JP6711977B2 - Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer - Google Patents

Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer Download PDF

Info

Publication number
JP6711977B2
JP6711977B2 JP2016253254A JP2016253254A JP6711977B2 JP 6711977 B2 JP6711977 B2 JP 6711977B2 JP 2016253254 A JP2016253254 A JP 2016253254A JP 2016253254 A JP2016253254 A JP 2016253254A JP 6711977 B2 JP6711977 B2 JP 6711977B2
Authority
JP
Japan
Prior art keywords
fluorine atom
containing polymer
water
permanganate
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016253254A
Other languages
Japanese (ja)
Other versions
JP2018104578A (en
Inventor
堀 久男
久男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2016253254A priority Critical patent/JP6711977B2/en
Publication of JP2018104578A publication Critical patent/JP2018104578A/en
Application granted granted Critical
Publication of JP6711977B2 publication Critical patent/JP6711977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

本発明は、フッ素原子含有ポリマーの分解方法、及びフッ素原子含有ポリマーの分解装置に関するものである。 The present invention relates to a method for decomposing a fluorine atom-containing polymer and an apparatus for decomposing a fluorine atom-containing polymer.

フッ素原子を含んだポリマーは、その化学的安定性や熱に対する耐久性の高さなどの特性が評価され、理化学医療機器を初めとして諸々の生活用品に至るまで様々な分野に応用されている。その反面、これらのポリマーは、こうした化学的安定性や熱に対する耐久性の高さなどの裏返しとして、廃棄物処理の問題を抱えがちである。すなわち、これらのポリマーを焼却しようとすれば、共有結合の中で最強である炭素・フッ素結合の存在によりその分解には高温での処理が必要になるばかりでなく、焼却により発生するフッ化水素ガスによる焼却炉材の劣化を招くことになる。このため、これらのポリマーを廃棄処分しようとすれば埋め立て処理が必要となるが、廃棄物の最終処分場が逼迫している現状ではそれも問題である。したがって、フッ素原子含有ポリマーについての、焼却でもなく埋め立てでもない、新たな廃棄物処理法が求められている。 Polymers containing a fluorine atom have been evaluated for their properties such as chemical stability and high durability against heat, and have been applied to various fields such as physicochemical medical devices and various daily necessities. On the other hand, these polymers tend to have a problem of waste disposal as an inside out of such chemical stability and high resistance to heat. In other words, if these polymers are to be incinerated, not only high-temperature treatment is required for their decomposition due to the presence of the strongest carbon-fluorine bond among covalent bonds, but also hydrogen fluoride generated by incineration. This will cause deterioration of the incinerator material due to the gas. For this reason, landfilling is required to dispose of these polymers, but this is also a problem in the current situation where the final disposal site for waste is tight. Therefore, there is a need for a new waste treatment method for fluorine atom-containing polymers that is neither incinerated nor landfilled.

そのような背景から、例えば非特許文献1には、過酸化水素の存在下、亜臨界水にフッ素原子含有ポリマーを接触させることにより、このポリマーを二酸化炭素とフッ化物イオンまで分解する処理方法が提案されている。このような処理法であれば、比較的穏和な条件でフッ素原子含有ポリマーを無機化することができるばかりか、その処理で生じたフッ化物イオンをカルシウムイオンと反応させることにより、あらゆるフッ素含有化合物の原料になるフッ化カルシウムを得ることができ、資源のリサイクル面からも優れるということができる。 From such a background, for example, Non-Patent Document 1 discloses a treatment method in which a fluorine atom-containing polymer is brought into contact with subcritical water in the presence of hydrogen peroxide to decompose the polymer into carbon dioxide and fluoride ions. Proposed. With such a treatment method, not only can the fluorine atom-containing polymer be mineralized under relatively mild conditions, but the fluorine ions produced by the treatment can be reacted with calcium ions to produce any fluorine-containing compound. It can be said that it is possible to obtain calcium fluoride, which is a raw material, and is excellent in terms of resource recycling.

Hisao Hori et al., Ind. Eng. Chem. Res., 2015, 54, pp8650-8658Hisao Hori et al., Ind. Eng. Chem. Res., 2015, 54, pp8650-8658

上記の通り、非特許文献1に記載された処理方法によれば、焼却でも埋め立てでもなく、さらには資源リサイクルすら可能なフッ素原子含有ポリマーの分解方法が提供される。しかしながら、上記の分解方法は、フッ素原子含有ポリマーの種類によっては分解効率が十分でなく、酸化剤となる過酸化水素の量が多量に必要になる等の面で、改善の余地があるのも実情であった。 As described above, the treatment method described in Non-Patent Document 1 provides a method for decomposing a fluorine atom-containing polymer that is neither incinerated nor landfilled, and can even be resource recycled. However, the above decomposition method has room for improvement in that the decomposition efficiency is not sufficient depending on the type of the fluorine atom-containing polymer and a large amount of hydrogen peroxide serving as an oxidant is required. It was a reality.

本発明は、以上の状況に鑑みてなされたものであり、焼却でも埋め立てでもなく、比較的穏和な条件で実現可能なフッ素原子含有ポリマーの分解方法、及びそのような分解方法に適用可能な分解装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, neither incineration nor landfilling, a decomposition method of a fluorine atom-containing polymer that can be realized under relatively mild conditions, and decomposition applicable to such a decomposition method. The purpose is to provide a device.

本発明者は、上記の課題を解決するために鋭意検討を重ねた結果、過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを200℃以上の亜臨界水に接触させることにより、フッ素原子含有ポリマーを分解でき、その分解効率は過酸化水素を用いた上記非特許文献1の手法に比べて著しく向上することを見出した。本発明は、このような知見に基づいてなされたものであり、以下のようなものを提供する。 The present inventors have conducted extensive studies in order to solve the above problems, and in the presence of permanganate, by bringing the fluorine atom-containing polymer to be decomposed into contact with subcritical water at 200° C. or higher, It has been found that the fluorine atom-containing polymer can be decomposed and the decomposition efficiency is significantly improved as compared with the method of Non-Patent Document 1 using hydrogen peroxide. The present invention has been made based on such findings, and provides the following.

(1)本発明は、昇温して亜臨界水とする前の水中において25mM以上の濃度の過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを300℃以上の亜臨界水に接触させる工程を備えることを特徴とするフッ素原子含有ポリマーの分解方法である。 (1) In the present invention, a fluorine atom-containing polymer to be decomposed into subcritical water at 300° C. or higher in the presence of permanganate at a concentration of 25 mM or higher in water before being heated to be subcritical water. A method for decomposing a fluorine atom-containing polymer, comprising a step of contacting.

(2)また本発明は、昇温して亜臨界水とする前の水中において25mM以上の濃度の過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを300℃以上の亜臨界水に接触させるための反応容器を備えることを特徴とするフッ素原子含有ポリマーの分解装置でもある。 (2) In the present invention, the fluorine atom-containing polymer to be decomposed is heated in subcritical water at 300°C or higher in the presence of permanganate at a concentration of 25 mM or higher in water before being heated to form subcritical water. It is also an apparatus for decomposing a fluorine atom-containing polymer, characterized in that it is equipped with a reaction vessel for contacting with.

本発明によれば、焼却でも埋め立てでもなく、比較的穏和な条件で実現可能なフッ素原子含有ポリマーの分解方法、及びそのような分解方法に適用可能な分解装置が提供される。 According to the present invention, there is provided a decomposition method of a fluorine atom-containing polymer that can be realized under relatively mild conditions, neither incineration nor landfill, and a decomposition apparatus applicable to such a decomposition method.

<フッ素原子含有ポリマーの分解方法>
以下、本発明のフッ素原子含有ポリマーの分解方法の一実施態様について説明する。なお本発明は、以下の実施態様に何ら限定されるものでなく、本発明の範囲において適宜変更を加えて実施することが可能である。
<Method of decomposing fluorine atom-containing polymer>
Hereinafter, one embodiment of the method for decomposing a fluorine atom-containing polymer of the present invention will be described. It should be noted that the present invention is not limited to the following embodiments and can be implemented with appropriate modifications within the scope of the present invention.

本発明のフッ素原子含有ポリマーの分解方法は、過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを200℃以上の亜臨界水に接触させる工程を備える。本工程を備えさえすれば本発明の効果を得ることができ、本発明の範囲に含まれることになる。その他の工程としては、分解反応の効率を高めるためにフッ素原子含有ポリマーを細かく裁断する前処理工程を挙げることができるが、このような前処理は必須ではない。前処理を行う場合、フッ素原子含有ポリマーが粉末状になるまで小粒径化させておくことが望ましい。 The method for decomposing a fluorine atom-containing polymer of the present invention comprises a step of bringing a fluorine atom-containing polymer to be decomposed into contact with subcritical water at 200° C. or higher in the presence of permanganate. As long as this step is provided, the effect of the present invention can be obtained and is included in the scope of the present invention. As another step, a pretreatment step of finely cutting the fluorine atom-containing polymer in order to enhance the efficiency of the decomposition reaction can be mentioned, but such pretreatment is not essential. When the pretreatment is performed, it is desirable to reduce the particle size of the fluorine atom-containing polymer until it becomes a powder.

本発明における分解対象のフッ素原子含有ポリマーは、分子中にフッ素原子を含むポリマーであり、分子中に1原子でもフッ素原子を含めば本発明の分解対象となる。フッ素原子含有ポリマーは、その高い耐薬品性や耐熱性等の特性が評価され、産業や医療などを初めとしたあらゆる場面で応用されている。その反面、これらのポリマーは、こうした化学的安定性や熱に対する耐久性の高さなどの裏返しとして、廃棄物処理の問題を抱えがちである。本発明は、廃棄物となったこれらのポリマーを化学的に分解処理する方法を提供するものである。このようなフッ素原子含有ポリマーとしては、ホモポリマーでもコポリマーでもよく、そのようなものの例として、エチレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデンや、フッ化ビニリデンと他のモノマーとの共重合体等を挙げることができる。 The fluorine atom-containing polymer to be decomposed in the present invention is a polymer containing a fluorine atom in the molecule, and if even one atom in the molecule contains a fluorine atom, it is an object to be decomposed in the present invention. Fluorine atom-containing polymers are evaluated for their high chemical resistance and heat resistance, and are used in various fields including industry and medicine. On the other hand, these polymers tend to have a problem of waste disposal as an inside out of such chemical stability and high durability against heat. The present invention provides a method for chemically decomposing these waste polymers. Such a fluorine atom-containing polymer may be a homopolymer or a copolymer, and examples of such a polymer include ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and polyfluoride. Examples thereof include vinylidene and copolymers of vinylidene fluoride and other monomers.

亜臨界水は、加圧されることにより、100℃を超え、臨界温度である374℃よりも低い温度範囲にある液体状態の水である。亜臨界水は、100℃以下の水とは物性面で異なる性質を備えており、特に200℃〜300℃の範囲にある亜臨界水では、比誘電率が大きく低下して室温におけるメタノールやアセトンとほぼ同等の脂溶性を示したり、室温で10−14mol/Lだったイオン積が10−11mol/Lのオーダーとなって、水素イオン及び水酸化物イオンの濃度が室温の水よりも30倍高くなったりする。このため、特に200℃〜300℃の亜臨界水では、室温の水とは異なる反応性を示すことが知られている。本発明では、200℃以上の亜臨界水が用いられ、好ましくは300℃、又はそれ以上の温度の亜臨界水が用いられる。 Subcritical water is water in a liquid state in which the pressure exceeds 100° C. and is lower than the critical temperature of 374° C. by being pressurized. Subcritical water has properties that are different from those of water at 100° C. or less in terms of physical properties, and particularly in the case of subcritical water in the range of 200° C. to 300° C., the relative dielectric constant is greatly reduced and methanol or acetone at room temperature is significantly reduced. Shows almost the same fat solubility as that of the above, and the ionic product, which was 10 −14 mol/L at room temperature, is on the order of 10 −11 mol/L, and the concentration of hydrogen ions and hydroxide ions is higher than that at room temperature. It can be 30 times higher. Therefore, it is known that subcritical water at 200° C. to 300° C. exhibits different reactivity from water at room temperature. In the present invention, subcritical water having a temperature of 200°C or higher is used, and preferably subcritical water having a temperature of 300°C or higher is used.

亜臨界水の調製に用いられる水としては特に限定されず、水道水、イオン交換水、蒸留水、井戸水等、どのようなものを用いてもよいが、共存する塩等の影響による副反応を抑制するとの観点からはイオン交換水や蒸留水が好ましく挙げられる。用いる水の量については、処理対象であるフッ素原子含有ポリマーが十分に浸る程度であればよいが、加圧のための密閉容器へ導入する水の量が極端に少ないと加熱後すべて水蒸気になり亜臨界水の状態にならないため注意が必要である。 The water used for preparing the subcritical water is not particularly limited, and any of tap water, ion-exchanged water, distilled water, well water, etc. may be used, but side reactions due to the influence of coexisting salts etc. From the viewpoint of suppressing, ion-exchanged water and distilled water are preferred. The amount of water used should be such that the fluorine atom-containing polymer to be treated is sufficiently immersed, but if the amount of water introduced into the closed container for pressurization is extremely small, it will become steam after heating. Care is required because it does not reach the state of subcritical water.

過マンガン酸塩は、酸化数+7のマンガンのオキソ酸の塩であり、フッ素原子含有ポリマーを分解するための酸化力を付与するために用いられる。このような過マンガン酸塩としては、過マンガン酸カリウム、過マンガン酸ナトリウム、過マンガン酸バリウム、過マンガン酸カルシウム等が挙げられるが、これらの中でも過マンガン酸カリウムが好ましく挙げられる。昇温して亜臨界水とする前の水中における過マンガン酸塩の濃度としては、10〜1000mmol/L(mM)程度が挙げられる。昇温して亜臨界水とする前の水中における過マンガン酸塩の濃度の下限としては、25mMがより好ましく挙げられ、30mMがさらに好ましく挙げられる。過マンガン酸塩の濃度が大きくなればなるほどフッ素原子含有ポリマーの分解速度を高めることができるが、本発明者の調査によれば、200mM程度で十分な分解速度を得られることが判明している。そのため、昇温して亜臨界水とする前の水中における過マンガン酸塩の濃度の上限としては、200mMが好ましく挙げられる。 Permanganate is a salt of manganese oxoacid having an oxidation number of +7, and is used to impart an oxidizing power for decomposing a fluorine atom-containing polymer. Examples of such permanganate include potassium permanganate, sodium permanganate, barium permanganate, and calcium permanganate, and of these, potassium permanganate is preferable. The concentration of permanganate in water before the temperature is raised to subcritical water is, for example, about 10 to 1000 mmol/L (mM). As a lower limit of the concentration of permanganate in water before heating to subcritical water, 25 mM is more preferable, and 30 mM is further preferable. As the concentration of permanganate increases, the decomposition rate of the fluorine atom-containing polymer can be increased, but according to the investigation by the present inventor, it has been found that a sufficient decomposition rate can be obtained at about 200 mM. . Therefore, 200 mM is preferably mentioned as the upper limit of the concentration of permanganate in water before the temperature is raised to subcritical water.

なお、上述の非特許文献1にも示されるように、過酸化水素を含有する亜臨界水中でフッ素原子含有ポリマーを分解する例はあった。しかしながら、その場合、昇温して亜臨界水とする前の水中における過酸化水素の濃度を3000mM以上としても十分に分解を行うことはできず、分解により回収されるフッ化物イオンの収率はあまり高いものではなかった。しかしながら、本発明者が、過マンガン酸塩を酸化剤として亜臨界水中でフッ素原子含有ポリマーの分解を試みたところ、意外にも、数十mM程度の過マンガン酸塩が存在するだけで、分解により回収されるフッ化物イオンの収率が劇的に向上することが見出された。一般に、過酸化水素は過マンガン酸塩よりも高い酸化力を備えているとされていることに鑑みればこのような結果は意外であるが、過酸化水素分子の一部が高温では酸素分子と水分子に分解するためと考えられる。また、過マンガン酸塩を用いた場合にフッ素原子含有ポリマーの分解がこれほど進む理由は明らかではないが、過マンガン酸塩から生じる二酸化マンガンが何らかの促進作用を示している可能性がある。 As shown in Non-Patent Document 1 described above, there was an example in which a fluorine atom-containing polymer was decomposed in subcritical water containing hydrogen peroxide. However, in that case, even if the concentration of hydrogen peroxide in water before raising the temperature to subcritical water is 3000 mM or more, sufficient decomposition cannot be performed, and the yield of fluoride ions recovered by the decomposition is It wasn't very expensive. However, when the present inventor tried to decompose the fluorine atom-containing polymer in subcritical water using permanganate as an oxidizing agent, surprisingly, only several tens of mM of permanganate was present, and the decomposition occurred. It has been found that the yield of fluoride ions recovered by is dramatically improved. Generally, such a result is surprising in view of the fact that hydrogen peroxide has a higher oxidative power than permanganate. It is thought to be due to decomposition into water molecules. Further, it is not clear why the decomposition of the fluorine atom-containing polymer progresses so much when the permanganate is used, but manganese dioxide generated from the permanganate may have some promoting action.

次に、過マンガン酸塩を含んだ亜臨界水にフッ素原子含有ポリマーを接触させて分解を行う方法について説明する。処理対象であるフッ素原子含有ポリマーの量に応じたサイズの圧力容器に水、過マンガン酸塩、及び処理対象であるフッ素原子含有ポリマーを加え、圧力容器内部を加圧して密閉する。圧力容器内部を加圧するには、気体を封入すればよい。このような気体としては、空気、アルゴン、窒素等を挙げることができるが、酸素による酸化作用を期待できる点からは空気を用いることが好ましい。加圧の程度としては0.5MPa程度を挙げることができるが、特に限定されない。 Next, a method of decomposing a fluorine atom-containing polymer by contacting it with subcritical water containing permanganate will be described. Water, permanganate, and the fluorine atom-containing polymer to be treated are added to a pressure vessel having a size corresponding to the amount of the fluorine atom-containing polymer to be treated, and the inside of the pressure vessel is pressurized and sealed. To pressurize the inside of the pressure vessel, gas may be enclosed. Examples of such a gas include air, argon, nitrogen and the like, but it is preferable to use air from the viewpoint that an oxidizing action by oxygen can be expected. The degree of pressurization may be about 0.5 MPa, but is not particularly limited.

上記の過程を経た圧力容器を加熱して分解反応を開始させる。加熱の温度は200℃以上であるが、300℃以上であることが望ましい。圧力容器自体が加熱手段を備える場合には、その加熱手段を用いて加熱すればよく、圧力容器自体が加熱手段を備えない場合には、圧力容器全体をオートクレーブやオーブン中で加熱すればよい。反応時間としては6時間〜24時間程度を挙げることができる。反応中は、内容物の撹拌を行うことが好ましい。このような撹拌手段としてはマグネチックスターラー、撹拌羽根等を挙げることができるが、圧力容器の大きさや内容物の量等に鑑みて適切なものを選択すればよい。 The pressure vessel that has undergone the above process is heated to start the decomposition reaction. The heating temperature is 200° C. or higher, preferably 300° C. or higher. When the pressure vessel itself has a heating means, it may be heated using the heating means, and when the pressure vessel itself does not have a heating means, the entire pressure vessel may be heated in an autoclave or an oven. The reaction time may be about 6 hours to 24 hours. It is preferable to stir the contents during the reaction. As such a stirring means, a magnetic stirrer, a stirring blade and the like can be mentioned, but an appropriate one may be selected in view of the size of the pressure vessel, the amount of contents and the like.

反応終了後の水中には、フッ素原子含有ポリマーに含まれていたフッ素原子がフッ化物イオンとなって含まれている。フッ化物イオンは、カルシウムイオンと反応させることにより、あらゆるフッ素化合物の原料となるフッ化カルシウムに転換させることができる。このため、本発明の方法を用いてフッ素原子含有ポリマーの廃棄物処理を行うことにより、資源の有効活用を行うことが可能になる。 In the water after the reaction, the fluorine atoms contained in the fluorine atom-containing polymer are contained as fluoride ions. Fluoride ions can be converted to calcium fluoride, which is a raw material for all fluorine compounds, by reacting with calcium ions. Therefore, it is possible to effectively utilize the resources by treating the fluorine atom-containing polymer as waste by using the method of the present invention.

<フッ素原子含有ポリマーの分解装置>
上記本発明のフッ素原子含有ポリマーの分解方法を実現することのできる装置も本発明の一つである。この装置は、過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを200℃以上の亜臨界水に接触させるための反応容器を備えることを特徴とする。
<Decomposition device for fluorine atom-containing polymer>
An apparatus that can realize the method for decomposing a fluorine atom-containing polymer of the present invention is also one of the present invention. This apparatus is characterized by including a reaction vessel for bringing the fluorine atom-containing polymer to be decomposed into contact with subcritical water at 200° C. or higher in the presence of permanganate.

本発明の装置は、過マンガン酸塩を含む水と、分解対処であるフッ素原子含有ポリマーとを圧力容器の内部に導入することができ、その内部を加圧状態で加熱することが可能である。その際の加熱温度は、200℃以上であり、好ましくは300℃以上である。圧力容器の内部には、その内容物を撹拌するための撹拌装置を備えることが望ましい。その他の事項については、上記フッ素原子含有ポリマーの分解方法で説明した通りであるので、ここでの説明を省略する。 The apparatus of the present invention can introduce water containing permanganate and a fluorine atom-containing polymer, which is a measure against decomposition, into the inside of the pressure vessel, and can heat the inside under pressure. .. The heating temperature in that case is 200 degreeC or more, Preferably it is 300 degreeC or more. It is desirable to equip the inside of the pressure vessel with a stirring device for stirring the contents. The other matters are the same as those described in the method for decomposing the fluorine atom-containing polymer, and therefore the description thereof is omitted here.

以下、実施例を示すことにより本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically by showing examples, but the present invention is not limited to the following examples.

[エチレン−テトラフルオロエチレン共重合体(ETFE共重合体)の亜臨界水を用いた分解反応]
ETFE共重合体(フッ素原子含有率54.6wt%、炭素原子含有率41.4wt%;一般式−(CHCH−(CFCF−)の粉末30mgと、酸化剤(過マンガン酸カリウム又は過酸化水素)の水溶液30mLを撹拌機付き熱水リアクターに入れ、アルゴンガスで0.5MPaまで加圧した後、所定の温度で一定時間反応させた(温度及び時間は表1を参照)。その後、内容物を室温まで冷却し、水相に生成したフッ化物イオンをイオンクロマトグラフィーで定量した。その結果を表1に示す。なお、フッ化物イオンの収率(F収率)は、反応に使用したETFE共重合体に含まれるフッ素原子の物質量をもとに計算して求めた。
[Decomposition reaction of ethylene-tetrafluoroethylene copolymer (ETFE copolymer) with subcritical water]
ETFE copolymer (fluorine content 54.6Wt%, carbon atom content 41.4wt%; formula - (CH 2 CH 2) m - (CF 2 CF 2) n -) and powder 30mg of oxidant 30 mL of an aqueous solution of (potassium permanganate or hydrogen peroxide) was placed in a hot water reactor equipped with a stirrer, pressurized to 0.5 MPa with argon gas, and then reacted at a predetermined temperature for a certain period of time (temperature and time are shown in the table. See 1). Then, the contents were cooled to room temperature, and the fluoride ions formed in the aqueous phase were quantified by ion chromatography. The results are shown in Table 1. The yield of fluoride ion (F yield) was calculated and calculated based on the amount of fluorine atom contained in the ETFE copolymer used in the reaction.

Figure 0006711977
Figure 0006711977

表1に示すように、過マンガン酸カリウムを酸化剤として用いた実施例1〜5では、過酸化水素を酸化剤として用いた比較例2〜5に比べて少ない酸化剤の量でフッ素原子含有ポリマーの分解を行えることがわかる。特に、反応温度を300℃とし、酸化剤の量を30mM以上とした実施例2〜4では、その他の実施例に比べて高いF収率となり、フッ素原子含有ポリマーの分解が高度に行われたことがわかる。 As shown in Table 1, in Examples 1 to 5 in which potassium permanganate was used as an oxidant, a fluorine atom was contained in a smaller amount than in Comparative Examples 2 to 5 in which hydrogen peroxide was used as an oxidant. It can be seen that the polymer can be decomposed. In particular, in Examples 2 to 4 in which the reaction temperature was 300° C. and the amount of the oxidizing agent was 30 mM or more, the F yield was higher than that in the other Examples, and the decomposition of the fluorine atom-containing polymer was highly performed. I understand that

[フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体(VDF−HFP−TFE共重合体)の亜臨界水を用いた分解反応]
VDF−HFP−TFE共重合体(フッ素原子含有率67.7wt%、炭素原子含有率29.9wt%;一般式−(CFCH−(CFCF(CF))−(CFCF−)の粉末30mgと、酸化剤(過マンガン酸カリウム又は過酸化水素)の水溶液10mLを熱水リアクターに入れ、アルゴンガスで0.5MPaまで加圧した後、所定の温度で一定時間反応させた(温度及び時間は表2を参照)。その後、内容物を室温まで冷却し、水相に生成したフッ化物イオンをイオンクロマトグラフィーで定量した。その結果を表2に示す。なお、フッ化物イオンの収率(F収率)は、反応に使用したVDF−HFP−TFE共重合体に含まれるフッ素原子の物質量をもとに計算して求めた。
[Decomposition reaction of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE copolymer) using subcritical water]
VDF-HFP-TFE copolymer (fluorine content 67.7wt%, carbon atom content 29.9wt%; formula - (CF 2 CH 2) m - (CF 2 CF (CF 3)) n - ( 30 mg of CF 2 CF 2 ) o −) powder and 10 mL of an aqueous solution of an oxidizing agent (potassium permanganate or hydrogen peroxide) were placed in a hot water reactor and pressurized with argon gas to 0.5 MPa, and then at a predetermined temperature. For a certain period of time (see Table 2 for temperature and time). Then, the contents were cooled to room temperature, and the fluoride ions formed in the aqueous phase were quantified by ion chromatography. The results are shown in Table 2. The yield of fluoride ion (F yield) was calculated and calculated based on the amount of fluorine atom contained in the VDF-HFP-TFE copolymer used in the reaction.

Figure 0006711977
Figure 0006711977

先のETFE共重合体の場合と同様に、VDF−HFP−TFE共重合体の場合も表2に示すように、過マンガン酸カリウムを酸化剤として用いた実施例6〜9では、過酸化水素を酸化剤として用いた比較例7〜11に比べて少ない酸化剤の量でフッ素原子含有ポリマーの分解を行えることがわかる。特に、反応温度を300℃とし、酸化剤の量を25mM以上とした実施6〜8では、実施例9に比べて高いF収率となり、フッ素原子含有ポリマーの分解が高度に行われたことがわかる。 As in the case of the ETFE copolymer described above, also in the case of the VDF-HFP-TFE copolymer, as shown in Table 2, in Examples 6 to 9 using potassium permanganate as the oxidizing agent, hydrogen peroxide was used. It can be seen that the fluorine atom-containing polymer can be decomposed with a smaller amount of the oxidizing agent than in Comparative Examples 7 to 11 in which is used as the oxidizing agent. Particularly, in Examples 6 to 8 in which the reaction temperature was 300° C. and the amount of the oxidizing agent was 25 mM or more, the F yield was higher than that in Example 9, and the decomposition of the fluorine atom-containing polymer was highly performed. I understand.

Claims (2)

昇温して亜臨界水とする前の水中において25mM以上の濃度の過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを300℃以上の亜臨界水に接触させる工程を備えることを特徴とするフッ素原子含有ポリマーの分解方法。 A step of contacting a fluorine atom-containing polymer to be decomposed with subcritical water at 300° C. or higher in the presence of permanganate at a concentration of 25 mM or higher in water before being heated to become subcritical water ; A method for decomposing a polymer containing a fluorine atom, which is characterized. 昇温して亜臨界水とする前の水中において25mM以上の濃度の過マンガン酸塩の存在下、分解対象であるフッ素原子含有ポリマーを300℃以上の亜臨界水に接触させるための反応容器を備えることを特徴とするフッ素原子含有ポリマーの分解装置。 A reaction vessel for contacting a fluorine atom-containing polymer to be decomposed with 300° C. or more subcritical water in the presence of permanganate having a concentration of 25 mM or more in water before being heated to be subcritical water An apparatus for decomposing a fluorine atom-containing polymer, comprising:
JP2016253254A 2016-12-27 2016-12-27 Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer Active JP6711977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253254A JP6711977B2 (en) 2016-12-27 2016-12-27 Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253254A JP6711977B2 (en) 2016-12-27 2016-12-27 Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer

Publications (2)

Publication Number Publication Date
JP2018104578A JP2018104578A (en) 2018-07-05
JP6711977B2 true JP6711977B2 (en) 2020-06-17

Family

ID=62785478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253254A Active JP6711977B2 (en) 2016-12-27 2016-12-27 Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer

Country Status (1)

Country Link
JP (1) JP6711977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138989A (en) 2021-03-11 2022-09-26 学校法人帝京大学 Method for producing alkali metal halide and method for producing halide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386055A (en) * 1993-08-11 1995-01-31 The University Of Akron Depolymerization process
CN103764691B (en) * 2011-09-02 2016-03-02 旭硝子株式会社 There is the manufacture method of the organic compound of sulfo group, the manufacture method of liquid composition and there is the hydrolysis process for treating of organic compound of fluorosulfonyl

Also Published As

Publication number Publication date
JP2018104578A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6711977B2 (en) Method for decomposing fluorine atom-containing polymer and apparatus for decomposing fluorine atom-containing polymer
TWI591023B (en) Hydrothermal oxidation treatment of organic halogen compounds and their catalysts
JP2021155478A (en) Decomposition method of fluorine atom-containing polymer and decomposition apparatus of fluorine atom-containing polymer
Ameduri Fluoropolymers: A special class of per-and polyfluoroalkyl substances (PFASs) essential for our daily life
Hungwe et al. The role of NaOH in the hydrothermal dehydrochlorination of polyvinyl chloride
JP2003201486A (en) Method for gasifying organic material
JP4521571B2 (en) Method for treating volatile organic halogen compounds
JP7258319B1 (en) Method for decomposing fluorine atom-containing polymer, and apparatus for decomposing fluorine atom-containing polymer
JPH1088146A (en) Converting treatment of halogen-containing resin into oil
JP2017075298A (en) Process for chlorination of polymer
JP3837468B2 (en) Photodecomposition of fluorinated high molecular weight compounds
JP2004201967A (en) Method and apparatus for treating organohalogen compound
CN110467303A (en) A kind of processing method of benzene acetonitrile class production waste water
CN104211161B (en) Method of treating garbage leachate through nano material heterogeneous catalysis ozonation
EP0850666B1 (en) Method of decomposing polychlorobiphenyls
JP5071929B2 (en) Method for decomposing fluorinated carboxylic acids
JP4467336B2 (en) Method for treating chlorine-containing polymer
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
JP2002088009A (en) Method for decomposing water-soluble polymer, method for recycling the same and method for organic synthesis using supercritical water or subcritical water as reaction solvent
KR102554250B1 (en) Treatment method for wastewater containing recalcitrant compounds
JP4512749B2 (en) Fuel gas production method from organic matter and organic waste containing chitin
JP2008018317A (en) Treatment method and treatment product of sewage sludge
WO2007086667A1 (en) Method for processing waste insulating oil which contains polychlorinated biphenyls using electron-beam
JP2604309B2 (en) Method for dechlorination of polyvinyl chloride resin
JP4777854B2 (en) Reactive oxygen species generator and method for producing active oxygen species-containing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6711977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250