JP3442623B2 - Decomposition method of halogen-containing organic compounds - Google Patents

Decomposition method of halogen-containing organic compounds

Info

Publication number
JP3442623B2
JP3442623B2 JP25391497A JP25391497A JP3442623B2 JP 3442623 B2 JP3442623 B2 JP 3442623B2 JP 25391497 A JP25391497 A JP 25391497A JP 25391497 A JP25391497 A JP 25391497A JP 3442623 B2 JP3442623 B2 JP 3442623B2
Authority
JP
Japan
Prior art keywords
halogen
containing organic
organic compound
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25391497A
Other languages
Japanese (ja)
Other versions
JPH1190460A (en
Inventor
武彦 村松
由美子 喜多
輝信 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25391497A priority Critical patent/JP3442623B2/en
Publication of JPH1190460A publication Critical patent/JPH1190460A/en
Application granted granted Critical
Publication of JP3442623B2 publication Critical patent/JP3442623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、含ハロゲン有機化
合物を無害な物質に分解する含ハロゲン有機化合物の分
解方法に関し、特に、含ハロゲン有機化合物の脱ハロゲ
ン・水素化によって含ハロゲン有機化合物を分解する含
ハロゲン有機化合物の分解方法に関する。
TECHNICAL FIELD The present invention relates to a method for decomposing a halogen-containing organic compound into a harmless substance, and more particularly to decomposing and dehydrogenating a halogen-containing organic compound to decompose the halogen-containing organic compound. And a method for decomposing a halogen-containing organic compound.

【0002】[0002]

【従来の技術】トリクレン、ポリクロロビフェニール
(PCB)、フロン等の含ハロゲン有機化合物は、従来
から様々な目的で大量に使用されてきた。例えば、PC
Bは優れた絶縁性及び難燃性を有するため、電気絶縁
油、熱媒体、難燃化剤として、フロンはその化学的安定
性や低沸点により冷媒や洗浄用液材として、電子部品工
業、化学工業などの各分野で広く使われてきた。
2. Description of the Related Art Halogen-containing organic compounds such as trichlene, polychlorobiphenyl (PCB) and freon have been used in large amounts for various purposes. For example, PC
Since B has excellent insulation and flame retardancy, it is used as an electric insulating oil, a heat medium, and a flame retardant, and CFCs are used as a refrigerant and a cleaning liquid material due to its chemical stability and a low boiling point. It has been widely used in various fields such as the chemical industry.

【0003】しかし、トリクレン、PCB等の塩素化合
物については、人体に対する毒性及び生体蓄積性が問題
とされ、使用規制に関する法律が制定されている。フロ
ン等のフッ素化合物は、オゾン層の破壊に見られるよう
に地球環境破壊の面での問題点が近年明らかにされてい
る。このような状況から、含ハロゲン有機化合物を分解
して無害化する方法が求められ、様々な方法が検討され
ている。
However, with regard to chlorine compounds such as trichlene and PCB, toxicity to human bodies and bioaccumulation are problems, and a law concerning use regulation has been enacted. Fluorine compounds such as CFCs have recently been clarified as problems in terms of global environmental destruction as seen in ozone layer destruction. Under such circumstances, a method for decomposing the halogen-containing organic compound to render it harmless is required, and various methods have been studied.

【0004】含ハロゲン有機化合物の処理は、焼却によ
る分解と、化学的な処理による分解の2種類に大別さ
れ、焼却による分解では、800℃以上の高温で含ハロ
ゲン有機化合物を燃焼して分解し、化学的な処理による
分解では、化学反応を利用してハロゲン原子を含ハロゲ
ン有機化合物から脱離させて分解する。
The treatment of halogen-containing organic compounds is roughly divided into two types: decomposition by incineration and decomposition by chemical treatment. In decomposition by incineration, the halogen-containing organic compounds are burned at a high temperature of 800 ° C. or higher and decomposed. In the decomposition by chemical treatment, however, a halogen atom is desorbed from the halogen-containing organic compound by utilizing a chemical reaction and decomposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、焼却による分
解では、熱による作用で含ハロゲン有機化合物がより有
毒な物質に転化する可能性を有し、これを防ぐには、焼
却処理温度を適温に調節する必要がある。又、焼却によ
りハロゲン化水素ガスが発生するので、焼却排ガスの処
理を行う必要がある。
However, in the decomposition by incineration, there is a possibility that the halogen-containing organic compound is converted into a more toxic substance by the action of heat, and in order to prevent this, the incineration treatment temperature should be set to an appropriate temperature. Need to be adjusted. Further, since hydrogen halide gas is generated by incineration, it is necessary to treat incineration exhaust gas.

【0006】一方、化学的な処理による分解には、ナト
リウム等のアルカリ金属やナトリウムメチラート等のア
ルカリ金属化合物の様な試薬を用いる方法、還元性条件
下で脱ハロゲンを進行させる方法などがあり、還元性条
件下での脱ハロゲンは、水素ガス、アルコール、工業油
等の水素供与物質を使用する。
On the other hand, for the decomposition by chemical treatment, there are a method of using a reagent such as an alkali metal such as sodium and an alkali metal compound such as sodium methylate, and a method of advancing dehalogenation under reducing conditions. For dehalogenation under reducing conditions, hydrogen-donating substances such as hydrogen gas, alcohol, and industrial oil are used.

【0007】上述のアルカリ金属等の試薬を用いる方法
は、その試薬の取扱いが難しいため、安全性等の面で問
題がある。又、還元性条件下での脱ハロゲンにおいて、
水素供与物質として水素等のガス物質を使用すると、非
常に高い圧力下で反応を行うことになるため、安全な処
理操作のため特別な装置が必要とされる。他方、液体の
水素供与物質を用いて液相中で脱ハロゲンする液相分解
の場合には、反応条件が比較的穏やかなため安全処理が
可能であり、排出ガスが少ない等の長所を有する。特に
水素供与物質としてアルコールを用いると、極めて穏や
かな条件下での有機ハロゲン化合物の分解処理が可能と
なる。この場合、脱離したハロゲンを処理することを主
目的にアルカリ剤を用いるのが一般的である。しかしな
がら、水酸化アルカリを使用すると、処理に伴って水が
生成し、含ハロゲン有機化合物の溶媒に対する溶解度が
減少して溶媒への分散性が低くなり、分解反応が進み難
くなる。又、溶媒であるアルコールが水酸化アルカリ及
び熱の作用により縮合応を起こして別の物質に変化し
てしまい、水素供給物質として効率的に用いることがで
きなくなる。
The above-mentioned method using a reagent such as an alkali metal has a problem in terms of safety since the reagent is difficult to handle. Also, in dehalogenation under reducing conditions,
When a gas substance such as hydrogen is used as a hydrogen donor, the reaction is carried out under a very high pressure, and therefore a special device is required for safe treatment operation. On the other hand, in the case of liquid phase decomposition in which a liquid hydrogen donor is used for dehalogenation in a liquid phase, the reaction conditions are relatively mild, so that safe treatment is possible and there are advantages such as a small amount of exhaust gas. In particular, when alcohol is used as the hydrogen donor, the decomposition treatment of the organohalogen compound can be performed under extremely mild conditions. In this case, it is general to use an alkaline agent mainly for treating the eliminated halogen. However, when alkali hydroxide is used, water is generated along with the treatment, the solubility of the halogen-containing organic compound in the solvent decreases, the dispersibility in the solvent decreases, and the decomposition reaction becomes difficult to proceed. Also, will be changed into another substance alcohol which is a solvent that causes a condensation reaction by the action of an alkali hydroxide and heat, it can not be used effectively as a hydrogen supply material.

【0008】[0008]

【課題を解決するための手段】本発明は、上述のような
有害物質の生成や、排ガスあるいは副生成物の処理の必
要性等の問題を生じることなく、安全に効率よく含ハロ
ゲン有機化合物を分解無害化できる含ハロゲン有機化合
物の分解方法を提供することを目的とする。
According to the present invention, a halogen-containing organic compound can be safely and efficiently produced without causing problems such as the production of harmful substances and the necessity of treating exhaust gas or by-products as described above. It is an object of the present invention to provide a method for decomposing a halogen-containing organic compound that can be decomposed and rendered harmless.

【0009】[0009]

【0010】発明の含ハロゲン有機化合物の分解方法
は、金属触媒の存在下で含ハロゲン有機化合物を水素供
与物質及びアルカリ剤と反応させることにより含ハロゲ
ン有機化合物を脱ハロゲン水素化する含ハロゲン有機化
合物の分解方法であって、アルコールを上記水素供与物
質とし、金属水素化物を上記アルカリ剤として用いるも
のである。
The method for decomposing a halogen-containing organic compound of the present invention is a halogen-containing organic compound in which a halogen-containing organic compound is dehalogenated by hydrogenation by reacting the halogen-containing organic compound with a hydrogen donor and an alkaline agent in the presence of a metal catalyst. A method for decomposing a compound, which uses alcohol as the hydrogen donor and metal hydride as the alkali agent.

【0011】上記方法に従って反応を行うと、金属触媒
は、水素供与物質を水素源として含ハロゲン有機化合物
のハロゲンを水素置換し、放出さたハロゲン原子はアル
カリ剤により中和されて塩を形成し安定化する。アルコ
ールを水素供与物質とする場合は、アルカリ剤として金
属水素化物が用いられ、水の光分解による水素を水素供
与物質として用いる場合には、アルカリ剤は任意に選択
され、いずれも中和塩を形成する。従って、これらの反
応による反応生成物は安定且つ無害な物質となる。ま
た、分解反応を阻害する物質や扱い難い物質を生成する
ことなく、効率的に分解処理を行うことが可能となる。
When the reaction is carried out according to the above method, the metal catalyst replaces the halogen of the halogen-containing organic compound with hydrogen using the hydrogen-donating substance as a hydrogen source, and the released halogen atom is neutralized with an alkaline agent to form a salt. Stabilize. When alcohol is used as the hydrogen donor, a metal hydride is used as the alkaline agent, and when hydrogen by photolysis of water is used as the hydrogen donor, the alkaline agent is arbitrarily selected and both are neutralized salts. Form. Therefore, the reaction products of these reactions become stable and harmless substances. In addition, the decomposition treatment can be efficiently performed without generating a substance that inhibits the decomposition reaction or a substance that is difficult to handle.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0013】本発明の分解方法の処理対象となる含ハロ
ゲン有機化合物は、ハロゲン原子が共有結合により炭素
と結合している構造を有する化合物であり、例えば、塩
化メチル、塩化メチレン、クロロホルム、四塩化炭素、
トリクレン、フロン等のハロゲン化アルカン、クロロベ
ンゼン等のハロゲン化ベンゼン、PCB等のハロゲン化
ビフェニル、クロロジベンゾジオキシン等が挙げられ
る。このような化合物を単独でも混合物の状態でも処理
することができ、鉱油のようなハロゲンを含まない物質
との混合物であっても適用できる。
The halogen-containing organic compound to be treated by the decomposition method of the present invention is a compound having a structure in which a halogen atom is bonded to carbon by a covalent bond, and examples thereof include methyl chloride, methylene chloride, chloroform and tetrachloride. carbon,
Examples thereof include halogenated alkanes such as trichlene and freon, halogenated benzenes such as chlorobenzene, halogenated biphenyls such as PCB, and chlorodibenzodioxin. Such compounds can be treated either alone or in the form of a mixture and can be applied in a mixture with halogen-free substances such as mineral oil.

【0014】本発明の分解方法では、上記のような含ハ
ロゲン有機化合物を、金属触媒の存在下で水素源及びア
ルカリ剤と反応させることによって、含ハロゲン有機化
合物の脱ハロゲン水素化反応が進行して該化合物は分解
(つまりハロゲンを含まない物質へ転化)される。
In the decomposition method of the present invention, the halogen-containing organic compound as described above is reacted with a hydrogen source and an alkaline agent in the presence of a metal catalyst to promote the dehalogenation hydrogenation reaction of the halogen-containing organic compound. The compound is decomposed (ie converted to a halogen-free material).

【0015】上記金属触媒は、パラジウム、白金、ロジ
ウム、ルテニウム、イリジウム、オスミウム、鉄、コバ
ルト、ニッケル、マンガン、クロム、モリブデン、タン
グステン、銅、亜鉛、スズ、鉛またはこれらの化合物か
ら1種類以上選択するのが好ましい。金属化合物の場合
には酸化物あるいはハロゲン化合物であるのが望まし
い。
The metal catalyst is selected from one or more of palladium, platinum, rhodium, ruthenium, iridium, osmium, iron, cobalt, nickel, manganese, chromium, molybdenum, tungsten, copper, zinc, tin, lead or compounds thereof. Preferably. In the case of a metal compound, it is preferably an oxide or a halogen compound.

【0016】上述の金属及び金属化合物で例示される触
媒は、水素を有する化合物から水素を引き抜く作用を有
し、例えばアルコールから水素を引き抜く。一方、含ハ
ロゲン有機化合物は、アルカリ剤の作用により、ハロゲ
ン原子を放出しやすい傾向になっており、触媒の作用を
受けて速やかにハロゲン原子を放出し、自らも活性な状
態となる。この活性な状態の含ハロゲン有機化合物は、
触媒により引き抜かれた水素と、主に触媒表面において
化合する。これによって含ハロゲン有機化合物は、ハロ
ゲン原子と水素原子の置換を完了し、ハロゲン原子数が
より少ない化合物となる。脱ハロゲン水素化反応は、含
ハロゲン有機化合物がハロゲン原子を有する限り進行
し、最終的には含ハロゲン有機化合物は完全に脱ハロゲ
ン水素化され、無害な物質となる。
The catalysts exemplified by the above-mentioned metals and metal compounds have an action of extracting hydrogen from a compound having hydrogen, and extract hydrogen from alcohol, for example. On the other hand, the halogen-containing organic compound tends to release halogen atoms easily due to the action of the alkali agent, rapidly releases the halogen atoms under the action of the catalyst, and becomes in an active state itself. The halogen-containing organic compound in this active state is
It is combined with hydrogen extracted by the catalyst mainly on the surface of the catalyst. As a result, the halogen-containing organic compound completes the replacement of the halogen atom with the hydrogen atom, and becomes a compound having a smaller number of halogen atoms. The dehalogenation hydrogenation reaction proceeds as long as the halogen-containing organic compound has a halogen atom, and finally the halogen-containing organic compound is completely dehalogenated and hydrogenated to be a harmless substance.

【0017】上記金属触媒の量は、分解対象である含ハ
ロゲン有機化合物の重量の0.0005〜1倍とするの
が好ましい。触媒は、担体に担持させたものでも良く、
この場合、担体としては、活性炭、カーボンブラック、
グラファイト等の炭素担体が特に適しているが、ゼオラ
イトやケイソウ土、マグネシア、アルミナ、シリカアル
ミナ、コージュライト等のような担体を使用することも
でき、必要に応じて適宜選択してよい。触媒の担持率は
1〜20%の範囲内であることが好ましい。
The amount of the above metal catalyst is preferably 0.0005 to 1 times the weight of the halogen-containing organic compound to be decomposed. The catalyst may be supported on a carrier,
In this case, as the carrier, activated carbon, carbon black,
Carbon carriers such as graphite are particularly suitable, but carriers such as zeolite, diatomaceous earth, magnesia, alumina, silica-alumina, cordierite and the like can be used, and may be appropriately selected as needed. The catalyst loading rate is preferably in the range of 1 to 20%.

【0018】上述の反応において、水素供与物質として
アルコール類が用いられた場合、アルコールの縮合反応
が進行して反応系の維持に複雑な処理が必要となった
り、前述したように含ハロゲン有機化合物の分解の妨げ
となったりする。このようなことを防止するために、本
発明においては、以下のような2つの形態を採用する。 1)水素供給物質としてアルコールを用い、アルカリ剤
として金属水素化物を用いる。
In the above reaction, when alcohols are used as the hydrogen donor, the condensation reaction of the alcohol proceeds and complicated treatment is required to maintain the reaction system. It may interfere with the disassembly of. In order to prevent such a situation, the following two modes are adopted in the present invention. 1) Alcohol is used as a hydrogen supply substance and metal hydride is used as an alkaline agent.

【0019】2)水素供給物質としてアルコールを用い
ずに、光エネルギーにより水を分解して得られる水素を
用いる。
2) As the hydrogen supplying substance, hydrogen obtained by decomposing water by light energy is used without using alcohol.

【0020】以下、上記の2つの形態について説明す
る。
The above two modes will be described below.

【0021】(アルコール/金属水素化物の使用)本発
明で用いられる金属水素化物としては、水素化リチウ
ム、水素化ナトリウムなどのアルカリ金属水素化物、水
素化カルシウムなどのアルカリ土類金属水素化物、水素
化ホウ素ナトリウムなどのテトラヒドロホウ酸塩、水素
化アルミニウムリチウムなどのテトラヒドロアルミン酸
塩等が挙げられるが、水素化リチウムが取り扱いや入手
の容易さから最も適している。使用する金属水素化物の
量が増加すると、含ハロゲン有機化合物の分解効率が向
上する。しかしながら必要以上に金属水素化物を用いる
と、反応液の粘性過大や装置の耐性限界といった実施上
の問題が生じる。このような点を考慮して金属水素化物
の量は、処理する含ハロゲン有機化合物のハロゲンのモ
ル数の1倍〜30倍とするのが好ましい。
(Use of alcohol / metal hydride) Examples of the metal hydride used in the present invention include alkali metal hydrides such as lithium hydride and sodium hydride, alkaline earth metal hydrides such as calcium hydride, and hydrogen. Examples thereof include tetrahydroborate salts such as sodium borohydride and tetrahydroaluminate salts such as lithium aluminum hydride, and lithium hydride is most suitable because it is easy to handle and obtain. When the amount of metal hydride used increases, the decomposition efficiency of the halogen-containing organic compound improves. However, if a metal hydride is used more than necessary, practical problems such as an excessive viscosity of the reaction solution and a limit of durability of the apparatus occur. Considering these points, the amount of metal hydride is preferably 1 to 30 times the number of moles of halogen of the halogen-containing organic compound to be treated.

【0022】本発明で用いられるアルコールとしては、
金属触媒の作用により容易に水素を放出する傾向を有す
るアルコール類が好ましい。また常温において液体であ
ることが取り扱い等から好ましい。アルコール類として
はメタノール、エタノール、1−プロパノール、2−プ
ロパノール等が挙げられるが、水素の放出しやすさから
2−プロパノールまたはエタノールが最も好ましい。上
記のアルコール類は単独で用いてもよいし、2種類以上
を混合してもよい。また上記のアルコール類は純粋なも
のである必要はなく、それら以外の物質と混合して用い
てもよい。これらのアルコールは、金属水素化物の反応
性を損なわないために、含有水分量が1%以下であるこ
とが好ましい。
The alcohol used in the present invention includes:
Alcohols having a tendency to easily release hydrogen by the action of a metal catalyst are preferable. In addition, it is preferable that it is a liquid at room temperature from the viewpoint of handling. Examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, and the like, but 2-propanol or ethanol is most preferable because hydrogen is easily released. The above alcohols may be used alone or in combination of two or more. The above alcohols need not be pure, and may be used as a mixture with other substances. These alcohols preferably have a water content of 1% or less so as not to impair the reactivity of the metal hydride.

【0023】金属水素化物は、微細粒に粉砕してアルコ
ールと混合して使用することが好ましい。
The metal hydride is preferably used after being pulverized into fine particles and mixed with alcohol.

【0024】上記で説明した金属触媒、アルコールの存
在下で、金属水素化物と含ハロゲン有機化合物を接触さ
せることによって、含ハロゲン有機化合物の脱ハロゲン
水素化反応が進行する。必要に応じて反応系を加熱し、
反応速度を増大させて処理速度を高めてもよい。加熱す
る場合の温度は、溶媒の沸点や熱による変性を考慮して
室温〜150℃の範囲内が好ましい。
By bringing the metal hydride and the halogen-containing organic compound into contact with each other in the presence of the metal catalyst and alcohol described above, the dehalogenation hydrogenation reaction of the halogen-containing organic compound proceeds. Heat the reaction system if necessary,
The reaction rate may be increased to increase the processing rate. The temperature for heating is preferably in the range of room temperature to 150 ° C. in consideration of the boiling point of the solvent and the denaturation due to heat.

【0025】本発明のように、液体に金属触媒を添加し
た反応系で一般に用いられる触媒は、細かい粒子形状で
あることが多く、反応系に分散させて反応させる。しか
し、カラム等の固定手段を用いて触媒を固定し、金属水
素化物、アルコール及び含ハロゲン有機化合物を混合し
た反応液が繰り返し、固定した触媒に接触するように構
成して反応を行うと、反応後の触媒の回収操作の簡素化
あるいは省略が可能になる。
As in the present invention, a catalyst generally used in a reaction system in which a metal catalyst is added to a liquid is often in the form of fine particles and is dispersed in the reaction system for reaction. However, when the catalyst is fixed using a fixing means such as a column, and the reaction solution in which the metal hydride, the alcohol and the halogen-containing organic compound are mixed is repeatedly and constituted so as to come into contact with the fixed catalyst, the reaction is The subsequent catalyst recovery operation can be simplified or omitted.

【0026】(水の分解による水素の使用)水は、酸化
チタンや酸化ジルコニウムなどの触媒の存在下で光を照
射すると酸素と水素に分解する。これにより得られた水
素を含ハロゲン有機化合物の分解反応に用いることがで
きれば、アルコールを含ハロゲン有機化合物の分解にお
ける水素供給源として用いる必要がないので、アルコー
ルと水酸化アルカリとの併用による問題は生じない。但
し、含ハロゲン有機化合物は水に対する溶解度が低いの
で、水の光分解と含ハロゲン有機化合物の分解は分離し
た系で行われるのが好ましい。これを実施可能な形態と
して、水素透過性を有する膜を介して水の光分解系と含
ハロゲン有機化合物の分解系とを接合する形態が挙げら
れる。つまり、光分解系において生成した水素のみが水
素透過性膜を通じて光分解系から含ハロゲン有機化合物
の分解系へ移動し、含ハロゲン有機化合物の分解反応に
使用される。
(Use of hydrogen by decomposing water) Water is decomposed into oxygen and hydrogen when irradiated with light in the presence of a catalyst such as titanium oxide or zirconium oxide. If the hydrogen thus obtained can be used in the decomposition reaction of the halogen-containing organic compound, it is not necessary to use the alcohol as a hydrogen supply source in the decomposition of the halogen-containing organic compound. Does not happen. However, since the halogen-containing organic compound has low solubility in water, it is preferable that the photolysis of water and the decomposition of the halogen-containing organic compound are performed in separate systems. As a mode in which this can be carried out, a mode in which a photodecomposition system of water and a decomposition system of a halogen-containing organic compound are joined via a hydrogen permeable film can be mentioned. That is, only hydrogen generated in the photolysis system moves from the photolysis system to the decomposition system of the halogen-containing organic compound through the hydrogen-permeable film and is used for the decomposition reaction of the halogen-containing organic compound.

【0027】上述のような形態において用いられる水素
透過性膜としては、ポリスルホン膜、テフロン膜等を挙
げることができる。水素透過性膜の光分解系と接する一
面に酸化チタンなどの光分解用触媒を担持させると、光
分解によって生じる水素の移動距離が短くなり、効率が
よい。
Examples of the hydrogen permeable membrane used in the above-mentioned form include a polysulfone membrane and a Teflon membrane. When a photodecomposition catalyst such as titanium oxide is supported on one surface of the hydrogen-permeable film that is in contact with the photodecomposition system, the migration distance of hydrogen generated by photodecomposition is shortened and efficiency is improved.

【0028】図1に、上述の実施形態に従った分解装置
の一例を示す。
FIG. 1 shows an example of the disassembling apparatus according to the above embodiment.

【0029】図1の分解装置1は、反応管3、水タンク
5、被処理液タンク7、ポンプ9,11及びランプ13
から構成され、反応管3の内部は、水素透過性膜15に
よって光分解槽17と有機槽19とに分離される。反応
管3の光分解槽17にはポンプ9によって水が循環方式
で供給される。有機槽19にはポンプ11によって含ハ
ロゲン有機化合物及びヘキサン等の有機溶剤を含んだ被
処理液が被処理液タンク7から供給される。更に、アル
カリ剤及び含ハロゲン有機化合物を分解するための金属
触媒も供給される。
The decomposition apparatus 1 of FIG. 1 comprises a reaction tube 3, a water tank 5, a liquid tank to be treated 7, pumps 9 and 11, and a lamp 13.
The inside of the reaction tube 3 is separated into a photolysis tank 17 and an organic tank 19 by the hydrogen permeable membrane 15. Water is circulated by the pump 9 to the photolysis tank 17 of the reaction tube 3. A liquid to be treated containing a halogen-containing organic compound and an organic solvent such as hexane is supplied from the liquid to be treated tank 7 to the organic tank 19 by a pump 11. Further, a metal catalyst for decomposing the alkaline agent and the halogen-containing organic compound is also supplied.

【0030】反応管3の壁部21は酸化チタンで構成さ
れ、壁部21に隣接して設けられているランプ13から
照射される紫外光、太陽光等の照射光を透過し、壁部2
1上で光分解槽17内の水の光分解が進行する。光分解
によって生じる水素は、水素透過性膜15を通って有機
槽19へ移行する。光分解に用いる照射光が太陽光であ
る場合には、ランプ13を省略することができる。
The wall portion 21 of the reaction tube 3 is made of titanium oxide, and transmits irradiation light such as ultraviolet light and sunlight radiated from the lamp 13 provided adjacent to the wall portion 21, and the wall portion 2
1, the photolysis of water in the photolysis tank 17 proceeds. Hydrogen generated by photolysis moves to the organic tank 19 through the hydrogen permeable film 15. When the irradiation light used for photolysis is sunlight, the lamp 13 can be omitted.

【0031】この装置では、酸素透過性膜15が傾斜し
て取り付けられており、光分解槽17は上方ほど系内が
細く、発生した水素が有機槽19へ移行し易くしてい
る。水素透過性膜15はテフロン製で、光分解槽17側
の表面に酸化チタンが担持されており、水素透過性膜1
5上においても壁部21を透過した照射光によって水の
分解が進行する。有機槽19へ移行した水素とアルカリ
剤とを用いて有機槽19内の金属触媒上で有機溶媒に溶
解している含ハロゲン有機化合物の分解反応が進行す
る。脱ハロゲンされたハロゲン原子は、系内のアルカリ
剤と結合し、塩が生成する。時間の経過と共にこの有機
槽19では塩が析出するので、この有機槽19の被処理
液は適宜循環させるとよい。
In this apparatus, the oxygen permeable membrane 15 is attached so as to be inclined, and the inside of the system of the photolysis tank 17 is narrower toward the upper side so that the generated hydrogen is easily transferred to the organic tank 19. The hydrogen permeable film 15 is made of Teflon, and titanium oxide is carried on the surface on the photolysis tank 17 side.
Even on the surface of 5, water is decomposed by the irradiation light transmitted through the wall portion 21. The decomposition reaction of the halogen-containing organic compound dissolved in the organic solvent proceeds on the metal catalyst in the organic tank 19 by using the hydrogen and the alkaline agent transferred to the organic tank 19. The dehalogenated halogen atom combines with the alkaline agent in the system to form a salt. Since salt is deposited in the organic tank 19 with the passage of time, the liquid to be treated in the organic tank 19 may be appropriately circulated.

【0032】上記装置1において、光エネルギーによっ
て若干の発熱が生じるので、有機槽19は特に加熱を施
して温度を上げる必要はないが、含ハロゲン有機化合物
の分解反応を促進させる場合には、60℃位まで加熱し
てもかまわない。含ハロゲン有機化合物を溶解させる溶
媒は、非プロトン性溶媒であれば特に制限はないが
ハロゲン有機化合物を溶解しやすい炭化水素系溶媒が好
ましく、取扱い易いヘキサンなどが最も適している。
In the above-mentioned apparatus 1, since a slight amount of heat is generated by light energy, it is not necessary to heat the organic tank 19 to raise the temperature, but when the decomposition reaction of the halogen-containing organic compound is promoted, it is 60 It does not matter if it is heated to about ℃. The solvent for dissolving the halogen-containing organic compound is not particularly limited as long as it is an aprotic solvent, but a hydrocarbon solvent that easily dissolves the halogen-containing organic compound is preferable, and hexane or the like that is easy to handle is most suitable.

【0033】有機槽19に供給するアルカリ剤として
は、水酸化カリウムが最も反応性が高いが、脱離したハ
ロゲンをトラップできれば特に限定はなく、アルカリ金
属水酸化物、アルカリ土類金属水酸化物等を適宜使用す
ることができる。アルカリ剤の量は、含ハロゲン有機化
合物のハロゲンの量の10倍モル以上あることが望まし
い。また、ここで用いる触媒は、触媒上で水素移行能を
有するものが好ましく、炭素−ハロゲン間結合切断効果
が高く、脱ハロゲン水素化しやすい触媒であり、具体的
にはパラジウムまたはロジウムが好ましく、この様な触
媒を活性炭、アルミナ、チタニア、ジルコニア等担持
させ使用するのが望ましい。この担持触媒は、少量の
水を含んでいるのが好ましく、従って、アルカリ剤を溶
解した水に担持触媒を浸して有機槽19に供給する。担
持触媒の表面において含ハロゲン有機化合物から脱離し
たハロゲンは担持触媒に含まれるアルカリ水溶液に吸収
中和される。有機槽19における反応時間は、光の強
度、含ハロゲン有機化合物の濃度にもよるが、数時間か
ら数十時間を要する。反応装置は密閉形であり、特に有
害な物質等が発生することもないので、きわめて安全で
かつ簡便な処理法である。被処理液を還流する場合の流
速は特に限定されない。
As the alkaline agent to be supplied to the organic tank 19, potassium hydroxide has the highest reactivity, but there is no particular limitation as long as it can trap the desorbed halogen, and alkali metal hydroxide, alkaline earth metal hydroxide are available. Etc. can be used appropriately. The amount of the alkaline agent is preferably 10 times or more the molar amount of the halogen-containing organic compound. Further, the catalyst used here is preferably one having hydrogen transfer ability on the catalyst, a carbon-halogen bond breaking effect is high, and a catalyst which is easily dehydrohalogenated, specifically, palladium or rhodium is preferable, the such a catalyst active carbon, alumina, titania, to use by supporting the zirconia desirable. This supported catalyst preferably contains a small amount of water. Therefore, the supported catalyst is immersed in water in which an alkaline agent is dissolved and supplied to the organic tank 19. The halogen desorbed from the halogen-containing organic compound on the surface of the supported catalyst is absorbed and neutralized by the alkaline aqueous solution contained in the supported catalyst. The reaction time in the organic tank 19 may be several hours to several tens hours depending on the intensity of light and the concentration of the halogen-containing organic compound. Since the reactor is a closed type and no harmful substances are generated, it is a very safe and simple treatment method. The flow rate when the liquid to be treated is refluxed is not particularly limited.

【0034】[0034]

【実施例】以下、実施例を参照して本発明を更に説明す
る。
The present invention will be further described below with reference to examples.

【0035】(実施例1)前処理として、水素化リチウ
ム0.8g、パラジウム担持活性炭(担持率10重量
%)0.2gを2−プロパノール100mLに溶解させ
た調製液を温度調整装置及び撹拌装置を具備したガラス
製反応容器に注ぎ入れた。反応容器内の空気を窒素に置
換した後、PCB(3塩化物48重量%、4塩化物28
重量%、2塩化物16重量%、その他8重量%)2.0
gを反応容器に投入した。反応容器を密閉し、調製液を
攪拌しながら、50℃で加熱した。
Example 1 As a pretreatment, 0.8 g of lithium hydride and 0.2 g of palladium-supporting activated carbon (supporting rate 10% by weight) were dissolved in 100 mL of 2-propanol to prepare a temperature adjusting device and a stirring device. It was poured into a glass reaction container equipped with. After replacing the air in the reaction vessel with nitrogen, PCB (48% by weight of trichloride, 28% of tetrachloride)
%, Dichloride 16%, other 8%) 2.0
g was added to the reaction vessel. The reaction vessel was sealed, and the prepared solution was heated at 50 ° C. with stirring.

【0036】加熱時間を10分、20分、30分及び1
時間の各々に設定し、各場合において、加熱終了後に濾
過により調製液から触媒を含む固形分を除去し、ガスク
ロマトグラフを用いて調製液のPCB濃度を測定した。
結果を各々表1に示す。
Heating time is 10 minutes, 20 minutes, 30 minutes and 1
Each time was set, and in each case, the solid content containing the catalyst was removed from the preparation liquid by filtration after heating was completed, and the PCB concentration of the preparation liquid was measured using a gas chromatograph.
The results are shown in Table 1.

【0037】(比較例1)水素化リチウムの代わりに水
酸化ナトリウム4.0gを用いた以外は実施例1と同様
に反応を行った。結果を表1に示す。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that 4.0 g of sodium hydroxide was used instead of lithium hydride. The results are shown in Table 1.

【0038】(実施例2)パラジウム担持活性炭の代わ
りに白金担持活性炭(担持率10重量%)0.2gを用
いた点以外は実施例1と同様に反応を行った。結果を表
1に示す。
Example 2 A reaction was carried out in the same manner as in Example 1 except that 0.2 g of platinum-supporting activated carbon (supporting rate 10% by weight) was used instead of palladium-supporting activated carbon. The results are shown in Table 1.

【0039】(比較例2)水素化リチウムの代わりに水
酸化ナトリウム4.0gを用いた以外は実施例2と同様
に反応を行った。結果を表1に示す。
(Comparative Example 2) A reaction was carried out in the same manner as in Example 2 except that 4.0 g of sodium hydroxide was used instead of lithium hydride. The results are shown in Table 1.

【0040】(実施例3)パラジウム担持活性炭の代わ
りにロジウム担持活性炭(担持率10重量%)0.2g
を用いた点以外は実施例1と同様に反応を行った。結果
を表1に示す。
(Example 3) 0.2 g of rhodium-supporting activated carbon (supporting rate 10% by weight) instead of palladium-supporting activated carbon
The reaction was performed in the same manner as in Example 1 except that was used. The results are shown in Table 1.

【0041】(比較例3)水素化リチウムの代わりに水
酸化ナトリウム4.0gを用いた以外は実施例3と同様
に反応を行った。結果を表1に示す。
Comparative Example 3 A reaction was carried out in the same manner as in Example 3 except that 4.0 g of sodium hydroxide was used instead of lithium hydride. The results are shown in Table 1.

【0042】(実施例4)2−プロパノールの代わりに
エタノール100mLを用いた点以外は実施例1と同様
に反応を行った。結果を表1に示す。
Example 4 A reaction was carried out in the same manner as in Example 1 except that 100 mL of ethanol was used instead of 2-propanol. The results are shown in Table 1.

【0043】(比較例4)水素化リチウムの代わりに水
酸化ナトリウム4.0gを用いた以外は実施例4と同様
に反応を行った。結果を表1に示す。
(Comparative Example 4) A reaction was carried out in the same manner as in Example 4 except that 4.0 g of sodium hydroxide was used instead of lithium hydride. The results are shown in Table 1.

【0044】(実施例5)PCBの代わりにトリクロロ
ベンゼン2.0gを用いた点以外は実施例1と同様に反
応を行った。結果を表2に示す。
Example 5 A reaction was performed in the same manner as in Example 1 except that 2.0 g of trichlorobenzene was used instead of PCB. The results are shown in Table 2.

【0045】(比較例5)水素化リチウムの代わりに水
酸化ナトリウム4.0gを用いた以外は実施例5と同様
に反応を行った。結果を表2に示す。
Comparative Example 5 A reaction was carried out in the same manner as in Example 5 except that 4.0 g of sodium hydroxide was used instead of lithium hydride. The results are shown in Table 2.

【0046】(実施例6〜9)水素化リチウムに代え
て、実施例6では水素化ナトリウム2.4g、実施例7
では水素化カルシウム4.2g、実施例8では水素化ホ
ウ素ナトリウム3.8g、実施例9では水素化アルミニ
ウムリチウム3.8gを用いた以外は実施例1と同様に
反応を行った。結果を表3に示す。
Examples 6 to 9 In place of lithium hydride, in Example 6 2.4 g of sodium hydride, Example 7
The reaction was performed in the same manner as in Example 1 except that 4.2 g of calcium hydride was used, 3.8 g of sodium borohydride was used in Example 8, and 3.8 g of lithium aluminum hydride was used in Example 9. The results are shown in Table 3.

【0047】[0047]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PCB濃度(ppm ) 処理前 10分 20分 30分 1時間 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 25000 90 1.1 0.027 <0.0005 比較例1 25000 1500 90 3.2 0.240 実施例2 25000 250 5.2 0.095 0.0014 比較例2 25000 6500 920 70 0.0085 実施例3 25000 430 10 0.310 0.0027 比較例3 25000 9800 1300 220 32 実施例4 25000 130 3.9 0.078 <0.0005 比較例4 25000 3800 240 0.019 1.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 定量下限:0.5ppb[Table 1] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                                 PCB concentration (ppm)               Before processing 10 minutes 20 minutes 30 minutes 1 hour −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 25000 90 1.1 0.027 <0.0005 Comparative Example 1 25000 1500 90 3.2 0.240 Example 2 25000 250 5.2 0.095 0.0014 Comparative Example 2 25000 6500 920 70 0.0085 Example 3 25000 430 10 0.310 0.0027 Comparative Example 3 25000 9800 1300 220 32 Example 4 25000 130 3.9 0.078 <0.0005 Comparative Example 4 25000 3800 240 0.019 1.2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                                                       Lower limit of quantification: 0.5ppb

【表2】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− トリクロロベンゼン濃度(ppm ) 処理前 10分 20分 30分 1時間 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例5 25000 1.7 0.044 <0.005 <0.005 比較例5 25000 160 2.9 320 0.850 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 定量下限:5ppb[Table 2] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                           Trichlorobenzene concentration (ppm)               Before processing 10 minutes 20 minutes 30 minutes 1 hour −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 5 25000 1.7 0.044 <0.005 <0.005 Comparative Example 5 25000 160 2.9 320 0.850 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−                                                       Lower limit of quantification: 5ppb

【表3】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− PCB濃度(ppm ) 処理前 10分 20分 30分 1時間 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 25000 90 1.1 0.027 <0.0005 実施例6 25000 140 2.8 0.100 0.0017 実施例7 25000 260 8.6 0.420 0.0069 実施例8 25000 110 1.2 0.015 0.0008 実施例9 25000 200 3.0 0.034 0.0015 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 定量下限:0.5ppb (実施例10)図1のように構成され水素透過性膜とし
てテフロン膜(水素透過性:0.45g/100in2
24hr/(atm/mil) (40℃)、0.85g/100in
2 /24hr/(atm/mil) (60℃))を備えた装置1を
用いて、溶媒としてヘキサンにPCB含有油(PCB濃
度2%)を溶解して被処理液タンク7に投入し、Pd/
C触媒5gに水酸化カリウム20%濃度の水を浸して有
機槽19に加えて、被処理液タンク7からPCB溶液を
有機槽19へ供給した。光分解槽17には水タンク5か
ら水を循環させた。
Table 3 ------------------ PCB concentration (ppm) 10 minutes before treatment 20 Minutes 30 minutes 1 hour ----------------------------------------- Example 1 25000 90 1.1 0.027 <0.0005 Example 6 25000 140 2.8 0.100 0.0017 Example 7 25000 260 8.6 0.420 0.0069 Example 8 25000 110 1.2 0.015 0.0008 Example 9 25000 200 3.0 0.034 0.0015 −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−− Lower limit of quantification: 0.5 ppb (Example 10) A Teflon membrane (hydrogen permeability: 0.45 g) configured as shown in FIG. / 100 in 2 /
24hr / (atm / mil) (40 ℃), 0.85g / 100in
2 / 24hr / (atm / mil ) (60 ℃)) using the apparatus 1 provided with, was poured into the treatment tank 7 by dissolving PCB-containing oil in hexane as solvent (2% PCB concentration), Pd /
Water having a concentration of 20% potassium hydroxide was immersed in 5 g of C catalyst and added to the organic tank 19, and the PCB solution was supplied from the liquid tank 7 to be processed to the organic tank 19. Water was circulated from the water tank 5 to the photolysis tank 17.

【0048】ランプ13から光分解槽17へ太陽光波長
のエネルギーを照射し、10時間後に有機槽19内の溶
媒中の残留PCBをGC/MSによりの測定した結果、
検出下限(10ppb )以下であった。従って、このPC
Bは完全に分解された。
The photolysis tank 17 was irradiated with the energy of the sunlight wavelength from the lamp 13, and after 10 hours, the residual PCB in the solvent in the organic tank 19 was measured by GC / MS.
It was below the detection limit (10 ppb). Therefore, this PC
B was completely decomposed.

【0049】(比較例6)内容量300mLのガラス製
の3つロフラスコにPCB(KC−300)100ppm
、炭素系触媒及び水酸化ナトリウムを含んだC重油を
加え、常圧の窒素雰囲気中で撹拌し、マントルヒーター
により300℃以上で6時間撹拌した。6時間後にろ過
し、ろ液をGC/MSで分析した結果、PCBは検出さ
れた。検出値からPCBの分解率は99.9%であり、
僅かにPCBは残存していた。
(Comparative Example 6) PCB (KC-300) 100 ppm in three glass flasks with an internal volume of 300 mL.
, C-type heavy oil containing a carbon-based catalyst and sodium hydroxide was added, and the mixture was stirred in a nitrogen atmosphere at atmospheric pressure and stirred at 300 ° C. or higher for 6 hours with a mantle heater. PCB was detected as a result of filtering after 6 hours and analyzing the filtrate by GC / MS. From the detected value, the decomposition rate of PCB is 99.9%,
The PCB remained slightly.

【0050】(実施例11)装置1の水素透過膜15と
して、ポリスルホン膜を用い、実施例10と同様に被処
理液タンク7に、溶媒としてヘキサンにPCBを濃度1
%で溶解させた溶液を投入した。有機槽19には水酸化
カリウム20%濃度の水溶液をPd/C触媒5gに浸し
たものを加え、被処理液タンク7からPCB溶液を有機
槽19へ供給した。光分解槽17へ水を循環させ、ラン
プ13により太陽光波長の光エネルギーを照射し、12
時間後に溶媒の残留PCBをGC/MSにより測定した
結果、検出下限以下であった。従って、このPCBは完
全に分解された。
(Embodiment 11) A polysulfone membrane is used as the hydrogen permeable membrane 15 of the device 1, and in the liquid tank 7 to be treated in the same manner as in Embodiment 10, hexane is used as a solvent and PCB has a concentration of 1.
The solution dissolved in% was added. A solution obtained by immersing an aqueous solution of 20% potassium hydroxide in 5 g of Pd / C catalyst was added to the organic tank 19, and the PCB solution was supplied to the organic tank 19 from the liquid tank 7 to be treated. The water is circulated to the photolysis tank 17, and the lamp 13 irradiates the light energy of the wavelength of the sunlight,
After the time, the residual PCB of the solvent was measured by GC / MS, and the result was below the lower limit of detection. Therefore, this PCB was completely decomposed.

【0051】(実施例12)壁部21をガラスで構成
し、水素透過性膜15としてポリスルホン膜表面に酸化
チタンを担持したものを用いて、図1のような構成の装
置を作製し、被処理液タンク7にトリクレン水溶液(濃
度120ppm )を投入し、有機槽19に供給した。有機
槽19には更に、水酸化カルシウム20%濃度の水溶液
をPd/C触媒5gに浸したものを加えた。光分解槽1
7に水を循環させ、ランプ13により太陽光波長の光エ
ネルギーを照射し、12時間後の溶媒中のトリクレン濃
度をGC−ECDにより分析した結果、検出下限以下で
あった。従って、トリクレンは完全に分解された。
(Embodiment 12) The wall portion 21 is made of glass, and the hydrogen permeable film 15 having titanium oxide supported on the surface of the polysulfone film is used to fabricate a device having a structure as shown in FIG. An aqueous trichlene solution (concentration: 120 ppm) was charged into the treatment liquid tank 7 and supplied to the organic tank 19. To the organic tank 19, an aqueous solution having a concentration of 20% calcium hydroxide immersed in 5 g of Pd / C catalyst was added. Photolysis tank 1
The water was circulated in No. 7 and the lamp 13 was irradiated with light energy having a wavelength of sunlight, and the concentration of trichlene in the solvent after 12 hours was analyzed by GC-ECD. Therefore, trichlene was completely decomposed.

【0052】以上から理解されるように、本発明は上記
実施例に限定されるものではなく、発明の趣旨を逸脱し
ない範囲において、種々の変形が可能である。
As will be understood from the above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention.

【0053】[0053]

【発明の効果】以上説明したように本発明によれば、含
ハロゲン有機化合物の分解が効率よく行われるので、不
要になった含ハロゲン有機化合物の処理が簡単になり、
反応後の処理も容易である点も優れている。従って、そ
の工業及び環境保護における価値は大である。
As described above, according to the present invention, the halogen-containing organic compound can be decomposed efficiently, so that the treatment of the unnecessary halogen-containing organic compound can be simplified.
It is also excellent in that the treatment after the reaction is easy. Therefore, its value in industry and environmental protection is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における含ハロゲン有機化合物の分解を
実施する分解装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a decomposition apparatus for decomposing a halogen-containing organic compound according to the present invention.

【符号の説明】[Explanation of symbols]

1 分解装置 3 反応管 5 水タンク 7 被処理液タンク 9,11 ポンプ 13 ランプ 15 水素透過性膜 17 光分解槽 19 有機槽 21 壁部 1 Decomposing device 3 reaction tubes 5 water tank 7 liquid tank 9,11 pump 13 lamps 15 Hydrogen-permeable membrane 17 Photolysis tank 19 organic tank 21 wall

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 35/02 B01J 35/02 J C02F 1/30 C02F 1/30 1/58 1/58 A (56)参考文献 特開 昭52−36650(JP,A) 特開 昭62−74452(JP,A) 特開 平10−249313(JP,A) 特開 昭60−218330(JP,A) 特開 平4−26632(JP,A) 特開 平4−261675(JP,A) 特開 平8−266888(JP,A) 特開 平9−122479(JP,A) 特開 平7−51401(JP,A) 特開 昭60−118289(JP,A) 特開 昭57−205301(JP,A) 特開 昭49−41344(JP,A) 特開 昭54−59233(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/70 A62D 3/00 C07B 35/06 C07B 61/00 B01J 23/40 B41J 35/02 C02F 1/30 C02F 1/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI B01J 35/02 B01J 35/02 J C02F 1/30 C02F 1/30 1/58 1/58 A (56) References 52-36650 (JP, A) JP 62-74452 (JP, A) JP 10-249313 (JP, A) JP 60-218330 (JP, A) JP 4-26632 (JP, A) JP-A-4-261675 (JP, A) JP-A-8-266888 (JP, A) JP-A-9-122479 (JP, A) JP-A-7-51401 (JP, A) JP-A-60 -118289 (JP, A) JP-A-57-205301 (JP, A) JP-A-49-41344 (JP, A) JP-A-54-59233 (JP, A) (58) Fields investigated (Int.Cl) . 7 , DB name) C02F 1/70 A62D 3/00 C07B 35/06 C07B 61/00 B01J 23/40 B41J 35/02 C02F 1/30 C02F 1/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属触媒の存在下で含ハロゲン有機化合
物を水素供与物質及びアルカリ剤と反応させることによ
り含ハロゲン有機化合物を脱ハロゲン水素化する含ハロ
ゲン有機化合物の分解方法であって、アルコールを上記
水素供与物質とし、金属水素化物を上記アルカリ剤とし
て用いることを特徴とする含ハロゲン有機化合物の分解
方法。
1. A method for decomposing a halogen-containing organic compound by dehydrohalogenating a halogen-containing organic compound by reacting the halogen-containing organic compound with a hydrogen donor and an alkaline agent in the presence of a metal catalyst, wherein A method for decomposing a halogen-containing organic compound, which comprises using a metal hydride as the alkali agent as the hydrogen donor.
【請求項2】 前記金属水素化物は、アルカリ金属水素2. The metal hydride is an alkali metal hydrogen
化物、アルカリ土類金属水素化物、テトラヒドロホウ酸Compounds, alkaline earth metal hydrides, tetrahydroboric acid
塩及びテトラヒドロアルミン酸塩からなる群より選択さSelected from the group consisting of salts and tetrahydroaluminates
れる請求項1記載の分解方法。The decomposition method according to claim 1, further comprising:
JP25391497A 1997-09-18 1997-09-18 Decomposition method of halogen-containing organic compounds Expired - Fee Related JP3442623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25391497A JP3442623B2 (en) 1997-09-18 1997-09-18 Decomposition method of halogen-containing organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25391497A JP3442623B2 (en) 1997-09-18 1997-09-18 Decomposition method of halogen-containing organic compounds

Publications (2)

Publication Number Publication Date
JPH1190460A JPH1190460A (en) 1999-04-06
JP3442623B2 true JP3442623B2 (en) 2003-09-02

Family

ID=17257802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25391497A Expired - Fee Related JP3442623B2 (en) 1997-09-18 1997-09-18 Decomposition method of halogen-containing organic compounds

Country Status (1)

Country Link
JP (1) JP3442623B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079510A (en) * 1999-05-19 2001-08-22 추후제출 Method of decomposing organochlorine compound
JP4962678B2 (en) * 1999-11-22 2012-06-27 宏 樫原 Halogenated substance decomposition method
JP4271961B2 (en) * 2003-02-20 2009-06-03 石原産業株式会社 Environmental purification method
JP2011188949A (en) * 2010-03-12 2011-09-29 Nagoya Industrial Science Research Inst Hydrodechlorination reaction device of aromatic chlorine compound
EP4321238A1 (en) * 2022-08-08 2024-02-14 Grillo-Werke Aktiengesellschaft Dehalogenation of halogenated hydrocarbons

Also Published As

Publication number Publication date
JPH1190460A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
Anwer et al. Applications of ammonium formate catalytic transfer hydrogenolysis--IV1: a facile method for dehalogenation of aromatic chlorocarbons
CN104812710A (en) Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
US5177268A (en) Hydrodehalogenation of aromatic compounds
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
JP3852856B1 (en) Decomposition method of dioxins
JP3976332B1 (en) Decomposition method of high-concentration organochlorine compounds
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP3976329B2 (en) Organic halogen compound decomposition treatment method and mobile decomposition treatment system
WO2000071472A1 (en) Method of decomposing organochlorine compound
JP2007105061A (en) Microwave simultaneous use type decomposing method and decomposing system of organic halogen compound
JP2008272594A (en) Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
JP2810978B2 (en) Dechlorination of aromatic chlorides with formate using palladium and phase transfer catalyst.
JP3970277B2 (en) Contaminated oil treatment method
JP3216773B2 (en) Decomposition method of aromatic halogen compound
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JP2007105062A (en) Microwave applicator and method for decomposition using the same
JP4963014B2 (en) Decomposition method of organic halogen compounds
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP3641554B2 (en) Organic halogen compound decomposition method and organic halogen compound decomposition apparatus
JP3497915B2 (en) Chemical decomposition method of polychlorobiphenyl by phase transfer catalyst
JP3970286B2 (en) Organic halogen compound decomposition treatment method and microwave combined decomposition treatment system
JP2006115952A (en) Dechlorination method for high concentration organohalogen compound containing pcb
JP2003183183A (en) Method for decomposition treatment of halogen- containing organic compound
JP3969634B2 (en) Method for decomposing halogen-containing organic compounds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees