JP2010022958A - Photolysis method - Google Patents

Photolysis method Download PDF

Info

Publication number
JP2010022958A
JP2010022958A JP2008188446A JP2008188446A JP2010022958A JP 2010022958 A JP2010022958 A JP 2010022958A JP 2008188446 A JP2008188446 A JP 2008188446A JP 2008188446 A JP2008188446 A JP 2008188446A JP 2010022958 A JP2010022958 A JP 2010022958A
Authority
JP
Japan
Prior art keywords
ppm
aqueous solution
weight
photolysis method
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008188446A
Other languages
Japanese (ja)
Inventor
Ippei Yanagisawa
一平 柳澤
Toshiyuki Oyama
俊之 大山
Hisao Hidaka
久夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama TLO Co Ltd
Original Assignee
Tama TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama TLO Co Ltd filed Critical Tama TLO Co Ltd
Priority to JP2008188446A priority Critical patent/JP2010022958A/en
Publication of JP2010022958A publication Critical patent/JP2010022958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photolysis method which uses a photocatalyst and has high decomposability. <P>SOLUTION: The photolysis method has a process of photolyzing a material to be decomposed by irradiating the photocatalyst, immersed in an aqueous solution containing an oxidant and a material to be decomposed, with light. The photocatalyst contains titanium dioxide and pH of the aqueous solution is 6 or more. The oxidant contains 10 to 50 wt.ppm of ozone, 5 to 30 wt.ppm of oxygen, and 200 to 25,000 wt.ppm of hydrogen peroxide, each based on the aqueous solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光触媒を用いて被分解物を分解する光分解方法に関する。   The present invention relates to a photolysis method for decomposing an object to be decomposed using a photocatalyst.

二酸化チタンを含む光触媒を酸化剤中で使用することにより、被分解物を分解する技術がある。例えば特許文献1には、被処理水に酸化剤として、過酸化水素、オゾン、及び酸素の少なくとも一種を添加することが開示されている。
特開2000−117271号公報
There is a technique for decomposing an object to be decomposed by using a photocatalyst containing titanium dioxide in an oxidizing agent. For example, Patent Document 1 discloses that at least one of hydrogen peroxide, ozone, and oxygen is added as an oxidizing agent to the water to be treated.
JP 2000-117271 A

しかし、酸化剤として過酸化水素、オゾン、又は酸素を用いるのみでは、難分解性の物質は分解できない。本発明は上記事情に鑑みてなされたものであり、その目的とするところは、分解能力が高い光分解方法を提供することにある。   However, by using only hydrogen peroxide, ozone, or oxygen as the oxidizing agent, the hardly decomposable substance cannot be decomposed. The present invention has been made in view of the above circumstances, and an object thereof is to provide a photodecomposition method having a high decomposability.

本発明によれば、酸化剤及び被分解物を含む水溶液中に浸漬された光触媒に光を照射することにより、前記被分解物を光分解する工程を有し、
前記光触媒は、二酸化チタンを含んでおり、
前記水溶液のpHは6以上であり、
前記酸化剤として、オゾンを前記水溶液に対して10重量ppm以上50重量ppm以下、酸素を前記水溶液に対して5重量ppm以上30重量ppm以下、過酸化水素を前記水溶液に対して200重量ppm以上25000重量ppm以下含有している光分解方法が提供される。
According to the present invention, there is a step of photolyzing the substance to be decomposed by irradiating the photocatalyst immersed in an aqueous solution containing the oxidizing agent and the substance to be decomposed,
The photocatalyst contains titanium dioxide,
The pH of the aqueous solution is 6 or more,
As the oxidizing agent, ozone is 10 to 50 ppm by weight with respect to the aqueous solution, oxygen is 5 to 30 ppm with respect to the aqueous solution, and hydrogen peroxide is 200 to 200 ppm with respect to the aqueous solution. A photolysis method containing 25000 ppm by weight or less is provided.

本発明によれば、分解能力が高い光分解方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photodecomposition method with high decomposition capability can be provided.

以下、本発明の実施の形態について説明する。本実施形態にかかる光分解方法は、酸化剤及び被分解物を含む水溶液中に浸漬された光触媒に光を照射することにより、被分解物を光分解する工程を有する。本発明者らが鋭意検討を行った結果、光触媒として二酸化チタンを用いた場合、酸化剤として過酸化水素、オゾン、及び酸素の3種類を同時に使用し、これらの濃度を適切な範囲に制御し、かつ水溶液のpHを適切な範囲に制御することにより、光分解法の分解能力が高まることを見出した。   Embodiments of the present invention will be described below. The photodecomposition method according to the present embodiment includes a step of photodegrading a substance to be decomposed by irradiating light to a photocatalyst immersed in an aqueous solution containing an oxidizing agent and the object to be decomposed. As a result of intensive studies by the present inventors, when titanium dioxide is used as a photocatalyst, three types of hydrogen peroxide, ozone, and oxygen are simultaneously used as an oxidizing agent, and these concentrations are controlled within an appropriate range. And, it was found that the decomposition ability of the photolysis method is enhanced by controlling the pH of the aqueous solution to an appropriate range.

オゾンの濃度は水溶液に対して10重量ppm以上50重量ppm以下であり、好ましくは25重量ppm以上40重量ppm以下である。酸素の濃度は水溶液に対して5重量ppm以上30重量ppm以下であり、好ましくは7重量ppm以上30重量ppm以下である。過酸化水素の濃度は水溶液に対して200重量ppm以上25000重量ppm以下であり、好ましくは300重量ppm以上5000重量ppm以下である。   The concentration of ozone is 10 ppm to 50 ppm by weight with respect to the aqueous solution, preferably 25 ppm to 40 ppm. The concentration of oxygen is 5 to 30 ppm by weight, preferably 7 to 30 ppm by weight with respect to the aqueous solution. The concentration of hydrogen peroxide is 200 to 25000 ppm by weight, preferably 300 to 5000 ppm by weight with respect to the aqueous solution.

水溶液のpHは、6以上であり、好ましくは6以上13以下である。pHが13超になると、反応装置の腐食が問題になるため、好ましくない。   The pH of the aqueous solution is 6 or more, preferably 6 or more and 13 or less. If the pH exceeds 13, corrosion of the reactor becomes a problem, which is not preferable.

また、水溶液に含まれる二酸化チタンの量は、0.5g/リットル以上8g/リットル以下であるのが好ましい。なお二酸化チタンは、修飾改質されていてもよい。光源としては、例えば水銀灯、キセノンランプ、重水素ランプ、蛍光灯、ブラックライト、及び太陽光の少なくとも一つを用いることができる。   The amount of titanium dioxide contained in the aqueous solution is preferably 0.5 g / liter or more and 8 g / liter or less. Titanium dioxide may be modified and modified. As the light source, for example, at least one of a mercury lamp, a xenon lamp, a deuterium lamp, a fluorescent lamp, a black light, and sunlight can be used.

本実施形態によれば、光分解法の分解能力を高めることができる。このため、例えば被分解物がトリアジン系農薬であったとしても、トリアジン系農薬をシアヌル酸、水、二酸化炭素、硝酸イオン及びアンモニウムイオンに分解し、さらに難分解性の中間生成物であるシアヌル酸を水、二酸化炭素、硝酸イオン及びアンモニウムイオンに分解することができる。その結果、トリアジン系農薬の有機炭素を、すべて無機化合物である二酸化炭素に変えることができる。   According to this embodiment, the decomposition capability of the photolysis method can be enhanced. For this reason, even if the decomposed product is a triazine pesticide, for example, the triazine pesticide is decomposed into cyanuric acid, water, carbon dioxide, nitrate ion and ammonium ion, and cyanuric acid which is a hardly decomposable intermediate product. Can be decomposed into water, carbon dioxide, nitrate ions and ammonium ions. As a result, the organic carbon of the triazine-based pesticide can be changed to carbon dioxide, which is an inorganic compound.

なお、トリアジン系農薬は、下記一般式(1)

Figure 2010022958

(式中、XはCl、Br、OCH、又はSCHを表す。Rは、CH、C、C、又はCH(CHを表す。Rは、H、CH、C、C、又はCH(CHを表す。Rは、CH、C、C、又はCH(CHを表す。)
で示される構造を1種以上有する化合物を含有している。 Triazine pesticides are represented by the following general formula (1)

Figure 2010022958

(In the formula, X represents Cl, Br, OCH 3 , or SCH 3. R 1 represents CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2. R 2 represents H, CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2 represents R 3 represents CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2 . To express.)
The compound which has 1 or more types of structures shown by is contained.

(実施例1)
水50mLに、トリアジン系農薬の分解反応の中間生成物であるシアヌル酸0.05mmolを溶解させた水溶液を準備した。この水溶液及び二酸化チタンを反応器の中にいれ、酸化剤の導入及び光の照射を行いつつ、マグネチックスターラーで攪拌することにより、24時間ほど光分解を行った。光源としては水銀灯を用いた。なお、酸化剤の組成、二酸化チタンの量、及び水溶液のpHを変えることにより、実施例及び比較例の実験を行った。表1に、各実施例及び比較例における実験条件及びシアヌル酸の分解率を示す。
Example 1
An aqueous solution in which 0.05 mmol of cyanuric acid, which is an intermediate product of the decomposition reaction of the triazine-based pesticide, was dissolved in 50 mL of water was prepared. The aqueous solution and titanium dioxide were placed in a reactor, and the mixture was stirred with a magnetic stirrer while introducing an oxidizing agent and irradiated with light, and photolysis was performed for about 24 hours. A mercury lamp was used as the light source. In addition, the experiment of the Example and the comparative example was conducted by changing the composition of the oxidizing agent, the amount of titanium dioxide, and the pH of the aqueous solution. Table 1 shows the experimental conditions and the decomposition rate of cyanuric acid in each example and comparative example.

Figure 2010022958
Figure 2010022958

実施例である試料1〜6において、水溶液のpHを12とした。また、試料1〜5において二酸化チタンの量を2g/Lとして、試料6において二酸化チタンの量を0.6g/Lとした。   In Samples 1 to 6 as examples, the pH of the aqueous solution was set to 12. In Samples 1 to 5, the amount of titanium dioxide was 2 g / L, and in Sample 6 the amount of titanium dioxide was 0.6 g / L.

そして、試料1では、シアヌル酸の分解率は100%であった。このときの酸化剤の組成は、オゾン(O)が25重量ppm、酸素(O)が7重量ppm、過酸化水素(H)が544重量ppmであった。 In Sample 1, the decomposition rate of cyanuric acid was 100%. The composition of the oxidizing agent at this time was 25 ppm by weight of ozone (O 3 ), 7 ppm by weight of oxygen (O 2 ), and 544 ppm by weight of hydrogen peroxide (H 2 O 2 ).

また、試料2,3ではシアヌル酸の分解率は70%であった。このときの酸化剤の組成は、過酸化水素が240重量ppm、20400重量ppmであった点を除いて、試料1と同様であった。   In Samples 2 and 3, the decomposition rate of cyanuric acid was 70%. The composition of the oxidizing agent at this time was the same as that of Sample 1 except that hydrogen peroxide was 240 ppm by weight and 20400 ppm by weight.

また、試料4,5ではシアヌル酸の分解率は80%であった。このときの酸化剤の組成は、過酸化水素が310重量ppm、4420重量ppmであった点を除いて、試料1と同様であった。   In Samples 4 and 5, the decomposition rate of cyanuric acid was 80%. The composition of the oxidizing agent at this time was the same as that of Sample 1 except that hydrogen peroxide was 310 ppm by weight and 4420 ppm by weight.

また試料6では、二酸化チタンの量が少ないにもかかわらず、シアヌル酸の分解率は44%であった。なお酸化剤の組成は、試料1と同様である。   In Sample 6, although the amount of titanium dioxide was small, the decomposition rate of cyanuric acid was 44%. The composition of the oxidizing agent is the same as that of sample 1.

一方、比較例である試料7では、酸化剤にはオゾンが25重量ppm、酸素が7重量ppm含まれていたが、過酸化水素が含まれていなかったため、他の条件が試料1と同様であったにもかかわらず、シアヌル酸の分解率は40%であった。   On the other hand, in the sample 7 as a comparative example, the oxidant contained 25 ppm by weight of ozone and 7 ppm by weight of oxygen, but did not contain hydrogen peroxide. Nevertheless, the degradation rate of cyanuric acid was 40%.

また比較例である試料8では、水溶液のpHが4であったため、他の実験条件が試料1と同様であったにもかかわらず、シアヌル酸の分解率は0%であった。   In Sample 8 as a comparative example, since the pH of the aqueous solution was 4, the degradation rate of cyanuric acid was 0% even though the other experimental conditions were the same as Sample 1.

また比較例である試料9では、酸化剤には酸素が7重量ppm含まれていたが、オゾン及び過酸化水素が含まれていなかったため、他の条件が試料1と同様であったにもかかわらず、シアヌル酸の分解率は30%であった。
In Sample 9 which is a comparative example, the oxidant contained 7 ppm by weight of oxygen, but did not contain ozone or hydrogen peroxide, so the other conditions were the same as in Sample 1. The decomposition rate of cyanuric acid was 30%.

(実施例2)
実施例1の試料1と同様の条件において、二酸化チタンの量を変化させることにより、ビスフェノールAの分解反応速度定数を測定した。結果を図1のグラフに示す。このグラフから、試料1と同様の条件においては、ビスフェノールAの分解速度定数は、二酸化チタンの濃度が2g/Lのときが最も大きいことがわかった。
(Example 2)
Under the same conditions as Sample 1 of Example 1, the decomposition reaction rate constant of bisphenol A was measured by changing the amount of titanium dioxide. The results are shown in the graph of FIG. From this graph, it was found that under the same conditions as Sample 1, the decomposition rate constant of bisphenol A was the highest when the concentration of titanium dioxide was 2 g / L.

ビスフェノールAの分解速度定数の二酸化チタン濃度依存性を示すグラフである。It is a graph which shows the titanium dioxide density | concentration dependence of the decomposition rate constant of bisphenol A.

Claims (4)

酸化剤及び被分解物を含む水溶液中に浸漬された光触媒に光を照射することにより、前記被分解物を光分解する工程を有し、
前記光触媒は、二酸化チタンを含んでおり、
前記水溶液のpHは6以上であり、
前記酸化剤として、オゾンを前記水溶液に対して10重量ppm以上50重量ppm以下、酸素を前記水溶液に対して5重量ppm以上30重量ppm以下、過酸化水素を前記水溶液に対して200重量ppm以上25000重量ppm以下含有している光分解方法。
Irradiating light to a photocatalyst immersed in an aqueous solution containing an oxidizing agent and a substance to be decomposed, and having a step of photolyzing the substance to be decomposed,
The photocatalyst contains titanium dioxide,
The pH of the aqueous solution is 6 or more,
As the oxidizing agent, ozone is 10 to 50 ppm by weight with respect to the aqueous solution, oxygen is 5 to 30 ppm with respect to the aqueous solution, and hydrogen peroxide is 200 to 200 ppm with respect to the aqueous solution. A photolysis method containing 25000 ppm by weight or less.
請求項1に記載の光分解方法において、前記酸化剤は、過酸化水素を前記水溶液に対して300重量ppm以上5000重量ppm以下含有している光分解方法。   2. The photolysis method according to claim 1, wherein the oxidizing agent contains hydrogen peroxide in an amount of 300 ppm to 5000 ppm by weight with respect to the aqueous solution. 請求項2に記載の光分解方法において、
前記水溶液のpHは13以下である光分解方法。
The photolysis method according to claim 2,
The photolysis method wherein the pH of the aqueous solution is 13 or less.
請求項1〜3のいずれか一つに記載の光分解方法において、
前記被分解物は、下記一般式(1)
Figure 2010022958

(式中、XはCl、Br、OCH、又はSCHを表す。Rは、CH、C、C、又はCH(CHを表す。Rは、H、CH、C、C、又はCH(CHを表す。Rは、CH、C、C、又はCH(CHを表す。)
で示される構造を1種以上有する化合物を含有する光分解方法。
In the photolysis method according to any one of claims 1 to 3,
The decomposition target is represented by the following general formula (1)
Figure 2010022958

(In the formula, X represents Cl, Br, OCH 3 , or SCH 3. R 1 represents CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2. R 2 represents H, CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2 represents R 3 represents CH 3 , C 2 H 5 , C 3 H 7 , or CH (CH 3 ) 2 . To express.)
The photolysis method containing the compound which has 1 or more types of structures shown by these.
JP2008188446A 2008-07-22 2008-07-22 Photolysis method Pending JP2010022958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008188446A JP2010022958A (en) 2008-07-22 2008-07-22 Photolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008188446A JP2010022958A (en) 2008-07-22 2008-07-22 Photolysis method

Publications (1)

Publication Number Publication Date
JP2010022958A true JP2010022958A (en) 2010-02-04

Family

ID=41729302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008188446A Pending JP2010022958A (en) 2008-07-22 2008-07-22 Photolysis method

Country Status (1)

Country Link
JP (1) JP2010022958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
WO2014178144A1 (en) * 2013-05-02 2014-11-06 株式会社フォーティー科研 Oil treating agent, method for producing same and method for treating oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
JP2012011372A (en) * 2010-06-04 2012-01-19 Showa:Kk Decomposition/elimination method using photocatalytic material
CN102985167A (en) * 2010-06-04 2013-03-20 株式会社昭和 Decomposition/elimination method using a photocatalytic material
US8597603B2 (en) 2010-06-04 2013-12-03 Showa Co., Ltd. Decomposition/elimination method using a photocatalytic material
KR101407444B1 (en) * 2010-06-04 2014-06-13 가부시키가이샤 쇼와 Decomposition/elimination method using a photocatalytic material
WO2014178144A1 (en) * 2013-05-02 2014-11-06 株式会社フォーティー科研 Oil treating agent, method for producing same and method for treating oil

Similar Documents

Publication Publication Date Title
Brisset et al. Acidity control of plasma-chemical oxidation: applications to dye removal, urban waste abatement and microbial inactivation
Olatunde et al. Photo enhanced degradation of polyfluoroalkyl and perfluoroalkyl substances
Jamali et al. A batch LED reactor for the photocatalytic degradation of phenol
JP5817718B2 (en) Chemical substance treatment agent containing persulfate and silver complex, and chemical substance decomposition method using the same
US5178772A (en) Process for destruction of metal complexes by ultraviolet irradiation
Truong et al. Visible light-activated degradation of natural organic matter (NOM) using zinc-bismuth oxides-graphitic carbon nitride (ZBO-CN) photocatalyst: Mechanistic insights from EEM-PARAFAC
Abusallout et al. Emerging investigator series: rapid defluorination of 22 per-and polyfluoroalkyl substances in water using sulfite irradiated by medium-pressure UV
Li et al. Treatment of azole-containing industrial wastewater by the fenton process
Chowdhury et al. Photocatalytic degradation of perfluorooctanoic acid on Pb‐doped TiO2 coated with reduced graphene oxide
JP2010022958A (en) Photolysis method
JP2019194159A (en) Generation method of bonded chlorine compound
JP2007038113A (en) Organic arsenic compound-containing water treatment method
Talaiekhozani et al. Hydrogen sulfide and organic compounds removal in municipal wastewater using ferrate (VI) and ultraviolet radiation
JP4277736B2 (en) Method for treating water containing organic arsenic compound
KR20150026993A (en) method of treating tap water and manufacturing advanced oxidizing treated water using chlorine and UV-ray
JP2007083096A (en) Decomposition method for fluoro-carboxylic acids
JP2005279615A (en) Photolytic degradation method of organic matter and method for treating waste water
JP2006515225A (en) Method for enhancing hydroxyl group formation
JP4553326B1 (en) Method for decomposing and removing 1,4-dioxane contained in an aquatic medium at a low concentration
Azeroual et al. Effect of the mixing velocity and the active chlorine concentration in analyte on the indirect electrochemical oxidation of the Acid Red 35 dye
JPH0194998A (en) Photochemical treatment of waste water
KR102554250B1 (en) Treatment method for wastewater containing recalcitrant compounds
Alapi et al. Toxicology aspects of the decomposition of diuron by advanced oxidation processes
KR102657463B1 (en) Mixed oxidizer for hardly decomposable wastewater treatment and wastewater treatment method using the oxidizer
Đurkić et al. Degradation of 1, 2, 3-trichlorobenzene in synthetic water during the application of sulfate radical-based advanced oxidation