JP4521571B2 - Method for treating volatile organic halogen compounds - Google Patents

Method for treating volatile organic halogen compounds Download PDF

Info

Publication number
JP4521571B2
JP4521571B2 JP2006156781A JP2006156781A JP4521571B2 JP 4521571 B2 JP4521571 B2 JP 4521571B2 JP 2006156781 A JP2006156781 A JP 2006156781A JP 2006156781 A JP2006156781 A JP 2006156781A JP 4521571 B2 JP4521571 B2 JP 4521571B2
Authority
JP
Japan
Prior art keywords
carbon
volatile organic
trichloroethylene
organic halogen
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006156781A
Other languages
Japanese (ja)
Other versions
JP2007325979A (en
Inventor
雄二 和田
保徳 塚原
清高 大西
英朗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2006156781A priority Critical patent/JP4521571B2/en
Publication of JP2007325979A publication Critical patent/JP2007325979A/en
Application granted granted Critical
Publication of JP4521571B2 publication Critical patent/JP4521571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、揮発性有機ハロゲン化合物の処理方法に関する。この方法は、特に揮発性非ハロゲン有機化合物中に数千ppm以下という比較的低濃度で含まれる揮発性有機ハロゲン化合物を分解し、有機化合物を再利用するのに好適に利用されうる。   The present invention relates to a method for treating a volatile organic halogen compound. This method can be suitably used particularly for decomposing volatile organic halogen compounds contained in volatile non-halogen organic compounds at a relatively low concentration of several thousand ppm or less and reusing the organic compounds.

有機溶剤として汎用されているトルエンなどの揮発性有機化合物は、活性炭などを使用した吸着・脱離設備により回収され、一般に再利用される。回収されたこれらの有機化合物中には脱脂洗浄剤などとして用いられている塩化メチレン、トリクロロエチレンのような揮発性有機ハロゲン化合物がしばしば混入している。従って、これらのハロゲン化合物が有害であることから、再利用に際して除去する必要がある。
揮発性有機ハロゲン化合物の除去方法としては、従来種々提案されている。例えば、特許文献1には、ハロゲン化炭化水素類を微粒子光触媒とともにアルカリ性水溶液に懸濁させ、光照射して分解する方法が開示されている。特許文献2には、電解槽の陰極側にハロゲン化エチレンを導入し、水溶液を電気分解すると同時にハロゲン化エチレンを分解する方法が開示されている。特許文献3には、有機ハロゲン化合物をアルカリ性水溶液と混合し、反応装置に連続的に注入してマイクロ波を照射することにより、沸騰させないで有機ハロゲン化合物を分解する方法が開示されている。特許文献4には、揮発性有機塩素化合物に酸素存在下で紫外線を照射して当該化合物を親水化し、これをアルカリ性水溶液と接触させることにより、易分解性にする方法が開示されている。
Volatile organic compounds such as toluene, which are widely used as organic solvents, are collected by an adsorption / desorption facility using activated carbon and generally reused. These recovered organic compounds often contain volatile organic halogen compounds such as methylene chloride and trichloroethylene, which are used as a degreasing detergent. Therefore, since these halogen compounds are harmful, it is necessary to remove them upon reuse.
Various methods for removing volatile organic halogen compounds have been proposed. For example, Patent Document 1 discloses a method in which a halogenated hydrocarbon is suspended in an alkaline aqueous solution together with a fine particle photocatalyst and decomposed by light irradiation. Patent Document 2 discloses a method of introducing ethylene halide to the cathode side of an electrolytic cell to electrolyze an aqueous solution and simultaneously decompose ethylene halide. Patent Document 3 discloses a method of decomposing an organic halogen compound without boiling it by mixing the organic halogen compound with an alkaline aqueous solution, continuously injecting the mixture into a reaction apparatus, and irradiating with microwaves. Patent Document 4 discloses a method in which a volatile organic chlorine compound is irradiated with ultraviolet rays in the presence of oxygen to hydrophilize the compound and brought into contact with an alkaline aqueous solution to make it easily decomposable.

特開平7−144137JP-A-7-144137 特開平9−308823JP-A-9-308823 特開2000−334062JP 2000-334062 A 特開2001−17995JP 2001-17995 A

しかし、従来の除去方法は、いずれも水溶液中で分解反応させることを必須としている。このため、揮発性有機ハロゲン化合物を除去した後の残液を有機溶剤としてそのまま再利用することができない。かといって、水を分離し、精製するには多大の費用がかかる。
それ故、この発明の課題は、揮発性非ハロゲン有機化合物と揮発性有機ハロゲン化合物との混合溶液から揮発性有機ハロゲン化合物を短時間且つ低コストで除去する方法を提供することにある。
However, all conventional removal methods require that the decomposition reaction be performed in an aqueous solution. For this reason, the residual liquid after removing a volatile organic halogen compound cannot be reused as it is as an organic solvent. However, it is very expensive to separate and purify water.
Therefore, an object of the present invention is to provide a method for removing a volatile organic halogen compound from a mixed solution of a volatile non-halogen organic compound and a volatile organic halogen compound in a short time and at a low cost.

その課題を解決するために、この発明の処理方法は、
周期表の第1族及び/又は第2族元素の水酸化物及び/又は弱酸塩を担持した炭素系触媒の存在下、揮発性非ハロゲン有機化合物と揮発性有機ハロゲン化合物との混合溶液にマイクロ波を照射することを特徴とする。
この方法によれば、炭素系触媒がマイクロ波を吸収し熱エネルギーに変換するので、マイクロ波照射に伴って混合溶液の温度が上昇し、短時間で揮発性有機ハロゲン化合物と前記水酸化物又は弱酸塩とが反応可能な温度に達する。従って、揮発性有機ハロゲン化合物が炭素系触媒に吸着すると、先に吸着している前記水酸化物等と反応し、遊離したハロゲンが第1族又は第2族元素に捕捉されて金属塩となって無害化される。
In order to solve the problem, the processing method of the present invention is:
In the presence of a carbon-based catalyst carrying a hydroxide and / or weak acid salt of a group 1 and / or 2 element of the periodic table, a micro solution is added to a mixed solution of a volatile non-halogen organic compound and a volatile organic halogen compound. It is characterized by irradiating waves.
According to this method, since the carbon-based catalyst absorbs microwaves and converts them into thermal energy, the temperature of the mixed solution increases with microwave irradiation, and the volatile organic halogen compound and the hydroxide or A temperature is reached at which the weak acid salt can react. Therefore, when the volatile organic halogen compound is adsorbed on the carbon-based catalyst, it reacts with the previously adsorbed hydroxide and the like, and the liberated halogen is captured by the group 1 or group 2 element to form a metal salt. Be rendered harmless.

以上のように、揮発性有機ハロゲン化合物が非水系媒体中短時間で分解されるので、ハロゲンを捕捉した炭素系触媒をろ過、遠心分離などの適宜の方法で除去することにより、残液を低コストで再利用可能である。   As described above, since the volatile organic halogen compound is decomposed in a non-aqueous medium in a short time, the residual liquid can be reduced by removing the carbon-based catalyst capturing the halogen by an appropriate method such as filtration or centrifugation. Reusable at cost.

この発明は、前記混合溶液中の揮発性有機ハロゲン化合物の濃度が10ppm〜3000ppmであるものに好適に利用される。10ppm未満の場合は、処理しなくても再利用可能であるし、3000ppmを超える場合はハロゲン化合物がマイクロ波吸収性を有することから、炭素系触媒を用いない公知の方法で処理可能だからである。
前記炭素系触媒としては、揮発性有機ハロゲン化合物を選択的に吸着させるために500m/g以上のBET表面積を有するものが好ましく、特に活性炭が好ましい。炭素系触媒には、炭素の他に炭素以外の導電性化合物、例えばフェライト、WC、SiCなどからなる補助触媒を含んでいてもよい。触媒のマイクロ波吸収性が向上するからである。
The present invention is suitably used for those in which the concentration of the volatile organic halogen compound in the mixed solution is 10 ppm to 3000 ppm. If it is less than 10 ppm, it can be reused without treatment, and if it exceeds 3000 ppm, the halogen compound has microwave absorbability, so that it can be treated by a known method without using a carbon-based catalyst. .
The carbon-based catalyst preferably has a BET surface area of 500 m 2 / g or more in order to selectively adsorb volatile organic halogen compounds, and activated carbon is particularly preferable. In addition to carbon, the carbon-based catalyst may include an auxiliary catalyst made of a conductive compound other than carbon, such as ferrite, WC, and SiC. This is because the microwave absorptivity of the catalyst is improved.

前記担持物質は、水酸化カリウム、水酸化ナトリウム、炭酸ルビジウム及び炭酸セシウムのうちから選ばれる一種以上が好ましい。これらの金属の水酸化物及び弱酸塩は、ハロゲン化合物と容易に反応して無害の塩を生じるからである。
前記水酸化物及び/又は弱酸塩の担持量は、好ましくは前記炭素系触媒との合計量に対して1〜50重量%である。1重量%未満ではハロゲンの捕捉作用に乏しいし、50重量%を超えると触媒の表面の大半を担持物質が占めてしまい、ハロゲン化合物の吸着が困難となるからである。
前記マイクロ波を照射する際は、反応系が100℃以上200℃以下となるように制御するのが好ましい。反応温度が高いほどハロゲン化合物を分解させやすいが、あまり高いと反応容器の耐圧性を高める必要があり、低コストを達成しがたくなるからである。好ましい温度は120℃以上160℃以下である。制御する手段としては、マイクロ波の電源をオン/オフする、マイクロ波の出力を変化させるなどが挙げられる。
The support material is preferably one or more selected from potassium hydroxide, sodium hydroxide, rubidium carbonate, and cesium carbonate. This is because these metal hydroxides and weak acid salts easily react with halogen compounds to form harmless salts.
The supported amount of the hydroxide and / or weak acid salt is preferably 1 to 50% by weight based on the total amount with the carbon-based catalyst. If the amount is less than 1% by weight, the action of trapping halogen is poor, and if it exceeds 50% by weight, the support material occupies most of the surface of the catalyst, making it difficult to adsorb the halogen compound.
When irradiating the microwave, it is preferable to control the reaction system to be 100 ° C. or higher and 200 ° C. or lower. This is because the higher the reaction temperature, the easier the halogen compound is decomposed, but if it is too high, it is necessary to increase the pressure resistance of the reaction vessel, making it difficult to achieve low cost. A preferable temperature is 120 ° C. or higher and 160 ° C. or lower. Examples of the control means include turning on / off the microwave power source and changing the microwave output.

−実施例1〜6−
(実施例1)
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,010ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭を水酸化カリウム水溶液に浸けて乾燥させることにより、活性炭に水酸化カリウムを10重量%担持させた。前記混合溶液4.0g、及び水酸化カリウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、周波数2.45GHz、最大出力300Wのマグネトロンを備えたバイオタージ社製マイクロ波反応器にセットして、マイクロ波を10分間照射した。照射中の最高温度及び最高ゲージ圧力は、それぞれ155℃及び2barとなった。
-Examples 1-6
Example 1
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,010 ppm. Separately, 10 wt% of potassium hydroxide was supported on activated carbon by immersing and drying a powdered cocoon activated carbon having a specific surface area of 1350 m 2 / g by BET method in an aqueous potassium hydroxide solution. 4.0 g of the mixed solution and 0.5 g of the activated carbon loaded with potassium hydroxide are put in a pressure-resistant reaction tube, and a microwave reactor manufactured by Biotage Corporation equipped with a magnetron having a frequency of 2.45 GHz and a maximum output of 300 W is used. Set and irradiate with microwave for 10 minutes. The maximum temperature and maximum gauge pressure during irradiation were 155 ° C. and 2 bar, respectively.

反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.292であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は0/4207であった。よって、トリクロルエチレンの分解率が100%であることを確認した。
(実施例〜6)
水酸化カリウムの担持量、及びマイクロ波の照射時間を種々変更した以外は、実施例1と同一条件で反応を行った。反応条件及び分解率を実施例1で記載した数値と併せて表1に示す。
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.292, whereas trichloroethylene after irradiation was The peak ratio of / xylene was 0/4207. Therefore, it was confirmed that the decomposition rate of trichloroethylene was 100%.
(Examples 2 to 6)
The reaction was performed under the same conditions as in Example 1 except that the amount of potassium hydroxide supported and the microwave irradiation time were variously changed. The reaction conditions and decomposition rates are shown in Table 1 together with the numerical values described in Example 1.

Figure 0004521571
Figure 0004521571

―実施例7〜9―
(実施例7)
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,010ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に水酸化ナトリウムを10重量%担持させた。前記混合溶液4.0g、及び水酸化ナトリウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度及び最高ゲージ圧力は、それぞれ125℃及び2barとなった。
-Examples 7-9-
(Example 7)
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,010 ppm. Separately, 10% by weight of sodium hydroxide was supported on a powdered cocoon glass activated carbon having a specific surface area of 1350 m 2 / g by BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon carrying sodium hydroxide were placed in a pressure-resistant reaction tube, set in the same microwave reactor manufactured by Biotage as in Example 1, and the microwave was 5 Irradiated for 1 minute. The maximum temperature and the maximum gauge pressure during irradiation were 125 ° C. and 2 bar, respectively.

反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.323であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は961/3939であった。すなわち、トリクロルエチレンの分解率は24%であった。
(実施例8〜9)
水酸化ナトリウムの担持量、及びマイクロ波の照射時間を種々変更した以外は、実施例7と同一条件で反応を行った。反応条件及び分解率を実施例7で記載した数値と併せて表2に示す。
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.323, whereas trichloroethylene after irradiation was The peak ratio of / xylene was 961/3939. That is, the decomposition rate of trichloroethylene was 24%.
(Examples 8 to 9)
The reaction was performed under the same conditions as in Example 7 except that the amount of sodium hydroxide supported and the microwave irradiation time were variously changed. The reaction conditions and decomposition rates are shown in Table 2 together with the numerical values described in Example 7.

Figure 0004521571
Figure 0004521571

−実施例10−
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,061ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に水酸化マグネシウムを25重量%担持させた。前記混合溶液4.0g、及び水酸化マグネシウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度は100℃となり、圧力はほとんど上昇しなかった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.323であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は1098/4019であった。すなわち、トリクロルエチレンの分解率は15%であった。
-Example 10-
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,061 ppm. Separately, 25 wt% of magnesium hydroxide was supported on a powdered cocoon glass activated carbon having a specific surface area of 1350 m 2 / g by BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon carrying magnesium hydroxide were placed in a pressure-resistant reaction tube and set in the same microwave reactor manufactured by Biotage as in Example 1, and the microwave Irradiated for 1 minute. The maximum temperature during irradiation was 100 ° C., and the pressure hardly increased.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.323, whereas trichloroethylene after irradiation was The peak ratio of / xylene was 1098/4019. That is, the decomposition rate of trichloroethylene was 15%.

−実施例11−
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,115.5ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に水酸化カルシウムを10.9重量%担持させた。前記混合溶液4.0g、及び水酸化カルシウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度は140℃となり、圧力はほとんど上昇しなかった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.291であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は496/2060であった。すなわち、トリクロルエチレンの分解率は17%であった。
-Example 11-
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,115.5 ppm. Separately, 10.9% by weight of calcium hydroxide was supported on powdered eggplant activated carbon having a specific surface area of 1350 m 2 / g by the BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon carrying calcium hydroxide were placed in a pressure-resistant reaction tube and set in the same microwave reactor manufactured by Biotage as in Example 1, and the microwave Irradiated for 1 minute. The maximum temperature during irradiation was 140 ° C., and the pressure hardly increased.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.291, whereas trichloroethylene after irradiation was 0.291. The peak ratio of / xylene was 496/2060. That is, the decomposition rate of trichloroethylene was 17%.

−実施例12−
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,061ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に炭酸カリウムを50重量%担持させた。前記混合溶液4.0g、及び炭酸カリウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度は125℃となり、圧力はほとんど上昇しなかった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.323であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は1185/3987であった。すなわち、トリクロルエチレンの分解率は8%であった。
-Example 12-
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,061 ppm. Separately, 50% by weight of potassium carbonate was supported on powdered eggplant activated carbon having a specific surface area of 1350 m 2 / g by the BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon loaded with potassium carbonate are put in a pressure-resistant reaction tube and set in the same microwave reactor manufactured by Biotage as in Example 1, and the microwave is applied for 5 minutes. Irradiated. The maximum temperature during irradiation was 125 ° C., and the pressure hardly increased.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.323, whereas trichloroethylene after irradiation was The peak ratio of / xylene was 1185/3987. That is, the decomposition rate of trichloroethylene was 8%.

−実施例13−
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,115ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に炭酸ルビジウムを11.2重量%担持させた。前記混合溶液4.0g、及び炭酸ルビジウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度は140℃となり、圧力はほとんど上昇しなかった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.291であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は322/2261であった。すなわち、トリクロルエチレンの分解率は51%であった。
-Example 13-
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,115 ppm. Separately, 11.2% by weight of rubidium carbonate was supported on a powdered cocoon activated carbon having a specific surface area of 1350 m 2 / g by the BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon carrying rubidium carbonate are placed in a pressure-resistant reaction tube and set in the same microwave reactor manufactured by Biotage as in Example 1, and the microwave is applied for 5 minutes. Irradiated. The maximum temperature during irradiation was 140 ° C., and the pressure hardly increased.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.291, whereas trichloroethylene after irradiation was 0.291. The peak ratio of / xylene was 322/2261. That is, the decomposition rate of trichloroethylene was 51%.

−実施例14−
メチルナフタレンにトリクロルエチレンを加えて混合溶液を調製した。塩素含有量は、1,115ppmであった。別途、BET法による比表面積1350m2/gの粉末椰子ガラ活性炭に炭酸セシウムを10.8重量%担持させた。前記混合溶液4.0g、及び炭酸セシウムを担持した前記活性炭0.5gを耐圧性の反応管に入れ、実施例1と同じバイオタージ社製マイクロ波反応器にセットして、マイクロ波を5分間照射した。照射中の最高温度は140℃となり、圧力はほとんど上昇しなかった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.291であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は555/3825であった。すなわち、トリクロルエチレンの分解率は50%であった。
-Example 14-
Trichloroethylene was added to methylnaphthalene to prepare a mixed solution. The chlorine content was 1,115 ppm. Separately, 10.8% by weight of cesium carbonate was supported on a powdered cocoon activated carbon having a specific surface area of 1350 m 2 / g by the BET method. 4.0 g of the mixed solution and 0.5 g of the activated carbon carrying cesium carbonate are placed in a pressure-resistant reaction tube and set in the same microwave reactor manufactured by Biotage as in Example 1, and microwaves are applied for 5 minutes. Irradiated. The maximum temperature during irradiation was 140 ° C., and the pressure hardly increased.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.291, whereas trichloroethylene after irradiation was 0.291. The peak ratio of / xylene was 555/3825. That is, the decomposition rate of trichloroethylene was 50%.

−比較例1−
水酸化カリウムを活性炭に担持させていないこと以外は実施例1と同一条件でマイクロ波を10分間照射した。照射中の最高温度及び最高ゲージ圧力は、それぞれ255℃及び1barとなった。
反応終了後、p-キシレンを標準液として反応液をガスクロマトグラムにて分析したところ、マイクロ波照射前のトリクロルエチレン/キシレンのピーク比が0.292であったのに対し、照射後のトリクロルエチレン/キシレンのピーク比は0.282であった。すなわち、トリクロルエチレンの分解率は3.4%であった。
-Comparative Example 1-
Microwaves were irradiated for 10 minutes under the same conditions as in Example 1 except that potassium hydroxide was not supported on activated carbon. The maximum temperature and the maximum gauge pressure during irradiation were 255 ° C. and 1 bar, respectively.
After completion of the reaction, the reaction mixture was analyzed by gas chromatogram using p-xylene as a standard solution. The peak ratio of trichloroethylene / xylene before microwave irradiation was 0.292, whereas trichloroethylene after irradiation was The peak ratio of / xylene was 0.282. That is, the decomposition rate of trichloroethylene was 3.4%.

Claims (8)

周期表の第1族及び/又は第2族元素の水酸化物及び/又は弱酸塩を担持した炭素系触媒の存在下、揮発性非ハロゲン有機化合物と揮発性有機ハロゲン化合物との混合溶液にマイクロ波を照射することを特徴とする揮発性有機ハロゲン化合物の処理方法。 In the presence of a carbon-based catalyst carrying a hydroxide and / or weak acid salt of a group 1 and / or 2 element of the periodic table, a micro solution is added to a mixed solution of a volatile non-halogen organic compound and a volatile organic halogen compound. A method for treating a volatile organic halogen compound, which comprises irradiating a wave. 前記混合溶液中の揮発性有機ハロゲン化合物の濃度が10ppm〜3000ppmである請求項1に記載の方法。 The method according to claim 1, wherein the concentration of the volatile organic halogen compound in the mixed solution is 10 ppm to 3000 ppm. 前記炭素系触媒が、500m/g以上のBET表面積を有する請求項1又は2に記載の方法。 The method according to claim 1, wherein the carbon-based catalyst has a BET surface area of 500 m 2 / g or more. 前記炭素系触媒が、活性炭である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the carbon-based catalyst is activated carbon. 前記担持物質が、水酸化カリウム、水酸化ナトリウム、炭酸ルビジウム及び炭酸セシウムのうちから選ばれる一種以上である請求項1〜4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the support material is one or more selected from potassium hydroxide, sodium hydroxide, rubidium carbonate, and cesium carbonate. 前記炭素系触媒が、炭素の他に炭素以外の導電性化合物からなる補助触媒を含む請求項1〜5のいずれかに記載の方法。   The method according to any one of claims 1 to 5, wherein the carbon-based catalyst includes an auxiliary catalyst made of a conductive compound other than carbon in addition to carbon. 前記水酸化物及び/又は弱酸塩の担持量が、前記炭素系触媒との合計量に対して1〜50重量%である請求項1〜6のいずれかに記載の方法。   The method according to any one of claims 1 to 6, wherein the amount of the hydroxide and / or weak acid salt supported is 1 to 50% by weight based on the total amount with the carbon-based catalyst. 前記マイクロ波を反応系が100℃以上200℃以下となるように制御して照射する請求項1〜7のいずれかに記載の方法。   The method according to claim 1, wherein the microwave is irradiated while being controlled such that the reaction system is at 100 ° C. or higher and 200 ° C. or lower.
JP2006156781A 2006-06-06 2006-06-06 Method for treating volatile organic halogen compounds Active JP4521571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156781A JP4521571B2 (en) 2006-06-06 2006-06-06 Method for treating volatile organic halogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156781A JP4521571B2 (en) 2006-06-06 2006-06-06 Method for treating volatile organic halogen compounds

Publications (2)

Publication Number Publication Date
JP2007325979A JP2007325979A (en) 2007-12-20
JP4521571B2 true JP4521571B2 (en) 2010-08-11

Family

ID=38926844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156781A Active JP4521571B2 (en) 2006-06-06 2006-06-06 Method for treating volatile organic halogen compounds

Country Status (1)

Country Link
JP (1) JP4521571B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688934B2 (en) 2007-11-23 2017-06-27 Bixby Energy Systems, Inc. Process for and processor of natural gas and activated carbon together with blower
JP2011212567A (en) * 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst
JP4874411B2 (en) * 2010-05-13 2012-02-15 マイクロ波環境化学株式会社 Chemical reaction apparatus and chemical reaction method
JP2014195803A (en) * 2014-03-27 2014-10-16 国立大学法人大阪大学 Composite catalyst for microwave reaction field, method for producing the same, and method for producing ester using the catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305333A (en) * 2002-04-16 2003-10-28 Laser Gijutsu Sogo Kenkyusho Exhaust gas absorbent and exhaust gas treatment device using the same
JP2004305903A (en) * 2003-04-07 2004-11-04 Shozo Yanagida Method for treating organic halogen compound
JP2005169291A (en) * 2003-12-12 2005-06-30 Nippon Spindle Mfg Co Ltd Treating device for organic halogen compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305333A (en) * 2002-04-16 2003-10-28 Laser Gijutsu Sogo Kenkyusho Exhaust gas absorbent and exhaust gas treatment device using the same
JP2004305903A (en) * 2003-04-07 2004-11-04 Shozo Yanagida Method for treating organic halogen compound
JP2005169291A (en) * 2003-12-12 2005-06-30 Nippon Spindle Mfg Co Ltd Treating device for organic halogen compound

Also Published As

Publication number Publication date
JP2007325979A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4521571B2 (en) Method for treating volatile organic halogen compounds
CN110548515A (en) Oil sludge carbon loaded metal catalyst, preparation method and application
JP2006142278A (en) Method for detoxifying instrument containing organic halogen compound
JP2009011848A (en) Detoxifying treatment method for apparatus including organic halogen compound
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2016019929A (en) Method for purifying soil contaminated with polychlorinated biphenyl
JPH07155608A (en) Production of high capacity carbon material
JP5499685B2 (en) Continuous detoxification treatment apparatus and continuous detoxification treatment system for chlorinated organic chlorine compounds
JP4224597B2 (en) Purification method of waste water containing harmful organic substances
JP2007105059A (en) Method of decomposing dioxins
JP4009607B2 (en) Method for regenerating catalyst and method for decomposing organic halogen compound using the regenerated catalyst
JP2011098253A (en) Method of reactivating degraded catalyst
JP2000334062A (en) Microwave-solvothermal treatment of harmful organic compound
KR100798410B1 (en) A method of eliminating chlorine element in waste insulating oil
JP4138559B2 (en) Method for treating organohalogen compounds
JPWO2007141911A1 (en) Method for dehalogenating organic compounds
JP2011088038A (en) Catalyst to be used for treating halogenated organic compound
JP3641554B2 (en) Organic halogen compound decomposition method and organic halogen compound decomposition apparatus
JP2010240326A (en) Detoxification method for intermingled organic chlorine compounds
RU2597242C1 (en) Method of cleaning liquid radioactive wastes from organic impurities
JP2004223368A (en) Cyan component removing method
JP2017205742A (en) Cleaning method of washing liquid for polychlorobiphenyl contaminated apparatus and washing method of contaminated apparatus
JPH06304407A (en) Treatment apparatus to make harmful chlorine compound harmless
JP2010227390A (en) Detoxifying treatment method for apparatus incorporating organic halogen compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150