JP3937006B2 - Photolysis of fluorinated organic compounds - Google Patents

Photolysis of fluorinated organic compounds Download PDF

Info

Publication number
JP3937006B2
JP3937006B2 JP2001232707A JP2001232707A JP3937006B2 JP 3937006 B2 JP3937006 B2 JP 3937006B2 JP 2001232707 A JP2001232707 A JP 2001232707A JP 2001232707 A JP2001232707 A JP 2001232707A JP 3937006 B2 JP3937006 B2 JP 3937006B2
Authority
JP
Japan
Prior art keywords
fluorinated organic
organic compound
photocatalyst
organic compounds
photolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001232707A
Other languages
Japanese (ja)
Other versions
JP2003040805A (en
Inventor
久男 堀
久寛 永長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001232707A priority Critical patent/JP3937006B2/en
Publication of JP2003040805A publication Critical patent/JP2003040805A/en
Application granted granted Critical
Publication of JP3937006B2 publication Critical patent/JP3937006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大気中の濃度が増加して環境問題化しつつある難分解性のトリフルオロ酢酸等のフッ素系有機化合物を分解する方法に関する。
【0002】
【従来の技術】
近年、大気中においてトリフルオロ酢酸等の、水溶性で難分解性の比較的低分子量のフッ素系有機化合物の濃度が次第に増加してきており、環境問題となりつつある(A. Jordanほか著、 Environmental Science and Technology, 33巻, 522-527ページ 、1999年)。この発生源は、自然界にあるのか、あるいは電子部品や界面活性剤、医療用材料等として広範囲に用いられ使用量が増加しているフッ素系有機化合物に由来しているのか議論されている。また、これらのフッ素系有機化合物は反応性に乏しいことから人体には無害なものと推定されてきたが、パーフルオロ化合物は体内に蓄積し有毒であるとの指摘が出はじめ、2000年5月にはパーフルオロオクタンスルホン酸(PFOS)を製造・販売していた有力企業がその製造を中止し、米国では大きな話題となった。
【0003】
これらのフッ素系有機化合物に関しては、炭素―フッ素結合を切断できる有効な処理技術は未だに開発されていない。現在、有機物を光分解できる触媒として二酸化チタンが知られ利用されているが、これをもってしてもトリフルオロ酢酸を分解させることは困難であり、今後廃棄物として大きな問題となることが予想され、フッ素系有機化合物を処分する分解処理技術の開発が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状のもとになされたものであって、難分解性のフッ素系有機化合物を安全かつ効率的に分解させる処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決するべく鋭意検討を重ねた結果、光触媒を含む水中に水溶性のフッ素系有機化合物と光触媒を入れて、特定の条件下に、光照射するとフッ素系有機化合物が分解することを見出し、本発明を完成するに至った。
すなわち、本発明によれば、酸素の存在下、フッ素系有機化合物と光触媒を含む水層に光照射することによりフッ素系有機化合物を分解させることを特徴とするフッ素系有機化合物の光分解法が提供される。その際、光触媒としては、ヘテロポリ酸化合物を用いる
【0006】
本発明において、分解処理の対象とするフッ素系有機化合物としては、 フルオロアルキルカルボン酸類、フロオロアルキルスルホン酸類及びフルオロアルコール類から選ばれる1種以上であることが好ましい。
また、本発明によれば、上記光分解法で生成するフッ化物イオンから得られるフッ化カルシウムを用いて形成されたことを特徴とする建材が提供される。
【0007】
【発明の実施の形態】
本発明は、水溶性で難分解性の比較的低分子量のフッ素系有機化合物を分解処理することにより、フッ素系有機化合物の大気への流出に伴う環境問題の解消に寄与するものである。さらに、その分解により生成するフッ化物イオンは、カルシウムを含む化合物と化学反応させてフッ化カルシウムを合成し、これを建材、特に建材ボード等として再利用しようとするものである。
【0008】
本発明において、分解処理の対象とするフッ素系有機化合物は、フッ素原子を少なくとも一個有する水溶性の低分子量有機化合物であって、広範な技術分野に利用されているカルボキシル基、水酸基、スルホン酸基等の水と親和性を有する官能基を持つ化合物である、トリフルオロ酢酸を代表とする炭素数1〜5程度のフルオロアルキルカルボン酸、フロオロアルキルスルホン酸及びフルオロアルコールから選ばれる1種以上のフッ素系有機化合物である。
【0009】
本発明に用いる光触媒としては、式 AMxOyで示されるヘテロポリ酸化合物が用いられ、これはポリ酸イオン(M n−)と対イオン(An+)から構成される。
上記式中、Mは遷移金属(4A〜7A元素)であり、モリブデン、バナジウム、タングステン、チタン、アルミニウム、ニオブ、タンタル等である。対イオンAn+は、アンモニウムイオンや水素イオン、金属イオン(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム等)である。また、x及びyは、それぞれ原子数である。具体的には、HPW1240・6HO 、HMoO40、H1862等が例示される。
【0010】
光触媒及び分解対象物の使用量については、分解の難易度や操作条件等によって適宜採択できるが、通常、光触媒は、水層中に0.0001〜100mol/l、望ましくは0.001〜10mol/lの範囲で導入する。この場合、光触媒は水に十分に溶解している水溶液であることが好ましい。また、フッ素系有機化合物は、光触媒の1〜10,000モル倍、望ましくは1〜50モル倍を導入する。その後、酸素ガスを常圧下でバブリングするか、反応容器内を酸素で1MPa程度に満たしてもよい。
反応系の温度は15 〜90℃、好ましくは25〜50℃の範囲であり、また、その圧力は0.1〜30MPa、好ましくは0.5〜20MPaの範囲である。
【0011】
光照射条件は特に制約されないが、照射する光の波長は、通常、光触媒の吸収スペクトル領域である200〜800nm、好ましくは250〜400nmであることが好ましい。また、光源の種類には特に制限されず、所望とする光の波長に応じて水銀灯、キセノンランプ、重水素ランプ、太陽光等を適宜使用すればよい。さらに、光照射時間も特に限定されるものではないが、1〜7日程度が望ましい。
【0012】
次に、本発明の分解反応を行う方法について、例を挙げて説明する。
まず、光照射可能な反応容器の底部に、水、光触媒及びフッ素系有機化合物を入れ、次いで、ここに酸素を導入する。光触媒としてヘテロポリ酸化合物を用いる場合、水に溶解すると強酸性となるため、反応容器としては耐酸性のある耐圧性材質の容器からなるものを用いることが好ましく、例えば、インコネル製、金等をコーティングしたステンレス製などが常用される。
【0013】
反応器に光の導入孔として設けられる窓材としては、生成するフッ化物イオンによる腐食に耐え得るサファイア等で形成することが好ましい。このようにすることによって、フッ素系有機化合物は、触媒分子と反応して光分解が行われ、一定時間の光照射後、反応容器内の分解物と生成物をそれぞれ回収する。
【0014】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
実施例1
ヘテロポリ酸錯体としてHPW1240・6HOの1.55×10−4モルとトリフルオロ酢酸1.55×10−3モルと水23mLをサファイア窓付きアルミナコーティングしたステンレス製耐圧反応器(内容量200ml)に入れた。ここに全圧が0.5MPaになるまで酸素ガスを導入した。これをマグネチュックスターラーで攪拌しながら25℃で高圧水銀ランプにより250nm以上の光を7日間にわたって照射して光分解反応を行った。
この反応の終了後、常圧に戻して水層および残留固形物をメスフラスコに入れ、これを水で希釈して均一になった溶液を、イオン排除クロマトグラフィーで分析し、溶液内に残存するトリフルオロ酢酸量を測定した。また、生成フッ化物イオン量についてはイオンクロマトグラフィーにて測定した。その結果、85時間経過後には、トリフルオロ酢酸の約50%が分解していた。一定時間光照射後のトリフルオロ酢酸の残存量とフッ化物イオンの生成量について、得られた結果を図1に示した。
【0015】
比較例1
実施例1において、光触媒を導入しなかったこと以外は、実施例1と同様にして光反応を行ったところ、トリフルオロ酢酸の分解は観測されなかった。
【0016】
【発明の効果】
本発明によれば、酸素が共存している状態で、フッ素系有機化合物と光触媒を含む水層を光照射することによって、難分解性のフッ素系有機化合物を安全にかつ効率的に分解させることができるから、環境問題の解消に貢献できるものである。
【図面の簡単な説明】
【図1】 実施例1で得られたトリフルオロ酢酸の分解による減少とフッ化物イオンの生成の状態を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for decomposing a fluorine-based organic compound such as refractory trifluoroacetic acid whose concentration in the atmosphere is increasing and becoming an environmental problem.
[0002]
[Prior art]
In recent years, the concentration of water-soluble and hardly decomposable relatively low molecular weight fluorinated organic compounds such as trifluoroacetic acid in the atmosphere has been gradually increasing, which is becoming an environmental problem (A. Jordan et al., Environmental Science and Technology, 33, 522-527, 1999). It is debated whether this source is in nature, or whether it is derived from fluorine-based organic compounds that are widely used as electronic parts, surfactants, medical materials, etc. In addition, these fluorinated organic compounds have been estimated to be harmless to the human body due to their poor reactivity, but perfluoro compounds accumulate in the body and began to point out that they are toxic, May 2000 A major company that manufactured and sold perfluorooctane sulfonic acid (PFOS) stopped producing it and became a big topic in the United States.
[0003]
For these fluorinated organic compounds, an effective treatment technique capable of breaking the carbon-fluorine bond has not yet been developed. At present, titanium dioxide is known and used as a catalyst capable of photodegrading organic matter, but even with this, it is difficult to decompose trifluoroacetic acid, and it is expected that it will become a serious problem in the future. Development of a decomposition treatment technology that disposes of fluorinated organic compounds is desired.
[0004]
[Problems to be solved by the invention]
The present invention has been made based on the above-described actual situation in the prior art, and an object thereof is to provide a treatment method for safely and efficiently decomposing a hardly decomposable fluorine-based organic compound.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors put a water-soluble fluorinated organic compound and a photocatalyst in water containing a photocatalyst, and when irradiated with light under specific conditions, the fluorinated organic compound Has been found to decompose, and the present invention has been completed.
That is, according to the present invention, there is provided a photodecomposition method for a fluorinated organic compound, wherein the fluorinated organic compound is decomposed by irradiating light to an aqueous layer containing the fluorinated organic compound and a photocatalyst in the presence of oxygen. Provided. In that case, as the photocatalyst, using a F heteropolyacid acid compound.
[0006]
In the present invention, the fluorinated organic compound to be decomposed is preferably at least one selected from fluoroalkylcarboxylic acids, fluoroalkylsulfonic acids and fluoroalcohols.
Moreover, according to this invention, the building material characterized by formed using the calcium fluoride obtained from the fluoride ion produced | generated by the said photolysis method is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention contributes to the resolution of environmental problems associated with outflow of fluorine-based organic compounds to the atmosphere by decomposing water-soluble and hardly decomposable relatively low molecular weight fluorine-based organic compounds. Furthermore, the fluoride ions generated by the decomposition are chemically reacted with a compound containing calcium to synthesize calcium fluoride, which is to be reused as a building material, particularly a building material board.
[0008]
In the present invention, the fluorinated organic compound to be decomposed is a water-soluble low molecular weight organic compound having at least one fluorine atom, and is used in a wide range of technical fields such as carboxyl group, hydroxyl group, and sulfonic acid group. One or more selected from fluoroalkylcarboxylic acids having about 1 to 5 carbon atoms, such as trifluoroacetic acid, fluoroalkylsulfonic acids and fluoroalcohols, which are compounds having a functional group having an affinity for water such as It is a fluorinated organic compound.
[0009]
As the photocatalyst used in the present invention, a heteropolyacid compound represented by the formula AMxOy is used , and it is composed of a polyacid ion (M x O y n− ) and a counter ion (A n + ).
In the above formula, M is a transition metal (elements 4A to 7A), such as molybdenum, vanadium, tungsten, titanium, aluminum, niobium, tantalum and the like. The counter ion An + is an ammonium ion, a hydrogen ion, or a metal ion (lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, etc.). X and y are the number of atoms, respectively. Specifically, H 3 PW 12 O 40 · 6H 2 O, H 3 MoO 40, H 6 P 2 W 18 O 62 and the like.
[0010]
About the usage-amount of a photocatalyst and a decomposition target object, although it can select suitably by the difficulty of decomposition, operation conditions, etc., a photocatalyst is 0.0001-100 mol / l normally in a water layer, Preferably 0.001-10 mol / Introduced in the range of l. In this case, the photocatalyst is preferably an aqueous solution sufficiently dissolved in water. The fluorine-based organic compound is introduced in an amount of 1 to 10,000 moles, preferably 1 to 50 moles, of the photocatalyst. Thereafter, oxygen gas may be bubbled under normal pressure, or the inside of the reaction vessel may be filled with oxygen to about 1 MPa.
The temperature of the reaction system is 15 to 90 ° C, preferably 25 to 50 ° C, and the pressure is 0.1 to 30 MPa, preferably 0.5 to 20 MPa.
[0011]
The light irradiation conditions are not particularly limited, but the wavelength of light to be irradiated is usually 200 to 800 nm, preferably 250 to 400 nm, which is the absorption spectrum region of the photocatalyst. The type of the light source is not particularly limited, and a mercury lamp, a xenon lamp, a deuterium lamp, sunlight, or the like may be used as appropriate depending on the desired wavelength of light. Further, the light irradiation time is not particularly limited, but is preferably about 1 to 7 days.
[0012]
Next, the method for carrying out the decomposition reaction of the present invention will be described with examples.
First, water, a photocatalyst, and a fluorinated organic compound are placed in the bottom of a reaction container that can be irradiated with light, and then oxygen is introduced therein. When using a heteropolyacid compound as a photocatalyst, it becomes strongly acidic when dissolved in water. Therefore, it is preferable to use a container made of a pressure-resistant material having acid resistance, for example, made of Inconel, coated with gold or the like. Stainless steel is usually used.
[0013]
The window material provided as a light introduction hole in the reactor is preferably formed of sapphire or the like that can withstand corrosion by the fluoride ions produced. By doing so, the fluorine-based organic compound undergoes photolysis by reacting with the catalyst molecules, and after the light irradiation for a certain time, the decomposition product and the product in the reaction vessel are respectively recovered.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Stainless steel pressure-resistant reactor coated with alumina coated with 1.55 × 10 −4 mol of H 3 PW 12 O 40 · 6H 2 O, 1.55 × 10 −3 mol of trifluoroacetic acid and 23 mL of water as a heteropolyacid complex with sapphire window (Internal volume 200 ml). Here, oxygen gas was introduced until the total pressure reached 0.5 MPa. While stirring this with a magnetic stirrer, a photodecomposition reaction was performed by irradiating light of 250 nm or more with a high pressure mercury lamp at 25 ° C. for 7 days.
After completion of the reaction, the pressure is returned to normal pressure, and the aqueous layer and residual solids are placed in a volumetric flask. The solution, which is diluted with water and becomes homogeneous, is analyzed by ion exclusion chromatography and remains in the solution. The amount of trifluoroacetic acid was measured. Further, the amount of generated fluoride ions was measured by ion chromatography. As a result, after 85 hours, about 50% of trifluoroacetic acid was decomposed. The results obtained for the remaining amount of trifluoroacetic acid and the amount of fluoride ions generated after light irradiation for a certain period of time are shown in FIG.
[0015]
Comparative Example 1
In Example 1, except that no photocatalyst was introduced, the photoreaction was performed in the same manner as in Example 1, and no decomposition of trifluoroacetic acid was observed.
[0016]
【The invention's effect】
According to the present invention, it is possible to safely and efficiently decompose a hardly decomposable fluorinated organic compound by irradiating a water layer containing a fluorinated organic compound and a photocatalyst in the presence of oxygen. Can contribute to solving environmental problems.
[Brief description of the drawings]
FIG. 1 is a graph showing a decrease in decomposition of trifluoroacetic acid obtained in Example 1 and a state of generation of fluoride ions.

Claims (1)

酸素の存在下、フッ素系有機化合物と光触媒を含む水層に光照射することによりフッ素系有機化合物を分解させる方法であって、前記フッ素系有機化合物が、フルオロアルキルカルボン酸、フロオロアルキルスルホン酸及びフルオロアルコールから選ばれる1種以上であり、前記光触媒が、ヘテロポリ酸化合物であることを特徴とするフッ素系有機化合物の光分解法。A method for decomposing a fluorinated organic compound by irradiating light to an aqueous layer containing a fluorinated organic compound and a photocatalyst in the presence of oxygen, wherein the fluorinated organic compound is a fluoroalkylcarboxylic acid or a fluoroalkylsulfonic acid. And a photocatalytic method of a fluorine-based organic compound , wherein the photocatalyst is a heteropolyacid compound .
JP2001232707A 2001-07-31 2001-07-31 Photolysis of fluorinated organic compounds Expired - Lifetime JP3937006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232707A JP3937006B2 (en) 2001-07-31 2001-07-31 Photolysis of fluorinated organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232707A JP3937006B2 (en) 2001-07-31 2001-07-31 Photolysis of fluorinated organic compounds

Publications (2)

Publication Number Publication Date
JP2003040805A JP2003040805A (en) 2003-02-13
JP3937006B2 true JP3937006B2 (en) 2007-06-27

Family

ID=19064587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232707A Expired - Lifetime JP3937006B2 (en) 2001-07-31 2001-07-31 Photolysis of fluorinated organic compounds

Country Status (1)

Country Link
JP (1) JP3937006B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025932A (en) * 2002-02-26 2002-04-04 김위균 Scooping rod with separable scoop for fishing
JP2006169146A (en) * 2004-12-14 2006-06-29 Daikin Ind Ltd Method for chain shortening of fluorine-containing organic acid compound
JP4849862B2 (en) * 2005-10-14 2012-01-11 株式会社きもと Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member
JP5071929B2 (en) * 2007-05-21 2012-11-14 独立行政法人産業技術総合研究所 Method for decomposing fluorinated carboxylic acids
CN101965320B (en) 2008-03-07 2015-04-01 旭硝子株式会社 Method for decomposing water-soluble fluorinated organic compound
EP3733741A4 (en) * 2018-02-07 2021-09-08 Daikin Industries, Ltd. Hydrophilic compound removal method and odor removal method
EP4332079A1 (en) * 2021-04-30 2024-03-06 Agc Inc. Method for decomposing polyfluorocarboxylic acids

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230620A (en) * 1986-03-31 1987-10-09 Poritoronikusu:Kk Alkali salt of heteropolyacid ion
JPS62230619A (en) * 1986-03-31 1987-10-09 Poritoronikusu:Kk Alkali salt of heteropolyacid ion
US5130031A (en) * 1990-11-01 1992-07-14 Sri International Method of treating aqueous liquids using light energy, ultrasonic energy, and a photocatalyst
JP2560233B2 (en) * 1993-06-01 1996-12-04 科学技術庁金属材料技術研究所長 Halogenated hydrocarbon decomposition method
JP2001300260A (en) * 2000-04-18 2001-10-30 Nissho Iwai Plastic Corp Photodecomposition method of non-metallic fluoride in gas
JP3837468B2 (en) * 2001-05-07 2006-10-25 独立行政法人産業技術総合研究所 Photodecomposition of fluorinated high molecular weight compounds

Also Published As

Publication number Publication date
JP2003040805A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JPH05506181A (en) Catalytic system for oxidizing olefins to carbonyl products
US5708246A (en) Method of photocatalytic conversion of C-H organics
Kang et al. Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: a novel mechanism involving high-valent iron species
Zhang et al. UV/peroxymonosulfate process for degradation of chloral hydrate: Pathway and the role of radicals
JP3937006B2 (en) Photolysis of fluorinated organic compounds
Kuo et al. Aqueous phase ozonation of chlorophenols
Song et al. Nanoscale solvation leads to spontaneous formation of a bicarbonate monolayer on rutile (110) under ambient conditions: implications for CO2 photoreduction
JP6284188B2 (en) Method for decomposing fluorine organic compounds and apparatus for decomposing fluorine organic compounds
US6875902B2 (en) Method decomposing fluorine-containing organic material
JPH09510657A (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
JP3837468B2 (en) Photodecomposition of fluorinated high molecular weight compounds
Van Hoomissen et al. 1, 2-Fluorine radical rearrangements: Isomerization events in perfluorinated radicals
JP4389058B2 (en) Method for decomposing fluorocarboxylic acids
JP2004224715A (en) Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
JP4788946B2 (en) Hydrothermal decomposition of fluorinated organic compounds
Balakumar et al. Application of the Marcus theory to the electron transfer reaction between benzylthioacetic acid and tris (1, 10-phenanthroline) iron (III) perchlorate
Brunet et al. Activation of reducing agents. Sodium hydride containing complex reducing agents. 18. Study of the nature of complex reducing agents prepared from nickel and zinc salts
JP2005279615A (en) Photolytic degradation method of organic matter and method for treating waste water
JP5071929B2 (en) Method for decomposing fluorinated carboxylic acids
JP2005154277A (en) Method for converting fluoro carboxylic acids
Fang et al. Electronic structures of small (RuO2) n (n= 1–4) nanoclusters and their anions and the hydrolysis reactions with water
Choudhary et al. Generation of hydrogen peroxide via the selective reduction of oxygen by hydrazine sulfate over Br-promoted Pd/Al2O3 catalyst in an aqueous medium at ambient conditions
JP2020040893A (en) Process for producing cyclohexene oxide
JP6628800B2 (en) Method for producing alcohol and / or ketone
Tatarova et al. Reaction of carbon tetrachloride with hydrogen peroxide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3937006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term