JP2004167232A - Method for decomposing hardly decomposable halogenated organic compound - Google Patents

Method for decomposing hardly decomposable halogenated organic compound Download PDF

Info

Publication number
JP2004167232A
JP2004167232A JP2003369199A JP2003369199A JP2004167232A JP 2004167232 A JP2004167232 A JP 2004167232A JP 2003369199 A JP2003369199 A JP 2003369199A JP 2003369199 A JP2003369199 A JP 2003369199A JP 2004167232 A JP2004167232 A JP 2004167232A
Authority
JP
Japan
Prior art keywords
compound
halogenated organic
hardly decomposable
organic compound
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369199A
Other languages
Japanese (ja)
Inventor
Koichi Ito
鉱一 伊藤
Koji Amano
耕治 天野
Hitoshi Ogawa
仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003369199A priority Critical patent/JP2004167232A/en
Publication of JP2004167232A publication Critical patent/JP2004167232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of safely dehalogenating and detoxifying a large quantity of a hardly decomposable halogenated organic compound such as PCB (polychlorobiphenyls) in a short time and putting to practical use at a lower cost. <P>SOLUTION: This method for decomposing the hardly decomposable halogenated organic compound is to irradiate a microwave to the hardly decomposable halogenated organic compound such as the PCB in the presence of an alkaline compound, an inorganic catalyst and an organic hydrogen donor. For the alkaline compound, caustic soda, caustic potash, a sodium alkoxide, a potassium alkoxide, calcium hydroxide, or the like, is used. For the inorganic catalyst, a metal-carrying complex metal oxide, a carbon crystalline compound, a metal-carrying carbon compound, a metal oxide, or the like, is used. For the organic hydrogen donor, a heterocyclic compound, an amine compound, an alcoholic compound, a ketonic compound, a cycloaliphatic compound, or the like, is used. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、例えばポリ塩化ビフェニール(以下、PCBと略す)等の難分解性ハロゲン化有機化合物を安全に分解除去する方法に関する。   The present invention relates to a method for safely decomposing and removing hardly decomposable halogenated organic compounds such as polychlorinated biphenyl (hereinafter abbreviated as PCB).

各種技術分野で炭化水素油を使用する過程において、PCB等のハロゲン化有機化合物に汚染され、その無害化処置が困難であることは周知であるが、PCBは人体を含む生体に極めて有害であることから、1973年に特定化学物質に指定されて製造、輸入、使用が禁止となっている。しかし、その後、適切な廃棄方法が決まらないまま数万トンのPCBが未処理の状態で放置されている。   It is well known that in the process of using hydrocarbon oils in various technical fields, it is contaminated with halogenated organic compounds such as PCBs and it is difficult to detoxify them, but PCBs are extremely harmful to living organisms including the human body. Therefore, it was specified as a specific chemical substance in 1973, and its manufacture, import, and use were banned. However, after that, tens of thousands of tons of PCBs are left untreated without an appropriate disposal method being determined.

難分解性ハロゲン化有機化合物の中で最も難分解性であるPCBは高温(300〜750℃)分解では強毒性のダイオキシン類である塩素化ジベンゾ−p−ダイオキシン(PCDD)とジベンゾフラン(PCDF)が副生することから、技術的にPCBを安全に分解することが難しく、多年にわたりPCBの安全で効率的な各種分解法の研究が行われている。   Among the most hardly decomposable halogenated organic compounds, PCB which is the most hardly decomposable is chlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) which are highly toxic dioxins when decomposed at high temperature (300 to 750 ° C). Since it is a by-product, it is technically difficult to safely decompose PCB, and various methods for safe and efficient decomposition of PCB have been studied for many years.

例えば、ハロゲン化芳香族化合物の水溶液に活性炭に担持された白金属触媒を混ぜた反応系に、水素ガスを吹き込みながらマイクロ波を照射することにより有害なハロゲン化有機化合物を分解する方法(特開2001−19646号公報)や、1,3−ジメチル−2−イミダゾリジノン(以下、DMIと略)をハロゲン化有機化合物の溶媒としてKOHと長時間加熱する化学抽出法(特開平6−25691号公報)等の種々の脱塩素化技術あるいは無害化技術が提案されている。   For example, a method of decomposing harmful halogenated organic compounds by irradiating microwaves while blowing hydrogen gas into a reaction system in which a white metal catalyst supported on activated carbon is mixed with an aqueous solution of a halogenated aromatic compound (Japanese Patent Application Laid-Open 2001-19646) and a chemical extraction method in which 1,3-dimethyl-2-imidazolidinone (hereinafter, abbreviated as DMI) is heated with KOH as a solvent for a halogenated organic compound for a long time (JP-A-6-25691). Various dechlorination techniques or detoxification techniques such as those disclosed in Japanese Unexamined Patent Publications (KOKAI) are proposed.

特開2001−19646号公報(請求項1、段落番号0009等)JP 2001-19646 A (Claim 1, Paragraph No. 0009, etc.) 特開平6−25691号公報(請求項1、請求項5、段落番号0004、段落番号0011等)JP-A-6-25691 (Claim 1, Claim 5, Paragraph No. 0004, Paragraph No. 0011, etc.)

しかしながら、上記特開2001−19646号公報に記載された発明では、水素ガスを芳香族塩素系化合物を含む反応系に外部から供給する必要があり、実用的な手法としては好ましくない。また、ハロゲン化芳香族化合物としてp−クロロフェノールの1%水溶液を対象としており、油系でより高濃度なものの無毒化技術は未だ存在しない。また、特開平6−25691号公報記載の化学抽出法で使用されている溶媒DMIは2000円/kgと高価であり、またこの化学抽出法の反応時間が12時間程度と長いため、PCBの大量処理には不向きである。   However, in the invention described in JP-A-2001-19646, it is necessary to supply hydrogen gas from the outside to a reaction system containing an aromatic chlorine compound, which is not preferable as a practical method. In addition, a 1% aqueous solution of p-chlorophenol is targeted as a halogenated aromatic compound, and there is no oil-based high-concentration detoxification technology yet. In addition, the solvent DMI used in the chemical extraction method described in JP-A-6-25691 is expensive at 2,000 yen / kg, and the reaction time of this chemical extraction method is as long as about 12 hours. Not suitable for processing.

上記方法以外にも難分解性ハロゲン化有機化合物の分解処理方法が種々検討されているが、未だ、経済的で実用化可能な技術が確立されてなく、安全に大量処理が可能で、かつ安価で短時間に分解処理が可能な方法の開発が望まれている。   Various methods for decomposing hardly decomposable halogenated organic compounds have been studied in addition to the above methods.However, economical and practical techniques have not been established, and large-scale processing can be safely performed at low cost. There is a demand for the development of a method capable of decomposing in a short time.

また、オゾン層の破壊物質であるフロン類、水質および排水に関する環境基準が新たに制定されたテトラクロロエチレン、トリクロロエチレンなどの揮発性多ハロゲン化有機化合物(VOC)については燃焼・熱分解法・熱プラズマ分解法、超臨界法、触媒法、試薬分解法、電解還元法、紫外線分解法および微生物分解法があり、前二法が実用的研究段階に至っている。しかし、これらのハロゲン化有機化合物も、より安価な処理法の開発が望まれている。   For volatile polyhalogenated organic compounds (VOCs) such as tetrachloroethylene and trichlorethylene, for which environmental standards for fluorocarbons, destructive substances of the ozone layer, water quality and wastewater have been newly established, combustion / pyrolysis / thermal plasma decomposition Method, supercritical method, catalyst method, reagent decomposition method, electrolytic reduction method, ultraviolet decomposition method and microbial decomposition method, and the former two methods have reached the practical research stage. However, for these halogenated organic compounds, development of a less expensive treatment method is desired.

本発明の課題は、PCBなどの難分解性ハロゲン化有機化合物を短時間で安全に大量に脱ハロゲン化して無毒化できる、より低コストで実用化できる方法を提供することにある。   An object of the present invention is to provide a method which can detoxify a hardly decomposable halogenated organic compound such as PCB in a short time and safely in a large amount and detoxify it, and can be put to practical use at a lower cost.

上記課題を解決するため、本発明者らは鋭意検討した結果、難分解性ハロゲン化有機化合物を、アルカリ化合物、無機系触媒および有機系水素供与体の存在下でマイクロ波を照射することにより、短時間で脱ハロゲン化して無毒化できることを見出し、本発明に至った。   In order to solve the above problems, the present inventors have conducted intensive studies and found that a hardly decomposable halogenated organic compound is irradiated with microwaves in the presence of an alkali compound, an inorganic catalyst and an organic hydrogen donor, The present inventors have found that it can be detoxified by dehalogenation in a short time, and have reached the present invention.

すなわち、本発明は、難分解性ハロゲン化有機化合物を、アルカリ化合物、無機系触媒、有機系水素供与体の存在下でマイクロ波を照射することを特徴とする難分解性ハロゲン化有機化合物の分解方法を提供するものである。   That is, the present invention provides a method for decomposing a hardly decomposable halogenated organic compound, which comprises irradiating a hardly decomposable halogenated organic compound with microwaves in the presence of an alkali compound, an inorganic catalyst, and an organic hydrogen donor. It provides a method.

本発明の難分解性ハロゲン化有機化合物の分解方法においては、難分解性ハロゲン化有機化合物がポリ塩化ビフェニールとその類縁化合物であることが好ましい。   In the method for decomposing a hardly decomposable halogenated organic compound of the present invention, it is preferable that the hardly decomposable halogenated organic compound is polychlorinated biphenyl and its analogous compound.

また、本発明の難分解性ハロゲン化有機化合物の分解方法においては、アルカリ化合物が、苛性ソーダ、苛性カリ、ナトリウムアルコキシド、カリウムアルコキシドおよび水酸化カルシウムからなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることが好ましい。また、有機系水素供与体が、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物および脂環式化合物からなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることが好ましい。また、無機系触媒が、金属担持複合金属酸化物、炭素結晶化合物、金属担持炭素化合物および金属酸化物からなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることが好ましい。   Further, in the method for decomposing a hardly decomposable halogenated organic compound of the present invention, the alkali compound is a mixture of at least one or two or more selected from the group consisting of caustic soda, caustic potash, sodium alkoxide, potassium alkoxide and calcium hydroxide. It is preferable that Further, the organic hydrogen donor is preferably a mixture of at least one or two or more selected from the group consisting of a heterocyclic compound, an amine compound, an alcohol compound, a ketone compound and an alicyclic compound. . Further, it is preferable that the inorganic catalyst is at least one or a mixture of two or more selected from the group consisting of a metal-supported composite metal oxide, a carbon crystal compound, a metal-supported carbon compound, and a metal oxide.

前記本発明の難分解性ハロゲン化有機化合物の分解方法においては、難分解性ハロゲン化有機化合物が、ポリクロロベンゼンであることが特に好ましい。   In the method for decomposing a hardly decomposable halogenated organic compound of the present invention, it is particularly preferable that the hardly decomposable halogenated organic compound is polychlorobenzene.

以上説明した通り、本発明の難分解性ハロゲン化有機化合物の分解方法によれば、PCBやポリクロロベンゼンなどのハロゲン化有機化合物が短時間に分解する。従って、PCBやポリクロロベンゼンなどのハロゲン化芳香族化合物を高濃度に含む油を、油系のまま短時間で脱塩素化することが出来るため、難分解性ハロゲン化有機化合物を化学抽出する場合などに比べて、安全、かつ大量処理が可能になる。   As described above, according to the method for decomposing hardly decomposable halogenated organic compounds of the present invention, halogenated organic compounds such as PCB and polychlorobenzene are decomposed in a short time. Therefore, oil containing a high concentration of halogenated aromatic compounds such as PCB and polychlorobenzene can be dechlorinated in a short period of time in the form of an oil-based oil. In comparison with, safe and mass processing is possible.

こうして、実用的な規模で、PCBやポリクロロベンゼンなどの難分解性ハロゲン化芳香族化合物を、短時間に低コストで無毒化することが可能となる。   Thus, on a practical scale, it is possible to detoxify hardly decomposable halogenated aromatic compounds such as PCB and polychlorobenzene in a short time and at low cost.

本発明の難分解性ハロゲン化有機化合物の分解方法は、難分解性ハロゲン化有機化合物を、アルカリ化合物、無機系触媒及び有機系水素供与体の存在下でマイクロ波を照射することにより分解することを特徴とするものである。アルカリ化合物、無機系触媒及び有機系水素供与体は、本発明における必須の構成要素であり、いずれが欠けてもハロゲン化有機化合物を短時間に脱塩素化することはできない。   In the method for decomposing a hardly decomposable halogenated organic compound according to the present invention, the hardly decomposable halogenated organic compound is decomposed by irradiating microwaves in the presence of an alkali compound, an inorganic catalyst and an organic hydrogen donor. It is characterized by the following. The alkali compound, the inorganic catalyst and the organic hydrogen donor are essential components in the present invention, and if any of them is missing, the halogenated organic compound cannot be dechlorinated in a short time.

本発明の難分解性ハロゲン化有機化合物とは、ポリ塩化ビフェニール(PCB)とその類縁化合物、すなわち、PCBや、モノクロロベンゼン(MCB)、1,2−ジクロロベンゼン(DCB)、1,2,4−トリクロロベンゼン(TCB)等のポリクロロベンゼン、2,4,5−トリクロロフェノキシ酢酸(2,4,5−T)、ポリクロロターフェニル(PCT)、農薬(アルドリン、ディルドリン、p,p′−DDT、p,p′−DDE)、オゾン層の破壊物質であるフロン類、ハロン類、及びテトラクロロエチレン、トリクロロエチレンなどの揮発性多ハロゲン化有機化合物(VOC)等である。   The hardly decomposable halogenated organic compound of the present invention includes polychlorinated biphenyl (PCB) and its related compounds, that is, PCB, monochlorobenzene (MCB), 1,2-dichlorobenzene (DCB), 1,2,4 Polychlorobenzene such as trichlorobenzene (TCB), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), polychloroterphenyl (PCT), pesticides (aldrin, dieldrin, p, p'-DDT) , P, p'-DDE), chlorofluorocarbons, halons, and volatile polyhalogenated organic compounds (VOC) such as tetrachloroethylene and trichloroethylene, which are substances that destroy the ozone layer.

上記の難分解性ハロゲン化有機化合物は、それぞれ単独でも、或いは二種以上が任意に組合わされたものであっても良い。これらの難分解ハロゲン化有機化合物は、単体、油や各種有機溶剤等の溶媒に溶解しているものなどであってよく、その形態は特に制限されない。また、難分解性ハロゲン化有機化合物が用いられている装置(トランス、コンデンサ等)などから該化合物を取り出す際に用いられる種々の物質、例えばドデカン等の洗浄剤などが含まれていても良い。   The hardly decomposable halogenated organic compounds described above may be used alone or in combination of two or more. These hardly decomposable halogenated organic compounds may be simple substances, or those dissolved in a solvent such as oil or various organic solvents, and the form is not particularly limited. Further, it may contain various substances used for taking out the hardly decomposable halogenated organic compound from a device (transformer, condenser, etc.) using the compound, for example, a detergent such as dodecane.

本発明で用いるアルカリ化合物としては、苛性ソーダ、苛性カリ、ナトリウムアルコキシド、カリウムアルコキシド、水酸化カルシウムなどが挙げられる。その中でも、特に、苛性ソーダ、苛性カリが好ましい。前記のアルカリ化合物は、それぞれ単独で又は二種以上を任意に組合わせて使用することができる。   Examples of the alkali compound used in the present invention include caustic soda, caustic potash, sodium alkoxide, potassium alkoxide, calcium hydroxide and the like. Among them, caustic soda and caustic potash are particularly preferable. The above alkali compounds can be used alone or in combination of two or more.

本発明で用いる有機系水素供与体としては、ハロゲン化有機化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味し、例えば、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物および脂環式化合物である。その中でも、アルコール系化合物、ケトン系化合物、脂環式化合物が好ましく、特にアルコール系化合物が好ましい。前記の有機系水素供与体は、それぞれ単独で又は二種以上を任意に組合わせて使用することができる。   The organic hydrogen donor used in the present invention means a compound capable of donating a hydrogen atom to a radical generated from a halogenated organic compound, and includes, for example, a heterocyclic compound, an amine compound, and an alcohol compound. Compounds, ketone compounds and alicyclic compounds. Among them, alcohol compounds, ketone compounds and alicyclic compounds are preferable, and alcohol compounds are particularly preferable. The organic hydrogen donors described above can be used alone or in any combination of two or more.

前記の複素環式化合物としては、例えば、1,3−ジメチル−2−イミダゾリジノン(DMI)等が挙げられる。   Examples of the heterocyclic compound include 1,3-dimethyl-2-imidazolidinone (DMI).

前記のアミン系化合物としては、例えばジメチルエチレンジアミン(以下DEDと略)等が挙げられる。   Examples of the amine compound include dimethylethylene diamine (hereinafter abbreviated as DED).

前記のアルコール系化合物としては、直鎖状あるいは分岐鎖を有する一価アルコール、多価アルコールが挙げられる。前記のアルコールの炭素数は1〜12の範囲が好ましく、さらに好ましくは2〜9の範囲である。アルコールは脂肪族、芳香族のいずれであっても良いが、脂肪族アルコールが好ましい。前記のアルコール系化合物の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等の脂肪族アルコール、シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、シクロオクタノール等の脂環式アルコール、エチレングリコール、プロピレングリコール、デカリンジオール等の多価アルコール等を挙げることができる。   Examples of the alcohol-based compound include linear or branched monohydric alcohols and polyhydric alcohols. The alcohol preferably has 1 to 12 carbon atoms, and more preferably 2 to 9 carbon atoms. The alcohol may be either aliphatic or aromatic, but is preferably an aliphatic alcohol. Specific examples of the alcohol compound include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, aliphatic alcohols such as octanol, cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, cycloheptanol, Examples thereof include alicyclic alcohols such as cyclooctanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, and decalin diol.

前記のケトン系化合物としては、メチルエチルケトン、シクロヘキサノン、トリシクロドデカノン等が挙げられる。   Examples of the ketone compound include methyl ethyl ketone, cyclohexanone, tricyclododecanone and the like.

前記の脂環式化合物としては、テトラリン、シクロヘキサン等が挙げられる。   Examples of the alicyclic compound include tetralin and cyclohexane.

本発明で用いる無機系触媒としては、上記のハロゲン化有機化合物の脱塩素化反応速度を増大させることができるものであればよく、その種類は特に限定されない。無機系触媒は触媒寿命が長く、かつ、アルカリ化合物存在下でも安定であるため、有機系触媒よりも好適に用いられる。無機系触媒の好ましい具体例としては、例えば、金属担持複合金属酸化物、炭素結晶化合物、金属担持炭素化合物、金属酸化物等が挙げられる。その中でも、炭素結晶化合物、金属担持炭素化合物がアルカリ性雰囲気で安定性が高いので好ましく、特に、金属担持炭素化合物が好ましい。前記の無機系触媒は、それぞれ単独で又は二種以上を任意に組合わせて使用することができる。   The inorganic catalyst used in the present invention is not particularly limited as long as it can increase the dechlorination reaction rate of the halogenated organic compound. Inorganic catalysts have a long catalyst life and are stable even in the presence of alkali compounds, and therefore are more preferably used than organic catalysts. Preferred specific examples of the inorganic catalyst include, for example, a metal-supported composite metal oxide, a carbon crystal compound, a metal-supported carbon compound, and a metal oxide. Among them, a carbon crystal compound and a metal-supported carbon compound are preferable because of high stability in an alkaline atmosphere, and a metal-supported carbon compound is particularly preferable. The above-mentioned inorganic catalysts can be used alone or in combination of two or more.

前記の金属担持複合金属酸化物としては、例えば金属担持ゼオライト、トバモライト、アスベスト等が挙げられる。   Examples of the metal-supported composite metal oxide include metal-supported zeolite, tobermorite, and asbestos.

前記の炭素結晶化合物としては、グラファイト、カーボンナノチューブ(金属を含むものと含まないものと両方)、フラーレン等が挙げられる。   Examples of the carbon crystal compound include graphite, carbon nanotubes (both containing and not containing metal), fullerene and the like.

前記の金属担持炭素化合物としては、金属を担持した炭素化合物であれば制限なく用いることができる。担持される金属としては、例えば、鉄、銀、白金、パラジウム、ルテニウム、ロジウム等が挙げられるが、脱塩素化効率を高める観点より、パラジウム、ルテニウム、白金が好ましい。金属担持炭素化合物の具体例としては、例えば、Fe/C、Ag/C、Pt/C、Pd/C、Ru/C、Rh/Cなどが挙げられる。金属担持炭素化合物に関しては、金属担持量1〜20wt%、より好ましくは5〜10wt%であり、粒子径は75〜300μm、より好ましくは125〜250μmが望ましい。粗いと反応性が悪く、細かいとハンドリングが難しくなる。   As the metal-supported carbon compound, any carbon compound that supports a metal can be used without limitation. Examples of the supported metal include iron, silver, platinum, palladium, ruthenium, and rhodium. From the viewpoint of increasing the dechlorination efficiency, palladium, ruthenium, and platinum are preferred. Specific examples of the metal-supported carbon compound include, for example, Fe / C, Ag / C, Pt / C, Pd / C, Ru / C, Rh / C and the like. Regarding the metal-supported carbon compound, the amount of supported metal is 1 to 20 wt%, more preferably 5 to 10 wt%, and the particle diameter is desirably 75 to 300 μm, and more desirably 125 to 250 μm. If it is coarse, the reactivity is poor, and if it is fine, handling becomes difficult.

前記の金属酸化物としては、例えばNiO、Fe、Fe等が挙げられる。 Examples of the metal oxide include NiO, Fe 2 O 3 , and Fe 3 O 4 .

マイクロ波の出力は10W〜20kWの範囲が望ましい。10W未満では水素発生量が少ない。また、20kWを超えるとマイクロ波の利用率が悪くなる。さらに望ましくは65W〜5kWの範囲のマイクロ波が望ましい。   The microwave output is desirably in the range of 10 W to 20 kW. If it is less than 10 W, the amount of generated hydrogen is small. On the other hand, when the power exceeds 20 kW, the utilization rate of microwaves deteriorates. More preferably, a microwave in the range of 65 W to 5 kW is desirable.

マイクロ波の周波数は1〜300GHzが望ましい。1GHz未満又は300GHzを超える周波数範囲では、無機系触媒、有機系水素供与体の加熱が不十分となる。より好ましくは1〜5GHzの周波数が望ましい。   The microwave frequency is desirably 1 to 300 GHz. In a frequency range of less than 1 GHz or more than 300 GHz, the heating of the inorganic catalyst and the organic hydrogen donor becomes insufficient. More preferably, a frequency of 1 to 5 GHz is desirable.

マイクロ波を照射する場合、連続照射、間欠照射のいずれの方法を採用しても良い。照射時間及び照射停止時間は、反応に供するハロゲン化有機化合物、有機系水素供与体、反応触媒等に応じて適宜に決定することができる。   When irradiating microwaves, any of continuous irradiation and intermittent irradiation may be employed. The irradiation time and the irradiation stop time can be appropriately determined according to the halogenated organic compound, the organic hydrogen donor, the reaction catalyst and the like to be used for the reaction.

反応時間は0.01分〜300分が望ましい。0.01分未満では分解反応が不十分であり、300分より大の反応時間では実用上意味がない。さらに望ましくは5分〜180分である。   The reaction time is desirably 0.01 to 300 minutes. When the reaction time is less than 0.01 minute, the decomposition reaction is insufficient, and when the reaction time is longer than 300 minutes, there is no practical meaning. More preferably, it is 5 minutes to 180 minutes.

反応の雰囲気は不活性ガス中で行うことが、望ましくない副反応が起きないので、より好ましい。   It is more preferable to carry out the reaction in an inert gas atmosphere, since undesirable side reactions do not occur.

本発明の難分解性ハロゲン化有機化合物の分解方法において、アルカリ化合物/有機系水素供与体/ハロゲン化有機化合物(濃度100%に換算)のモル比は、有機系水素供与体を基準とした場合に、0.001〜5/10/0.000001〜10が望ましい。アルカリ化合物のモル比が0.001未満ではハロゲン化有機化合物の分解反応が進まない。また、アルカリ化合物のモル比が5を超えると攪拌混合が難しくなる。また、ハロゲン化有機化合物のモル比が0.000001未満でも反応は十分進むが、実用上意味がない。ハロゲン化有機化合物のモル比が10を超えると、その脱塩素反応が不十分となる。前記三成分のモル比は0.1〜3/10/0.1〜5が好ましく、特に1〜3/10/0.1〜1が好ましい。   In the method for decomposing a hardly decomposable halogenated organic compound of the present invention, the molar ratio of alkali compound / organic hydrogen donor / halogenated organic compound (converted to a concentration of 100%) is based on the organic hydrogen donor. In addition, 0.001 to 5/10 / 0.000001 to 10 is desirable. If the molar ratio of the alkali compound is less than 0.001, the decomposition reaction of the halogenated organic compound does not proceed. When the molar ratio of the alkali compound exceeds 5, stirring and mixing becomes difficult. If the molar ratio of the halogenated organic compound is less than 0.000001, the reaction proceeds sufficiently, but has no practical significance. When the molar ratio of the halogenated organic compound exceeds 10, the dechlorination reaction becomes insufficient. The molar ratio of the three components is preferably from 0.1 to 3/10 / 0.1 to 5, and more preferably from 1 to 3/10 / 0.1 to 1.

無機系触媒の添加量は、ハロゲン化有機化合物濃度を100%とした場合、溶液全量に対する重量比として、0.00001〜0.1の範囲が好ましい。前記重量比が0.00001未満では水素発生量が少なくなり、重量比が0.1を超えると本発明の各成分を混合した系の攪拌混合が難しくなり、効果的に作用しない高価な無機系触媒が存在することになり、経済的にも不利である。さらに好ましくは0.0001〜0.01の範囲であり、特に0.001〜0.002の範囲が好ましい。   The amount of the inorganic catalyst to be added is preferably in the range of 0.00001 to 0.1 as a weight ratio to the total amount of the solution when the concentration of the halogenated organic compound is 100%. When the weight ratio is less than 0.00001, the amount of generated hydrogen decreases, and when the weight ratio exceeds 0.1, it becomes difficult to stir and mix the system in which the components of the present invention are mixed, and expensive inorganic systems that do not work effectively There is a catalyst, which is economically disadvantageous. It is more preferably in the range of 0.0001 to 0.01, and particularly preferably in the range of 0.001 to 0.002.

本発明のハロゲン化有機化合物の分解方法によれば、反応系に外部から水素ガスを吹き込んだ場合と同等もしくはそれ以上の速い速度でPCBなどのハロゲン化有機化合物そのものが分解する。その機構は明らかではないが、アルカリ化合物から提供されるアルカリ金属ラジカルがPCBなどのハロゲン化有機化合物の脱ハロゲン化反応を促し、そこに水素供与体からの水素ラジカルが入り込むものと考えられる。   According to the method for decomposing a halogenated organic compound of the present invention, the halogenated organic compound itself such as PCB is decomposed at a speed equal to or higher than that when hydrogen gas is blown into the reaction system from the outside. Although the mechanism is not clear, it is considered that an alkali metal radical provided from an alkali compound promotes a dehalogenation reaction of a halogenated organic compound such as PCB, and a hydrogen radical from a hydrogen donor enters therein.

次に、本発明を実施例により具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。以下の実施例では、PCB模擬液として1,2,4−トリクロロベンゼン(TCB)を用いて、その分解反応の実験を行った。   Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to only the following examples. In the following examples, an experiment of the decomposition reaction was performed using 1,2,4-trichlorobenzene (TCB) as a PCB simulation liquid.

図1に本実施例で使用したハロゲン化有機化合物分解装置の概略図を示す。マイクロウェーブ発生装置1内に三つ口フラスコ2を入れ、三つ口の二つを窒素導入用口2aと温度計3の挿入口2bとして利用し、中央の口2cにリービッヒ冷却管4を設けて反応生成物を反応系外に取り出す。   FIG. 1 is a schematic diagram of a halogenated organic compound decomposing apparatus used in this example. The three-necked flask 2 is placed in the microwave generator 1, and two of the three-necked flasks are used as the nitrogen inlet 2 a and the insertion port 2 b of the thermometer 3, and the Liebig cooling pipe 4 is provided in the center port 2 c. To remove the reaction product out of the reaction system.

(実施例1〜比較例2の実験方法)
実施例1〜比較例2までの実験は、アルカリ化合物の有無、触媒の有無がTCBの脱塩素反応に及ぼす影響について調べたものである。
(Experimental method of Example 1 and Comparative Example 2)
The experiments from Example 1 to Comparative Example 2 investigated the influence of the presence or absence of an alkali compound and the presence or absence of a catalyst on the dechlorination reaction of TCB.

(実施例1)
アルカリ化合物として、日本曹達(株)製KOHフレーク(95%)を乳鉢ですりつぶして、その3.43g(0.061モル)と、有機系水素供与体として用いる和光純薬(株)製のシクロヘキサノール30.59g(0.306モル)と、無機系触媒として白金を5wt%担持した粒子径150〜180μmの活性炭(Pt/C:和光純薬(株)製)50mgと、PCB模擬液として1,2,4−トリクロロベンゼン(和光純薬(株)製)0.56g(0.0031モル)とをそれぞれ用いて、内容量200mlの三つ口フラスコ2に導入した。
(Example 1)
As an alkaline compound, KOH flakes (95%) manufactured by Nippon Soda Co., Ltd. was ground in a mortar, and 3.43 g (0.061 mol) of the KOH flakes were added to a cyclo-gel manufactured by Wako Pure Chemical Industries, Ltd. to be used as an organic hydrogen donor. 30.59 g (0.306 mol) of hexanol, 50 mg of activated carbon (Pt / C: manufactured by Wako Pure Chemical Industries, Ltd.) having a particle diameter of 150 to 180 μm carrying 5 wt% of platinum as an inorganic catalyst, and 1 And 0.56 g (0.0031 mol) of 2,4-trichlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd.) were introduced into a 200 ml three-necked flask 2.

前記フラスコ2に前記各物質の混合物を導入後に窒素ガスでフラスコ2内部ガスを置換した後、マグネッチックスターラーで混合物を攪拌しながら周波数2.45GHz、照射エネルギー325Wのマイクロ波を80分照射した。反応中も窒素ガスを50ml/minで流した。マイクロ波は13.5秒の照射と13.5秒の非照射とを交互に繰り返した。上述の反応時間はこれらの合計時間である。   After introducing the mixture of each substance into the flask 2 and replacing the gas inside the flask 2 with nitrogen gas, the mixture was irradiated with a microwave having a frequency of 2.45 GHz and an irradiation energy of 325 W for 80 minutes while stirring the mixture with a magnetic stirrer. During the reaction, nitrogen gas was flowed at 50 ml / min. The microwave alternately repeated irradiation for 13.5 seconds and non-irradiation for 13.5 seconds. The above reaction times are the sum of these times.

三つ口フラスコ2の上部にはリービッヒ冷却管4を取り付けてあるため、シクロヘキサノールは還流し、フラスコ2の内部温度はその沸点近傍(160℃)に保持された。   Since the Liebig condenser 4 was attached to the upper part of the three-necked flask 2, the cyclohexanol refluxed, and the internal temperature of the flask 2 was kept near its boiling point (160 ° C.).

(比較例1)
アルカリ化合物を入れずに反応時間を40分とした以外は、実施例1と同一条件で反応させた。
(Comparative Example 1)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was 40 minutes without adding an alkali compound.

(比較例2)
無機系触媒(Pt/C)を入れずに反応時間を40分とした以外は、実施例1と同一条件で反応させた。
(Comparative Example 2)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was 40 minutes without adding the inorganic catalyst (Pt / C).

(実施例1〜比較例2の結果)
反応前後の溶液をULBON HR−20M((株)島津ジーエルシー製)をキャピラリーカラム(カラム温度80℃→220℃)とする(株)島津製作所製のガスクロマトグラフィー質量分析器QP5050Aにかけ、1,2,4−トリクロロベンゼン(TCB)のピーク面積の変化により脱塩素化(分解率)を確認した。
(Results of Example 1 and Comparative Example 2)
The solution before and after the reaction was applied to a gas chromatography mass spectrometer QP5050A manufactured by Shimadzu Corporation using a ULBON HR-20M (manufactured by Shimadzu GLC) as a capillary column (column temperature 80 ° C. → 220 ° C.). Dechlorination (decomposition rate) was confirmed by a change in the peak area of 2,4-trichlorobenzene (TCB).

また、反応途中の水素発生量をモレキュラーシーブ5A(ジーエルサイエンス(株)製)をキャピラリーカラム(カラム温度100℃)とする(株)島津製作所製のガスクロマトグラフィー13Aで分析した。分析結果を表1に示す。   The amount of hydrogen generated during the reaction was analyzed by gas chromatography 13A manufactured by Shimadzu Corporation using a molecular sieve 5A (GL Science Co., Ltd.) as a capillary column (column temperature 100 ° C.). Table 1 shows the analysis results.

Figure 2004167232
Figure 2004167232

表1の結果より、実施例1ではTCBがほぼ完全に消失していた。そのとき、反応系外に取り出した反応生成物中には体積割合で30%の水素ガスが発生していた。よって、シクロヘキサノール由来の水素ラジカルが脱塩素反応に寄与しているものと考えられる。   From the results shown in Table 1, in Example 1, TCB was almost completely eliminated. At that time, 30% by volume of hydrogen gas was generated in the reaction product taken out of the reaction system. Therefore, it is considered that the hydrogen radical derived from cyclohexanol contributes to the dechlorination reaction.

一方、比較例1では、反応中に水素ガスは発生せず、TCBの分解も起こらなかった。これより、TCBの分解反応ではアルカリ化合物の存在が必要であることが確認された。   On the other hand, in Comparative Example 1, no hydrogen gas was generated during the reaction, and no decomposition of TCB occurred. From this, it was confirmed that the presence of an alkali compound was necessary for the decomposition reaction of TCB.

比較例2では、反応中に水素ガスの発生は認められず、TCBの分解率は60%であった。これより、無機系触媒の存在によりTCBの分解反応速度が向上していることが確認された。   In Comparative Example 2, no hydrogen gas was generated during the reaction, and the decomposition rate of TCB was 60%. From this, it was confirmed that the decomposition reaction rate of TCB was improved by the presence of the inorganic catalyst.

(実施例2〜実施例7の実験方法)
実施例2〜実施例7までの実験は、反応時間及びTCB初期投入量が分解率に及ぼす影響について調べたものである。
(Experimental method of Examples 2 to 7)
In the experiments from Example 2 to Example 7, the effects of the reaction time and the initial charge of TCB on the decomposition rate were investigated.

(実施例2)
反応時間を10分とした以外は実施例1と同一条件で反応させた。
(Example 2)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was changed to 10 minutes.

(実施例3)
反応時間を20分とした以外は実施例1と同一条件で反応させた。
(Example 3)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was 20 minutes.

(実施例4)
反応時間を40分とした以外は実施例1と同一条件で反応させた。
(Example 4)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was 40 minutes.

(実施例5)
反応時間を60分とした以外は実施例1と同一条件で反応させた。
(Example 5)
The reaction was carried out under the same conditions as in Example 1 except that the reaction time was 60 minutes.

(実施例6)
TCB量を1.11g(0.0062モル)とし、かつ反応時間を40分とし、それ以外は実施例1と同一条件で反応させた。
(Example 6)
The reaction was carried out under the same conditions as in Example 1 except that the TCB amount was 1.11 g (0.0062 mol) and the reaction time was 40 minutes.

(実施例7)
TCB量を2.22g(0.012モル)とし、かつ反応時間を40分とし、それ以外は実施例1と同一条件で反応させた。
(Example 7)
The reaction was carried out under the same conditions as in Example 1 except that the TCB amount was 2.22 g (0.012 mol) and the reaction time was 40 minutes.

(実施例2〜実施例7の結果)
実施例2〜実施例7の分析結果を表2にまとめて示す。分解率の時間変化として、実施例2〜実施例5の結果を実施例1の結果とともに図2に打点した。また、TCB仕込み量による変化として、実施例6〜実施例7の結果を実施例4の結果とともに図3に打点した。
(Results of Examples 2 to 7)
Table 2 summarizes the analysis results of Examples 2 to 7. The results of Examples 2 to 5 were plotted together with the results of Example 1 in FIG. In addition, the results of Examples 6 and 7 were plotted in FIG.

Figure 2004167232
Figure 2004167232

図2に見られるように、10分の反応時間で80%以上のTCBが分解しており、しかも80分の反応時間でほぼ完全にTCBが消失した。   As shown in FIG. 2, 80% or more of TCB was decomposed in a reaction time of 10 minutes, and TCB disappeared almost completely in a reaction time of 80 minutes.

また、図3に見られるように、TCB仕込み量が2.22gでも40分で70%以上が分解した。   Further, as can be seen in FIG. 3, even when the amount of TCB charged was 2.22 g, 70% or more was decomposed in 40 minutes.

(実施例8〜実施例31の実験方法)
実施例8〜実施例31までの実験は、アルカリ化合物、有機系水素供与体、無機系触媒の種類がTCBの脱塩素化反応に及ぼす影響について調べたものである。なお、実施例8〜実施例31までの実験における各物質のモル比、触媒添加量等は、実施例1と同一条件で反応させた。
(Experimental methods of Examples 8 to 31)
The experiments from Example 8 to Example 31 investigated the effects of the types of alkali compounds, organic hydrogen donors, and inorganic catalysts on the dechlorination reaction of TCB. The reaction was carried out under the same conditions as in Example 1 except for the molar ratio of each substance, the amount of catalyst added, and the like in the experiments from Example 8 to Example 31.

(実施例8〜実施例31の結果)
実施例8〜実施例31の評価結果を表3にまとめて示す。なお、脱塩素化反応の評価を以下のように行った。
○:良好(分解率が65%以上)
△:不十分(分解率が30%以上65%未満)
×:不良(分解率が30%未満)
(Results of Examples 8 to 31)
Table 3 summarizes the evaluation results of Examples 8 to 31. In addition, evaluation of the dechlorination reaction was performed as follows.
:: good (decomposition rate is 65% or more)
Δ: insufficient (decomposition rate is 30% or more and less than 65%)
×: defective (decomposition rate is less than 30%)

Figure 2004167232
Figure 2004167232

以上の本発明の実施例から、TCBが本実施例の反応系で効果的に分解することが判明した。   From the above examples of the present invention, it was found that TCB was effectively decomposed in the reaction system of this example.

本発明に用いたマイクロ波によるハロゲン化有機化合物分解実験装置の概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic of the halogenated organic compound decomposition | disassembly experimental device by microwave used for this invention. 実施例1から実施例5までのTCB分解率の時間変化を示す図である。It is a figure which shows the time change of the TCB decomposition rate from Example 1 to Example 5. 実施例4、実施例6及び実施例7のTCB仕込み量による分解率の変化を示す図である。It is a figure which shows the change of the decomposition rate by the TCB preparation amount of Example 4, Example 6, and Example 7.

符号の説明Explanation of reference numerals

1 マイクロウェーブ発生装置
2 三つ口フラスコ
3 温度計
4 リービッヒ冷却管
DESCRIPTION OF SYMBOLS 1 Microwave generator 2 Three-necked flask 3 Thermometer 4 Liebig condenser

Claims (6)

難分解性ハロゲン化有機化合物を、アルカリ化合物、無機系触媒、有機系水素供与体の存在下でマイクロ波を照射することを特徴とする難分解性ハロゲン化有機化合物の分解方法。 A method for decomposing a hardly decomposable halogenated organic compound, comprising irradiating the hardly decomposable halogenated organic compound with microwaves in the presence of an alkali compound, an inorganic catalyst, and an organic hydrogen donor. 難分解性ハロゲン化有機化合物がポリ塩化ビフェニールとその類縁化合物であることを特徴とする請求項1記載の難分解性ハロゲン化有機化合物の分解方法。 2. The method for decomposing a hardly decomposable halogenated organic compound according to claim 1, wherein the hardly decomposable halogenated organic compound is polychlorinated biphenyl and its analogous compound. アルカリ化合物が、苛性ソーダ、苛性カリ、ナトリウムアルコキシド、カリウムアルコキシドおよび水酸化カルシウムからなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることを特徴とする請求項1記載の難分解性ハロゲン化有機化合物の分解方法。 2. The hardly decomposable halogenated organic compound according to claim 1, wherein the alkali compound is at least one or a mixture of two or more selected from the group consisting of caustic soda, caustic potash, sodium alkoxide, potassium alkoxide and calcium hydroxide. How to decompose the compound. 有機系水素供与体が、複素環式化合物、アミン系化合物、アルコール系化合物、ケトン系化合物および脂環式化合物からなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることを特徴とする請求項1記載の難分解性ハロゲン化有機化合物の分解方法。 The organic hydrogen donor is a mixture of at least one or two or more selected from the group consisting of heterocyclic compounds, amine compounds, alcohol compounds, ketone compounds and alicyclic compounds. A method for decomposing a hardly decomposable halogenated organic compound according to claim 1. 無機系触媒が、金属担持複合金属酸化物、炭素結晶化合物、金属担持炭素化合物および金属酸化物からなる群から選ばれる少なくとも一つ或いは二つ以上の混合物であることを特徴とする請求項1記載の難分解性ハロゲン化有機化合物の分解方法。 The inorganic catalyst is at least one selected from the group consisting of a metal-supported composite metal oxide, a carbon crystal compound, a metal-supported carbon compound, and a metal oxide, or a mixture of two or more thereof. For decomposing hardly decomposable halogenated organic compounds. 難分解性ハロゲン化有機化合物が、ポリクロロベンゼンであることを特徴とする請求項1〜5のいずれかに記載の難分解性ハロゲン化有機化合物の分解方法。 The method for decomposing a hardly decomposable halogenated organic compound according to any one of claims 1 to 5, wherein the hardly decomposable halogenated organic compound is polychlorobenzene.
JP2003369199A 2002-10-30 2003-10-29 Method for decomposing hardly decomposable halogenated organic compound Pending JP2004167232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369199A JP2004167232A (en) 2002-10-30 2003-10-29 Method for decomposing hardly decomposable halogenated organic compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002315824 2002-10-30
JP2003369199A JP2004167232A (en) 2002-10-30 2003-10-29 Method for decomposing hardly decomposable halogenated organic compound

Publications (1)

Publication Number Publication Date
JP2004167232A true JP2004167232A (en) 2004-06-17

Family

ID=32715804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369199A Pending JP2004167232A (en) 2002-10-30 2003-10-29 Method for decomposing hardly decomposable halogenated organic compound

Country Status (1)

Country Link
JP (1) JP2004167232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801298A (en) * 2014-10-15 2015-07-29 青岛科技大学 Method for preparing platinum-carbon catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801298A (en) * 2014-10-15 2015-07-29 青岛科技大学 Method for preparing platinum-carbon catalyst

Similar Documents

Publication Publication Date Title
JP2004201967A (en) Method and apparatus for treating organohalogen compound
Mitoma et al. Highly effective degradation of polychlorinated biphenyls in soil mediated by a Ca/Rh bicatalytic system
JP2004167232A (en) Method for decomposing hardly decomposable halogenated organic compound
JP4337958B2 (en) Method for dechlorination of aromatic chlorine compounds
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2008272594A (en) Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
JP2007105059A (en) Method of decomposing dioxins
JP3976329B2 (en) Organic halogen compound decomposition treatment method and mobile decomposition treatment system
KR20010079510A (en) Method of decomposing organochlorine compound
JP3970277B2 (en) Contaminated oil treatment method
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
Imasaka et al. Dry dechlorination of polychlorinated biphenyls in contaminated soil by using nano-sized composite of metallic Ca/CaO and its mechanism
JP3678740B1 (en) Method for dechlorination of PCB-containing high-concentration organic halogen compounds
JP2004201701A (en) Method for dechlorinating polychlorinated biphenyl
JP2004201702A (en) Method for dechloronating polychlorinated biphenyl mixture
JP3678739B1 (en) Dechlorination method for high concentration PCB
JP3970286B2 (en) Organic halogen compound decomposition treatment method and microwave combined decomposition treatment system
WO1991009808A1 (en) Reactive compositions containing superoxide ion for the degradation of halogenated organic compounds
JP2003268583A (en) Method of decomposing organic chlorine compound
JP4329498B2 (en) Dechlorination method for PCB in pole transformer
JP3678738B2 (en) Method for dechlorination of polychlorinated biphenyls
JP2005270388A (en) Method for decomposing organic halogen compound
JP2006129900A (en) Method and device for detoxification treatment of pcb-containing oil
KR100958125B1 (en) Decontamination Apparatus for PCBs-contaminated Matters Using Evaporation-Condensation of Chlorinated Organic Solvents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090313