JP2005154277A - Method for converting fluoro carboxylic acids - Google Patents

Method for converting fluoro carboxylic acids Download PDF

Info

Publication number
JP2005154277A
JP2005154277A JP2003390436A JP2003390436A JP2005154277A JP 2005154277 A JP2005154277 A JP 2005154277A JP 2003390436 A JP2003390436 A JP 2003390436A JP 2003390436 A JP2003390436 A JP 2003390436A JP 2005154277 A JP2005154277 A JP 2005154277A
Authority
JP
Japan
Prior art keywords
carboxylic acids
fluorocarboxylic
light
fluoro carboxylic
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390436A
Other languages
Japanese (ja)
Inventor
Hisao Hori
久男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003390436A priority Critical patent/JP2005154277A/en
Publication of JP2005154277A publication Critical patent/JP2005154277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for reducing adverse effects of fluoro carboxylic acids to the environment and living organisms by converting the fluoro carboxylic acids into chemical species with low toxicity and smaller effect to the living organisms. <P>SOLUTION: The method for converting fluoro carboxylic acids comprises decomposition of the fluoro carboxylic acids into fluoro carboxylic acids with less carbon atoms and fluoride ions by irradiating an aqueous solution containing the fluoro carboxylic acids with a light containing UV light in the presence of a gas containing oxygen. At least one kind of fluoro carboxylic acids expressed by formula: C<SB>n</SB>F<SB>2n+1</SB>COOH (in the formula n is an integer of 3-30), are preferred as the fluoro carboxylic acids. The light used in the irradiation preferably comprises UV light containing UV light of ≤350 nm of wave length. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、環境及び人体に悪影響を及ぼすフルオロカルボン酸を、より低毒性の化学種に変換し、環境や生体への影響を低減させる分解変換方法に関する。   The present invention relates to a decomposition and conversion method for converting a fluorocarboxylic acid having an adverse effect on the environment and the human body into a less toxic chemical species and reducing the influence on the environment and a living body.

近年、環境中において、産業用の界面活性剤やフッ素ポリマーの製造原料等として使用されてきているパーフルオロオクタン酸(C15COOH;略称 PFOA)をはじめとするフルオロカルボン酸類が検出されるようになり、環境問題化しつつある(例えば、非特許文献1参照)。これらの発生源としては、フッ素系有機化合物の製造及び使用工場、フッ素ポリマーの製造時や使用中の熱劣化によるものであることが指摘されている。 In recent years, fluorocarboxylic acids such as perfluorooctanoic acid (C 7 F 15 COOH; abbreviated PFOA), which has been used in the environment as industrial surfactants and raw materials for producing fluoropolymers, are detected. It is becoming an environmental problem (for example, refer nonpatent literature 1). It has been pointed out that these sources are due to thermal deterioration during the production and use of fluoropolymers and during the production and use of fluoropolymers.

一般に、フルオロカルボン酸は、強力な炭素−フッ素結合を有することから環境中で安定的に存在し極めて長く残留するものである。
これらのフルオロカルボン酸の生体中への蓄積や毒性に関しては、フルオロカルボン酸のアルキル基の炭素原子数に依存するものであって、炭素原子数の少ないものほど生体への影響(毒性)は低いことが知られており、例えば、炭素数が最小のトリフルオロ酢酸(CFCOOH)では人体に蓄積しない。
先に、本発明者らは、光触媒を用いてフッ素系有機化合物を分解処理する方法について提案した(例えば、特許文献1参照)が、フルオロカルボン酸類の分解反応で炭素原子数の少ないフルオロカルボン酸類に変換することにより、環境への悪影響を低減させる有用な方法は知られていない。
Generally, a fluorocarboxylic acid has a strong carbon-fluorine bond and thus exists stably in the environment and remains extremely long.
The accumulation and toxicity of these fluorocarboxylic acids in the living body depend on the number of carbon atoms in the alkyl group of the fluorocarboxylic acid, and the smaller the number of carbon atoms, the lower the impact on the living body (toxicity). For example, trifluoroacetic acid (CF 3 COOH) having a minimum number of carbon atoms does not accumulate in the human body.
Previously, the present inventors have proposed a method for decomposing a fluorine-based organic compound using a photocatalyst (see, for example, Patent Document 1). However, fluorocarboxylic acids having a small number of carbon atoms in a decomposition reaction of fluorocarboxylic acids. There is no known useful method for reducing the adverse environmental impact by converting to.

Environmental Science and Technology、37巻、p312A〜313、2003Environmental Science and Technology, 37, p312A-313, 2003 特開2003−40805号公報Japanese Patent Laid-Open No. 2003-40805

本発明は、従来技術における上記した実情に鑑みてなされたものであって、フルオロカルボン酸類を、毒性が低く、生体への影響がより小さい化学種に変換し、環境や生体への悪影響を低減させる簡易な方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned situation in the prior art, and converts fluorocarboxylic acids into chemical species with low toxicity and less influence on the living body, thereby reducing adverse effects on the environment and the living body. The purpose is to provide a simple method.

本発明者は、上記した課題の解決に向けて鋭意検討を重ねた結果、特定の条件下で、フルオロカルボン酸水溶液に紫外光を照射すると、フッ化物イオンの生成とともにフルオロカルボン酸がより炭素数の少ないフルオロカルボン酸に変換されることを知見し、これに基づいて本発明を完成させるに至った。   As a result of intensive investigations aimed at solving the above-mentioned problems, the present inventors, as a result of irradiating the fluorocarboxylic acid aqueous solution with ultraviolet light under specific conditions, the fluorocarboxylic acid has a higher carbon number along with the generation of fluoride ions. Based on this fact, the present invention has been completed.

すなわち、本発明は、酸素含有ガスの存在下、フルオロカルボン酸類を含む水溶液に紫外光を含む光線を照射することにより、フルオロカルボン酸類をより炭素数の少ないフルオロカルボン酸類及びフッ化物イオンに分解させることを特徴とするフルオロカルボン酸類の変換方法である。
そのフルオロカルボン酸類としては、式:C2n+1COOH(式中、n=3〜30の整数である。)で示されるパーフルオロカルボン酸の1種以上であることが好ましい。また、照射する紫外光を含む光線としては、350nm以下の波長の紫外線を含むことが好ましい。
That is, the present invention decomposes fluorocarboxylic acids into fluorocarboxylic acids and fluoride ions having fewer carbon atoms by irradiating an aqueous solution containing fluorocarboxylic acids with a light beam containing ultraviolet light in the presence of an oxygen-containing gas. This is a method for converting fluorocarboxylic acids.
The fluorocarboxylic acid is preferably at least one perfluorocarboxylic acid represented by the formula: C n F 2n + 1 COOH (where n is an integer of 3 to 30). Moreover, it is preferable that an ultraviolet ray having a wavelength of 350 nm or less is included as a light ray including ultraviolet light to be irradiated.

本発明によれば、環境及び人体に有害なフルオロカルボン酸類を簡易な処理操作で、低毒性の炭素数が少ないフルオロカルボン酸類とフッ化物イオンに効率よく変換させることができる。   According to the present invention, fluorocarboxylic acids that are harmful to the environment and the human body can be efficiently converted into fluorocarboxylic acids with low toxicity and a low number of carbon atoms and fluoride ions by a simple treatment operation.

本発明は、環境中に放出されるフルオロカルボン酸類の濃度が徐々に増加しており、環境汚染及び生体への蓄積や毒性が問題となりつつあることから、フルオロカルボン酸類を簡易に分解させて低毒性の化学種である炭素数の少ないフルオロカルボン酸類に変換させることにより、環境や生体への影響を低減させる方法である。この方法で生成するフッ化物イオンは、カルシウムで処理すると、環境に無害なフッ化カルシウムとして容易に捕捉できる。   In the present invention, since the concentration of fluorocarboxylic acids released into the environment is gradually increasing, and environmental pollution and accumulation and toxicity in living organisms are becoming problems, the fluorocarboxylic acids are easily decomposed and reduced. This is a method for reducing the influence on the environment and living body by converting to fluorocarboxylic acids having a small number of carbon atoms which are toxic chemical species. Fluoride ions produced by this method can be easily captured as calcium fluoride that is harmless to the environment when treated with calcium.

本発明において変換または分解の対象とするフルオロカルボン酸類は、式C2n+1COOHで表される化合物において、炭素原子数nが3個以上、好ましくは3〜30個のパーフルオロカルボン酸の1種または2種以上のものであって、具体的にはパーフルオロプロパン酸、パーフルオロブタン酸、パーフルオロペンタン酸、パーフルオロへプタン酸、パーフルオロオクタン酸、パーフルオロノナン酸、パーフルオロデカン酸などが挙げられる。 In the present invention, the fluorocarboxylic acid to be converted or decomposed is a compound represented by the formula C n F 2n + 1 COOH, and is a perfluorocarboxylic acid having 1 or more, preferably 3 to 30 carbon atoms. Species or two or more kinds, specifically perfluoropropanoic acid, perfluorobutanoic acid, perfluoropentanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid Etc.

本発明では、これらのフルオロカルボン酸類を含む水溶液を用いる。その水溶液中のフルオロカルボン酸の濃度は、反応の難易度に応じて適宜定められるが、通常1×10−6 〜0.1mol/L、望ましくは10−4〜10−2mol/Lである。高濃度にすると、フルオロカルボン酸が溶解し難い場合があるが、このような場合には40℃程度に加熱するとよい。
次に、その水溶液の反応系内に酸素含有ガスを導入する。空気中で作業している場合、既に酸素が含まれているが、酸素濃度を高めるために酸素、または空気などの不活性ガスを含む酸素含有ガスを常圧下でこの溶液にバブリングするか、反応容器内を酸素で0.5MPa程度に満たしても良い。反応系の温度は、室温〜40℃程度が望ましい。
In the present invention, an aqueous solution containing these fluorocarboxylic acids is used. The concentration of the fluorocarboxylic acid in the aqueous solution is appropriately determined according to the difficulty of the reaction, but is usually 1 × 10 −6 to 0.1 mol / L, preferably 10 −4 to 10 −2 mol / L. . When the concentration is high, the fluorocarboxylic acid may be difficult to dissolve. In such a case, it is preferable to heat to about 40 ° C.
Next, an oxygen-containing gas is introduced into the reaction system of the aqueous solution. When working in air, oxygen is already contained, but oxygen or an oxygen-containing gas containing an inert gas such as air is bubbled into this solution under normal pressure or a reaction to increase the oxygen concentration. The container may be filled with oxygen to about 0.5 MPa. The temperature of the reaction system is preferably about room temperature to 40 ° C.

照射光の波長は、対象とするフルオロカルボン酸が吸収できる波長領域である350nm以下の紫外光領域を含むものであれば如何なる波長の光を含んでいても良く、200〜800nm、好ましくは250〜400nmのものである。また、光源の種類には特に制約されず、水銀灯、キセノンランプ、水銀キセノンランプ、重水素ランプ、太陽光等を適宜使用すればよい。さらに、光照射時間も特に制約されず、強度に依存するものの1時間〜3日程度が望ましい。   The wavelength of the irradiation light may include light of any wavelength as long as it includes an ultraviolet light region of 350 nm or less, which is a wavelength region that can be absorbed by the target fluorocarboxylic acid, and is 200 to 800 nm, preferably 250 to 400 nm. The type of the light source is not particularly limited, and a mercury lamp, a xenon lamp, a mercury xenon lamp, a deuterium lamp, sunlight, or the like may be used as appropriate. Furthermore, the light irradiation time is not particularly limited, and is preferably about 1 hour to 3 days although it depends on the intensity.

本発明の方法により、フルオロカルボン酸が、より炭素数の少ないフルオロカルボン酸に変換される機構については現時点では明確ではないが、次のような反応機構によるものと推測される。
すなわち、まず分解原料のフルオロカルボン酸(C2n+1COOH)に光照射すると脱炭酸を起こし、C2n+1ラジカルを生成する。これが酸素と反応してC2n+1OOラジカルになり、さらに水と反応してC2n+1OOHとなる。この物質は不安定であるから直ちに熱分解してC2n+1Oとなり、さらに水と反応してC2n+1OHとなる。このアルコールも不安定であるため、HFが脱離してCn−12n−1COFとなり、最後にこれが加水分解してCn−12n−1COOH(原料のフルオロカルボン酸より炭素原子数の1個少ないフルオロカルボン酸)になる。
このようにして、毒性の高いフルオロカルボン酸の炭素原子及びフッ素原子が削減された低毒性のフルオロカルボン酸に容易に変換することができる。
Although the mechanism by which the fluorocarboxylic acid is converted into the fluorocarboxylic acid having a smaller number of carbon atoms by the method of the present invention is not clear at present, it is presumed to be due to the following reaction mechanism.
That is, first, when the fluorocarboxylic acid (C n F 2n + 1 COOH) as a decomposition raw material is irradiated with light, decarboxylation occurs to generate C n F 2n + 1 radicals. This reacts with oxygen to become a C n F 2n + 1 OO radical, and further reacts with water to become C n F 2n + 1 OOH. Since this substance is unstable, it is immediately pyrolyzed to C n F 2n + 1 O, and further reacted with water to C n F 2n + 1 OH. Since this alcohol is also unstable, HF is eliminated to form C n-1 F 2n-1 COF, and finally this hydrolyzes to C n-1 F 2n-1 COOH (carbon atoms from the starting fluorocarboxylic acid). One less fluorocarboxylic acid).
In this way, the highly toxic fluorocarboxylic acid can be easily converted into a low-toxic fluorocarboxylic acid with reduced carbon and fluorine atoms.

本発明の反応を具体的に実施するには、例えば次のようにすればよい。まず、光照射可能な反応容器の底部にフルオロカルボン酸の水溶液を入れる。その後、場合により酸素濃度を高めるための酸素を含むガスを導入する。反応容器に付属して設ける光を導入するための窓材としては、フッ化物イオンが生成するためサファイアで形成されていることが好ましい。次に、その水溶液に一定時間の紫外線を含む光を照射した後、反応容器内の分解物と生成物を回収する。   In order to specifically carry out the reaction of the present invention, for example, the following may be carried out. First, an aqueous solution of fluorocarboxylic acid is placed in the bottom of a reaction vessel capable of light irradiation. Thereafter, in some cases, a gas containing oxygen for increasing the oxygen concentration is introduced. The window material for introducing light attached to the reaction vessel is preferably formed of sapphire because fluoride ions are generated. Next, after irradiating the aqueous solution with light containing ultraviolet rays for a certain period of time, the decomposition products and products in the reaction vessel are recovered.

実施例
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

パーフルオロオクタン酸(C15COOH、PFOA)2.96×10−5モルを溶解させた水22mLを、サファイア窓付きで内部を金コーティングしたインコネル製反応器(内容量154mL)に入れ、その反応器内の全圧が0.48MPaになるまで酸素ガスを導入した。
次に、その溶液をマグネチュックスターラーで攪拌しながら25℃で水銀キセノンランプにより250〜600nmの光を72時間照射し反応させた。その反応終了後の生成物について、残存している未反応のPFOA及び生成したフルオロカルボン酸類であるC13COOH、C11COOH、CCOOH、CCOOH、CCOOH及びCFCOOHを、イオン排除クロマトグラフィーと高速液体クロマトグラフィーを併用して定量し、さらにイオンクロマトグラフィーでフッ化物イオンを定量した。
その反応後の溶液のHPLCクロマトグラムを図1に示す。また、得られた生成物の定量結果を表1に示す。表1に見られるように、反応前と反応後におけるフッ素原子の収支(マスバランス)は96.7%であり、良好であった。
22 mL of water in which 2.96 × 10 −5 mol of perfluorooctanoic acid (C 7 F 15 COOH, PFOA) was dissolved was placed in an Inconel reactor (with an internal volume of 154 mL) with a sapphire window and gold-coated inside. Oxygen gas was introduced until the total pressure in the reactor reached 0.48 MPa.
Next, while stirring the solution with a magnetic stirrer, light of 250 to 600 nm was irradiated for 72 hours at 25 ° C. with a mercury xenon lamp. About the product after the completion of the reaction, the remaining unreacted PFOA and the generated fluorocarboxylic acids C 6 F 13 COOH, C 5 F 11 COOH, C 4 F 9 COOH, C 3 F 7 COOH, C 2 F 5 COOH and CF 3 COOH were quantified using ion exclusion chromatography and high performance liquid chromatography in combination, and fluoride ions were quantified by ion chromatography.
The HPLC chromatogram of the solution after the reaction is shown in FIG. In addition, Table 1 shows the quantitative results of the obtained product. As seen in Table 1, the fluorine atom balance (mass balance) before and after the reaction was 96.7%, which was good.

Figure 2005154277
Figure 2005154277

パーフルオロへプタン酸(C613COOH、PFHA)2.95×10−5モルを溶解させた水22mLを、サファイア窓付きで内部を金コーティングしたインコネル製反応器(内容量154mL)に入れ、その反応器内の全圧が0.49MPaになるまで酸素ガスを導入した。
次に、その溶液をマグネチュックスターラーで攪拌しながら25℃で水銀キセノンランプにより250〜600nmの光を24時間照射し反応させた。その反応終了後の生成物について、残存している未反応のPFHA及び生成したフルオロカルボン酸類であるC11COOH、CCOOH、CCOOH、CCOOH及びCFCOOHを、イオン排除クロマトグラフィーと高速液体クロマトグラフィーを併用して定量し、さらにイオンクロマトグラフィーでフッ化物イオンを定量した。
得られた生成物の定量結果を表2に示す。表2に見られるように、反応前と反応後におけるフッ素原子の収支(マスバランス)は99.5%であり、良好であった。
22 mL of water in which 2.95 × 10 −5 mol of perfluoroheptanoic acid (C 6 F 13 COOH, PFHA) was dissolved was placed in an Inconel reactor (with a volume of 154 mL) with a sapphire window and gold-coated inside. The oxygen gas was introduced until the total pressure in the reactor reached 0.49 MPa.
Next, while stirring the solution with a magnetic stirrer, light of 250 to 600 nm was irradiated with a mercury xenon lamp at 25 ° C. for 24 hours to cause a reaction. About the product after the completion of the reaction, the remaining unreacted PFHA and the generated fluorocarboxylic acids C 5 F 11 COOH, C 4 F 9 COOH, C 3 F 7 COOH, C 2 F 5 COOH and CF 3 COOH was quantified using ion exclusion chromatography and high performance liquid chromatography in combination, and fluoride ions were further quantified by ion chromatography.
Table 2 shows the quantitative results of the obtained product. As seen in Table 2, the fluorine atom balance (mass balance) before and after the reaction was 99.5%, which was good.

Figure 2005154277
Figure 2005154277

本発明は、環境及び生体に悪影響を及ぼすフルオロカルボン酸の毒性を簡易に低減できる方法であるから、環境汚染の防止等に有用である。   Since the present invention is a method that can easily reduce the toxicity of fluorocarboxylic acids that adversely affect the environment and living organisms, it is useful for preventing environmental pollution.

本発明で得られたパーフルオロオクタン酸の分解反応による反応溶液のHPLCクロマトグラフィー図である。It is a HPLC chromatography figure of the reaction solution by the decomposition reaction of the perfluorooctanoic acid obtained by this invention.

Claims (3)

酸素含有ガスの存在下、フルオロカルボン酸類を含む水溶液に紫外光を含む光線を照射することにより、フルオロカルボン酸類をより炭素数の少ないフルオロカルボン酸類及びフッ化物イオンに分解させることを特徴とするパーフルオロカルボン酸類の変換方法。   In the presence of an oxygen-containing gas, an aqueous solution containing fluorocarboxylic acids is irradiated with light containing ultraviolet light to decompose the fluorocarboxylic acids into fluorocarboxylic acids and fluoride ions having fewer carbon atoms. A method for converting fluorocarboxylic acids. フルオロカルボン酸類が、式:C2n+1COOH(式中、n=3〜30の整数である。)で示されるパーフルオロカルボン酸類の1種以上である請求項1に記載のフルオロカルボン酸類の変換方法。 Fluoro carboxylic acids, formula: C n F 2n + 1 COOH (. Wherein, is an integer of n = 3 to 30) with at least one perfluoro carboxylic acids is fluoro carboxylic acids of Claim 1 represented Conversion method. 照射する紫外光を含む光線が、350nm以下の波長の紫外線を含むものである請求項1に記載のフルオロカルボン酸類の変換方法。
The method for converting a fluorocarboxylic acid according to claim 1, wherein the irradiated light including ultraviolet light includes ultraviolet light having a wavelength of 350 nm or less.
JP2003390436A 2003-11-20 2003-11-20 Method for converting fluoro carboxylic acids Pending JP2005154277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390436A JP2005154277A (en) 2003-11-20 2003-11-20 Method for converting fluoro carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390436A JP2005154277A (en) 2003-11-20 2003-11-20 Method for converting fluoro carboxylic acids

Publications (1)

Publication Number Publication Date
JP2005154277A true JP2005154277A (en) 2005-06-16

Family

ID=34717814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390436A Pending JP2005154277A (en) 2003-11-20 2003-11-20 Method for converting fluoro carboxylic acids

Country Status (1)

Country Link
JP (1) JP2005154277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110319A1 (en) 2008-03-07 2009-09-11 旭硝子株式会社 Method for decomposing water-soluble fluorine-containing organic compound
WO2019156037A1 (en) * 2018-02-07 2019-08-15 ダイキン工業株式会社 Hydrophilic compound removal method and odor removal method
EP3750945A4 (en) * 2018-02-07 2021-08-18 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
EP3822293A4 (en) * 2018-07-13 2022-07-13 Osaka University Method for producing low-molecular-weight polytetrafluoroethylene
US11548989B2 (en) 2018-02-07 2023-01-10 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110319A1 (en) 2008-03-07 2009-09-11 旭硝子株式会社 Method for decomposing water-soluble fluorine-containing organic compound
US8067661B2 (en) 2008-03-07 2011-11-29 Asahi Glass Company, Limited Method for decomposing water-soluble fluorinated organic compound
WO2019156037A1 (en) * 2018-02-07 2019-08-15 ダイキン工業株式会社 Hydrophilic compound removal method and odor removal method
JPWO2019156037A1 (en) * 2018-02-07 2020-12-17 ダイキン工業株式会社 Method for removing hydrophilic compounds and method for removing odor
EP3750945A4 (en) * 2018-02-07 2021-08-18 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
JP7121301B2 (en) 2018-02-07 2022-08-18 ダイキン工業株式会社 Method for removing hydrophilic compound and method for removing odor
US11548989B2 (en) 2018-02-07 2023-01-10 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
US11739205B2 (en) 2018-02-07 2023-08-29 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
EP3822293A4 (en) * 2018-07-13 2022-07-13 Osaka University Method for producing low-molecular-weight polytetrafluoroethylene
US11780973B2 (en) 2018-07-13 2023-10-10 Osaka University Method for producing low-molecular-weight polytetrafluoroethylene

Similar Documents

Publication Publication Date Title
Ahmed et al. Advanced treatment technologies efficacies and mechanism of per-and poly-fluoroalkyl substances removal from water
Liang et al. Factors influencing aqueous perfluorooctanoic acid (PFOA) photodecomposition by VUV irradiation in the presence of ferric ions
CN100347137C (en) Method for defluorinating and degrading complete fluorine substituted compounds
CN103058319B (en) Degradation method of perfluorinated compounds
JP2013503036A5 (en)
JP6284188B2 (en) Method for decomposing fluorine organic compounds and apparatus for decomposing fluorine organic compounds
JP4389058B2 (en) Method for decomposing fluorocarboxylic acids
JP2005154277A (en) Method for converting fluoro carboxylic acids
JP6711977B2 (en) Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer
US20200165144A1 (en) Ultraviolet treatment method and system
CN106045007A (en) Water treatment method capable of controlling iodination disinfection by-products by catalyzing ozone oxidation of hardly-degradable iodinated organic matters via persulfate
JP3937006B2 (en) Photolysis of fluorinated organic compounds
KR20150026993A (en) method of treating tap water and manufacturing advanced oxidizing treated water using chlorine and UV-ray
JP4284413B2 (en) Method for decomposing persistent fluorinated carboxylic acids
JP2008012497A (en) Water treatment apparatus and water treatment method
JP5071929B2 (en) Method for decomposing fluorinated carboxylic acids
US6800257B1 (en) Process for preparing trichloracetic acid and apparatus for use in such process
Rahmah et al. Photochemical degradation of oxytetracycline hydrochloride in the presence of H 2 O 2
JP7361333B2 (en) How to decompose organic matter
JP2006515225A (en) Method for enhancing hydroxyl group formation
KR102554250B1 (en) Treatment method for wastewater containing recalcitrant compounds
CN110002533B (en) Method for realizing trichloroacetic acid photodegradation by utilizing synergistic effect of acetic acid
Wang et al. Treatment of halogenated compounds in drinking water by S (IV)-based homogeneous advanced reduction processes: Efficacy and mechanisms
JPH0194998A (en) Photochemical treatment of waste water
JP2010022958A (en) Photolysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930