114A (ja) 2003-11-28 2003-11-28 被覆線条体の製造方法及び紫外線照射装置

Country Status (1)

Country Link
JP (1) JP2005161114A (ja)

Similar Documents

Publication Publication Date Title
JP2020534956A (ja) ディフューザ要素を備える光導波路を備える照明システムならびにディフューザ基体の製造方法および/またはディフューザ基体を少なくとも部分的にまたは領域的に構造化する方法
TW201512720A (zh) 用於固化光纖之合成橢圓反射器
JPH10245245A (ja) 塗被ガラスファイバの硬化方法
JPS63175806A (ja) 光バンドルフアイバの端末構造
JP2005161114A (ja) 被覆線条体の製造方法及び紫外線照射装置
JP2005162502A (ja) 被覆線条体の製造方法
JP4319090B2 (ja) 表面漏光光導波路及び光触媒モジュール
JP6582815B2 (ja) 光ファイバの製造方法
JP2022514475A (ja) 拡散反射器および使用方法
JP6798126B2 (ja) 線条体の被覆方法および被覆装置
JP2005162522A (ja) 被覆線条体の製造方法、及び被覆線条体製造装置
JP6248130B2 (ja) 光ファイバ素線の製造方法
JP7078459B2 (ja) 光ファイバ製造加工装置
JPH11302041A (ja) 光伝送用線材の製造方法
JP2005162524A (ja) 被覆線条体の製造方法
JP4172062B2 (ja) 線状体に紫外線硬化樹脂を被覆する方法
JP2009294254A (ja) 光ファイバ素線の製造方法および製造装置
NL2026720B1 (en) Reflector for curing optical fibers and methods of using the same
JP6729036B2 (ja) 光ファイバの製造方法
US20170190614A1 (en) Device for coating a fiber and a method for coating a fiber and a fiber
US20220404571A1 (en) Low-attenuation rollable optical fiber ribbon
JP5597951B2 (ja) 紫外線照射装置
JP2005162521A (ja) 被覆線条体の製造方法
JP2021159891A (ja) 光ファイバの製造方法
WO2020236458A1 (en) Systems and methods for forming optical fiber coatings with reduced defects on moving optical fibers