JP3976332B1 - Decomposition method of high-concentration organochlorine compounds - Google Patents

Decomposition method of high-concentration organochlorine compounds Download PDF

Info

Publication number
JP3976332B1
JP3976332B1 JP2007003964A JP2007003964A JP3976332B1 JP 3976332 B1 JP3976332 B1 JP 3976332B1 JP 2007003964 A JP2007003964 A JP 2007003964A JP 2007003964 A JP2007003964 A JP 2007003964A JP 3976332 B1 JP3976332 B1 JP 3976332B1
Authority
JP
Japan
Prior art keywords
compound
catalyst
reaction solution
concentration
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007003964A
Other languages
Japanese (ja)
Other versions
JP2008194063A (en
Inventor
鉱一 伊藤
幹雄 下条
悟 金森
茂 大槻
陽子 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007003964A priority Critical patent/JP3976332B1/en
Application granted granted Critical
Publication of JP3976332B1 publication Critical patent/JP3976332B1/en
Publication of JP2008194063A publication Critical patent/JP2008194063A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】高濃度有機塩素化合物の分解処理の更なる効率化を図るため、分解処理後の反応液を再利用でき、処理コストの低減を図ることができる、高濃度有機塩素化合物の分解方法を提供する。
【解決手段】炭素結晶化合物及び担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒をカラムに充填し、ポリ塩化ビフェニールを50質量%以上含有する有機塩素化合物と水素供与性溶媒とアルカリ化合物とを含む反応溶液を、前記触媒を充填したカラムに流通させながら有機塩素化合物の脱塩素化を行い、脱塩素化反応後の溶液に、新たな有機塩素化合物と、該有機塩素化合物に対し0.8〜1.5当量(対塩素)のアルカリ化合物を添加し、前記反応溶液を再利用しながら脱塩素化する。
【選択図】図1
A method for decomposing a high-concentration organochlorine compound, which can reuse the reaction solution after the decomposing treatment to reduce the processing cost in order to further improve the efficiency of the decomposition treatment of the high-concentration organochlorine compound. provide.
An organic chlorine compound containing 50% by mass or more of a polychlorinated biphenyl and a hydrogen donating solvent, wherein the column is packed with at least one catalyst selected from a carbon crystal compound and a compound having a metal supported on a carrier. An organic chlorine compound is dechlorinated while circulating a reaction solution containing an alkali compound and an alkali compound in a column packed with the catalyst, and a new organic chlorine compound and the organic chlorine compound are added to the solution after the dechlorination reaction. 0.8 to 1.5 equivalents (against chlorine) of an alkali compound is added, and the reaction solution is dechlorinated while being reused.
[Selection] Figure 1

Description

本発明は、高濃度の有機塩素化合物を脱塩素化して無害化する高濃度有機塩素化合物の分解方法に関する。   The present invention relates to a method for decomposing a high concentration organochlorine compound that dechlorinates a high concentration organochlorine compound to render it harmless.

各種有機塩素化合物のなかでも、ポリ塩化ビフェニール(以下PCBと略称することがある。)は人体を含む生体に極めて有害であることから、1973年に特定化学物質に指定され、その製造、輸入、使用が禁止されている。しかし、その後適切な廃棄方法が決まらないまま数万トンのPCBが未処理の状態で放置されている。PCBは、高温(30〜750℃)分解では強毒性のダイオキシン類である塩素化ジベンゾ−p−ダイオキシン(PCDD)とジベンゾフラン(PCDF)が副生することから、技術的にPCBを安全に分解することが難しく、永年にわたりPCBの安全で効率的な各種分解法が検討されている。   Among various chlorinated organic compounds, polychlorinated biphenyl (hereinafter sometimes abbreviated as PCB) is extremely harmful to living bodies including the human body. Therefore, it was designated as a specified chemical substance in 1973, and its production, importation, Use is prohibited. However, after that, tens of thousands of tons of PCBs are left untreated without determining an appropriate disposal method. PCB decomposes PCB safely technically because chlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF), which are highly toxic dioxins, are by-produced at high temperature (30 to 750 ° C) decomposition. This is difficult, and various safe and efficient decomposition methods for PCBs have been studied for many years.

有機塩素化合物の分解処理は、絶縁油として使用したPCB油など高濃度有機塩素化合物の分解処理と、絶縁油交換時等に鉱油中に混入した低濃度有機塩素化合物の分解処理に大別される。高濃度有機塩素化合物の分解処理は、還元触媒を用いて還元剤と反応させ、脱塩素化された塩素を中和除去する方法が一般的に採用されている。   Decomposition treatment of organochlorine compounds is broadly divided into decomposition treatment of high-concentration organochlorine compounds such as PCB oil used as insulating oil, and decomposition treatment of low-concentration organochlorine compounds mixed in mineral oil when insulating oil is replaced. . For the decomposition treatment of the high-concentration organochlorine compound, a method is generally employed in which the dechlorinated chlorine is neutralized and removed by reacting with a reducing agent using a reduction catalyst.

例えば、特許文献1には、白金を担持した活性炭と芳香族塩素化合物(パラクロロフェノール等)を含む混合系に、水素ガスを吹き込みながらマイクロ波を照射することにより有害有機塩素化合物を脱塩素化する方法が提案されている。この方法は還元性物質の存在下でマイクロ波を照射することを特徴とする方法であり、実施例では100mlの反応用フラスコにパラクロロフェノール水溶液に触媒を懸濁したものを入れ、水素ガスを吹き込みながらマイクロ波を照射して反応させている。   For example, in Patent Document 1, harmful organic chlorine compounds are dechlorinated by irradiating microwaves while blowing hydrogen gas into a mixed system containing activated carbon supporting platinum and an aromatic chlorine compound (parachlorophenol or the like). A method has been proposed. This method is characterized by irradiating microwaves in the presence of a reducing substance. In this example, a suspension of a catalyst in an aqueous parachlorophenol solution is placed in a 100 ml reaction flask, and hydrogen gas is supplied. It reacts by irradiating microwaves while blowing.

また、特許文献2には、PCBを溶解した2−プロパノールに、所定量のアルカリと白金、パラジウム、ロジウム等の金属を担持させた炭素化合物からなる触媒を添加して懸濁液としたのち、攪拌しながら、2−プロパノールの沸点(83℃)近傍まで加熱し、還流条件下で120分もしくは180分間分解反応を行うことにより、PCBを分解する方法が記載されている。   Further, in Patent Document 2, after adding a catalyst made of a carbon compound carrying a predetermined amount of alkali and a metal such as platinum, palladium, rhodium, etc., to 2-propanol in which PCB is dissolved, A method is described in which PCB is decomposed by heating to the boiling point of 2-propanol (83 ° C.) while stirring and performing a decomposition reaction under reflux conditions for 120 minutes or 180 minutes.

また、特許文献3には、本発明者らが提案した方法として、PCBと沸点100℃以下のアルコールとアルカリの混合液を、触媒を充填したカラムに流通させながら該カラムにマイクロ波を照射することにより、低温でPCBを脱塩素化する方法が開示されている。
特開2001−19646号公報(請求項1、段落番号0009等) 特開平8−266888号公報(請求項1〜4、段落番号0012〜0013等) 特許第3678740号公報(請求項1〜4、段落番号0049〜0050等)
Further, in Patent Document 3, as a method proposed by the present inventors, microwaves are irradiated to a column while flowing a mixed solution of PCB, an alcohol having a boiling point of 100 ° C. or less and an alkali through a column packed with a catalyst. Thus, a method of dechlorinating PCB at low temperature is disclosed.
JP 2001-19646 A (Claim 1, paragraph number 0009, etc.) JP-A-8-266888 (Claims 1-4, paragraph numbers 0012 to 0013, etc.) Japanese Patent No. 3678740 (claims 1-4, paragraph numbers 0049-0050, etc.)

しかしながら、特許文献1〜2に開示されている方法は、触媒を反応溶液中に分散させるバッチ式の脱塩素化方法であるため、反応終了後は失活した触媒を分離、回収する操作が必要となる。一方、同一反応容器を用いて触媒とPCBを追添加しながら脱塩素化反応操作を繰り返すことも理論上は可能であるが、同じ操作を繰り返すことによって反応容器内の触媒量が次第に増加するため、攪拌操作に障害を及ぼしたり、脱塩素化反応の進行を妨げたりすることになる。従って、これらの方法は低コストの処理方法とは言い難い。   However, since the methods disclosed in Patent Documents 1 and 2 are batch-type dechlorination methods in which the catalyst is dispersed in the reaction solution, it is necessary to separate and recover the deactivated catalyst after the reaction is completed. It becomes. On the other hand, it is theoretically possible to repeat the dechlorination reaction operation while adding the catalyst and PCB using the same reaction vessel, but the amount of catalyst in the reaction vessel gradually increases by repeating the same operation. , Impeding the stirring operation or preventing the progress of the dechlorination reaction. Therefore, these methods are difficult to say as low-cost processing methods.

また、PCB混入油が充填されていた柱上変圧器等の洗浄に用いた洗浄溶媒や、PCB分解処理反応に供した溶媒を、蒸留操作によって回収した後、分解処理に再利用することも一般に行われている。しかし、溶媒の絶対量が多ければ溶媒回収コスト(蒸留コスト)も増加することになるため、このような再利用方法は抜本的な方法とはなり得ない。   In addition, the cleaning solvent used for cleaning the pole transformer filled with PCB-mixed oil and the solvent used for the PCB decomposition treatment reaction are generally recovered by distillation and then reused for the decomposition treatment. Has been done. However, since the solvent recovery cost (distillation cost) increases if the absolute amount of the solvent is large, such a recycling method cannot be a drastic method.

特許文献3に開示されている方法は、触媒を分離、回収する操作が不要で失活した触媒を取り替えるだけで済むため、連続処理操作も可能であるが、常時一定値以上の分解率を達成するためには、対PCBで100倍容量の2−プロパノールを必要とする。従って、多量の溶媒を使用すれば溶媒コストや回収コストが増大することになるため、反応処理効率が劣るという問題点を有していた。   The method disclosed in Patent Document 3 does not require the operation of separating and recovering the catalyst, and it is only necessary to replace the deactivated catalyst. Therefore, a continuous treatment operation is possible, but a decomposition rate of a certain value or more is always achieved. To do this, 100 times the volume of 2-propanol is required per PCB. Therefore, if a large amount of solvent is used, the solvent cost and the recovery cost increase, which has a problem that the reaction processing efficiency is inferior.

本発明は、高濃度有機塩素化合物の分解処理の更なる効率化を図るためになされたものであり、分解処理後の反応液を再利用でき、処理コストの低減が図れる、高濃度有機塩素化合物の分解方法を提供することを目的とする。   The present invention was made in order to further improve the efficiency of the decomposition treatment of high-concentration organochlorine compounds, and the high-concentration organochlorine compounds that can reuse the reaction solution after the decomposition treatment and reduce the processing cost It aims at providing the decomposition method of this.

本発明者らは、前記課題を解決するため鋭意検討した結果、高濃度の有機塩素化合物と特定の薬剤を含む反応溶液を触媒カラムに流通させながら脱塩素化反応を行い、脱塩素化反応後の溶液に、被処理物である高濃度の有機塩素化合物と所定量のアルカリ化合物を添加して脱塩素化することにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors conducted a dechlorination reaction while circulating a reaction solution containing a high concentration of an organic chlorine compound and a specific agent through a catalyst column, and after the dechlorination reaction It was found that the above-mentioned object can be achieved by adding a high-concentration organochlorine compound and a predetermined amount of an alkali compound to the solution and dechlorinating the solution, thereby completing the present invention.

すなわち、本発明は以下のとおりである。
1)炭素結晶化合物及び担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒をカラムに充填し、ポリ塩化ビフェニールを50質量%以上含有する有機塩素化合物と水素供与性溶媒とアルカリ化合物とを含む反応溶液であって、前記有機塩素化合物を0.2〜5wt%(対水素供与性溶媒)含む反応溶液を、前記触媒を充填したカラムに流通させながら有機塩素化合物の脱塩素化を行い、脱塩素化反応後の溶液に、新たな有機塩素化合物0.2〜5wt%(対水素供与性溶媒)と該有機塩素化合物に対し0.8〜1.5当量(対塩素)のアルカリ化合物を添加し、前記反応溶液を再利用しながら脱塩素化することを特徴とする高濃度有機塩素化合物の分解方法、
2)反応溶液の再利用回数が、少なくとも2回以上である前記1)に記載の高濃度有機塩素化合物の分解方法、
3)反応溶液の再利用回数1回当たり0回〜毎回の頻度で触媒を交換する前記1)又は2)に記載の高濃度有機塩素化合物の分解方法、
)有機塩素化合物の分解に際し、触媒充填カラム内の反応溶液へマイクロ波を照射する前記1)〜)のいずれかに記載の高濃度有機塩素化合物の分解方法、
)反応溶液を連続して触媒充填カラムに流通する前記1)〜)のいずれかに記載の高濃度有機塩素化合物の分解方法、
)アルカリ化合物が、NaOH又はKOHである前記1)〜)のいずれかに記載の高濃度有機塩素化合物の分解方法、
)触媒が、パラジウム担持炭素化合物である前記1)〜)のいずれかに記載の高濃度有機塩素化合物の分解方法、及び、
)水素供与性溶媒が、イソプロピルアルコールである前記1)〜)のいずれかに記載の高濃度有機塩素化合物の分解方法。
That is, the present invention is as follows.
1) At least one catalyst selected from a carbon crystal compound and a compound having a metal supported on a carrier is packed in a column, an organic chlorine compound containing 50% by mass or more of polychlorinated biphenyl, a hydrogen donating solvent, and an alkali A reaction solution containing a compound , wherein the reaction solution containing 0.2 to 5 wt% of the organochlorine compound (to a hydrogen donating solvent) is passed through the column packed with the catalyst while dechlorinating the organochlorine compound. In the solution after the dechlorination reaction, 0.2 to 5 wt% (to hydrogen donating solvent) of a new organochlorine compound and 0.8 to 1.5 equivalents (to chlorine) of the organochlorine compound. A method for decomposing a high-concentration organochlorine compound, wherein an alkali compound is added and dechlorination is performed while reusing the reaction solution;
2) The method for decomposing a high-concentration organochlorine compound according to 1), wherein the reaction solution is reused at least twice.
3) The method for decomposing a high-concentration organochlorine compound according to 1) or 2) above, wherein the catalyst is replaced at a frequency of 0 to every time the reaction solution is reused.
4 ) The method for decomposing a high-concentration organochlorine compound according to any one of 1) to 3 ) above, wherein the reaction solution in the catalyst packed column is irradiated with microwaves when decomposing the organochlorine compound.
5 ) The method for decomposing a high-concentration organochlorine compound according to any one of 1) to 4 ) above, wherein the reaction solution is continuously passed through a catalyst packed column,
6 ) The decomposition method of the high-concentration organochlorine compound according to any one of 1) to 5 ), wherein the alkali compound is NaOH or KOH,
7 ) The method for decomposing a high-concentration organochlorine compound according to any one of 1) to 6 ), wherein the catalyst is a palladium-supported carbon compound, and
8 ) The method for decomposing a high-concentration organochlorine compound according to any one of 1) to 7 ) above, wherein the hydrogen-donating solvent is isopropyl alcohol.

本発明の高濃度有機塩素化合物の分解方法によれば、反応溶液(溶媒)を再利用できるので、反応に用いた溶媒を回収し、再利用するためのバッチ毎の蒸留工程が不要となる。反応溶液は少なくとも2回以上再利用できる。また、再利用後は、処理全体に用いる溶媒量が減るので、再利用するための蒸留コストを低減できる。   According to the method for decomposing a high-concentration organochlorine compound of the present invention, since the reaction solution (solvent) can be reused, a batch-by-batch distillation step for collecting and reusing the solvent used in the reaction becomes unnecessary. The reaction solution can be reused at least twice. Moreover, since the amount of the solvent used for the whole process decreases after the reuse, the distillation cost for the reuse can be reduced.

反応溶液を触媒充填装置に流通させながら循環させ、必要に応じてマイクロ波を照射することもできるので、有機塩素化合物を短期間に分解処理することができる。さらに、反応溶液を連続して触媒充填カラムに流通させることにより、マイクロ波を照射しない夜間でも常温分解が進み、しかも、液が流れ続けることによりビフェニルやKClが固着し難くなり、液が触媒を揺動させることにより触媒充填カラムの詰まりを防止することができる。   Since the reaction solution can be circulated while being circulated through the catalyst filling device and irradiated with microwaves as necessary, the organochlorine compound can be decomposed in a short time. Furthermore, by continuously circulating the reaction solution through the catalyst packed column, decomposition at room temperature progresses even at night when microwave irradiation is not performed. By rocking, clogging of the catalyst packed column can be prevented.

以下、本発明に係る高濃度有機塩素化合物の分解方法について、図面を参照しつつ詳細に説明する。   Hereinafter, the decomposition method of the high concentration organochlorine compound according to the present invention will be described in detail with reference to the drawings.

本発明の高濃度有機塩素化合物の分解方法は、炭素結晶化合物及び担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒をカラムに充填し、ポリ塩化ビフェニールを50質量%以上含有する有機塩素化合物と水素供与性溶媒とアルカリ化合物とを含む反応溶液であって、前記有機塩素化合物を0.2〜5wt%(対水素供与性溶媒)含む反応溶液を、前記触媒を充填したカラムに流通させながら有機塩素化合物の脱塩素化を行い、脱塩素化反応後の溶液に、新たな有機塩素化合物0.2〜5wt%(対水素供与性溶媒)と該有機塩素化合物に対し0.8〜1.5当量(対塩素)のアルカリ化合物を添加し、前記反応溶液を再利用しながら脱塩素化する ことを特徴とするものである。 In the method for decomposing a high-concentration organochlorine compound of the present invention, a column is packed with at least one catalyst selected from a carbon crystal compound and a compound in which a metal is supported on a carrier, and contains 50% by mass or more of polychlorinated biphenyls. A reaction solution containing an organochlorine compound, a hydrogen donating solvent, and an alkali compound, the reaction solution containing 0.2 to 5 wt% of the organochlorine compound (to a hydrogen donating solvent) filled with the catalyst The organochlorine compound is dechlorinated while being circulated, and 0.2 to 5 wt% of a new organochlorine compound (to a hydrogen-donating solvent) and 0. 8 to 1.5 equivalents (against chlorine) of an alkali compound is added, and the reaction solution is dechlorinated while being reused.

本発明の分解方法において脱塩素化対象となる有機塩素化合物は、ポリ塩化ビフェニールを50質量%以上含有する有機塩素化合物であり、主に柱上変圧器、大型トランス、コンデンサ、油絶縁ケーブルの油槽等に絶縁油等として使用されたものが対象となる。具体的には、ポリ塩化ビフェニール、或いは、ポリ塩化ビフェニールと塩素化芳香族化合物との混合物が挙げられる。   The organochlorine compound to be dechlorinated in the decomposition method of the present invention is an organochlorine compound containing 50% by mass or more of polychlorinated biphenyl, and is mainly an oil tank for pole transformers, large transformers, capacitors, and oil insulated cables. The thing used as insulating oil etc. becomes the object. Specifically, polychlorinated biphenyl or a mixture of polychlorinated biphenyl and a chlorinated aromatic compound can be used.

ポリ塩化ビフェニール(PCB)類としては、例えば、鐘淵化学(株)のKC−200(主成分:2塩化ビフェニール)、KC−300(主成分:3塩化ビフェニール)、KC−400(主成分:4塩化ビフェニール)、KC−500(主成分:5塩化ビフェニール)、KC−600(主成分:6塩化ビフェニール)、KC−1000(KC500/TCB=60/40(質量比)の混合物)、KC−1300(KC−300+DCB+4塩化ベンゼンの混合物)や、三菱モンサイト(株)のアロクロール1254(54% Chlorine)等を挙げることができる。   Examples of polychlorinated biphenyls (PCBs) include KC-200 (main component: biphenyl dichloride), KC-300 (main component: biphenyl trichloride), and KC-400 (main component: Kaneka Chemical Co., Ltd.). Biphenyl tetrachloride), KC-500 (main component: biphenyl bichloride), KC-600 (main component: biphenyl hexachloride), KC-1000 (mixture of KC500 / TCB = 60/40 (mass ratio)), KC- 1300 (mixture of KC-300 + DCB + tetrachlorobenzene) and Aroclor 1254 (54% Chlorine) manufactured by Mitsubishi Monsite Corporation.

ポリ塩化ビフェニールと塩素化芳香族化合物との混合物の場合、混合割合は特に限定されないが、一般には、ポリ塩化ビフェニール/塩素化芳香族化合物=9/1〜5/5(質量比)である。ポリ塩化ビフェニール/塩素化芳香族化合物の割合が9/1未満の場合は油の粘性が高くなり、一方、その割合が5/5を超える場合は絶縁性能が低下するからである。塩素化芳香族化合物としては、芳香族化合物に塩素原子が置換しているもの、例えば、例えば、トリクロロベンゼン(TCB)、ジクロロベンゼン(DCB)、テトラクロロベンゼン等があるが、一般にはトリクロロベンゼン(TCB)が多用されている。   In the case of a mixture of polychlorinated biphenyl and a chlorinated aromatic compound, the mixing ratio is not particularly limited, but is generally polychlorinated biphenyl / chlorinated aromatic compound = 9/1 to 5/5 (mass ratio). This is because when the ratio of polychlorinated biphenyl / chlorinated aromatic compound is less than 9/1, the viscosity of the oil becomes high, whereas when the ratio exceeds 5/5, the insulation performance decreases. Examples of the chlorinated aromatic compound include those in which a chlorine atom is substituted on the aromatic compound, for example, trichlorobenzene (TCB), dichlorobenzene (DCB), tetrachlorobenzene, etc., but generally trichlorobenzene (TCB). ) Is frequently used.

図1は、本発明の分解方法の好ましい一例を示す説明図であり、反応槽20に水素供与性溶媒(イソプロピルアルコール:IPA))と、アルカリ化合物(KOH)と、有機塩素化合物(PCB)を入れ、反応溶液10を得る。これを、循環ポンプ21により、配管22を通して、マイクロ波装置30内に設置した触媒充填カラム35に流通させながら触媒と接触させ、PCBの脱塩素化を行う。カラム流通後の反応溶液は配管23を通して反応槽20に戻される。なお、図1に示す配管途中には、超音波発生装置等のクラスター破壊装置、コンデンサ等の冷却装置、誘電率計等のPCB濃度測定装置等が備えられていてもよい。   FIG. 1 is an explanatory view showing a preferred example of the decomposition method of the present invention. A hydrogen donating solvent (isopropyl alcohol: IPA)), an alkali compound (KOH), and an organic chlorine compound (PCB) are added to a reaction tank 20. The reaction solution 10 is obtained. This is brought into contact with the catalyst by circulating pump 21 through piping 22 and passing through catalyst packed column 35 installed in microwave device 30 to dechlorinate PCB. The reaction solution after flowing through the column is returned to the reaction tank 20 through the pipe 23. 1 may be provided with a cluster destruction device such as an ultrasonic generator, a cooling device such as a condenser, a PCB concentration measuring device such as a dielectric constant meter, and the like.

水素供与性溶媒は、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物及び脂環式化合物等から選ばれる1種以上を用いることができるが、これらの中でも、安全性の点より、アルコール系化合物、ケトン系化合物、脂環式化合物が好ましい。特に、安全性、低コスト、入手容易で、しかも反応制御し易くPCB分解効率が高い点より、アルコール系化合物が好ましい。好ましいアルコールとしては、例えば、エタノール、1−プロピルアルコール、イソプロピルアルコール、t−ブタノール、シクロヘキサノール等を挙げることができるが、イソプロピルアルコール、シクロヘキシルアルコール等の2級アルコールがより好ましく、イソプロピルアルコールが最も好ましい。   As the hydrogen donating solvent, one or more selected from a heterocyclic compound, an amine compound, an alcohol compound, a ketone compound, an alicyclic compound, and the like can be used, but among these, from the viewpoint of safety Alcohol compounds, ketone compounds and alicyclic compounds are preferred. In particular, alcohol compounds are preferred from the viewpoints of safety, low cost, easy availability, easy reaction control, and high PCB decomposition efficiency. Preferred alcohols include, for example, ethanol, 1-propyl alcohol, isopropyl alcohol, t-butanol, cyclohexanol, etc., but secondary alcohols such as isopropyl alcohol and cyclohexyl alcohol are more preferred, and isopropyl alcohol is most preferred. .

アルカリ化合物は、NaOH、KOH、ナトリウムアルコキシド、カリウムアルコキシド、水酸化カルシウム等を単独で又は2種以上併用して用いることができる。中でも、コストやハンドリング性の観点より、NaOH又はKOHが好ましい。   As the alkali compound, NaOH, KOH, sodium alkoxide, potassium alkoxide, calcium hydroxide and the like can be used alone or in combination of two or more. Among these, NaOH or KOH is preferable from the viewpoints of cost and handling properties.

最初の反応液調製時の有機塩素化合物濃度は、水素供与性溶媒に対し0.2〜5wt%、最も好ましくは0.2〜2wt%である。有機塩素化合物の濃度が高すぎる場合は溶媒の再利用回数が減り分解所要時間も長くなるため経済的でなく、濃度が低すぎる場合は脱塩素化の効率が悪くなる。アルカリ化合物は有機塩素化合物の塩素に対し、1.0当量以上用いることが好ましく、副生塩の生成により影響を出来るだけ抑え、かつ、分解効率を高める観点より、より好ましくは1.0〜1.5当量である。 The concentration of the organic chlorine compound at the time of preparing the first reaction solution is 0.2 to 5 wt%, most preferably 0.2 to 2 wt% with respect to the hydrogen donating solvent. If the concentration of the organochlorine compound is too high, the number of times the solvent is reused decreases and the time required for decomposition increases, which is not economical, and if the concentration is too low, the efficiency of dechlorination deteriorates. The alkali compound is preferably used in an amount of 1.0 equivalent or more with respect to the chlorine of the organic chlorine compound, and more preferably 1.0 to 1 from the viewpoint of suppressing the influence by the formation of by-product salt as much as possible and increasing the decomposition efficiency. .5 equivalents.

触媒は、炭素結晶化合物及び担体に金属を担持させた化合物の中から選ばれる少なくとも1種を用いる。前記の触媒は、有機塩素化合物(特にPCB)の脱塩素化反応を促進でき、アルカリ化合物存在下でも安定で、アルカリ雰囲気下でも安全で、しかもマイクロ波に対して高活性を示すことから好適に用いることができる。触媒は、単独で又は2種以上を任意に組合せて使用してもよい。これらの触媒の中でも、担体に金属を担持させた化合物が好ましい。   As the catalyst, at least one selected from a carbon crystal compound and a compound in which a metal is supported on a carrier is used. The above catalyst is preferable because it can promote the dechlorination reaction of organochlorine compounds (particularly PCB), is stable even in the presence of alkali compounds, is safe in an alkaline atmosphere, and exhibits high activity against microwaves. Can be used. You may use a catalyst individually or in combination of 2 or more types. Among these catalysts, a compound in which a metal is supported on a carrier is preferable.

前記の炭素結晶化合物としては、グラファイト、カーボンナノチューブ(金属を含むものと含まないものの双方が含まれる)、フラーレン等が挙げられる。また、担体に金属を担持させた化合物の場合、担体としては、活性炭やグラファイト等の炭素、シリカゲル、アルミナやゼオライト等の金属酸化物や複合金属酸化物、ポリエチレン等の樹脂などが挙げられる。この中でも、脱塩素化効率が高く、アルカリ雰囲気での安定性が高い点より、炭素担体に金属を担持させた金属担持炭素化合物が好ましい。   Examples of the carbon crystal compound include graphite, carbon nanotubes (both including and not including metal), fullerene, and the like. In the case of a compound in which a metal is supported on a carrier, examples of the carrier include carbon such as activated carbon and graphite, silica gel, metal oxide such as alumina and zeolite, composite metal oxide, and resin such as polyethylene. Among these, a metal-supported carbon compound in which a metal is supported on a carbon support is preferable from the viewpoints of high dechlorination efficiency and high stability in an alkaline atmosphere.

前記の金属担持炭素化合物は、金属を担持した炭素化合物であればよいが、金属担持量は、触媒全量に対して1〜20wt%、好ましくは5〜10wt%であるのがよい。担持される金属としては、例えば、鉄、銀、白金、ルテニウム、パラジウム、ロジウム等が挙げられるが、脱塩素化効率を高める観点からは、パラジウム、ルテニウム、白金が好ましく、パラジウムがより好ましい。金属担持炭素化合物の具体例としては、Pd/C(パラジウム担持炭素化合物)、Ru/C(ルテニウム担持炭素化合物)、Pt/C(白金担持炭素化合物)等が挙げられる。   The metal-supported carbon compound may be a carbon compound supporting a metal, but the metal support amount is 1 to 20 wt%, preferably 5 to 10 wt%, based on the total amount of the catalyst. Examples of the supported metal include iron, silver, platinum, ruthenium, palladium, and rhodium. From the viewpoint of increasing the dechlorination efficiency, palladium, ruthenium, and platinum are preferable, and palladium is more preferable. Specific examples of the metal-supported carbon compound include Pd / C (palladium-supported carbon compound), Ru / C (ruthenium-supported carbon compound), Pt / C (platinum-supported carbon compound), and the like.

触媒の形状は、粒状のものでもハニカム状のものでもよい。粒状の場合はカラムの上下をメッシュ等で固定する必要があり、その場合の粒子径は75μm〜10mmが好ましい。10mmを超える場合は比表面積が不足し、75μm未満の場合はメッシュが詰まり差圧が高くなる。より好ましくは150μm〜5mmが望ましい。触媒粒子は、できるだけ粒子径のそろったものがよい。   The shape of the catalyst may be granular or honeycomb. In the case of granular, it is necessary to fix the upper and lower sides of the column with a mesh or the like, and the particle diameter in that case is preferably 75 μm to 10 mm. When it exceeds 10 mm, the specific surface area is insufficient, and when it is less than 75 μm, the mesh is clogged and the differential pressure becomes high. More preferably, it is 150 μm to 5 mm. The catalyst particles should have the same particle size as possible.

反応系中の触媒使用量は、カラムの構成や液流通速度によっても異なるが、通常、反応溶液全量に対し、重量比で、5〜50%用いることが好ましい。   The amount of catalyst used in the reaction system varies depending on the configuration of the column and the liquid flow rate, but it is usually preferable to use 5 to 50% by weight with respect to the total amount of the reaction solution.

触媒充填カラムは、その形状、大きさ、マイクロ波装置内における設置場所は特に限定されるものではなく、マイクロ波照射が可能な位置に設置すればよい。触媒充填カラムは取り外し可能なカセット式にすることもできる。触媒は、水素供与性溶媒の再利用回数1回当たり0回〜毎回の頻度で交換することができ、分解に供する処理液のPCB濃度によりその交換頻度を決定することが好ましい。触媒を反応溶液中に分散させる方法では触媒の分離・回収操作が必要であるのに対し、本発明では触媒充填カラムに反応溶液を流通させることで、触媒を反応溶液から分離する必要がなくなるため、反応溶液を繰り返し再利用することが容易となる。   The shape, size, and installation location of the catalyst packed column in the microwave device are not particularly limited, and may be installed at a position where microwave irradiation is possible. The catalyst packed column may be a removable cassette type. The catalyst can be exchanged at a frequency of 0 to every time the hydrogen donating solvent is reused, and the exchange frequency is preferably determined by the PCB concentration of the treatment liquid to be decomposed. In the method of dispersing the catalyst in the reaction solution, it is necessary to separate and recover the catalyst, but in the present invention, it is not necessary to separate the catalyst from the reaction solution by circulating the reaction solution through the catalyst packed column. The reaction solution can be easily reused repeatedly.

触媒充填カラム35はマイクロ波装置30内に設置されているため、必要に応じてマイクロ波を照射することができる。マイクロ波装置をオンにした場合、触媒層を流通する反応溶液は、照射されたマイクロ波によって加熱された触媒と接触する。そのため、触媒層を流通する反応溶液がマイクロ波で活性化された触媒と接触するため、有機塩素化合物は非加熱状態で接触させたときよりも格段に早い速度で分解する。一方、マイクロ波装置をオフにした場合、触媒層を流通する反応溶液は常温で触媒と接触するので、有機塩素化合物は比較的遅い速度ではあるが、徐々に分解する。反応温度は、10℃〜200℃の範囲が好ましく、より好ましくは10〜80℃である。反応温度が10℃未満では分解反応が不十分となり、一方、200℃を超える場合は脱塩素化反応は十分進むが、副生物が生成し易くなり、また経済性にも劣る。反応時間は特に限定されず、脱塩素化反応を十分進行させ無害化するまで行えばよい。   Since the catalyst packed column 35 is installed in the microwave device 30, microwaves can be irradiated as necessary. When the microwave device is turned on, the reaction solution flowing through the catalyst layer comes into contact with the catalyst heated by the irradiated microwave. Therefore, since the reaction solution flowing through the catalyst layer comes into contact with the catalyst activated by the microwave, the organochlorine compound is decomposed at a much faster rate than when it is brought into contact in an unheated state. On the other hand, when the microwave device is turned off, the reaction solution flowing through the catalyst layer comes into contact with the catalyst at room temperature, so that the organic chlorine compound gradually decomposes at a relatively low speed. The reaction temperature is preferably in the range of 10 ° C to 200 ° C, more preferably 10 to 80 ° C. When the reaction temperature is less than 10 ° C., the decomposition reaction is insufficient. On the other hand, when the reaction temperature exceeds 200 ° C., the dechlorination reaction proceeds sufficiently, but by-products are easily generated, and the economy is inferior. The reaction time is not particularly limited, and it may be performed until the dechlorination reaction is sufficiently advanced and rendered harmless.

照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合は水素発生量が少なくなり、出力が高すぎる場合はマイクロ波の利用率が悪くなるため、電気的に制御しながら10W〜20kWの範囲とし、好ましくは40W〜5kWの範囲とする。マイクロ波の周波数は1〜300GHzが望ましく、1GHz未満又は300GHzを超える周波数範囲では、触媒、水素供与体の加熱が不十分となる。マイクロ波の照射は連続照射、間欠照射のいずれであってもよい。   The output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. When the output is too low, the amount of hydrogen generated is reduced, and when the output is too high, the microwave utilization rate is deteriorated. Therefore, the range is 10 W to 20 kW while being electrically controlled, preferably 40 W to 5 kW. To do. The microwave frequency is preferably 1 to 300 GHz, and in the frequency range of less than 1 GHz or more than 300 GHz, the catalyst and the hydrogen donor are not sufficiently heated. Microwave irradiation may be either continuous irradiation or intermittent irradiation.

最初の分解処理において、反応液中のPCB濃度が規制値以下になった段階で、分解処理を一旦停止する。次いで、2回目以降は、脱塩素化反応後の溶液に、新たな有機塩素化合物と、これに対し0.8〜1.5当量(対塩素)、好ましくは1.0〜1.3当量(対塩素)のアルカリ化合物を添加し、反応溶液を再利用しながら、上記の方法で脱塩素化を行う。アルカリ化合物を添加することなく新たな有機塩素化合物のみを添加した場合は、脱離した塩素を捕捉することができなくなり、分解反応が平衡状態になるため、脱塩素化反応が進行しなくなる。一方、アルカリ化合物の添加量が多すぎても反応が頭打ちになるため、経済性が悪くなる。   In the initial decomposition process, the decomposition process is temporarily stopped when the PCB concentration in the reaction solution becomes equal to or lower than the regulation value. Then, after the second time, the solution after the dechlorination reaction is added with a new organochlorine compound and 0.8 to 1.5 equivalents (relative to chlorine), preferably 1.0 to 1.3 equivalents ( Dechlorination is carried out by the above method while adding an alkali compound (to chlorine) and reusing the reaction solution. When only a new organochlorine compound is added without adding an alkali compound, the desorbed chlorine cannot be captured and the decomposition reaction is in an equilibrium state, so that the dechlorination reaction does not proceed. On the other hand, even if the amount of the alkali compound added is too large, the reaction reaches its peak, resulting in poor economic efficiency.

また、アルカリ化合物は上記の化合物の中から選択して用いることができるが、水素供与性溶媒に対する溶解性の高いものを選択することが、反応溶液を触媒充填カラムに流通させた際の詰まりを防止できる点より好ましい。アルカリ化合物は単体として添加しても良いし、少量の溶媒に溶解させて添加しても良い。   In addition, the alkali compound can be selected from the above compounds and used, but selecting one having high solubility in the hydrogen-donating solvent can prevent clogging when the reaction solution is passed through the catalyst packed column. It is preferable from the point which can prevent. The alkali compound may be added as a simple substance or may be added after being dissolved in a small amount of solvent.

反応溶液を繰り返し利用することによって、該溶液中にはビフェニル、KCl等の副生物の量が次第に増加していくことになるが、触媒充填カラムにおける目詰まり等が生じない限り、反応溶液は繰り返し利用することができる。この場合、触媒は劣化の程度を見ながら交換することが好ましい。触媒の交換頻度は、反応溶液の再利用回数1回当たり0回〜毎回の間で選択することができるので、新たな有機塩素化合物を添加する度に触媒を交換する方法でも良いし、2〜3回に1度触媒を交換する方法でも良い。反応溶液の再利用回数に制限はないが、経済性を考慮すると少なくとも2回以上、好ましくは3回以上が望ましい。この場合、触媒は継続使用でも良いし、新しい触媒に交換しても良い。   By repeatedly using the reaction solution, the amount of by-products such as biphenyl and KCl gradually increases in the solution. However, the reaction solution is repeatedly used unless clogging or the like occurs in the catalyst packed column. Can be used. In this case, it is preferable to replace the catalyst while checking the degree of deterioration. The catalyst replacement frequency can be selected from 0 to every time the reaction solution is reused. Therefore, the catalyst may be replaced every time a new organochlorine compound is added. Alternatively, the catalyst may be replaced once every three times. There is no limit to the number of times the reaction solution can be reused, but it is desirable that it be at least 2 times, preferably 3 times or more in consideration of economy. In this case, the catalyst may be used continuously or replaced with a new catalyst.

図2は、本発明の分解方法の概略フロー図である。分解処理終了後の反応溶液には、溶媒、溶媒分解物、副生塩(KCl)、ビフェニル等が含まれているので、反応槽内の溶液を貯留した後、処理後の溶液等を産業廃棄物として処分、又はリサイクル使用する。   FIG. 2 is a schematic flow diagram of the decomposition method of the present invention. Since the reaction solution after the decomposition treatment contains solvent, solvent decomposition products, by-product salt (KCl), biphenyl, etc., after storing the solution in the reaction tank, the treated solution etc. is industrially discarded. Dispose of as waste or recycle.

(作用)
本発明の有機塩素化合物の分解方法によれば、新たに溶媒を加えなくても、有機塩素化合物が分解し脱塩素化される。その機構は明らかではないが、アルカリ化合物が有機塩素化合物の脱塩素化反応を促し、そこに過剰に存在する溶媒(水素供与体)からの水素ラジカルが入り込むため、アルカリ化合物を追加するだけで脱塩素化が進行する。従って、分解速度が遅くても、変圧器の貯蔵所等の現場であれば、新たな加熱源等を用意せずとも放置するだけでPCBを処理でき、又、分解処理を促進したい場合は、必要に応じてマイクロ波照射を実施することもできる。
(Function)
According to the method for decomposing an organic chlorine compound of the present invention, the organic chlorine compound is decomposed and dechlorinated without newly adding a solvent. Although the mechanism is not clear, the alkali compound promotes the dechlorination reaction of the organochlorine compound, and hydrogen radicals from the solvent (hydrogen donor) that exists in excess enter it. Chlorination proceeds. Therefore, even if the decomposition rate is slow, if it is a site such as a transformer storage, PCB can be processed by simply leaving it without preparing a new heating source, etc. Microwave irradiation can also be performed as necessary.

次に、本発明を実施例により具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited only to a following example.

(実施例1)
PCB(KC−400/トリクロロベンゼンの混合物)1.3ml(PCB濃度1wt%/IPA)、KOHフレーク1.99g(1.2当量対塩素)、イソプロピルアルコール(IPA)148.7mlを、3000rpmのホモミキサーで20分攪拌し混液としたものを、内容量200mlの五つ口フラスコ(以下、「反応槽」)に導入した。これらを導入した後に、窒素ガスで反応槽内部を置換した。
Example 1
PCB (mixture of KC-400 / trichlorobenzene) 1.3 ml (PCB concentration 1 wt% / IPA), KOH flakes 1.99 g (1.2 eq. Vs. chlorine), 148.7 ml isopropyl alcohol (IPA) at 3000 rpm homo A mixture obtained by stirring for 20 minutes with a mixer was introduced into a five-necked flask (hereinafter referred to as “reaction vessel”) having an internal volume of 200 ml. After introducing these, the inside of the reaction vessel was replaced with nitrogen gas.

一方、粒状活性炭(商品名:ダイヤホープ008)にパラジウム(Pd)を5%担持させた触媒(平均粒径1mm程度)を用意し、70℃で8時間乾燥した。この触媒24gをマイクロ波発生装置内に設置した触媒充填装置に入れ、上下を100メッシュの網で挟み込み、触媒を充填した。反応槽内をマグネチックスターラーで攪拌しながら、反応槽内の混合溶液をポンプで抜き出し、光ファイバー温度計を備えた上記触媒充填装置に10ml/分の速度で連続的に流通させた後反応槽に戻し、常温にて循環させた。その間、周波数2.45GHz、最大出力700Wのマイクロ波を電気的に制御しながら連続照射し、反応温度を60℃に維持した。反応中も窒素ガスを50ml/minで流した。   On the other hand, a catalyst (average particle diameter of about 1 mm) in which 5% palladium (Pd) was supported on granular activated carbon (trade name: Diahop 008) was prepared and dried at 70 ° C. for 8 hours. 24 g of this catalyst was put into a catalyst filling device installed in a microwave generator, and the catalyst was filled by sandwiching the top and bottom with a mesh of 100 mesh. While stirring the inside of the reaction tank with a magnetic stirrer, the mixed solution in the reaction tank was extracted with a pump and continuously circulated at a rate of 10 ml / min through the catalyst filling device equipped with an optical fiber thermometer. Returned and circulated at room temperature. Meanwhile, microwaves having a frequency of 2.45 GHz and a maximum output of 700 W were continuously irradiated while being electrically controlled, and the reaction temperature was maintained at 60 ° C. Nitrogen gas was allowed to flow at 50 ml / min during the reaction.

触媒充填装置内を流通させた混合溶液中のPCB濃度を定期的にサンプリングし、サンプリングした混合溶液中のPCB濃度は、DB1(J&Wサイエンティフィック製)をキャピラリーカラムとする(株)島津製作所製のガスクロマトグラフィー質量分析計QP5050AW(「GC−MS」)を用いて分析した。   The PCB concentration in the mixed solution circulated in the catalyst filling device is periodically sampled, and the PCB concentration in the sampled mixed solution is made by Shimadzu Corporation using DB1 (manufactured by J & W Scientific) as a capillary column. Analysis was performed using a gas chromatography mass spectrometer QP5050AW (“GC-MS”).

混合溶液中のPCB濃度が目標の0.5ppm以下にならなかった場合は、混合溶液を再び触媒充填装置に流通、循環させた後、反応槽内に戻す操作を繰り返した。   When the PCB concentration in the mixed solution did not become the target of 0.5 ppm or less, the operation of returning the mixed solution into the reaction tank after circulating and circulating the mixed solution through the catalyst filling device was repeated.

1回目のPCB分解試験終了後、IPA再使用2回目の試験として、分解処理後の処理液に、1回目で用いたPCB1.3ml、KOHフレーク1.99gを添加し、1回目の操作と全く同様の方法にて、PCB濃度が0.5ppm以下になるまで分解処理を行った。   After the completion of the first PCB decomposition test, as a second test of IPA reuse, 1.3 ml of PCB used in the first time and 1.99 g of KOH flakes were added to the treatment solution after the decomposition treatment, and completely the same as the first operation. In the same manner, decomposition treatment was performed until the PCB concentration became 0.5 ppm or less.

IPA再使用2回目の試験終了後、IPA再使用3回目の試験として、1回目で用いたPCB1.3ml、KOHフレーク1.99gを添加し、1回目の操作と全く同様の方法にて、PCB濃度が0.5ppm以下になるまで分解処理を行った。以下同様に、IPA再使用4回目〜10回目の試験を行った。   After the second test of IPA reuse, as the third test of IPA reuse, 1.3 ml of PCB used in the first time and 1.99 g of KOH flakes were added, and the PCB was completely treated in the same manner as in the first operation. The decomposition treatment was performed until the concentration became 0.5 ppm or less. Similarly, IPA reuse 4th to 10th tests were performed.

各試験について、PCB濃度0.5ppm以下になるまでの分解所要時間を表1に示した。表1の結果から明らかなように、IPAをそのまま10回は繰り返し利用できることが確認された。   Table 1 shows the time required for decomposition until the PCB concentration reaches 0.5 ppm or less for each test. As is apparent from the results in Table 1, it was confirmed that IPA can be used repeatedly 10 times as it is.

(実施例2)
PCB(KC−400/トリクロロベンゼンの混合物)2.6ml(PCB濃度2wt%/IPA)、KOHフレーク3.98g(1.2当量対塩素)、イソプロピルアルコール(IPA)147.4mlを用いた以外は、実施例1と同様の方法で、1回目のPCB分解試験を実施した。
(Example 2)
Except that 2.6 ml of PCB (mixture of KC-400 / trichlorobenzene) (PCB concentration 2 wt% / IPA), 3.98 g of KOH flakes (1.2 equivalents to chlorine) and 147.4 ml of isopropyl alcohol (IPA) were used. The first PCB decomposition test was carried out in the same manner as in Example 1.

1回目のPCB分解試験終了後、IPA再使用2回目の試験として、分解処理後の処理液に、1回目で用いたPCB2.6ml、KOHフレーク3.98gを添加し、1回目の操作と全く同様の方法にて、PCB濃度が0.5ppm以下になるまで分解処理を行った。   After the completion of the first PCB decomposition test, as a second test of IPA reuse, 2.6 ml of PCB used in the first time and 3.98 g of KOH flakes were added to the treatment solution after the decomposition treatment, and completely the same as the first operation. In the same manner, the decomposition treatment was performed until the PCB concentration became 0.5 ppm or less.

IPA再使用2回目の試験終了後、IPA再使用3回目の試験として、1回目で用いたPCB2.6ml、KOHフレーク3.98gを添加し、1回目の操作と全く同様の方法にて、PCB濃度が0.5ppm以下になるまで分解処理を行った。以下同様に、IPA再使用3回目の試験を行った。   After the second test of IPA reuse, as a third test of IPA reuse, 2.6 ml of PCB used in the first time and 3.98 g of KOH flakes were added, and PCB was completely treated in the same manner as in the first operation. The decomposition treatment was performed until the concentration became 0.5 ppm or less. In the same manner, the third test of IPA reuse was conducted.

各試験について、PCB濃度0.5ppm以下になるまでの分解所要時間を表1に示した。表1の結果から明らかなように、IPAをそのまま4回は繰り返し利用できることが確認され、分解所要時間も15時間以内で終了した。   Table 1 shows the time required for decomposition until the PCB concentration reaches 0.5 ppm or less for each test. As is apparent from the results in Table 1, it was confirmed that IPA could be used repeatedly four times as it was, and the time required for decomposition was also completed within 15 hours.

(実施例3)
PCB(KC−400/トリクロロベンゼンの混合物)3.9ml(PCB濃度3wt%/IPA)、KOHフレーク5.98g(1.2当量対塩素)、イソプロピルアルコール(IPA)146.1mlを用いた以外は、実施例1と同様の方法で、1回目のPCB分解試験を実施した。
(Example 3)
Except for using 3.9 ml of PCB (mixture of KC-400 / trichlorobenzene) (PCB concentration 3 wt% / IPA), 5.98 g of KOH flakes (1.2 equivalents to chlorine), and 146.1 ml of isopropyl alcohol (IPA). The first PCB decomposition test was carried out in the same manner as in Example 1.

1回目のPCB分解試験終了後、IPA再使用2回目の試験として、分解処理後の処理液に、1回目で用いたPCB3.9ml、KOHフレーク5.98gを添加し、1回目の操作と全く同様の方法にて、PCB濃度が0.5ppm以下になるまで分解処理を行った。   After the completion of the first PCB decomposition test, as a second test of IPA reuse, 3.9 ml of PCB used in the first time and 5.98 g of KOH flakes were added to the treated solution after the decomposition treatment, and completely the same as the first operation. In the same manner, decomposition treatment was performed until the PCB concentration became 0.5 ppm or less.

各試験について、PCB濃度0.5ppm以下になるまでの分解所要時間を表1に示した。表1の結果から明らかなように、IPAをそのまま2回は繰り返し利用できることが確認された。   Table 1 shows the time required for decomposition until the PCB concentration reaches 0.5 ppm or less for each test. As is clear from the results in Table 1, it was confirmed that IPA can be used twice as it is.

Figure 0003976332
Figure 0003976332

以上のように、本発明に係る分解方法では、分解試験におけるPCB濃度を最適濃度に設定することにより、PCB分解処理効率を図ることが可能となる。上記の例で言えば、PCB濃度1%では反応溶液を少なくとも10回使用できるため、PCB濃度3%で反応溶液を2回使用した場合よりも、同じ溶媒量で10/6倍量のPCBを分解処理することができる。   As described above, in the decomposition method according to the present invention, the PCB decomposition processing efficiency can be improved by setting the PCB concentration in the decomposition test to the optimum concentration. In the above example, since the reaction solution can be used at least 10 times with a PCB concentration of 1%, 10/6 times the amount of PCB with the same solvent amount is used compared with the case where the reaction solution is used twice with a PCB concentration of 3%. It can be decomposed.

従って、有機塩素化合物の種類に応じて分解条件を設定し、最も経済性に優れたPCB濃度を設定し、反応溶液を繰り返し利用するようにすることで、経済性に優れた分解方法となり得る。   Therefore, by setting the decomposition conditions according to the type of the organic chlorine compound, setting the most economical PCB concentration, and repeatedly using the reaction solution, the decomposition method can be economical.

本発明に係る分解方法は、ポリ塩化ビフェニール(PCB)類等の難分解性有機塩素化合物の分解処理に利用することができる他、トリクロロベンゼン、ジクロロベンゼン等の芳香族塩素化合物やジクロロエタン等の脂肪族塩素化合物、ダイオキシン類の分解処理にも利用することができる。   The decomposition method according to the present invention can be used for decomposition treatment of hardly decomposable organic chlorine compounds such as polychlorinated biphenyls (PCBs), as well as aromatic chlorine compounds such as trichlorobenzene and dichlorobenzene, and fats such as dichloroethane. It can also be used for the decomposition treatment of group chlorine compounds and dioxins.

本発明に係る高濃度PCB分解方法を説明する図である。It is a figure explaining the high concentration PCB decomposition | disassembly method based on this invention. 本発明に係る高濃度PCB分解方法の概略フロー図である。It is a schematic flowchart of the high concentration PCB decomposition | disassembly method based on this invention.

符号の説明Explanation of symbols

10 混合溶液
20 反応槽
21 循環ポンプ
22,23 配管
30 マイクロ波装置
35 触媒充填装置
DESCRIPTION OF SYMBOLS 10 Mixed solution 20 Reaction tank 21 Circulation pump 22,23 Piping 30 Microwave apparatus 35 Catalyst filling apparatus

Claims (8)

炭素結晶化合物及び担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒をカラムに充填し、ポリ塩化ビフェニールを50質量%以上含有する有機塩素化合物と水素供与性溶媒とアルカリ化合物とを含む反応溶液であって、前記有機塩素化合物を0.2〜5wt%(対水素供与性溶媒)含む反応溶液を、前記触媒を充填したカラムに流通させながら有機塩素化合物の脱塩素化を行い、脱塩素化反応後の溶液に、新たな有機塩素化合物0.2〜5wt%(対水素供与性溶媒)と該有機塩素化合物に対し0.8〜1.5当量(対塩素)のアルカリ化合物を添加し、前記反応溶液を再利用しながら脱塩素化することを特徴とする高濃度有機塩素化合物の分解方法。 An organic chlorine compound containing 50% by mass or more of a polychlorinated biphenyl, a hydrogen donating solvent, an alkali compound, packed in a column with at least one catalyst selected from a carbon crystal compound and a compound having a metal supported on a carrier The reaction solution containing 0.2 to 5 wt% (to hydrogen donating solvent) of the organochlorine compound is dechlorinated while circulating the reaction solution through the column packed with the catalyst. , the solution after dechlorination, alkali compound 0.8 to 1.5 equivalents to new organic chlorine compounds 0.2~5Wt% (vs. hydrogen donor solvent) and organic chlorine compounds (to chlorine) A method for decomposing a high-concentration organochlorine compound, characterized in that dechlorination is performed while reusing the reaction solution. 反応溶液の再利用回数が、少なくとも2回以上である請求項1に記載の高濃度有機塩素化合物の分解方法。   The method for decomposing a high-concentration organochlorine compound according to claim 1, wherein the reaction solution is reused at least twice. 反応溶液の再利用回数1回当たり0回〜毎回の頻度で触媒を交換する請求項1又は2に記載の高濃度有機塩素化合物の分解方法。   The method for decomposing a high-concentration organochlorine compound according to claim 1 or 2, wherein the catalyst is exchanged at a frequency of 0 to every time the reaction solution is reused. 有機塩素化合物の分解に際し、触媒充填カラム内の反応溶液へマイクロ波を照射する請求項1〜のいずれかに記載の高濃度有機塩素化合物の分解方法。 The method for decomposing a high-concentration organochlorine compound according to any one of claims 1 to 3 , wherein microwaves are irradiated to the reaction solution in the catalyst packed column when decomposing the organochlorine compound. 反応溶液を連続して触媒充填カラムに流通する請求項1〜のいずれかに記載の高濃度有機塩素化合物の分解方法。 The method for decomposing a high-concentration organochlorine compound according to any one of claims 1 to 4 , wherein the reaction solution is continuously passed through a catalyst packed column. アルカリ化合物が、NaOH又はKOHである請求項1〜のいずれかに記載の高濃度有機塩素化合物の分解方法。 The method for decomposing a high-concentration organochlorine compound according to any one of claims 1 to 5 , wherein the alkali compound is NaOH or KOH. 触媒が、パラジウム担持炭素化合物である請求項1〜のいずれかに記載の高濃度有機塩素化合物の分解方法。 The method for decomposing a high-concentration organochlorine compound according to any one of claims 1 to 6 , wherein the catalyst is a palladium-supported carbon compound. 水素供与性溶媒が、イソプロピルアルコールである請求項1〜のいずれかに記載の高濃度有機塩素化合物の分解方法。 The method for decomposing a high-concentration organochlorine compound according to any one of claims 1 to 7 , wherein the hydrogen-donating solvent is isopropyl alcohol.
JP2007003964A 2006-03-24 2007-01-12 Decomposition method of high-concentration organochlorine compounds Expired - Fee Related JP3976332B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003964A JP3976332B1 (en) 2006-03-24 2007-01-12 Decomposition method of high-concentration organochlorine compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006083881 2006-03-24
JP2007003964A JP3976332B1 (en) 2006-03-24 2007-01-12 Decomposition method of high-concentration organochlorine compounds

Publications (2)

Publication Number Publication Date
JP3976332B1 true JP3976332B1 (en) 2007-09-19
JP2008194063A JP2008194063A (en) 2008-08-28

Family

ID=38595899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003964A Expired - Fee Related JP3976332B1 (en) 2006-03-24 2007-01-12 Decomposition method of high-concentration organochlorine compounds

Country Status (1)

Country Link
JP (1) JP3976332B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202314A (en) * 2012-03-29 2013-10-07 Tokyo Electric Power Co Inc:The Method and apparatus for decomposing organic halogen compound
CN105214680B (en) * 2015-10-23 2017-09-05 杭州尹力环保科技有限公司 A kind of chloride catalyst for purifying organic waste gas and preparation method thereof
CN105289599B (en) * 2015-11-23 2017-09-05 杭州尹力环保科技有限公司 A kind of graininess Pd Pt catalyst for purifying organic waste gas and preparation method thereof

Also Published As

Publication number Publication date
JP2008194063A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
CN104812710B (en) The hydrothermal oxidization processing method of organohalogen compound and its catalyst
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2006142278A (en) Method for detoxifying instrument containing organic halogen compound
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP5344684B2 (en) Aromatic halide dehalogenation method
JP3970900B1 (en) Decomposition treatment method of organic halogen compounds by microwave
JP3970277B2 (en) Contaminated oil treatment method
JP3966886B2 (en) Method for regenerating dechlorination catalyst
JP2007105061A (en) Microwave simultaneous use type decomposing method and decomposing system of organic halogen compound
JP2007105063A (en) Method of decomposing organic halogen compound and microwave built-in type decomposition system
JP3976329B2 (en) Organic halogen compound decomposition treatment method and mobile decomposition treatment system
JP3678740B1 (en) Method for dechlorination of PCB-containing high-concentration organic halogen compounds
JP4009607B2 (en) Method for regenerating catalyst and method for decomposing organic halogen compound using the regenerated catalyst
JP2007105059A (en) Method of decomposing dioxins
JP2007105060A (en) Method of decomposing dioxins in liquid
JP3678739B1 (en) Dechlorination method for high concentration PCB
JP4396826B2 (en) Organic halogen compound decomposition treatment method and loop decomposition system
JP3678738B2 (en) Method for dechlorination of polychlorinated biphenyls
JP3970286B2 (en) Organic halogen compound decomposition treatment method and microwave combined decomposition treatment system
KR101576079B1 (en) Treating Apparatus of Waste Insulating Oil with Polychlorinated Biphenyls
JP4329498B2 (en) Dechlorination method for PCB in pole transformer
JP2005270388A (en) Method for decomposing organic halogen compound
JPH08266888A (en) Method for decomposing aromatic halogen compound
JP2010240326A (en) Detoxification method for intermingled organic chlorine compounds

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees