JP3970277B2 - Contaminated oil treatment method - Google Patents

Contaminated oil treatment method Download PDF

Info

Publication number
JP3970277B2
JP3970277B2 JP2004306169A JP2004306169A JP3970277B2 JP 3970277 B2 JP3970277 B2 JP 3970277B2 JP 2004306169 A JP2004306169 A JP 2004306169A JP 2004306169 A JP2004306169 A JP 2004306169A JP 3970277 B2 JP3970277 B2 JP 3970277B2
Authority
JP
Japan
Prior art keywords
compound
oil
catalyst
dechlorination
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004306169A
Other languages
Japanese (ja)
Other versions
JP2006116027A5 (en
JP2006116027A (en
Inventor
鉱一 伊藤
雅行 井樋
耕治 天野
裕子 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2004306169A priority Critical patent/JP3970277B2/en
Publication of JP2006116027A publication Critical patent/JP2006116027A/en
Publication of JP2006116027A5 publication Critical patent/JP2006116027A5/ja
Application granted granted Critical
Publication of JP3970277B2 publication Critical patent/JP3970277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、ポリ塩化ビフェニール(以下、PCBと略称することがある。)等の難分解性有機ハロゲン化合物を含有する油類を脱塩素化して無害化する方法に関する。   The present invention relates to a method of dechlorinating and detoxifying oils containing a hardly decomposable organic halogen compound such as polychlorinated biphenyl (hereinafter sometimes abbreviated as PCB).

各種ハロゲン化有機化合物のなかでも、PCBは人体を含む生体に極めて有害であることから、1973年に特定化学物質に指定され、その製造、輸入、使用が禁止されている。しかし、その後適切な廃棄方法が決まらないまま数万トンのPCBが未処理の状態で放置されている。PCBは、高温(30〜750℃)分解では強毒性のダイオキシン類である塩素化ジベンゾ−p−ダイオキシン(PCDD)とジベンゾフラン(PCDF)が副生することから、技術的にPCBを安全に分解することが難しく、永年にわたりPCBの安全で効率的な各種分解法が検討されている。   Among various halogenated organic compounds, PCB is extremely harmful to living organisms including the human body. Therefore, it was designated as a specific chemical substance in 1973, and its manufacture, import and use are prohibited. However, after that, tens of thousands of tons of PCBs are left untreated without determining an appropriate disposal method. PCB decomposes PCB safely technically because chlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF), which are highly toxic dioxins, are by-produced at high temperature (30 to 750 ° C) decomposition. This is difficult, and various safe and efficient decomposition methods for PCBs have been studied for many years.

PCBの分解条件としては、高温、高圧での実施が一般的に知られるところであるが、このような条件での実施は高温高圧容器、さらには耐食性容器が必要となり、かつ多大なエネルギーを要するものであった。また、高温での反応であるため、副反応生成物が生成する可能性が高いと考えられる。   As a decomposition condition of PCB, implementation at high temperature and high pressure is generally known. However, implementation under such conditions requires a high-temperature and high-pressure container and further a corrosion-resistant container and requires a lot of energy. Met. Moreover, since it is a reaction at a high temperature, it is considered that there is a high possibility that a side reaction product is generated.

現状では、PCB処理設備の建設にはアセスメントが必要であることより、特殊な装置を用いることなく変圧器貯蔵所などの現場でもPCBの無害化処理が可能で、しかも、PCBを安全に大量処理することができ、かつ安価に分解処理できる方法の開発が望まれている。   Currently, assessment is required for the construction of PCB processing facilities, so PCBs can be detoxified at sites such as transformer storage without using special equipment, and PCBs can be safely processed in large quantities. It is desired to develop a method that can be decomposed at low cost.

PCB等を含有する油類を無害化する方法としては、例えば、汚染油を耐熱耐アルカリ性溶媒中で分解抽出する方法(特許文献1等)、汚染油を水素ガス存在下で脱塩素化する方法(特許文献2等)、汚染油を吸着剤で処理する方法(特許文献3等)などが報告されている。   Examples of methods for detoxifying oils containing PCB and the like include, for example, a method of decomposing and extracting contaminated oil in a heat-resistant and alkali-resistant solvent (Patent Document 1, etc.), and a method of dechlorinating contaminated oil in the presence of hydrogen gas (Patent Document 2 etc.), a method of treating contaminated oil with an adsorbent (Patent Document 3 etc.) and the like have been reported.

特許文献1記載の方法は、PCBを少量含む回収トランス油(炭化水素油)を、ナトリウムエトキシドやNaOH等のアルカリ物質の存在下、1,3−ジメチル−2−イミダゾリジノン(DMI)やスルホラン等の高沸点かつ耐熱アルカリ性極性溶剤と100〜300℃で約2時間接触させたのち、炭化水素油と溶剤とを分液することにより、炭化水素油からPCBを除去している。特許文献2記載の方法は、PCBを含有する電気絶縁油にゼオライト・ニッケル触媒を添加し、水素ガスを充填したオートクレーブ中で200℃、5時間反応させた後、触媒を濾別した油に水を加えて攪拌し、油水分離することによって精製油を得ている。   In the method described in Patent Document 1, recovered trans-oil (hydrocarbon oil) containing a small amount of PCB is treated with 1,3-dimethyl-2-imidazolidinone (DMI) or the like in the presence of an alkaline substance such as sodium ethoxide or NaOH. After contacting with a high boiling and heat-resistant alkaline polar solvent such as sulfolane at 100 to 300 ° C. for about 2 hours, the hydrocarbon oil and the solvent are separated to remove PCB from the hydrocarbon oil. In the method described in Patent Document 2, a zeolite / nickel catalyst is added to an electrical insulating oil containing PCB, and the mixture is reacted in an autoclave filled with hydrogen gas at 200 ° C. for 5 hours. To obtain a refined oil by stirring and oil-water separation.

特許文献3記載の方法は、汚染油を珪酸マグネシウム等の固体酸に接触させてPCBを吸着剤に吸着させることにより、PCBを選択的に吸着除去している。
特開平6−25691号公報(請求項1、段落番号0004、第3頁の表1等) 特開平4−202500号公報(特許請求の範囲第1項、第4頁左上欄第11行〜右上欄第5行等) 特開2003−225507号公報(請求項1、請求項4、段落番号0027〜0028等)
In the method described in Patent Document 3, PCB is selectively adsorbed and removed by bringing contaminated oil into contact with a solid acid such as magnesium silicate and adsorbing PCB onto an adsorbent.
JP-A-6-25691 (Claim 1, paragraph number 0004, Table 1 on page 3) Japanese Patent Laid-Open No. 4-202500 (Claim 1st claim, page 4, upper left column, line 11 to upper right column, line 5) JP 2003-225507 A (Claim 1, Claim 4, Paragraph Nos. 0027 to 0028, etc.)

しかしながら、特許文献1記載の方法は残存PCBが多く、脱塩素化を十分行うためには反応時間を長くする必要があり、処理方法もPCBの大量処理には不向きである;特許文献2記載の方法は水素を扱うための防爆装置等が必要とされるため、実用的ではない;特許文献3記載の方法は、PCBを吸着させた吸着剤を有機溶媒と接触させてPCBを有機溶媒へ抽出する方法であり、PCBを高濃度で回収できるが、回収したPCBの処理が必要である;などの問題点を有していた。   However, the method described in Patent Document 1 has a large amount of residual PCB, and it is necessary to lengthen the reaction time in order to sufficiently perform dechlorination, and the treatment method is also unsuitable for mass processing of PCB; This method is not practical because it requires an explosion-proof device for handling hydrogen, etc .; the method described in Patent Document 3 contacts the adsorbent adsorbing PCB with an organic solvent to extract PCB into the organic solvent. However, the PCB can be recovered at a high concentration, but the recovered PCB needs to be treated.

従って、本発明者等は、汚染油に水素供与性溶媒とアルカリ化合物とを添加した混合溶液を触媒と接触させることにより、常圧下でも簡単かつ大量にPCBを脱塩素化できる方法を提案した(特願2003−378452;特許第3698738号公報、特願2004−191589;特許第3626960号公報等参照)。本発明者等が提案した脱塩素化方法は、常温で1〜3週間、又は、60℃程度のマイクロ波加熱下で2〜3時間処理することによって、汚染油中のPCBを0.5ppm以下にすることができる点で優れた方法ではあるが、実際に使用された電気絶縁油等の実油中には、絶縁油が劣化して生成した酸化物等が含まれているため、分解反応を阻害する要因となっていた。 Therefore, the present inventors proposed a method capable of dechlorinating PCB easily and in large quantities even under normal pressure by bringing a mixed solution obtained by adding a hydrogen-donating solvent and an alkali compound into contaminated oil with a catalyst. Japanese Patent Application No. 2003-378452 ; Japanese Patent No. 36988738 , Japanese Patent Application No. 2004-191589 ; Japanese Patent No. 3626960, etc.). In the dechlorination method proposed by the present inventors, the PCB in the contaminated oil is 0.5 ppm or less by treating at room temperature for 1 to 3 weeks or under microwave heating at about 60 ° C. for 2 to 3 hours. Although it is an excellent method in that it can be made into an actual oil such as an electric insulating oil that is actually used, it contains an oxide etc. produced by the deterioration of the insulating oil, so the decomposition reaction It became a factor to inhibit.

本発明は、前記従来の課題に鑑みてなされたものであり、難分解性有機ハロゲン化合物を含有する油類を、迅速にかつ大量に脱塩素化して無害化することができる汚染油の処理方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and is a method for treating contaminated oil, which can quickly dechlorinate and detoxify oils containing persistent organic halogen compounds in large quantities. The purpose is to provide.

本発明者らは、前記課題を解決するため鋭意検討した結果、PCBを含有する油類をシリカゲルに接触させた後に脱塩素化処理することによって、脱塩素化処理速度が格段にくなることを見出し、本発明に到達した。 The present inventors have made intensive studies for solving the above problems, by treatment dechlorination after contacting the oils containing PCB silica gel, dechlorination processing speed be significantly faster Kunar And reached the present invention.

すなわち、本発明は、難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルに接触させることにより、前記廃油類に含まれる難分解性有機ハロゲン化合物の分解反応阻害物質である油類の酸化物、油類の添加剤または塗料を前記吸着剤に吸着させた後、吸着剤接触後の前記廃油類を脱塩素化処理することを特徴とする汚染油の処理方法を提供する。 That is, the present invention provides an oil oxide which is a substance that inhibits the decomposition reaction of a hardly decomposable organic halogen compound contained in the waste oil by bringing waste oil containing the hardly decomposable organic halogen compound into contact with silica gel . The present invention provides a method for treating contaminated oil, comprising adsorbing an additive or paint of oil to the adsorbent and then dechlorinating the waste oil after contact with the adsorbent.

本発明の汚染油の処理方法においては、吸着剤接触後の廃油類に水素供与性溶媒及びアルカリ化合物を添加し、触媒存在下で脱塩素化処理することが好ましい。   In the method for treating a contaminated oil of the present invention, it is preferable to add a hydrogen-donating solvent and an alkali compound to the waste oil after contact with the adsorbent, and dechlorinate in the presence of a catalyst.

また、前記触媒が、担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒であることが好ましい。   The catalyst is preferably at least one catalyst selected from compounds in which a metal is supported on a carrier.

また、前記水素供与性溶媒が、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物及び脂環式化合物からなる群から選ばれた少なくとも1つの化合物であることが好ましい。   The hydrogen donating solvent is preferably at least one compound selected from the group consisting of a heterocyclic compound, an amine compound, an alcohol compound, a ketone compound and an alicyclic compound.

本発明によれば、難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルに接触させて脱塩素化反応阻害物質を除去することにより、汚染油の脱塩素化を迅速に行うことができる。 According to the present invention, waste oil containing a hardly decomposable organic halogen compound is brought into contact with silica gel to remove a dechlorination reaction-inhibiting substance, whereby the contaminated oil can be quickly dechlorinated.

本発明によれば、難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルに接触させた後、脱塩素化することにより、汚染油を迅速に無害化することができる。また、シリカゲル接触後の油類に水素供与性溶媒及びアルカリ化合物を添加し、触媒存在下に脱塩素化することにより、常圧かつ低温での脱塩素化処理が可能となるため、副反応生成物も少ない。よって、変圧器貯蔵所などの現場でも簡易に無害化処理できると共に、実用的な規模で大量の難分解性有機ハロゲン化合物を無害化することができる。 According to the present invention, waste oil containing a hardly decomposable organic halogen compound is brought into contact with silica gel and then dechlorinated, so that contaminated oil can be quickly rendered harmless. In addition, by adding a hydrogen-donating solvent and an alkali compound to the oil after contact with silica gel and dechlorinating in the presence of a catalyst, dechlorination can be performed at normal pressure and low temperature. There are few things. Therefore, it is possible to easily detoxify even at a site such as a transformer store, and to render a large amount of hardly decomposable organic halogen compounds harmless on a practical scale.

本発明の汚染油の処理方法は、難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルに接触させることにより、前記廃油類に含まれる難分解性有機ハロゲン化合物の分解反応阻害物質である油類の酸化物、油類の添加剤または塗料を前記吸着剤に吸着させた後、吸着剤接触後の前記廃油類を脱塩素化処理することを特徴とするものである。以下、本発明の詳細を説明する。 The method for treating contaminated oil according to the present invention is an oil which is a substance that inhibits the decomposition reaction of a hardly decomposable organic halogen compound contained in the waste oil by bringing waste oil containing a hardly decomposable organic halogen compound into contact with silica gel. The waste oil after contact with the adsorbent is subjected to dechlorination treatment after adsorbing an oxide, an oil additive, or a paint on the adsorbent. Details of the present invention will be described below.

本発明を適用可能な、本発明の処理対象である汚染油とは、動植物油、精油、樹脂油、鉱油からなる少なくとも1種又は2種以上の混合物からなる油類であって、難分解性有機ハロゲン化合物を含有するものである。また、本発明の方法を適用するに適した難分解性有機ハロゲン化合物とは、例えばポリ塩化ビフェニール(PCB)類、モノクロロベンゼン(MCB)、1,2−ジクロロベンゼン(DCB)、1,2,4−トリクロロベンゼン(TCB)等のポリクロロベンゼン、2,4,5−トリクロロフェノキシ酢酸(2,4,5−T)、ポリクロロターフェニル(PCT)、農薬(アルドリン、ディルドリン、p,p′−DDT、p,p′−DDE)、オゾン層の破壊物質であるフロン類、ハロン類、及びテトラクロロエチレン、トリクロロエチレンなどを挙げることができ、その種類は特に限定されるものではないが、好ましくはPCB類である。   The contaminated oil to which the present invention is applicable and which is the treatment target of the present invention is an oil composed of at least one kind or a mixture of two or more kinds consisting of animal and vegetable oils, essential oils, resin oils, mineral oils, and is hardly decomposable. It contains an organic halogen compound. Examples of the hardly decomposable organic halogen compounds suitable for applying the method of the present invention include polychlorinated biphenyls (PCBs), monochlorobenzene (MCB), 1,2-dichlorobenzene (DCB), 1,2, Polychlorobenzene such as 4-trichlorobenzene (TCB), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), polychloroterphenyl (PCT), agricultural chemicals (aldrin, dieldrin, p, p'- DDT, p, p'-DDE), chlorofluorocarbons, halons, tetrachloroethylene, trichloroethylene, etc., which are ozone layer depleting substances, and the type thereof is not particularly limited, but preferably PCBs. It is.

前記のポリ塩化ビフェニール類は、ビフェニール化合物に塩素原子が置換した化合物が含まれ、その置換塩素原子の数は1個〜10個である。平均置換塩素原子数は、一般に2〜6個である。本発明では、これらのポリ塩化ビフェニールから選択された少なくとも1種又は2種以上の混合物であってもよい。   The polychlorinated biphenyls include a compound in which a chlorine atom is substituted for a biphenyl compound, and the number of substituted chlorine atoms is 1 to 10. The average number of substituted chlorine atoms is generally 2-6. In the present invention, at least one selected from these polychlorinated biphenyls or a mixture of two or more may be used.

一般に、ポリ塩化ビフェニールは単一化合物として存在せずに、塩素原子の数や置換位置が異なる混合物として存在する。従って、塩素原子の数及び置換位置の組み合せからして209種の異性体が存在し、市販品には100を越える異性体が存在している。   In general, polychlorinated biphenyls do not exist as a single compound but exist as a mixture having different numbers of chlorine atoms and different substitution positions. Therefore, there are 209 isomers based on the combination of the number of chlorine atoms and the substitution position, and more than 100 isomers exist in the commercial product.

例えば、コプラナーPCBとしては、3,4,4’,5−テトラクロロビフェニール、3,3’,4,4’−テトラクロロビフェニール、3,3’,4,4’,5−ペンタクロロビフェニール、3,3’,4,4’,5,5’−ヘキサクロロビフェニール、2,3,3’,4,4’−ペンタクロロビフェニール、2,3,4,4’,5−ペンタクロロビフェニール、2,3’,4,4’,5−ペンタクロロビフェニール、2’,3,4,4’,5−ペンタクロロビフェニール、2,3,3’,4,4’,5−ヘキサクロロビフェニール、2,3,3’,4,4’,5’−ヘキサクロロビフェニール、2,3’,4,4’,5,5’−ヘキサクロロビフェニール、2,3,3’,4,4’,5,5’−ヘプタクロロビフェニール等が挙げられる。   For example, as a coplanar PCB, 3,4,4 ′, 5-tetrachlorobiphenyl, 3,3 ′, 4,4′-tetrachlorobiphenyl, 3,3 ′, 4,4 ′, 5-pentachlorobiphenyl, 3,3 ′, 4,4 ′, 5,5′-hexachlorobiphenyl, 2,3,3 ′, 4,4′-pentachlorobiphenyl, 2,3,4,4 ′, 5-pentachlorobiphenyl, 2 , 3 ′, 4,4 ′, 5-pentachlorobiphenyl, 2 ′, 3,4,4 ′, 5-pentachlorobiphenyl, 2,3,3 ′, 4,4 ′, 5-hexachlorobiphenyl, 2, 3,3 ′, 4,4 ′, 5′-hexachlorobiphenyl, 2,3 ′, 4,4 ′, 5,5′-hexachlorobiphenyl, 2,3,3 ′, 4,4 ′, 5,5 ′ -Heptachlorobiphenyl and the like

PCBは、通常PCB単体の混合物として市販されており、これらがコンデンサやトランスに使用されている。その具体例としては、鐘淵化学(株)のKC−200(2塩化ビフェニール)、KC−300(3塩化ビフェニール)、KC−400(4塩化ビフェニール)、KC−500(5塩化ビフェニール)、KC−600(6塩化ビフェニール)や、三菱モンサイト(株)のアロクロール1254(54% Chlorine)等が挙げられる。また、市販のポリ塩化ビフェニール/ハロゲン化芳香族化合物の混合物としては、例えば、鐘淵化学(株)製のKC−1000(KC500/TCB=60/40(質量比)の混合物)、KC−1300(KC−300+DCB+4塩化ベンゼンの混合物)等が挙げられる。   PCBs are usually marketed as a mixture of PCBs alone, and these are used for capacitors and transformers. Specific examples include KC-200 (biphenyl dichloride), KC-300 (biphenyl trichloride), KC-400 (biphenyl tetrachloride), KC-500 (biphenyl pentachloride), KC from Kaneka Chemical Co., Ltd. -600 (biphenyl hexachloride) and Arrochlor 1254 (54% Chlorine) manufactured by Mitsubishi Monsite Corporation. Moreover, as a mixture of commercially available polychlorinated biphenyl / halogenated aromatic compound, for example, KC-1000 (mixture of KC500 / TCB = 60/40 (mass ratio)) manufactured by Kaneka Chemical Co., Ltd., KC-1300 (Mixture of KC-300 + DCB + tetrachlorobenzene) and the like.

以下に一例として、市販品KC−300の異性体の分布(質量%)を示す。
モノクロロビフェニール 若干
ジクロロビフェニール 12.10%
トリクロロビフェニール 54.98%
テトラクロロビフェニール 27.05%
ペンタクロロビフェニール 4.72%
ヘキサクロロビフェニール 1.08%
ヘプタクロロビフェニール 若干
オクタクロロビフェニール 0
ノナクロロビフェニール 0
デカクロロビフェニール 0
As an example, the distribution (mass%) of isomers of the commercial product KC-300 is shown below.
Monochrome biphenyl slightly dichlorobiphenyl 12.10%
Trichlorobiphenyl 54.98%
Tetrachlorobiphenyl 27.05%
Pentachlorobiphenyl 4.72%
Hexachlorobiphenyl 1.08%
Heptachlorobiphenyl slightly Octachlorobiphenyl 0
Nonachlorobiphenyl 0
Decachlorobiphenyl 0

本発明においては、上記の難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルと接触させて廃油類中の脱塩素化反応を阻害する物質を選択的に吸着除去する。例えば、0.5ppm〜数1000ppmのPCB類を含有した絶縁油などの油類を、シリカゲルに連続的に接触させ、選択的に油類の酸化物、油類の添加剤(酸化防止剤、着色剤等)、柱上変圧器容器やコンデンサ容器等に使用された塗料等を吸着剤に吸着させる。 In the present invention, the waste oil containing the hardly decomposable organic halogen compound is brought into contact with silica gel to selectively adsorb and remove substances that inhibit the dechlorination reaction in the waste oil. For example, waste oil such as insulating oil containing PCB such 0.5ppm~ number 1000 ppm, is continuously in contact with the silica gel, oxides selectively oils, oils of additives (antioxidants, Colorant, etc.), paint used in pole transformer containers, capacitor containers, etc. are adsorbed to the adsorbent.

廃油類にシリカゲルを接触させるときの温度は、特に限定されないが、0〜60℃が好ましい。温度が低すぎる場合は、油類の粘度が上昇して取扱いが困難になる。一方、温度が高すぎる場合は、油類の酸化や、揮発性の難分解性有機ハロゲン化合物の気化などが発生し、処理環境のコントロールが困難になる。 The temperature at which the silica gel is brought into contact with the waste oil is not particularly limited, but is preferably 0 to 60 ° C. If the temperature is too low, the viscosity of the oil increases and handling becomes difficult. On the other hand, when the temperature is too high, oxidation of oils, vaporization of volatile hardly decomposable organic halogen compounds, and the like occur, making it difficult to control the processing environment.

廃油類にシリカゲルを接触させる時間は、油類の粘度、被処理油類とシリカゲルとの使用比率、シリカゲルの種類(粒径、細孔径、細孔容積)などの要因によって異なるため特に限定されないが、処理効果を損なわない時間であれば短時間でも良く、通常2分〜80分が好ましい。接触時間が短い場合は、油類の酸化物等の除去率が低下し、一方、接触時間が長すぎる場合は除去率が頭打ちになり、汚染油の迅速処理の要請にも反する。 The time for which the silica gel is brought into contact with the waste oil is not particularly limited because it varies depending on factors such as the viscosity of the oil, the ratio between the oil to be treated and the silica gel, and the type of silica gel (particle size, pore diameter, pore volume). As long as it does not impair the treatment effect, it may be a short time, and usually 2 minutes to 80 minutes is preferable. When the contact time is short, the removal rate of oil oxides and the like decreases, while when the contact time is too long, the removal rate reaches a peak, which is contrary to the request for rapid treatment of contaminated oil.

廃油類とシリカゲルとを接触させる方式は、特に限定されるものではなく、公知の連続式あるいはバッチ式の方法を使用することができる。連続式により吸着処理する場合は、例えば、シリカゲルを充填した容器に廃油類を導入してシリカゲルと廃油類とを接触させながら処理することができる。また、バッチ式によって吸着処理する場合は、容器中の廃油類にシリカゲルを添加又は容器中のシリカゲルに廃油類を添加し、必要に応じて攪拌しながら、所定時間、シリカゲルと廃油類とを接触させる方法などいずれの方法であっても良い。 The method for bringing waste oils into contact with silica gel is not particularly limited, and a known continuous or batch method can be used. If you adsorption treatment by a continuous mode, for example, can be introduced the waste oil into a container filled with silica gel to handle while contacting the silica gel and waste oil. When adsorbing by batch method, add silica gel to the waste oil in the container or add the waste oil to the silica gel in the container and contact the silica gel and the waste oil for a predetermined time while stirring as necessary. Any method may be used.

シリカゲルは、脱塩素化反応を阻害する油類の酸化物等を選択的に吸着し、難分解性有機ハロゲン化合物をほとんど吸着しないことから、好ましく使用される。難分解性有機ハロゲン化合物が吸着剤に吸着された場合は、これを脱着させた後に脱塩素化処理するか、あるいは吸着剤ごと焼却処理するなどの工程が必要となり、汚染油の処理工程が煩雑化するからである。 Silica gel is preferably used because it selectively adsorbs oxides of oils that inhibit the dechlorination reaction and hardly adsorbs hardly decomposable organic halogen compounds. When a hard-to-decompose organohalogen compound is adsorbed on the adsorbent, a process such as dechlorination after desorption or incineration with the adsorbent is required, which complicates the contaminated oil treatment process. It is because it becomes.

次に、シリカゲルを接触させた後の廃油類を脱塩素化処理する。この脱塩素化方法は、特に限定されず、従来公知の方法を適用することができるが、難分解性のPCB類を脱塩素化する場合は、高温高圧反応装置や防爆装置が不要で、常圧でも比較的簡易に脱塩素化できる観点より、シリカゲル接触後の廃油類に、水素供与性溶媒とアルカリ化合物を添加した混合液を触媒存在下で脱塩素化処理する方法が好ましい。このような脱塩素化方法としては、特願2003−378452、同特願2004−304930;特許第3698738号公報、同2004−191589;特許第3626960号公報に記載のものがあげられる。この脱塩素化方法によれば、反応系に外部から水素ガスを吹き込んだ場合と同等もしくはそれ以上の速い速度でPCB類そのものが分解する。その機構は明らかではないが、アルカリ化合物から提供されるアルカリ金属ラジカルがPCB類の脱塩素化反応を促し、そこに水素供与性溶媒からの水素ラジカルが入り込むものと推察される。 Next, the waste oil after contacting with the silica gel is dechlorinated. This dechlorination method is not particularly limited, and a conventionally known method can be applied. However, when dechlorinating difficult-to-decompose PCBs, a high-temperature and high-pressure reactor or an explosion-proof device is not required, and From the viewpoint of being able to dechlorinate relatively easily even under pressure, a method of dechlorinating a mixed liquid obtained by adding a hydrogen-donating solvent and an alkali compound to waste oil after contact with silica gel in the presence of a catalyst is preferable. Such dechlorination method, Japanese Patent Application No. 2003-378452, Dotokunegai 2004-304930; Patent No. 3698738 discloses, the 2004-191589; those described in Japanese Patent No. 3626960 and the like. According to this dechlorination method, PCBs themselves are decomposed at a speed equal to or higher than that when hydrogen gas is blown into the reaction system from the outside. Although the mechanism is not clear, it is presumed that the alkali metal radical provided from the alkali compound promotes the dechlorination reaction of PCBs, and the hydrogen radical from the hydrogen donating solvent enters therein.

上記の脱塩素化において用いる「水素供与性溶媒」とは、ポリ塩化ビフェニール等の難分解性有機ハロゲン化合物から発生したラジカルに対して、水素原子を供与することができる溶媒を意味し、例えば、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物、及び脂環式化合物などの有機系水素供与性溶媒が挙げられる。これらの化合物を廃油類に添加することにより、脱塩素化効率を高めることができる。中でも、安全性の観点より、アルコール系化合物、ケトン系化合物、脂環式化合物が好ましく、特に、アルコール系化合物が好ましい。水素供与性溶媒は、1種単独で又は2種以上を任意に組合わせて使用することができる。   The “hydrogen-donating solvent” used in the above dechlorination means a solvent capable of donating a hydrogen atom to a radical generated from a hardly decomposable organic halogen compound such as polychlorinated biphenyl. Examples thereof include organic hydrogen-donating solvents such as heterocyclic compounds, amine compounds, alcohol compounds, ketone compounds, and alicyclic compounds. By adding these compounds to waste oils, the dechlorination efficiency can be increased. Among these, alcohol compounds, ketone compounds, and alicyclic compounds are preferable from the viewpoint of safety, and alcohol compounds are particularly preferable. A hydrogen-donating solvent can be used singly or in combination of two or more.

ここで、前記の複素環式化合物としては、例えば1,3−ジメチル−2−イミダゾリジノン(DMI)等が挙げられる。   Here, examples of the heterocyclic compound include 1,3-dimethyl-2-imidazolidinone (DMI).

前記のアミン系化合物としては、例えばジメチルエチレンジアミン等が挙げられる。   Examples of the amine compound include dimethylethylenediamine.

前記のアルコール系化合物としては、脂肪族アルコール、芳香族アルコールのいずれであってもよく、直鎖又は分岐鎖を有する一価アルコールや多価アルコールを用いることができる。アルコール系化合物の炭素数は1〜12の範囲が好ましく、より好ましくは2〜9の範囲、さらに好ましくは3〜6の範囲である。前記アルコール系化合物の具体例としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、n−ブタノール、s−ブタノール、t−ブタノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、1−オクタノール、2−オクタノール等の脂肪族アルコール、シクロプロピルアルコール、シクロブチルアルコール、シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール等の脂環式アルコール、エチレングリコール、プロピレングリコール、デカリンジオール等の多価アルコール等が挙げられる。   The alcohol compound may be either an aliphatic alcohol or an aromatic alcohol, and a monohydric alcohol or a polyhydric alcohol having a linear or branched chain can be used. The carbon number of the alcohol compound is preferably in the range of 1 to 12, more preferably in the range of 2 to 9, and still more preferably in the range of 3 to 6. Specific examples of the alcohol compound include, for example, methanol, ethanol, 1-propanol, 2-propanol, n-butanol, s-butanol, t-butanol, 1-pentanol, 2-pentanol, and 3-pentanol. 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol and other aliphatic alcohols, cyclopropyl alcohol, cyclobutyl alcohol, cyclopentyl alcohol, cyclohexyl Examples thereof include alicyclic alcohols such as alcohol, cycloheptyl alcohol and cyclooctyl alcohol, and polyhydric alcohols such as ethylene glycol, propylene glycol and decalin diol.

これらのアルコール系化合物の中でも、分解効率の点から2−プロパノール等の脂肪族アルコール、シクロヘキシルアルコール等の脂環式アルコールが好ましい。特に、沸点が高いため反応温度を高く維持できる観点からは、脂環式アルコールが好ましい。一方、比較的低い反応温度においても脱塩素化効率を高めることができる観点からは、比較的沸点の低い2−プロパノール等の脂肪族アルコールが好ましい。   Among these alcohol compounds, aliphatic alcohols such as 2-propanol and alicyclic alcohols such as cyclohexyl alcohol are preferable from the viewpoint of decomposition efficiency. In particular, an alicyclic alcohol is preferable from the viewpoint of maintaining a high reaction temperature because of its high boiling point. On the other hand, an aliphatic alcohol such as 2-propanol having a relatively low boiling point is preferable from the viewpoint of improving the dechlorination efficiency even at a relatively low reaction temperature.

前記のケトン系化合物としては、メチルエチルケトン、シクロヘキサノン、トリシクロドデカノン等が挙げられる。   Examples of the ketone compound include methyl ethyl ketone, cyclohexanone, tricyclododecanone, and the like.

前記の脂環式化合物としてはテトラリン、シクロヘキサン等が挙げられる。   Examples of the alicyclic compound include tetralin and cyclohexane.

脱塩素化において用いるアルカリ化合物としては、難分解性有機ハロゲン化合物の脱塩素化反応を促進しうるものであれば制限なく使用することができるが、脱塩素化効率を高める観点より、苛性ソーダ、苛性カリ、ナトリウムアルコキシド、カリウムアルコキシド、水酸化カルシウム等が好ましく用いられる。中でも、コストやハンドリング性の観点より、苛性ソーダ、苛性カリが特に好ましい。アルカリ化合物は、1種単独で又は2種以上を任意に組合わせて使用することができる。   The alkali compound used in the dechlorination can be used without limitation as long as it can accelerate the dechlorination reaction of the hardly decomposable organic halogen compound, but from the viewpoint of improving the dechlorination efficiency, Sodium alkoxide, potassium alkoxide, calcium hydroxide and the like are preferably used. Among these, caustic soda and caustic potash are particularly preferable from the viewpoint of cost and handling properties. An alkali compound can be used individually by 1 type or in combination of 2 or more types.

脱塩素化において用いる触媒としては、難分解性有機ハロゲン化合物(特にポリ塩化ビフェニール類)の脱塩素化反応を促進しうるものであれば制限なく使用することができ、その種類は特に限定されない。触媒としては、触媒寿命が長く、かつ、アルカリ化合物存在下でも安定なものが好適に用いられる。触媒の好ましい具体例としては、脱塩素化効率を高める観点より、複合金属酸化物、炭素結晶化合物、金属酸化物又は担体に金属を担持させた化合物等が挙げられる。中でも、アルカリ性雰囲気で安全性が高い点より、炭素結晶化合物又は担体に金属を担持させた化合物が好ましく、担体に金属を担持させた化合物がより好ましい。前記の担体としては、活性炭やグラファイト等の炭素、シリカゲル、アルミナ等の金属酸化物、ゼオライト等の複合金属酸化物、ポリエチレン等の樹脂等が挙げられるが、これらの担体の中でも、脱塩素化効率が高く、アルカリ性雰囲気で安全性が高い点より、炭素担体に金属を担持させた金属担持炭素化合物が好ましい。触媒は、1種単独で又は2種以上を任意に組合わせて使用することができる。   The catalyst used in the dechlorination can be used without limitation as long as it can promote the dechlorination reaction of a hardly decomposable organic halogen compound (particularly polychlorinated biphenyls), and the type thereof is not particularly limited. As the catalyst, a catalyst having a long catalyst life and stable even in the presence of an alkali compound is preferably used. Preferable specific examples of the catalyst include a composite metal oxide, a carbon crystal compound, a metal oxide, or a compound in which a metal is supported on a support, from the viewpoint of increasing the dechlorination efficiency. Among these, from the viewpoint of high safety in an alkaline atmosphere, a carbon crystal compound or a compound in which a metal is supported on a carrier is preferable, and a compound in which a metal is supported on a carrier is more preferable. Examples of the carrier include carbons such as activated carbon and graphite, metal oxides such as silica gel and alumina, composite metal oxides such as zeolite, and resins such as polyethylene. Among these carriers, dechlorination efficiency A metal-supported carbon compound in which a metal is supported on a carbon support is preferable from the viewpoint of high safety and high safety in an alkaline atmosphere. A catalyst can be used individually by 1 type or in combination of 2 or more types.

ここで、前記の炭素結晶化合物としては、グラファイト、カーボンナノチューブ(金属を含むものと含まないものの双方が含まれる)、フラーレン等が挙げられる。   Here, examples of the carbon crystal compound include graphite, carbon nanotubes (both including and not including metal), fullerene, and the like.

また前記の金属担持炭素化合物としては、金属を担持した炭素化合物であれば制限なく用いることができ、その金属担持量は、触媒全量に対して1〜20質量%、より好ましくは5〜10質量%であるのがよい。担持される金属としては、例えば、鉄、銀、白金、ルテニウム、パラジウム、ロジウム等が挙げられ、脱塩素化効率を高める観点より、パラジウム、ルテニウム、白金が好ましい。金属担持炭素化合物の具体例としては、例えば、Pd/C(パラジウム担持炭素化合物)、Ru/C(ルテニウム担持炭素化合物)、Pt/C(白金担持炭素化合物)等が挙げられる。金属担持炭素化合物の粒子径は75〜300μmが好ましく、300μmを超える場合は反応性が悪くなり、75μm未満の場合はハンドリング性が悪くなる。より好ましくは125〜250μmが望ましい。   Moreover, as said metal carrying | support carbon compound, if it is a carbon compound which carry | supported the metal, it can be used without a restriction | limiting, The metal carrying amount is 1-20 mass% with respect to the catalyst whole quantity, More preferably, it is 5-10 mass. % Should be good. Examples of the supported metal include iron, silver, platinum, ruthenium, palladium, rhodium and the like, and palladium, ruthenium, and platinum are preferable from the viewpoint of increasing the dechlorination efficiency. Specific examples of the metal-supported carbon compound include Pd / C (palladium-supported carbon compound), Ru / C (ruthenium-supported carbon compound), and Pt / C (platinum-supported carbon compound). The particle size of the metal-supported carbon compound is preferably 75 to 300 μm. When the particle size exceeds 300 μm, the reactivity is deteriorated, and when it is less than 75 μm, the handling property is deteriorated. More preferably, 125 to 250 μm is desirable.

脱塩素化における水素供与性溶媒の添加量は、10〜50質量%(対油類)であることが好ましく、より好ましくは10〜40質量%(対油類)、更に好ましくは10〜30質量%(対油類)であるのがよい。前記添加量が少なすぎる場合は脱塩素化反応が不十分となり、一方、前記添加量が多すぎる場合は脱塩素化反応は十分進むが副生物が生成し易くなり、また経済性にも劣るものとなる。   The addition amount of the hydrogen donating solvent in the dechlorination is preferably 10 to 50% by mass (for oils), more preferably 10 to 40% by mass (for oils), and further preferably 10 to 30% by mass. % (For oils). If the amount added is too small, the dechlorination reaction will be insufficient. On the other hand, if the amount added is too large, the dechlorination reaction will proceed sufficiently, but by-products will be easily generated, and the economy will be poor. It becomes.

脱塩素化における上記のアルカリ化合物/水素供与性溶媒/難分解性有機ハロゲン化合物(特にポリ塩化ビフェニール)の割合は、0.001〜5/10/0.000001〜10(モル比)とすることが好ましい。前記3成分のモル比は、0.01〜3/10/0.00001〜5がより好ましく、特に0.02〜2/10/0.0001〜1が好ましい。   The ratio of the above-mentioned alkali compound / hydrogen-donating solvent / refractory organic halogen compound (especially polychlorinated biphenyl) in dechlorination should be 0.001 to 5/10 / 0.000001 to 10 (molar ratio). Is preferred. The molar ratio of the three components is more preferably 0.01-3 / 10 / 0.00001-5, and particularly preferably 0.02-2 / 10 / 0.0001-1.

アルカリ化合物と水素供与性溶媒の比率は、アルカリ化合物濃度が低すぎると脱塩素化が進みにくくなり、高すぎるとアルカリ化合物が水素供与性溶媒に溶解し難くなるため、水素供与体とアルカリ化合物の合計(質量)に対するアルカリ化合物の濃度が0.1〜20質量%となる範囲で選択するのが好ましい。   If the alkali compound concentration is too low, dechlorination is difficult to proceed, and if the alkali compound concentration is too high, the alkali compound is difficult to dissolve in the hydrogen donor solvent. It is preferable to select in the range where the concentration of the alkali compound with respect to the total (mass) is 0.1 to 20% by mass.

水素供与体とアルカリ化合物の添加方式は、アルカリ化合物と水素供与体の添加順序、例えば同時添加、分割添加、水素供与体を廃油類に添加してからアルカリ化合物を添加する方法又はその逆添加などいずれの方法であってもよく、特に限定されるものではない。また、アルカリ化合物と水素供与性溶媒とを高速攪拌等することにより、予め混合溶液としたものを添加してもよい。 The addition method of the hydrogen donor and the alkali compound is the order of addition of the alkali compound and the hydrogen donor, for example, simultaneous addition, divided addition, a method of adding the hydrogen donor to the waste oil and then adding the alkali compound, or vice versa. Any method may be used and is not particularly limited. Further, by high speed stirring, such as an alkali compound and hydrogen-donating solvent may be added to those with pre-mixed Go溶 solution.

脱塩素化における触媒は、反応溶液に分散させる方法、触媒を備えた反応装置内で反応溶液と接触させる方法、或いは、触媒を内蔵する触媒カラムを調製しこれに反応溶液を流通させながら反応させる方法、などによって反応溶液と接触させることができる。反応溶液中における触媒の含有量は、0.001〜30質量%(対油類)であることが好ましい。触媒を反応溶液に分散させる方法では、触媒量は0.001〜10質量%(対油類)が好ましい。触媒量が少なすぎる場合は、水素発生量が少なくなるため脱塩素化が進行し難くなり、一方、触媒量が多すぎる場合は反応系の攪拌混合が難しくなり、経済的にも不利となる。カラムや反応装置に触媒を固定させて使用する場合は、触媒量は10〜30質量%(対油類)が好ましい。   The catalyst in dechlorination is a method of dispersing in the reaction solution, a method of contacting with the reaction solution in a reaction apparatus equipped with the catalyst, or a catalyst column containing the catalyst is prepared and reacted while the reaction solution is circulated through it. It can be contacted with the reaction solution by a method or the like. The content of the catalyst in the reaction solution is preferably 0.001 to 30% by mass (for oils). In the method of dispersing the catalyst in the reaction solution, the amount of catalyst is preferably 0.001 to 10% by mass (for oils). When the amount of catalyst is too small, the amount of hydrogen generated is small, so that dechlorination is difficult to proceed. On the other hand, when the amount of catalyst is too large, stirring and mixing of the reaction system becomes difficult, which is economically disadvantageous. When the catalyst is fixed to a column or a reactor, the catalyst amount is preferably 10 to 30% by mass (for oils).

上記の脱塩素化においては、廃油類に上記の水素供与性溶媒、アルカリ化合物及び触媒の他に、芳香族炭化水素等の薬剤が混合されていてもよい。該芳香族炭化水素を混合することにより、脱塩素化反応が促進されると共に、油類の粘度上昇を抑えることができる。前記芳香族炭化水素としては、例えば、トルエン、エチルベンゼン、クメン、キシレン等が挙げられる。これらの芳香族炭化水素は、1種単独で又は2種以上を任意に組合わせて使用することができる。前記芳香族炭化水素の添加量は、油類に対し、5〜80質量%とするのが好ましく、より好ましくは5〜50質量%である。   In the above dechlorination, chemicals such as aromatic hydrocarbons may be mixed with waste oil in addition to the above-mentioned hydrogen-donating solvent, alkali compound and catalyst. By mixing the aromatic hydrocarbon, the dechlorination reaction is promoted and an increase in the viscosity of the oil can be suppressed. Examples of the aromatic hydrocarbon include toluene, ethylbenzene, cumene, xylene and the like. These aromatic hydrocarbons can be used individually by 1 type or in combination of 2 or more types. The addition amount of the aromatic hydrocarbon is preferably 5 to 80% by mass, more preferably 5 to 50% by mass with respect to the oil.

脱塩素化における反応温度は、10〜200℃の範囲で選択することが好ましい。反応温度が10℃未満では分解反応が不十分となる。一方、200℃を超える場合は脱塩素化反応は十分進むが、副生物が生成し易くなり、またエネルギー的に不経済となる。エネルギー効率が良好で、副生物が生成し難くなる点より、20〜80℃の範囲で選択することがより好ましい。   The reaction temperature in dechlorination is preferably selected in the range of 10 to 200 ° C. When the reaction temperature is less than 10 ° C., the decomposition reaction becomes insufficient. On the other hand, when the temperature exceeds 200 ° C., the dechlorination reaction proceeds sufficiently, but by-products are likely to be generated, and the energy becomes uneconomical. It is more preferable to select in the range of 20 to 80 ° C. from the viewpoint of good energy efficiency and difficulty in producing by-products.

反応時間は、被処理油中の難分解性有機ハロゲン化合物の種類や濃度、水素供与性溶媒や触媒の使用量、反応温度などの要因によって異なるため特に限定されないが、通常0.01分〜30日の範囲で選択される。   The reaction time is not particularly limited because it varies depending on factors such as the kind and concentration of the hardly decomposable organic halogen compound in the oil to be treated, the amount of hydrogen donating solvent and catalyst used, the reaction temperature, etc. Selected in a range of days.

脱塩素化反応に際しては、反応装置の内部及び/又は外部を、加熱ヒーターやマイクロ波等によって加熱する方法なども採用することができ、必要に応じて攪拌装置によって攪拌を行いながら反応を進行させることができる。脱塩素化反応にマイクロ波を使用する場合、そのマイクロ波の出力、周波数、照射方法は、特に限定されるものではなく、また、マイクロ波の照射は連続照射、間欠照射のいずれの方法であってもよく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。   In the dechlorination reaction, a method of heating the inside and / or outside of the reaction apparatus with a heater, microwave, or the like can be adopted, and the reaction is allowed to proceed while stirring with a stirrer if necessary. be able to. When microwaves are used for the dechlorination reaction, the microwave output, frequency, and irradiation method are not particularly limited, and microwave irradiation can be either continuous irradiation or intermittent irradiation. Alternatively, it may be electrically controlled so that the reaction temperature can be maintained within a predetermined range.

脱塩素化反応の雰囲気は不活性ガス中で行うことが、望ましくない副反応が起きないので、より好ましい。   The atmosphere of the dechlorination reaction is more preferably carried out in an inert gas because undesirable side reactions do not occur.

次に、本発明を実施例により具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited only to a following example.

(実施例1)
柱上変圧器より抜き出した使用済み1種2号絶縁油に、KC−400(4塩化ビフェニール、鐘淵化学(株)製)を10ppmになるように添加した実油2.5Lを用意した。別に、内径20mmφ、長さ500mmのクロマト管にグラスウールを詰めた後、吸着剤としてシリカゲル(和光純薬製 ワコーゲルC−200;細孔径6±1nm、細孔容量0.75±0.10ml/g)160gを充填した。このクロマト管の下部より、上記の実油を500ml/hrの速度で連続して通液させ、クロマト管の上部から実油を取り出した。
Example 1
2.5 L of real oil was prepared by adding KC-400 (biphenyl tetrachloride, manufactured by Kaneka Chemical Co., Ltd.) to 10 ppm to the used type 1 No. 2 insulating oil extracted from the pole transformer. Separately, after a glass tube was packed in a chromatographic tube having an inner diameter of 20 mmφ and a length of 500 mm, silica gel (Wakogel C-200 manufactured by Wako Pure Chemical Industries; pore diameter 6 ± 1 nm, pore volume 0.75 ± 0.10 ml / g) was used as an adsorbent. ) 160g. From the lower part of the chromatographic tube, the above-mentioned real oil was continuously passed at a rate of 500 ml / hr, and the real oil was taken out from the upper part of the chromatographic tube.

実油処理後の吸着剤を溶媒で洗浄した結果、ジオクチルフタレートが検出された。   As a result of washing the adsorbent after the actual oil treatment with a solvent, dioctyl phthalate was detected.

次に、図1に概略図を示すPCB分解装置を用いて脱塩素化を行った。マイクロウェーブ発生装置1内に三つ口フラスコ2を入れ、三つ口の二つを窒素導入用口2aと温度計3の挿入口2bとして利用し、中央の口2cにジムロート冷却管4を設けて反応生成物を反応系外に取り出すようにした。   Next, dechlorination was performed using a PCB decomposition apparatus schematically shown in FIG. A three-necked flask 2 is placed in the microwave generator 1, two of the three necks are used as a nitrogen introduction port 2a and an insertion port 2b of a thermometer 3, and a Dimroth cooling tube 4 is provided at the center port 2c. Thus, the reaction product was taken out of the reaction system.

吸着剤処理後の1種2号実油100ml、アルカリ物質として日本曹達製KOHフレーク(95%)を乳鉢ですりつぶしたもの0.6gと水素供与性溶媒として和光純薬製イソプロピルアルコール(IPA)20mlとを3000rpmのホモミキサーで20分攪拌して混液としたもの、及び、触媒としてパラジウムを5%担持した活性炭(Pd/C:小島化学製)8.0gを、内容量200mlの三つ口フラスコ2に導入した。   100 ml of Type 1 No. 2 oil after treatment with adsorbent, 0.6 g of KOH flakes (95%) made by Nippon Soda as an alkaline substance in a mortar, and 20 ml of isopropyl alcohol (IPA) made by Wako Pure Chemical as a hydrogen donating solvent Were mixed with a 3000 rpm homomixer for 20 minutes, and 8.0 g of activated carbon (Pd / C: manufactured by Kojima Chemical) carrying 5% palladium as a catalyst was added to a 200 ml three-necked flask. 2 was introduced.

前記フラスコ2に前記各物質の混合物を導入後に窒素ガスでフラスコ2内部ガスを置換した後、マグネッチックスターラーで混合物を攪拌しながら、温度が60℃一定となるように、周波数2.45GHz、最大出力650Wのマイクロ波を、電気的に制御しながら60分ないし120分照射した。反応中も窒素ガスを50ml/minで流した。   After introducing the mixture of each substance into the flask 2 and substituting the gas inside the flask 2 with nitrogen gas, while stirring the mixture with a magnetic stirrer, the frequency is 2.45 GHz and the maximum so that the temperature becomes constant at 60 ° C. A microwave with an output of 650 W was irradiated for 60 to 120 minutes while being electrically controlled. Nitrogen gas was allowed to flow at 50 ml / min during the reaction.

(比較例1)
柱上変圧器より抜き出した使用済み1種2号絶縁油に、KC−400(4塩化ビフェニール、鐘淵化学(株)製)を10ppmになるように添加した実油2.5Lを用意した。これを実施例1と同様、図1に概略図を示すPCB分解装置を用いて脱塩素化を行った。1種2号実油100ml、アルカリ物質として日本曹達製KOHフレーク(95%)を乳鉢ですりつぶしたもの0.6gと水素供与性溶媒として和光純薬製イソプロピルアルコール(IPA)40mlとを3000rpmのホモミキサーで20分攪拌して混液としたもの、及び、触媒としてパラジウムを5%担持した活性炭(Pd/C:小島化学製)8.0gを、内容量200mlの三つ口フラスコ2に導入した。
(Comparative Example 1)
2.5 L of real oil was prepared by adding KC-400 (biphenyl tetrachloride, manufactured by Kaneka Chemical Co., Ltd.) to 10 ppm to the used type 1 No. 2 insulating oil extracted from the pole transformer. As in Example 1, this was dechlorinated using a PCB decomposition apparatus schematically shown in FIG. Type 1 No. 2 real oil 100 ml, Nippon Soda KOH flakes (95%) as an alkaline substance ground in a mortar 0.6 g and Wako Pure Chemical Industries isopropyl alcohol (IPA) 40 ml as a hydrogen donating solvent at 3000 rpm homo A mixture obtained by stirring for 20 minutes with a mixer and 8.0 g of activated carbon (Pd / C: manufactured by Kojima Chemical) carrying 5% palladium as a catalyst were introduced into a three-necked flask 2 having an internal volume of 200 ml.

前記フラスコ2に前記各物質の混合物を導入後に窒素ガスでフラスコ2内部ガスを置換した後、マグネッチックスターラーで混合物を攪拌しながら、温度が60℃一定となるように、周波数2.45GHz、最大出力650Wのマイクロ波を、電気的に制御しながら60分ないし360分照射した。反応中も窒素ガスを50ml/minで流した。   After introducing the mixture of each substance into the flask 2 and substituting the gas inside the flask 2 with nitrogen gas, while stirring the mixture with a magnetic stirrer, the frequency is 2.45 GHz and the maximum so that the temperature becomes constant at 60 ° C. A microwave with an output of 650 W was irradiated for 60 to 360 minutes while being electrically controlled. Nitrogen gas was allowed to flow at 50 ml / min during the reaction.

(評価方法)
反応前後の溶液を、Sep−Pak前処理を施してから、DB1(J&Wサイエンティフィック製)をキャピラリーカラムとする(株)島津製作所製のガスクロマトグラフィー質量分析計QP5050(以下、「GC−MS」)にかけ、PCBのピーク面積の変化から脱塩素化(分解率)を確認した。
(Evaluation methods)
The solution before and after the reaction is subjected to Sep-Pak pretreatment and then a gas chromatography mass spectrometer QP5050 (hereinafter referred to as “GC-MS”) manufactured by Shimadzu Corporation using DB1 (manufactured by J & W Scientific) as a capillary column. ) To confirm dechlorination (decomposition rate) from the change in the PCB peak area.

実施例1及び比較例1の実験条件、評価結果を表1にまとめて示す。図2に反応時間とPCB濃度との関係を示す。   Table 1 summarizes the experimental conditions and evaluation results of Example 1 and Comparative Example 1. FIG. 2 shows the relationship between reaction time and PCB concentration.

表1の結果から、実油をシリカゲルに接触させた後に脱塩素化することにより、シリカゲルに接触させなかった場合に比べて、イソプロピルアルコールの量が少ないにもかかわらず、PCBの分解速度が格段に早くなることがわかった。   From the results shown in Table 1, the decomposition rate of PCB was markedly reduced by contacting the actual oil with silica gel and then dechlorinating, even though the amount of isopropyl alcohol was small compared with the case where it was not contacted with silica gel. I found out that it would be faster.

本実施例で用いたマイクロ波によるPCB分解実験装置の概略図である。It is the schematic of the PCB decomposition experiment apparatus by the microwave used by the present Example. 反応時間と油中のPCB濃度の関係を示すグラフである。It is a graph which shows the relationship between reaction time and PCB density | concentration in oil.

符号の説明Explanation of symbols

1 マイクロウェーブ発生装置
2 三つ口フラスコ
3 温度計
4 ジムロート冷却管
1 Microwave generator 2 Three-neck flask 3 Thermometer 4 Dimroth condenser

Claims (4)

難分解性有機ハロゲン化合物を含有する廃油類を、シリカゲルに接触させることにより、前記廃油類に含まれる難分解性有機ハロゲン化合物の分解反応阻害物質である油類の酸化物、油類の添加剤または塗料を前記吸着剤に吸着させた後、吸着剤接触後の前記廃油類を脱塩素化処理することを特徴とする汚染油の処理方法。 By contacting waste oil containing a hardly decomposable organic halogen compound with silica gel , an oxide of oil that is a decomposition reaction inhibitor of the hardly decomposable organic halogen compound contained in the waste oil, an additive for oils Alternatively, after the paint is adsorbed on the adsorbent, the waste oil after contact with the adsorbent is dechlorinated, and the contaminated oil is treated. 吸着剤接触後の前記廃油類に水素供与性溶媒及びアルカリ化合物を添加し、触媒存在下で脱塩素化処理することを特徴とする請求項1に記載の汚染油の処理方法。   2. The method for treating contaminated oil according to claim 1, wherein a hydrogen donating solvent and an alkali compound are added to the waste oil after contact with the adsorbent, and dechlorination treatment is performed in the presence of a catalyst. 前記触媒が、担体に金属を担持させた化合物の中から選ばれる少なくとも1種の触媒であることを特徴とする請求項2に記載の汚染油の処理方法。   The method for treating contaminated oil according to claim 2, wherein the catalyst is at least one catalyst selected from compounds in which a metal is supported on a carrier. 前記水素供与性溶媒が、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物及び脂環式化合物からなる群から選ばれた少なくとも一つの化合物であることを特徴とする請求項2又は3に記載の汚染油の処理方法。   3. The hydrogen donating solvent is at least one compound selected from the group consisting of a heterocyclic compound, an amine compound, an alcohol compound, a ketone compound, and an alicyclic compound. 3. A method for treating contaminated oil according to 3.
JP2004306169A 2004-10-20 2004-10-20 Contaminated oil treatment method Expired - Fee Related JP3970277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306169A JP3970277B2 (en) 2004-10-20 2004-10-20 Contaminated oil treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306169A JP3970277B2 (en) 2004-10-20 2004-10-20 Contaminated oil treatment method

Publications (3)

Publication Number Publication Date
JP2006116027A JP2006116027A (en) 2006-05-11
JP2006116027A5 JP2006116027A5 (en) 2007-08-09
JP3970277B2 true JP3970277B2 (en) 2007-09-05

Family

ID=36534464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306169A Expired - Fee Related JP3970277B2 (en) 2004-10-20 2004-10-20 Contaminated oil treatment method

Country Status (1)

Country Link
JP (1) JP3970277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762593A (en) * 2019-02-19 2019-05-17 安徽国孚凤凰科技有限公司 A method of improving waste lubricating oil solvent refining Reclaimed Base Oil oxidation stability

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4817190B2 (en) * 2007-03-09 2011-11-16 国立大学法人 岡山大学 Electroreductive dehalogenation of activated carbon adsorbed organic halides
JP2011088038A (en) * 2009-10-20 2011-05-06 Tokyo Electric Power Co Inc:The Catalyst to be used for treating halogenated organic compound
JP5383595B2 (en) * 2010-06-07 2014-01-08 中国電力株式会社 Detoxification treatment facility for insulating oil mixed in with PCB
JP2013223737A (en) * 2013-05-30 2013-10-31 Chugoku Electric Power Co Inc:The Detoxification device of pcb-mixed insulating oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762593A (en) * 2019-02-19 2019-05-17 安徽国孚凤凰科技有限公司 A method of improving waste lubricating oil solvent refining Reclaimed Base Oil oxidation stability

Also Published As

Publication number Publication date
JP2006116027A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
CA1236488A (en) Process for the destruction of toxic organic products
EP0675748B1 (en) Process for the chemical decomposition of halogenated organic compounds
KR20090017677A (en) Dehalogenation of aromatic halides
JP3970277B2 (en) Contaminated oil treatment method
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP5344684B2 (en) Aromatic halide dehalogenation method
JP3678740B1 (en) Method for dechlorination of PCB-containing high-concentration organic halogen compounds
JP3678739B1 (en) Dechlorination method for high concentration PCB
JP3678738B2 (en) Method for dechlorination of polychlorinated biphenyls
JP4009607B2 (en) Method for regenerating catalyst and method for decomposing organic halogen compound using the regenerated catalyst
JP4329498B2 (en) Dechlorination method for PCB in pole transformer
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP3216773B2 (en) Decomposition method of aromatic halogen compound
JPH08141107A (en) Decomposing method for organic compound halide
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JP2004201702A (en) Method for dechloronating polychlorinated biphenyl mixture
JP4396824B2 (en) Light irradiation dechlorination method of high concentration PCB
JP2004201701A (en) Method for dechlorinating polychlorinated biphenyl
JP3970286B2 (en) Organic halogen compound decomposition treatment method and microwave combined decomposition treatment system
JP2005270388A (en) Method for decomposing organic halogen compound
JP2005253884A (en) Method for decomposition treatment and loop decomposition system for organic halogen compound
JP2004167232A (en) Method for decomposing hardly decomposable halogenated organic compound
JP2007306948A (en) Method of decomposing treatment of low concentration organic halogen compound
JPH07222826A (en) Method for decomposing organic halide compound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees